

RTL8822CE RTL8822CU RTL8822CS COB MP FLOW

R12

This document is subject to change without notice. The document contains Realtek confidential information and must not be disclosed to any third party without appropriate NDA.

Table of Contents

1. DUT MP Flow	7
2. Environment setup	
2.1. Test platform	
2.2 CMD arrithment actum	
2.2. CMD environment setup	9
3. WiFi Mass Production Flow	
3.1. WiFi calibration	
3.1.1. WiFi initialize	
3.1.2. Pre-heating	
3.1.3. Load default map to fake map from eFuse/Mask map files	
3.1.4. Crystal calibration	
3.1.5. Tx index calibration and thermal	
3.1.5.1. Tx index location in eFuse	
3.1.5.2. Defined target power	
3.1.5.3. Tx index calibration flow	
3.1.5.4. Tx index calibration command and sample	
3.1.5.4.1. Interpolation for finding Tx index	
3.1.5.4.2. The Tx power difference	
3.1.6. Thermal meter	
3.2. WiFi performance verification	
3.2.1. Tx performance verification	
3.2.1.1. Tx performance verification criterion	
3.2.1.2. Verify Tx performance	
3.2.2. Rx performance verification	
3.2.2.1. Rx performance verification criterion	
3.2.2.2. Verify Rx performance	
4. Bluetooth Mass Production Flow	
4.1 Bluetooth device environment setun	34
4.1.1 Android OS	34
4.1.2. Linux OS	
4.2. Bluetooth device initial	
4.3. Bluetooth calibration	
4.3.1. Calibration Tx gain K	

	4.3.2.	Calibration Tx flatness K	42
	4.3.3.	Shift Tx Level	43
	4.3.4.	Calibration thermal meter	43
	4.4. B	luetooth verify	44
	4.4.1.	Verify Bluetooth BDR/EDR	44
	4.4.1	.1. Verify Bluetooth BDR/EDR Tx	44
	4.4.1	.2. Verify Bluetooth BDR/EDR Rx	46
	4.4.2.	Verify Bluetooth BLE	48
	4.4.2	2.1. Verify Bluetooth BLE 1M Tx (BT4.0)	49
	4.4.2	2.2. Verify Bluetooth BLE 2M Tx(BT5.0)	51
	4.4.2	2.3. Verify Bluetooth BLE 1M Rx(BT4.0)	
	4.4.2	2.4. Verify Bluetooth BLE 2M Rx(BT5.0)	53
	4.5. B	Bluetooth MP Exit	54
5.	Dump	result to HW efuse	55
	5.1. V	ViFi MP results eFuse check-in flow	56
	5.1.1.	Read default eFuse file to driver fake area	56
	5.1.2.	Checkout the driver fake map	56
	5.1.3.	Modify the specific offset of the fake map	56
	5.1.3	3.1. Write WiFi MAC address to driver fake map	57
	5.1.3	3.2. Write thermal value to driver fake map	57
	5.1.3	3.3. Write calibrated crystal value to driver fake map	
	5.1.3	3.4. Write Tx index to driver fake map	
	5.1.4.	Update HW eFuse from fake-map	
	5.1.5.	Check the HW eFuse content	
	5.2. B	Bluetooth MP result eFuse check-in flow	60
	5.2.1.	Read Default E-fuse-File to Driver-Fake-Area	60
	5.2.2.	Checkout the driver fake map	60
	5.2.3.	Modify the specific offset of the fake map	60
	5.2.3	3.1. Write BT MAC address to driver fake map:	61
	5.2.3	3.2. Write thermal value to driver fake map	61
	5.2.3	3.3. Write Tx gain/Flatness/LBT calibration value to driver fake map	61
	5.2.4.	Update HW E-fuse from fake-map	62
	5.2.5.	Check the HW E-fuse content	62
6.	WiFi .	MP flow appendix	63
	6.1. H	lardware Tx parameters	63

	6.2.	Software Rx parameters	65
7.	Blu	etooth MP flow appendix	66
	7.1.	Bluetooth MP tool command usage	67
	7.1.1	. Bluetooth start, exit and help command	68
	7.1.2	2. Bluetooth MP initialize commands at Linux/Android platform	70
	7.1.3	Bluetooth MP mode control parameters commands	71
	7.1.4	Bluetooth MP mode execute commands	76
	7.1.5	5. Bluetooth MP mode report commands	79
	7.2.	Bluetooth eFuse definition about calibrates of Tx power	80
	7.3.	Tx flatness K mapping table	82
	7.4.	Bluetooth Tx power table	83
	7.5.	Verify Bluetooth BDR/EDR Tx SPEC	85
	7.6.	Verify Bluetooth BDR/EDR Rx SPEC	88
	7.7.	Verify Bluetooth BLE Tx Performance (BLE 1M)	89
	7.8.	Verify Bluetooth BLE 5.0 Tx Performance	90
	7.9.	Verify Bluetooth BLE Rx Performance	91

List of Tables

Table 1: Crystal calibration offset in eFuse	. 17
Table 2: Tx index and Thermal meter offset in eFuse	. 18
Table 3: The default target power	. 19
Table 4: The recommended measured channel for Tx power calibration	. 22
Table 5: The example of finding Tx index in 2G band by interpolation	. 22
Table 6: The example of finding power difference	. 23
Table 7: The recommended test items of WiFi Tx	. 26
Table 8: The recommended test items of 5G WiFi Tx	. 27
Table 9: The recommended test items of WiFi Tx with 2-stream measurement	. 28
Table 10: The recommended test items of WiFi Tx with 256-QAM measurement	. 28
Table 11: The recommended test items of WiFi Rx	. 30
Table 12: Tx gain K mapping table	. 41
Table 13: RTL8822CE WiFi MAC address offset in eFuse	. 57
Table 14: RTL8822CU WiFi MAC address offset in eFuse	. 57
Table 15: RTL8822CS WiFi MAC address offset in eFuse	. 57
Table 16: Bluetooth MAC address offset in eFuse	. 61
Table 17: BT_MP_initialize_CMD	. 70
Table 18: BT MP CONTROL_PARAM_CMD	. 71
Table 19: BT PARAM_INDEX	. 72
Table 20: BT PKT_TYPE	. 73
Table 21: BT BLE5.0_Tx_PKT_TYPE	. 73
Table 22: BT BLE5.0_Rx_PKT_TYPE	. 73
Table 23: BT BLE5.0_MODULATION_TYPE	. 73
Table 24: BT PAYLOAD_TYPE	. 74
Table 25: BT LE_PAYLOAD_TYPE	. 74
Table 26: BT PACKET_HEADER	. 74
Table 27: BT_ACTIONCONTROL_TAG	. 78
Table 28: BT Tx gain index offset in eFuse	. 80
Table 29: Verify Bluetooth Tx Basic 1M	. 85
Table 30: Verify Bluetooth Tx EDR 2M	. 86
Table 31: Verify Bluetooth Tx EDR 3M	. 87
Table 32: Bluetooth Legacy Rx criterion	. 88
Table 33: Bluetooth BLE Tx criterion	. 89
Table 34: Bluetooth BLE 5.0 Tx criterion	. 90
Table 35: Bluetooth BLE Rx criterion	. 91

List of Figures

Figure 1: Brief diagram about test environment setup of DUT	
Figure 2: Connect PC to Android/Linux device	9
Figure 3: Check the connection between PC & Android/Linux device	9
Figure 4: Enter Android/Linux device command line	9
Figure 5: WiFi calibration flow	
Figure 6: Finding Crystal Cap. Index Flow	14
Figure 7: Tx calibration flow	
Figure 8: Finding Tx index flow	
Figure 9: Bluetooth TxPower/TxGainK/TxFlatnessK relationship	
Figure 10: BT_5 dBm setting example (Capture image from efuse map file) RTF	K default
map	
Figure 11: BT_4 dBm setting example (Capture image from efuse map file)	

Revision History:

Revision	Date	Changes	Author
R12	2020/03/12	Re-write from COB flow R11	DeanKu

1. DUT MP Flow

The below diagram shows a global view of Mass-Production-Flow, please refer to the following sub-section to get the detail description of each step.

2. Environment setup

2.1. Test platform

The calibration flow described in following sections are based on WiFi tester. Realtek had qualified tester is listed below:

Include 802.11ac Test		Only 802.11a/b/g/n Test		
Vendor	Modal Name	Vendor	Modal Name	
LitePoint	IQxel	LitePoint	IQFlex	
Itest	WT-200	LitePoint	IQView	
NI	PXIe-5644R/5645R	LitePoint	IQnxn	
Anritsu	MT8870A	Agilent	N4010A	
Aeroflex	PXI 3000 Series			

The test environment setup is as below:

Figure 1: Brief diagram about test environment setup of DUT

*To reduce the mismatch effect between DUT and environment,

10dB-fixed attenuator is supposed to set closed to DUT as possible.

2.2. CMD environment setup

Step1 : Use USB cable to connect PC and Android/Linux devices as Figure 3.

Figure 2: Connect PC to Android/Linux device

Step2 : Use adb command as below:

adb devices

How to check whether the Android/Linux devices were connected or not?

Figure 4 shows a result if the PC connects to Android/Linux devices successfully.

C:\WINDOWS\system32\cmd.exe	- 🗆 🗙
C:\android-sdk-windows\tools>adb devices adb server is out of date. killing * daemon started successfully *	
List of devices attached device Device Number	
C:\android-sdk-windows\tools>	-

Figure 3: Check the connection between PC & Android/Linux device

Step3 : Use adb command as below:

adb shell

Figure 5 shows the CMD line under shell.

Figure 4: Enter Android/Linux device command line

3. WiFi Mass Production Flow

3.1. WiFi calibration

The WiFi calibration steps are shown as Figure 6:

Figure 5: WiFi calibration flow

3.1.1. WiFi initialize

Refer to <u>Section 2.2</u>, PC can connect to Android/Linux devices with USB port and ADB command. The relative commands of DUT WiFi initializing is listed as below :

remount root rmmod wlan insmod 8822c.ko rtw_RFE_type=X

(delay 5 second)

*If the efuse of RTL8822C was empty, please make sure your HW-Layout of board type and PA/LNA.

ifconfig wlan0 up

rtwpriv wlan0 mp_start

3.1.2. Pre-heating

Pre-heating is an one-time experiment to grab essential setup, it made DUT closed to the usual temperature and improved the stability of mass production. It will pre-heat the DUT for seconds before mass production.

Step 1 : Read and record thermal value THER_{RX} at steady Rx status which lasts 5 minutes at room temperature.

rtwpriv wlan0 mp_start	//Enter WiFi MP mode
Wait for 5 minute.	
rtwpriv wlan0 mp_ther	//Get the thermal value THERRX
Record the THERRX value.	

Step 2 : Use MP HW Tx to do the following pre-heating operation.

rtwpriv wlan0 6 1 a HTMCS7 1 TxPacketInterval TxPacketLength //Supposed initial value of Tx TxPacketInterval = 100 //Supposed initial value of Tx TxPacketLength = 1000 rtwpriv wlan0 mp_ther //Get the heated thermal value THERHeating

Step 3 : To figure out pre-heat settings (TxPacketInterval/TxPacketLength/TIMEHeating). Trim the TxPacketInterval or TxPacketLength, then do HW Tx and record how long

does the DUT be heated to THER_{Rx} temperature. If THER_{Heating} - THER_{Rx} \leq 3, means

DUT is heated to desired temperature. The time-spent records as TIMEHeating. Use these settings (TxPacketInterval/TxPacketLength/TIMEHeating) as pre-heating setup.

Pre-heating DUT before calibration by the found settings set :

Do HW Tx rtwpriv wlan0 6 1 a HTMCS7 1 TxPacketInterval TxPacketLength Last for TIMEHeating. So that DUT can be pre-heated to desired thermal range.

Example :

rtwpriv wlan0 mp_start	//Enter WiFi MP mode		
Wait for 5 minute.			
rtwpriv wlan0 mp_ther	//MP feedback the thermal value = 2d		
Record the THER $\mathbf{R}\mathbf{x} = 2\mathbf{d}$			
rtwpriv wlan0 6 1 a HTMCS7 1	200 1000		
Example : Use HW Tx, HT40 HTMCS7 channel 6, TxPacketInterval = 200, TxPacketLength = 1000 to pre-heat DUT.			
5 seconds past.			
rtwpriv wlan0 mp_ther	//MP feedback the thermal value = 2e		
Record the THER _{Heating} = 2e			
Record the THER Heating = 2e	The formation of the first man value of the		

2e (THER_{Heating}) – 2d (THER_{RX}) \leq 3,DUT is heated to desired thermal range!

(5 seconds is just a sample value here. In the operation, please do HW Tx and observe the **THER**_{Heating} variance. How long does the DUT be heated to the thermal range.)

Finally, get a pre-heating settings set :

rtwpriv wlan0 6 1 a HTMCS7 1 200 1000

Heating time-spent is **TIME**_{Heating} = 5 seconds.

DUT can be heated to desired thermal rang by HW Tx(rtwpriv wlan0 6 1 a HTMCS7 1 200 1000) for 5 seconds (TIME Heating).

rtwpriv wlan0 stop //Stop HW Tx

The pre-heating settings were found. Please pre-heat DUT before calibration.

3.1.3. Load default map to fake map from eFuse/Mask map files.

Load external eFuse map file to driver fake map

rtwpriv wlan0 efuse_file /../../efuse.map

Load external mask map file to driver fake map : rtwpriv wlan0 efuse_mask /xx/xx/xxmask.txt

3.1.4. Crystal calibration

Figure 6: Finding Crystal Cap. Index Flow

InitIndex: the default value is 0x40. Index range is 0x0 to 0x7F.

MeasuredCFOffset: Carrier frequency measured by instrument - ideal carrier frequency

target range Abs. Value of 2ppm in 2.4GHz band is about 10KHz(±5KHz).

TargetCFOffset: generally is 0 ppm.

Step: The value will be different from modules dominated by external capacitor beside the crystal, so it must be able to modify simply in the initial file of test program. By experience, the value variation is about $+2 \sim +3$ KHz. The value should be checked by hardware RD and be filled in the setup file of test program. The plus symbol means that the crystal Cap. index and carrier frequency is positive-dependent (The larger index is relative to major carrier frequency).

Command is as below:

Step 1:

rtwpriv wlan0 mp_setrfpath 1 //WiFi MP driver will set RF path automatically, too. rtwpriv wlan0 7 1 a HTMCS7 1 2000 //start HW Tx

Step 2 :

- 1. To measure frequency error (ppm), Freq_Err.
- 2. Freq_Err should be limited to ± 2 ppm.
- 3. If Freq_Err is between ± 2 ppm, it means the Index_cry is correct.
- 4. If the Freq_Err is out of ±2ppm, try the algorithm below to find next index_cry_next until

Freq_Err is between ±2ppm.

$$index_cry_next=Index_cry - \frac{Freq_Err \times 2442}{2500}$$

Example : Set Index_cry =32, measured Freq_Err = -23.49ppm. How to find next index ?

The next index is index_cry_next= 32-
$$\frac{(-23.49) \times 2442}{2500} \neq 9$$

Step3:

The index_cry_next must be **rounded to an integer**, and use the following command to update index:

rtwpriv wlan0 mp_phypara xcap=index_cry_next

Example :

rtwpriv wlan0 mp phypara xcap=9 //update crystal calibration value to MP

Repeat Step2, Step3 until the measured Freq_Err is limited to ±2ppm and note down

Index cry ok. And Index cry ok should be updated to eFuse after calibration.

Step 4 : After measurement, stop HW Tx.

©2019 Realtek Semiconductor Corp.

rtwpriv wlan0 stop

//stop HW Tx

Crystal calibration eFuse offset and notice :

The values must be well-calibrated and filled in the correct eFuse location.

Crystal Calibration	0xB9, 0x110, 0x111
	Table 1: Crystal calibration offset in eFuse

1. 0xB9, 0x110, 0x111 should be the same value as each other.

2. For the situation of K-free flow ,the eFuse content may be loaded from an external file in the system. These xtal-related-offset must be written in the HW eFuse even the eFuse-content could be set from an external file.

3.1.5. Tx index calibration and thermal

The following flow will show the Tx index calibration flow, criterion, and sample command.

3.1.5.1. Tx index location in eFuse

There are the Tx index for each channel group with PHY data rate. The Tx index value and thermal value should be calibrated and updated to eFuse.

Tx index location in EFuse of Antenna A						
	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6
	CH1 – CH2	CH3 – CH5	CH6 – CH8	CH9 – CH11	CH12 – CH13	CH14
MCS7 B40	0x16[7:0]	0x17[7:0]	0x18[7:0]	0x19[7:0]	0x1A[7:0]	
ССК	0x10[7:0]	0x11[7:0]	0x12[7:0]	0x13[7:0]	0x14[7:0]	0x15[7:0]
	Group 7	Group 8	Group 9	Group 10		
	СН36 – СН40	CH44 – CH48	СН52 – СН56	СН60 – СН64		
MCS7 B40	0x22[7:0]	0x23[7:0]	0x24[7:0]	0x25[7:0]		
	Group 11	Group 12	Group 13	Group 14	Group 15	Group 16
	CH100 –	CH108 –	CH116 –	CH124 –	CH132 –	CH140 –
	CH104	CH112	CH120	CH128	CH136	CH144
MCS7 B40	0x26[7:0]	0x27[7:0]	0x28[7:0]	0x29[7:0]	0x2A[7:0]	0x2B[7:0]
	Group 17	Group 18	Group 19	Group 20		
	CH149 –	CH157 –	CH165 –	CH173 –		
	CH153	CH161	CH169	CH177		
MCS7 B40	0x2C[7:0]	0x2D[7:0]	0x2E[7:0]	0x2F[7:0]		

	Tx index location in EFuse of Antenna B							
	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6		
	CH1 – CH2	CH3 – CH5	CH6 – CH8	CH9 – CH11	CH12 – CH13	CH14		
MCS7 B40	0x40[7:0]	0x41[7:0]	0x42[7:0]	0x43[7:0]	0x44[7:0]			
ССК	0x3A[7:0]	0x3B[7:0]	0x3C[7:0]	0x3D[7:0]	0x3E[7:0]	0x3F[7:0]		
	Group 7	Group 8	Group 9	Group 10				
	CH36 – CH40	CH44 – CH48	СН52 – СН56	СН60 – СН64				
MCS7 B40	0x4C[7:0]	0x4D[7:0]	0x4E[7:0]	0x4F[7:0]				
	Group 11	Group 12	Group 13	Group 14	Group 15	Group 16		
	CH100 –	CH108 –	CH116 –	CH124 –	CH132 –	CH140 –		
	CH104	CH112	CH120	CH128	CH136	CH144		
MCS7 B40	0x50[7:0]	0x51[7:0]	0x52[7:0]	0x53[7:0]	0x54[7:0]	0x55[7:0]		
	Group 17	Group 18	Group 19	Group 20				
	CH149 –	CH157 –	CH165 –	CH173 –				
	CH153	CH161	CH169	CH177				
MCS7 B40	0x56[7:0]	0x57[7:0]	0x58[7:0]	0x59[7:0]				

Thermal Meter PathA	0xD0[7:0]
Thermal Meter PathB	0xD1[7:0]

Table 2: Tx index and Thermal meter offset in eFuse

3.1.5.2. Defined target power

According to EMI/EMC regulatory IEEE TX EVM / Spectrum Mask requirement, the target power of each channel group and PHY data rate can be defined.

Assuming that all the channels have the same target power for each PHY data rate, the recommended target power is listed as below :

Data Rate	MCS9-Nss1-B80	MCS7-B40	MCS7-B20	54M	ССК
Target Power 2G		16dBm	16dBm	17dBm	18dBm
Target Power 5G	14dBm	16dBm	16dBm	17dBm	

Table 3: The default target power

The target power in the table is RTK default value. The value can be defined by yourself.

Power-by-rate table and target power must be the same value.

*If there is any concern, or want to know the more details, please contact Realtek FAE.

3.1.5.3. Tx index calibration flow

Figure 7: Tx calibration flow

The flow to find each index is shown as below:

Figure 8: Finding Tx index flow

Init Index : The power value of **init index should be closed to target power**.

3.1.5.4. Tx index calibration command and sample

Step 1 : Switch the Tx power tracking state to the Tx index calibration state.

insmod 8822c.ko rtw_RFE_type=X

Tx index for each channel group with PHY data rate in path a, path b should be calibrated.

The following command take "Path A, Channel 7, HT40, HTMCS7" as example.

Step 2 : MP start and enter Tx index calibration mode.

rtwpriv wlan0 mp_start

rtwpriv wlan0 7 1 a HTMCS7 1 2000 //start HW Tx

*About HW Tx function parameters detail, please refer to appendix.

Step 3 : Make Tx power to fit target power by adjusting Tx power index.

rtwpriv wlan0 mp_txpower patha=63,pathb=0 //set a Tx power index 63

Target power values were defined in section 3.5.2.

The variation between defined Tx target power and measured Tx power should be adjusted to ± 0.25 dB.

Defined Tx target power – Measured Tx power = ± 0.25 dB

The sample command uses the index 63, it is the center index.

Step 4 : Record the Tx index value after measured power had fit target power.

Record the Tx index value. Find out all the Tx index value for each channel group and each PHY data rate. There is a recommended interpolation method which described at <u>section</u> <u>3.1.5.4.1</u>

The Tx index value should be updated to HW eFuse.

Step 5 : Before measuring the next channel, stop HW Tx.

rtwpriv wlan0 stop

//Stop HW packet Tx

3.1.5.4.1. Interpolation for finding Tx index

Theoretically, we need to measure all value defined in eFuse to calibrate the Tx power level. But since it needs too much time, we only measure several channels with MCS7-B40 signal and figure out the other non-measured value by interpolation method.

Usually, the recommended measured channels are listed below:

2G	Band	5G B	and1	5G B	and2	5G Band3		5G Band4		
CH4	CH10	CH38	CH46	CH54	CH62	CH102	CH126	CH142	CH151	CH175

Table 4: The recommended measured channel for Tx power calibration

Example : If the measured Tx index in CH4 is 1 and the measured Tx index in CH10 is 3, all 2G group MCS7-B40 TSSI DE is shown as below:

CH4 is group 2, CH10 is group 4.

Group 1	Group 2	Group 3	Group 4	Group 5
70	71	72	72	74
(Calculated by	/1 (M easure d)	(Calculated by	(Massurad)	(Calculated by
Interpolation)	(Weasured)	Interpolation)	(Weasured)	Interpolation)

Table 5: The example of finding Tx index in 2G band by interpolation

We have measured all groups of 5G band 1 and 5G band 2, so just use the interpolation for 5G band 3 and 5G band4.

3.1.5.4.2. The Tx power difference

The power value difference are between +7 and -8.

The value $0x0 \sim 0x7$ in eFuse means $0 \sim +7$ and the value $0x8 \sim 0xF$ in eFuse means $-8 \sim -1$. The +1 power difference will plus 0.5dB power.

We take Table 7 as an example :

The 2G power difference are shown as below:

MC87 D20 4- MC87 D40	(MCS7-B20_Tatget_Power - MCS7-B40_Tatget_Power)x2				
MIC57-B20 to MIC57-B40	=((13-13) x2)=0				
54M 1T to MCS7 D40	(54M_Tatget_Power - MCS7-B40_Tatget_Power)x2				
54IVI-11 to IVICS/-B40	=((14-13) x2)=2				
	(MCS15-B40_Tatget_Power - MCS7-B40_Tatget_Power)x2				
MCS15-B40 to MCS7-B40	=((12-13) x2) = -2				
	==>0xE				
MCS15-B20 to MCS7-B20	0xE				
54M-2T to 54M-1T	0xE				
CCK-2T to CCK-1T	0xE				

Table 6: The example of finding power difference

Power Difference Location in EFuse of Antenna A					
	54M-1T to MCS7-B40	0x1B[3:0]			
	MCS7-B20 to MCS7-B40	0x1B[7:4]			
2C Dand	MCS15-B40 to MCS7-B40	0x1C[7:4]			
2G Band	MCS15-B20 to MCS7-B20	0x1C[3:0]			
	54M-2T to 54M-1T	0x1D[7:4]			
	CCK-2T to CCK-1T	0x1D[3:0]			
	54M-1T to MCS7-B40	0x30[3:0]			
	MCS7-B20 to MCS7-B40	0x30[7:4]			
	MCS7-Nss1-B80 to MCS7-B40	0x36[7:4]			
5G Band	MCS15-B40 to MCS7-B40	0x31[7:4]			
	MCS15-B20 to MCS7-B20	0x31[3:0]			
	54M-2T to 54M-1T	0x34[7:4]			
	MCS7-Nss2-B80 to MCS7-Nss1-B80	0x37[7:4]			

Power Difference Location in EFuse of Antenna B						
	54M-1T to MCS7-B40	0x45[3:0]				
	MCS7-B20 to MCS7-B40	0x45[7:4]				
1C Dand	MCS15-B40 to MCS7-B40	0x46[7:4]				
2G Daliu	MCS15-B20 to MCS7-B20	0x46[3:0]				
	54M-2T to 54M-1T	0x47[7:4]				
	CCK-2T to CCK-1T	0x47[3:0]				
	54M-1T to MCS7-B40	0x5A[3:0]				
	MCS7-B20 to MCS7-B40	0x5A[7:4]				
	MCS7-Nss1-B80 to MCS7-B40	0x60[7:4]				
5G Band	MCS15-B40 to MCS7-B40	0x5B[7:4]				
	MCS15-B20 to MCS7-B20	0x5B[3:0]				
	54M-2T to 54M-1T	0x5E[7:4]				
	MCS7-Nss2-B80 to MCS7-Nss1-B80	0x61[7:4]				

3.1.6. Thermal meter

Normal driver will load thermal meter to do power-tracking, so the value must be filled in correct eFuse location. Use the below MP API function to get thermal meter value:

Read Path A thermal vaule :

rtwpriv wlan0 mp_ther 0

Read Path B thermal vaule :

rtwpriv wlan0 mp_ther 1

And the feedback information would show like below, 29 is the thermal value.

wlan0 mp_ther:29

Write the thermal value into efuse. PathA writes to 0xD0. PathB writes to 0xD1.

Thermal Meter PathA	0xD0[7:0]
Thermal Meter PathB	0xD1[7:0]

3.2. WiFi performance verification

3.2.1. Tx performance verification

The following flow will show the Tx performance verification flow, criterion, and sample command.

3.2.1.1. Tx performance verification criterion

Use the calibrated Tx index in previous step and measure Tx power, EVM, frequency offset and LO leakage to check Tx performance is ok or not. The recommended test items are listed below:

Data Rate	Antenna	Channel	Item	Criterion
MCS7-B40		CH10	Power	Typical: 16dBm, Acceptable Range: +1/-1.5dB
	• / •		EVM	< -28dB
	Antenna A		Freq. Err.	±15ppm
	Antenna B		Leakage	< -20dBtotal
			Mask	IEEE spec. defined
OFDM 54M	Antenna A Antenna B	CH1	Power	Typical: 17dBm, Acceptable Range: +1/-1.5dB
			EVM	< -25dB
			Freq. Err.	±15ppm
			Leakage	< -15dBtotal
			Mask	IEEE spec. defined
		CH7	Power	Typical: 18dBm, Acceptable Range: +1/-1.5dB
CCV 11M	Antenna A		EVM	< 8%
ССК ПМ	Antenna B		Freq. Err.	±15ppm
			Mask	IEEE spec. defined

Table 7: The recommended test items of WiFi Tx

Data Rate	Antenna	Channel	Item	Criterion
		CTI 10	Power	Typical: 16dBm, Acceptable Range: +1.5/-2dB
	A	CH42	EVM	< -28dB
MCS7-Nss1-B80	Antenna A	CH58	Freq. Err.	±10ppm
	Antenna D	СН138 СН155	Leakage	< -25dBtotal
			Mask	IEEE spec. defined
	Antenna A Antenna B	CH118	Power	Typical: 16dBm, Acceptable Range: +1.5/-2dB
			EVM	< -28dB
MCS7-B40			Freq. Err.	±10ppm
			Leakage	< -20dBtotal
			Mask	IEEE spec. defined
			Power	Typical: 17dBm, Acceptable Range: +1.5/-2dB
	A		EVM	< -25dB
OFDM 54M	Antenna A	CH100	Freq. Err.	±10ppm
	Antenna B		Leakage	< -15dBtotal
			Mask	IEEE spec. defined

Table 8: The recommended test items of 5G WiFi Tx

Data Rate	Antenna	Channel	Item	Criterion
		СН42	Power	Typical: 15dBm, Acceptable Range: +1.5/-2dB
			EVM	< -28dB
MCS7-Nss2-B80	Antenna AB	CH58	Freq. Err.	±10ppm
		CH158	Leakage	< -25dBtotal
		СП155	Mask	IEEE spec. defined
	Antenna AB	CH118	Power	Typical: 15dBm, Acceptable Range: +1.5/-2dB
			EVM	< -28dB
MCS15-B40			Freq. Err.	±10ppm
			Leakage	< -20dBtotal
			Mask	IEEE spec. defined
			Power	Typical: 15dBm, Acceptable Range: +1/-1.5dB
			EVM	< -28dB
MCS15-B40	Antenna AB	CH10	Freq. Err.	±15ppm
			Leakage	< -20dBtotal
			Mask	IEEE spec. defined

If the instrument supports true MIMO, switch MIMO or composite EVM analysis method, the VHT and HT items (OFDM is as same as above) criterion can be changed to below table:

Table 9: The recommended test items of WiFi Tx with 2-stream measurement

While MP driver is going to measure 256-QAM, Tx index will take the power value in power-by-rate table as measuring reference itself. The criterion would be changed as below table :

Data Rate	Antenna	Channel	Item	Criterion
MCS9-Nss1-B80	Antenna A Antenna B	CH42 CH58 CH138 CH155	Power	Typical: 14dBm, Acceptable Range: +1.5/-2dB
			EVM	< -32dB
			Freq. Err.	±10ppm
			Leakage	< -25dBtotal
			Mask	IEEE spec. defined

Table 10: The recommended test items of WiFi Tx with 256-QAM measurement

* The table target power is RTK default value , the user can define traget power by yourself.

3.2.1.2. Verify Tx performance

The following steps are the Tx performance verify command sample :

Step 1 : Enter WL MP mode.

rtwpriv wlan0 mp_start

Step 2 : Set HW Tx and Tx index to the case which is going to do the verification. Example : To verify path A, CH10, HT40, MCS7, Calibrate Tx index

rtwpriv wlan0 mp_txpower patha=calibrated_tx_index, pathb=calibrated_tx_index

rtwpriv wlan0 10 1 a HTMCS7 1 2000

Step 3 : Measure Tx performance and check the performance with criterion table.

Data Rate	Antenna	Channel	Item	Criterion
MCS7-B40	Antenna A Antenna B	CH10	Power	Typical: 16dBm, Acceptable Range: +1/-1.5dB
			EVM	< -28dB
			Freq. Err.	±15ppm
			Leakage	< -20dBtotal
			Mask	IEEE spec. defined

Path A CH10 HT40 MCS7 criterion :

Check whether the measured result is fit the criterion or not.

Step 4 : Before change the measuring channel, stop HW Tx.

rtwpriv wlan0 stop

//Stop HW packet Tx

3.2.2. Rx performance verification

The following flow will show the Rx performance verification flow, criterion, and sample command.

3.2.2.1. Rx performance verification criterion

Measure the DUT Rx sensitivity to check Rx performance is ok or not. The recommended test items are listed below:

Data Rate	Antenna	Channel	Item	Criterion
MCS7-B40	Antenna A Antenna B	CH10		< -61dBm (1R)
OFDM 54M	Antenna AB	CH1	Sensitivity	< -68dBm (2R)
CCK 11M	Antenna A Antenna B	CH7		< -76dBm (1R)

Data Rate	Antenna	Channel	Item	Criterion
MCS9-Nss1-B80	Antenna A Antenna B	CH42	Sensitivity	< -51dBm (1R)
MCS9-Nss1-B80	Antenna AB	CH58 CH138 CH155		< -54dBm (2R)
MCS7-B40	Antenna A Antenna B	CH118		< -64dBm (2R)
OFDM 54M	Antenna A Antenna B	CH100		< -68dBm (2R)

Table 11: The recommended test items of WiFi Rx

The recommended packet-error-rate is < 10% (MCS, OFDM), < 8% (CCK).

*The criterion can be modified by customer requirement.

*If there is any concern, or want to know the more details, please contact Realtek FAE.

3.2.2.2. Verify Rx performance

Set the instrument to Tx packets, and DUT MP Rx the packets. Then parsing the error rate to verify Rx performance.

The following steps are the Rx performance verify command sample :

Step 1 : Start SW(Software) Rx

Example : Verify path A, MCS7, bandwidth 40, CH10 Rx.

rtwpriv wlan0 mp_start	//Start MP mode	
rtwpriv wlan0 mp_channel 10	//Set Rx channel	
rtwpriv wlan0 mp_ant_rx a	//Set path a	
rtwpriv wlan0 mp_bandwidth 4	40M=1,shortGI=0	//Set bandwidth
//40M→	40M=1, 20M→40N	/I=0, 80M→40M=2
rtwpriv wlan0 mp_arx start	//Start Rx	

rtwpriv wlan0 mp_reset_stats //Reset the Rx report

Instrument Tx packets at MCS7, bandwidth 40, CH10 and adjust the Tx power let DUT input power < -61dBm (MCS7-B40 criteria).

Data Rate	Antenna	Channel	Item	Criterion
MCS7-B40	Antenna A Antenna B	CH10		< -61dBm (1R)
OFDM 54M	Antenna AB	CH1	Sensitivity	< -68dBm (2R)
CCK 11M	Antenna A Antenna B	CH7		< -76dBm (1R)

Step 2 : While the instrument Tx is finished, parsing the Rx report.

rtwpriv wlan0 mp_arx phy

The command will report Rx OK/CRC_error counter.

Step 3 : Calculate packet-error-rate

Calculate packet-error-rate with step2 result. The recommended **packet-error-rate is < 10%(MCS, OFDM), < 8% (CCK).**

Example :

- (1) Instrument Tx 1000 packets at MCS7, bandwidth 40, CH10.
- (2) Step 2 reports DUT had Rx 920 packets which Tx from instrument and its input power < -61dBm successfully.
- (3) (1000 920) / 1000 = 8%
- (4) 8% < 10% \rightarrow Path A, MCS7, bandwidth 40, CH10 Rx verification pass!

4. Bluetooth Mass Production Flow

The below diagram shows a global view of Bluetooth mass production flow.

Bluetooth Set Tx power Note:

1. For general purpose, Tx value for MP is set to 5 dBm to obtain the best power consumption performance and meet different certification (FCC, CE, etc.)

2. If customer who uses our module may need to provide permissive change files (Efuse map)during certification of your own product for different Tx power setting. Here listed the main power restraint due to CE compliance, EIRP should less than 10 dBm.

4.1. Bluetooth device environment setup

To do BT RF test, "rtlbtmp" is a necessary tool.

4.1.1. Android OS

 MP tool package is provided to customers in binary format:

 MP ADB tool
 →
 rtlbtmp

 MP library
 →
 btmp.default.so

Customers should copy these binary files to respective directories on target production: rtlbtmp → save to → /system/bin/ chmod rtlbtmp→ chmod 755 /system/bin/rtlbtmp

btmp.default.so		save to \rightarrow	/system/lib/hw/
mp_rtlxxx_fw, mp_rtlxxx_config	\rightarrow	save to \rightarrow	/system/etc/firmware/

Notice: If the system is android o or above: rtlbtmp → save to → /vendor/bin/ chmod rtlbtmp→ chmod 755 /vendor/bin/rtlbtmp

btmp.default.so \rightarrow save to \rightarrow /vendor/lib/hw/ mp_rtlxxx_fw, mp_rtlxxx_config \rightarrow save to \rightarrow /vendor/firmware/

Notice: The above files are recommended to be put into the SDK, which will not affect the using of normal Bluetooth.

Notice: Before using RTLBTMP, normal BT must be turned off. The following methods is for turn off normal BT.

Method 1: Turn off bluetooth on the UI Method 2: service call bluetooth_manager 8(close) /6(open) Method 3: Using command to rename driver file :

cd /system/lib/hw

mv bluetooth.default.so bluetooth.default.so_ORG

(for android P : mv libbluetooth.so libbluetooth.so_ORG)

Reboot

4.1.2. Linux OS

 MP tool package is provided to customers in binary format:

 MP CMD tool
 →
 rtlbtmp

 MP firmware and configure files
 →
 mp_rtlxxx_fw, mp_rtlxxx_config

Customers should copy these binary files to respective directories on target production: rtlbtmp \rightarrow save to \rightarrow /usr/sbin/ chmod rtlbtmp \rightarrow chmod 755 /usr/sbin/rtlbtmp mp_rtlxxx_fw, mp_rtlxxx_config \rightarrow save to \rightarrow /lib/firmware/

Notice: The above files are recommended to be put into the SDK, which will not affect the using of normal Bluetooth.

Notice: UART interface chip preparation :

Please turn off normal Bluetooth. That is rtk_hciattach and the other processes will not be loaded by default after starting up. The command are as below :

killall rtk_hciattach killall bluetoothd echo 0 > /sys/class/rfkill/rfkill0/state sleep 1 echo 1 > /sys/class/rfkill/rfkill0/state sleep 1

Notice: USB interface chip preparation :

Turn on normal Bluetooth first,

then

hciconfig hci0 up
4.2. Bluetooth device initial

In the initial stage, the Bluetooth device must set to factory default and set antenna patch . The Initial command list as :

Step1 : Change BT RF path

```
ifconfig wlan0 up
sleep 1
rtwpriv wlan0 mp_start
rtwpriv wlan0 mp_setrfpath 0 // 0 or 1
rtwpriv wlan0 mp_ant_tx a // a or b
```

Step2 : Bluetooth initial Start MP CMD Tool

rtlbtmp

Enable MP Stack

Check Bluetooth stack HCI interface first, then run the enable MP stack CMD.

Please refer "7.1.2. : Bluetooth MP initialize commands at Linux/Android platform".

```
enable usb:/dev/rtk_btusb //usb I/F
enable uart:/dev/ttyS0 // uart I/F, device node specified by vendor (platform)
enable sdio:/dev/sdio //sdio I/F
root@tristan-PORTEGE-R700:~# rtlbtmp
::::::: Bluetooth MP Test Tool Starting ::::::
> enable uart:/dev/ttyUSB0
> > enable[Success:0]
```

Step3 : Bluetooth reset Disable Thermal power tracking

bt_mp_SetParam 18,0,0

bt_mp_Exec 42

Set Tx gain K to 0 to "Reset Tx Gain K "

bt_mp_SetParam 18,1,0x00 // set ;The value (2's complement) is TX Gain k value bt_mp_Exec 45

Set Flatness K to 0 to "Reset Flatness K"

bt_mp_SetParam 18,1,0,0

bt_mp_Exec 46

Set antenna path

bt_mp_SetParam 18,0 //The value is antenna path : 0:S0 1:S1

bt_mp_Exec 40

4.3. Bluetooth calibration

The flow show as below:

The schematic diagram of this Tx gain K, flatness K and shift Tx level is as follows :

Figure 9: Bluetooth TxPower/TxGainK/TxFlatnessK relationship

Step1 : Set parameters :

bt_mp_SetParam

The Format is :

bt_mp_SetParam Index0,value0; Index1,..;IndexN,valueN

If there is a requirement to check the parameters, enter the command below :

bt_mp_GetParam

Example : If you want to set the channel 10 and packet type "BT_PKT_3DH5" :

bt_mp_SetParam 0x01,0x0a;0x02,0x08

Step2 : Execute commands

To execute the parameters/command set in Step1 :

bt_mp_Exec ACTION_INDEX

Example: To run "PACKET_TX_START" and "PACKET_TX_STOP" actions,

please use :

bt_mp_Exec 12	//PACKET_TX_STRAT
bt_mp_Exec 14	//PACKET_Tx_STOP
t_mp_Exec 12 mp_Exec[Success:0] t_mp_Exec,12,0x00	

For the detail parameters/indexs/command-IDs, please refer to appendix "7.1.4. : Bluetooth MP mode execute commands".

Step3 : Report result

bt_mp_Exec 14

bt_mp_Exec[Success:0]
> bt_mp_Exec,14,0x00

These commands used to report Bluetooth DUT Tx/Rx status are as below:

bt_mp_Report Item_Index

For the whole Item_Index indexs for result report,

please refer to appendix "7.1.5. : Bluetooth MP mode report commands".

4.3.1. Calibration Tx gain K

Here demonstrate the flow about calibrating Tx power to target power. We supposed to use desired target power as calibration power in this step. This Tx gain K is a signed value.

Tx gain K value	value
12	0x0C
4	0x04
3	0x03
2	0x02
1	0x01
0	0 (Default)
-1	0xFF
-2	0xFE
-3	0xFD
-4	0xFC
-12	0xF4

Table 12: Tx gain K mapping table

Step 1 : Begin 2DH5 packet Tx in channel "0x27".

bt_mp_SetParam 1,0x27;2,0x06;3,0x07;4,0x00;6,0x7F;7,0x0;11,0x0000009e8b33

bt_mp_Exec 30

Step 2 : measured by Bluetooth test instrument (e.g. Litepoint IQNxN)

Txpower_measure is measured value.

Step 3 : Calculate Tx Gain K value and keep the TxgainK.

TxgainK = round((Txpower_target - Txpower_measure)/ 0.5)
Example : Txpower_target = 6 dBm

Step 4 : Stop Packet Tx (FW_PACKET_TX_STOP=31)

bt_mp_Exec 31

Keep the Tx gain k value write to device in last work.

4.3.2. Calibration Tx flatness K

Let's correct the flatness of the channel. The step by step commands are in the below.

Step 1 : Begin 2DH5 packet TX in channel 12/32/52/70

If Channel 12 :

bt mp SetParam 1,0x0B;2,0x06;3,0x07;4,0x00;6,0x7F;7,0x0;11,0x0000009e8b33

If Channel 20:

bt_mp_SetParam 1,0x20;2,0x06;3,0x07;4,0x00;6,0x7F;7,0x0;11,0x0000009e8b33

If Channle 52 :

bt_mp_SetParam 1,0x34;2,0x06;3,0x07;4,0x00;6,0x7F;7,0x0;11,0x0000009e8b33

If Channel 70 :

bt_mp_SetParam 1,0x46;2,0x06;3,0x07;4,0x00;6,0x7F;7,0x0;11,0x0000009e8b33

bt_mp_Exec 30

Step 2 : measured by Bluetooth test instrument (e.g. Litepoint IQNxN).

Step 3 : Stop Packet Tx (FW_PACKET_TX_STOP=31),

then repeat to 4 channels to complete the measurement

bt_mp_Exec 31

Step 4 : Calculate flatness value and keep the <u>flatnessK value</u>.
flatnessK value [0~3] = floor((Txpower_flat_target-Txpower_flat_measure[0~3])*2)

Step 5 : Write to efuse of device .(This action can be placed after the final verification)

This tx flatness k is a signed value, please refer to section "7.3.Tx flatness K mapping table".

4.3.3. Shift Tx Level

After finished "Calibrate Tx power to target power" and "Calibrate Tx power flatness", then use the table below to set the target Tx power for different antenna paths. Please refer "7.4.: <u>Bluetooth Tx power table</u>".

The Offset Tx power to RAM command show as:

Step 1 : Get TX power level:

bt_mp_Exec 38

bt_mp_Report 17

```
Step 2 : Set TX power level to ram:
```

```
(1M=0x38);(2M=0x3F);(3M=0x3F),(BLE1M=0x38),(BLE2M=0x38)
bt_mp_SetParam 18,0x38,0x3F,0x3F,0x38,0x38;
bt_mp_Exec 51
```

4.3.4. Calibration thermal meter

Normal driver will load thermal meter to do power tracking. So this value must be filled in correct eFuse location. Use the command below to read Bluetooth thermal meter once. **For Linux/Android platform to get the thermal value from device.**

bt_mp_Report 7

*Note: The Thermal Value is RAW Data of Realtek define

4.4. Bluetooth verify

The flow show as:

4.4.1. Verify Bluetooth BDR/EDR

The verify need to verify Tx and RX.

4.4.1.1. Verify Bluetooth BDR/EDR Tx

If the device is UART interface, use below commands at android and Linux platform. Please refer the "<u>7.5.: Verify Bluetooth BDR/EDR Tx SPEC</u>" to check performance SPEC.

The step by step command:

```
Step 1 : Enter MP Mode and download patch code
```


Step 2 : Set antenna path.

If the path is S1, then :

bt_mp_SetParam 18,1

//The vale is antenna path : 0:S0 1:S1

bt_mp_Exec 40

To at It.		Command
16	st item	If Channel = 0x27
	Maximum Power	bt_mp_SetParam 1,0x27;2,0x00; <mark>3,0x07</mark> ;4,0x00;6,0x7F;7,0x0;11,0x0000009e8b33
DH1	Delta F1	bt_mp_SetParam 1,0x27;2,0x00; <mark>3,0x05</mark> ;4,0x00;6,0xFF;7,0x0;11,0x0000009e8b33
	Delta F2	bt_mp_SetParam 1,0x27;2,0x00; <mark>3,0x02</mark> ;4,0x00;6,0xFF;7,0x0;11,0x0000009e8b33
3DH5	ALL	bt_mp_SetParam 1,0x27;2,0x06; <mark>3,0x07</mark> ;4,0x00;6,0x7F;7,0x0;11,0x0000009e8b33

Step 3 : Set Parameter : For example, Only show some settings for DH1 and 3DH5.

Step 4 : Run Packe Tx (FW_PACKET_TX_START=30)

bt_mp_Exec 30

Step 5 : measured by Bluetooth test instrument (e.g. Litepoint IQNxN)

Step 6 : Stop Packet Tx (FW_PACKET_TX_STOP=31)

bt_mp_Exec 31

If you need to test other parameters, please stop packet tx and go back to step 2.

4.4.1.2. Verify Bluetooth BDR/EDR Rx

For android and Linux ,you can use below command to test. Please refer the "<u>7.6. : Verify</u> <u>Bluetooth BDR/EDR Rx SPEC</u>" to check performance SPEC.

The below command only shows some settings for DH1 and 3DH1.

Step 1 : Enter MP Mode and download patch code

Step 2 : Set Parameter

Test Item		adb command	
		PayloadType = PRBS9;	
Channel	Packet	WhiteningCoeffValue = 0xFF(disable);	
Cnannei	type	PacketHeader = PACKET_HEADER Table ;	
		HitTarget = 0x000000c6967e	
6	DH1	bt_mp_SetParam 1,0x06;2,0x00;3,0x07;6,0xFF;11,0x000000c6967e	
42	DH1	bt_mp_SetParam 1,0x2a;2,0x00;3,0x07;6,0xFF;11,0x000000c6967e	
70	DH1	bt_mp_SetParam 1,0x46;2,0x00;3,0x07;6,0xFF;11,0x000000c6967e	
6	3DH1	bt_mp_SetParam 1,0x06;2,0x06;3,0x07;6,0xFF;11,0x000000c6967e	
42	3DH1	bt_mp_SetParam 1,0x2a;2,0x06;3,0x07;6,0xFF;11,0x000000c6967e	
70	3DH1	bt_mp_SetParam 1,0x46;2,0x06;3,0x07;6,0xFF;11,0x000000c6967e	

Please refer 7.1.3. : Bluetooth MP mode control parameters commands.

Step 3 : Run Packe Rx (FW_PACKET_RX_START=32)

Step 4 : To setting parameter with the Bluetooth test instrument. Bluetooth test instrument begin transmit.

bt_mp_Exec 32

Step 5 : Report Received Result.
 -- "bt_mp_Report 3" should be executed every 1s.

Step 6 : Stop Packet Rx (FW_PACKET_RX_STOP=33)

bt_mp_Exec 33

Step 7 : Exit MP Mode

```
> disable
disable[Success:0]
> quit
::::::: Bluetooth MP Test Tool Terminating ::::::::
root@tristan-PORTEGE-R700:~#
```

4.4.2. Verify Bluetooth BLE

This BLE RF performance includes spec for BT4.0 and BT5.0. This test item contains the following items:

- Verify Bluetooth BLE 1M TX
- Verify Bluetooth BLE 2M TX
- Verify Bluetooth BLE 1M RX
- Verify Bluetooth BLE 2M RX

4.4.2.1. Verify Bluetooth BLE 1M Tx (BT4.0)

To measure the DUT BLE TX power and modulation index to check whether BLE TX performance is fine or not. The steps shows the adb commands for UART interface device at Android/Linux platform.

Step 1 : Enter MP Mode and download patch code

INDEX	VALUE	Value Range (BLE 5.0)
1	ChannelNumber	0~39
		BT_LE_PAYLOAD_TYPE_PRBS9 = 0,
		BT_LE_PAYLOAD_TYPE_1111_0000 = 1,
		BT_LE_PAYLOAD_TYPE_1010 = 2,
		BT_LE_PAYLOAD_TYPE_PRBS15 = 3,
3	Payload Type	BT_LE_PAYLOAD_TYPE_ALL1 = 4,
		BT_LE_PAYLOAD_TYPE_ALL0 = 5,
		BT_LE_PAYLOAD_TYPE_0000_1111 = 6,
		BT_LE_PAYLOAD_TYPE_0101 = 7,
15	LEDataLen	0x00~0xFF
		0x00 : Reserved
		0x01 : LE 1M PHY
16	РНҮ	0x02 : LE 2M PHY
		0x03 : LE Coded PHY with S=8 data coding
		0x04 : LE Coded PHY with S=2 data coding

Step 2 : Set Parameter :

Channel	Test item	Command
0	Avg_power	bt_mp_SetParam 1,0x00;3,0x00;15,0xff;16,1
19	Avg_power	bt_mp_SetParam 1,0x13;3,0x00;15,0xff;16,1
39	Avg_power	bt_mp_SetParam 1,0x27;3,0x00;15,0xff;16,1
0	Delta F1	bt_mp_SetParam 1,0x00;3,0x01;15,0xff;16,1
0	Delta F2	bt_mp_SetParam 1,0x00;3,0x02;15,0xff;16,1

Step 3 : LE TX TEST

bt_mp_Exec 22

Step 4 : LE TEST END

bt_mp_Exec 24

Please refer "7.7.: Verify Bluetooth BLE Tx Performance (BLE 1M)".

4.4.2.2. Verify Bluetooth BLE 2M Tx(BT5.0)

If need to verify BLE 5.0, then the step show below:

Step 3 : Set Parameter

Channel	Test item	Command
0	Avg_power	bt_mp_SetParam 1,0x00;3,0x00;15,0xff;16,2
19	Avg_power	bt_mp_SetParam 1,0x13;3,0x00;15,0xff;16,2
39	Avg_power	bt_mp_SetParam 1,0x27;3,0x00;15,0xff;16,2
0	Delta F1	bt_mp_SetParam 1,0x00;3,0x01;15,0xff;16,2
0	Delta F2	bt_mp_SetParam 1,0x00;3,0x02;15,0xff;16,2

Step 3 : LE TX TEST

bt_mp_Exec 22

Step 4 : LE TEST END

bt_mp_Exec 24

Please refer "7.8. : Verify Bluetooth BLE 5.0 Tx Performance".

4.4.2.3. Verify Bluetooth BLE 1M Rx(BT4.0)

For android and Linux ,you can use below command to test.

Step 1 : Set Parameter

INDEX	VALUE	Value Range (BLE 5.0)
1	ChannelNumber	0~39
	16 РНУ	0x00 : Reserved
16		0x01 : LE 1M PHY
10		0x02 : LE 2M PHY
		0x03 : LE Coded PHY
17 Modulation Index		0x00 : Standard
	0x01 : Stable	

Test Item		Commonda	
Channel	Payload type	Commands	
0x00	PRBS9	bt_mp_SetParam 1,0x00;16,0x01;17,0x0	
0x13	PRBS9	bt_mp_SetParam 1,0x13;16,0x01;17,0x0	
0x22	PRBS9	bt_mp_SetParam 1,0x22;16,0x01;17,0x0	

Step 2 : Run LE Packet Rx

bt_mp_Exec 23 //LE RX TEST

Step 3 : To setting Parameter with the Bluetooth test instrument. Bluetooth test instrument begin transmit.

Step 4 : Stop LE Packet Rx and to obtain the receive packet count

bt_mp_Exec 24	//LE TEST END
bt_mp_Report 11	//REPORT LE RX Number of Packets

4.4.2.4. Verify Bluetooth BLE 2M Rx(BT5.0)

The Command step by step list below :

Step 1 : Enter Hci reset to reset the DUT.

Step 2 :	Set Parameter	& Run	LE Packet	Rx

Test Item		Commond
Channel	Payload type	Command
0x00	PRBS9	bt_mp_SetParam 1,0x00; 16,0x02;17,0x0
0x13	PRBS9	bt_mp_SetParam 1,0x13; 16,0x02;17,0x0
0x22	PRBS9	bt_mp_SetParam 1,0x22; 16,0x02;17,0x0

Step 3 : LE RX TEST

bt_mp_Exec 23

Step 4 : LE TEST END

bt_mp_Exec 24

Step 5 : Report LE Rx number of packets

bt_mp_Report 11

Please refer "7.9. : Verify Bluetooth BLE Rx Performance".

4.5. Bluetooth MP Exit

Disable MP Stack

disable

> disable disable[Success:0] >

Exit MP Tool

quit

> quit ::::::: Bluetooth MP Test Tool Terminating :::::::: root@tristan-PORTEGE-R700:~#

5. Dump result to HW efuse

5.1. WiFi MP results eFuse check-in flow

5.1.1. Read default eFuse file to driver fake area

If the default map have already loaded in section 3.1.3., please skip 5.1.1..

Load external eFuse map file to driver fake map :

rtwpriv wlan0 efuse_file /../../efuse.map

Load external mask map file to driver fake map :

rtwpriv wlan0 efuse_mask /xx/xx/xxmask.txt

5.1.2. Checkout the driver fake map

Read current driver fake map :

rtwpriv wlan0 efuse_get wlrfkmap

We could check the current driver fake map after the map file was loaded or any modification was applied.

Most of all, please confirm the modified driver fake map cautiously, before updating the driver fake map to fact eFuse map.

5.1.3. Modify the specific offset of the fake map

rtwpriv wlan0 efuse_set wlwfake,Addr,Value(Hex)

In this step, MAC Addr./Thermal /Power index/Tx index/Crystal calibration value should be check-in to the Fake-Area.

5.1.3.1. Write WiFi MAC address to driver fake map

EFuse offset address :

0x120 ~ 0x125				
Table 13: RTL8822CE WiFi MAC address offset in eFuse				
0x157 ~ 0x15c				
Table 14: RTL8822CU WiFi MAC address offset in eFuse				
0x16a ~ 0x16f				

Table 15: RTL8822CS WiFi MAC address offset in eFuse

Example : To write RTL8822CE MAC address to driver fake map. (Ex : MAC Addr = 023456789ABC)

rtwpriv wlan0 efuse_set wlwfake, 120, 023456789ABC

5.1.3.2. Write thermal value to driver fake map

EFuse offset address : Refer to <u>section 3.1.6. : Read thermal meter</u>. Path A thermal meter : 0xD0[7:0] Path B thermal meter : 0xD1[7:0]

rtwpriv wlan0 efuse_set wlwfake,d0,thermal_value_path(Hex)

Example : If path A thermal value = 29, path B thermal value = 30.

rtwpriv wlan0 efuse_set wlwfake,d0,1d

rtwpriv wlan0 efuse_set wlwfake,d1,1e

5.1.3.3. Write calibrated crystal value to driver fake map

EFuse offset address : Refer to section <u>3.1.4. : Crystal calibration</u>. RTL8822C crystal calibration value should be filled in 0xB9, 0x110, 0x111.

rtwpriv wlan0 efuse_set wlwfake,Addr,Crystal_value(Hex)

Example : If the calibrated crystal value = 0x40.

rtwpriv wlan0 efuse_set wlwfake, B9,40

rtwpriv wlan0 efuse_set wlwfake,110,40

rtwpriv wlan0 efuse_set wlwfake,111,40

5.1.3.4. Write Tx index to driver fake map

EFuse offset address : Refer to <u>3.1.5.1. : Tx index locations in eFuse</u>.

The Tx index for each channel group with PHY data rate should all updated to driver fake map.

rtwpriv wlan0 efuse_set wlwfake,Addr,index_value(Hex)

Example : If the pathA group 1 MCS7 B40 Tx index value = 72 pathA group 3 MCS7 B40 Tx index value = 71 pathA group 5 MCS7 B40 Tx index value = 70

rtwpriv wlan0 efuse_set wlwfake,16,48

rtwpriv wlan0 efuse_set wlwfake,18,47

rtwpriv wlan0 efuse_set wlwfake,1A,46

5.1.4. Update HW eFuse from fake-map

Before updating the modified driver fake map to fact hardware eFuse map, please use below command to confirm whether the modification is completed :

rtwpriv wlan0 efuse_get wlrfkmap

If the modification are completed and confirmed, please use below command for updating the driver fake map into the fact hardware eFuse :

rtwpriv wlan0 efuse_set wlfk2map

Attention : It would return error, if the mask map file haven't been loaded simultaneously in the case of the operating MP driver version is over than "rtl8xxx_WiFi_linux_v5.X.X_19292".

5.1.5. Check the HW eFuse content

The hardware eFuse map can be gotten by using below command :

rtwpriv wlan0 efuse_get realmap

And also check the value which were modified in section 5.1.3.1~5.1.3.4 are all correct.

5.2. Bluetooth MP result eFuse check-in flow

5.2.1. Read Default E-fuse-File to Driver-Fake-Area

Load external eFuse map file to driver fake map :

rtwpriv wlan0 bt_efuse_file /../../bt_efuse.map

Load external mask map file to driver fake map :

rtwpriv wlan0 efuse_bt_mask /xx/xx/xx_bt_mask.txt

5.2.2. Checkout the driver fake map

Read current driver fake map :

rtwpriv wlan0 efuse_get btffake	//Front part map
rtwpriv wlan0 efuse_get btbfake	//Back part map

We could check the current driver fake map after the map file was loaded or any modification was applied.

Most of all, please confirm the modified driver fake map cautiously, before updating the driver fake map to fact eFuse map.

5.2.3. Modify the specific offset of the fake map

rtwpriv wlan0 efuse_set btwfake,Addr,Value(Hex)

In this step, the BT MAC_Addr, thermal value, Tx Gain K result, Tx power flatness K result should be check-in to the Fake-Area.

5.2.3.1. Write BT MAC address to driver fake map:

EFuse offset address :

BT MAC address 0x30

 Table 16: Bluetooth MAC address offset in eFuse

Example : To write RTL8822CE BT MAC address to driver fake map. (Ex : MAC Addr. = 00E04CAABBCC)

rtwpriv wlan0 efuse_set btwfake, 30,CCBBAA4CE000

5.2.3.2. Write thermal value to driver fake map

EFuse offset address : Refer to <u>7.2. : Bluetooth eFuse definition about calibrates of Tx power</u>. BT thermal meter : 0x28C[7:0]

rtwpriv wlan0 efuse_set btwfake,28c,thermal_valu (Hex)

Example : If BT thermal value = 80

rtwpriv wlan0 efuse_set btwfake, 28c,50

5.2.3.3. Write Tx gain/Flatness/LBT calibration value to driver fake map

EFuse offset address :

Refer to 7.2. : Bluetooth eFuse definition about calibrates of Tx power

Tx gain K valid bit = 0x278[1]. Tx flatness K valid bit = 0x278[2]. LBT valid bit = 0x278[5] Tx gain K result saves to 0x279[7:0]. Tx Flatness K result saves to 0x27A[7:0]~0x27B[7:0].

rtwpriv wlan0 efuse_set btwfake,Addr,value(Hex)

Example : If both of Tx gain K result = 0, Tx flatness K result = 0, and no LBT.

rtwpriv wlan0 efuse_set btwfake,278,6 rtwpriv wlan0 efuse_set btwfake,279,0 rtwpriv wlan0 efuse_set btwfake,27a,0

rtwpriv wlan0 efuse_set btwfake,27b,0

5.2.4. Update HW E-fuse from fake-map

Before updating the modified driver fake map to fact hardware eFuse map, please use below command to confirm whether the modification is completed :

rtwpriv wlan0 efuse_get btffake	//Front part map
rtwpriv wlan0 efuse_get btbfake	//Back part map

If the modification are completed and confirmed, please use below command for updating the driver fake map into the fact hardware eFuse :

rtwpriv wlan0 efuse_set btfk2map

5.2.5. Check the HW E-fuse content

The hardware eFuse map can be gotten by using below command :

rtwpriv wlan0 efuse_get btfmap	//Front part map
rtwpriv wlan0 efuse_get btbmap	//Back part map

And also check the value which were modified in section 5.2.3.1~5.2.3.3 are all correct.

6. WiFi MP flow appendix

6.1. Hardware Tx parameters

rtwpriv wlan0 [Channel] [Bandwidth] [ANT_Path] [RateID] [Tx Mode] [Packet Interval] [Packet Length] [Packet Count] [Packet Pattern]

[Channel] :	1~177
[Bandwidth] :	20M = 0, 40M = 1, 80M = 2
[ANT_Path] :	Path A = a, Path B = b, Path C = c, Path D = d, Path AB($2x2$) = ab ,
[Tx Mode] :	Packet $Tx = 1$, Continuous $Tx = 2$, OFDM Single Tone $Tx = 3$
[Packet Interval] :	(Option) 1~65535us, default is 2000
[Packet Length] :	(Option) Data length of packet payload, default is 1500
[Packet Count] :	(Option) For continuous packet Tx. Counting Tx packets.
[Packet Pattern]	(Option) 0x00~0xff, default is random HEX.

[RateID] :

1M	2M	5.5M	11M	6M	9M	12M
18M	24M	36M	48M	54M		
HTMCS0	HTMCS1	HTMCS2	HTMCS3	HTMCS4	HTMCS5	HTMCS6
HTMCS7	HTMCS8	HTMCS9	HTMCS10	HTMCS11	HTMCS12	HTMCS13
HTMCS14	HTMCS15	HTMCS16	HTMCS17	HTMCS18	HTMCS19	HTMCS20
HTMCS21	HTMCS22	HTMCS23	HTMCS24	HTMCS25	HTMCS26	HTMCS27
HTMCS28	HTMCS29	HTMCS30	HTMCS31			
VHT1MCS0	VHT1MCS1	VHT1MCS2	VHT1MCS3	VHT1MCS4	VHT1MCS5	VHT1MCS6
VHT1MCS7	VHT1MCS8	VHT1MCS9				
VHT2MCS0	VHT2MCS1	VHT2MCS2	VHT2MCS3	VHT2MCS4	VHT2MCS5	VHT2MCS6

©2019 Realtek Semiconductor Corp.

VHT2MCS7 VHT2MCS8 VHT2MCS9

After measuring, use the below command to stop Tx.

rtwpriv wlan0 stop

//stop HW Tx

6.2. Software Rx parameters

rtwpriv wlan0 mp_start	//Start M	P mode	
rtwpriv wlan0 mp_channel [Ch	annel]	//Set Rx channel	
rtwpriv wlan0 mp_ant_rx [AN]	F_Path]	//Set path	
rtwpriv wlan0 mp_bandwidth 4	40M=[Band	lwidth], shortGI=[GI]	//Set bandwidth
rtwpriv wlan0 mp_arx start	//Start SV	V Rx	
rtwpriv wlan0 mp_reset_stats	//Reset th	e Rx report	
rtwpriv wlan0 mp_arx phy	//Get Rx]	phy packet count.	
rtwpriv wlan0 mp_query	//Get Tx/I	Rx packet counter.	

[Channel]	:	1~177
[Bandwidth]	:	20M = 0, 40M = 1, 80M = 2
[GI]	:	Long $GI = 0$, Short $GI = 1$
[ANT_Path]	:	Path A = a, Path B = b, Path C = c, Path D = d, Path AB(2x2) = ab,

After measuring, use the below command to stop MP.

rtwpriv wlan0 mp_stop //Stop MP mode

7. Bluetooth MP flow appendix

Contains the following

- Tx gain K mapping table
- ➢ Tx flatness K mapping table
- Bluetooth Tx power table

7.1. Bluetooth MP tool command usage

- Bluetooth start , exit and help command
- > Bluetooth MP initialize commands at Linux/Android platform
- Bluetooth control parameters commands
- Bluetooth execute commands
- Bluetooth report commands

7.1.1. Bluetooth start, exit and help command

Bluetooth start MP CMD tool example

chmod 755 /system/bin/rtlbtmp

rtlbtmp

Enable MP stack

Check Bluetooth stack HCI interface first, then run the enable MP stack CMD.

enable usb:/dev/rtk_btusb // USB I/F

enable uart:/dev/ttyS0 // UART I/F, device node specified by vendor (platform)

Disable MP Stack

disable

> disable disable disable[Success:0]

Exit MP Tool

quit

> quit quit ::::::: Bluetooth MP Test Tool Terminating ::::::::

Lookup MP CMDs

help

≻<u>help</u> help help :: Lists all available console commands quit :: Abort the MP tool test app enable :: Enable bluetooth disable :: Disable bluetooth bt_mp_HciCmd :: Send HCI Commands bt_mp_GetParam :: Get all/individual exposed parameters bt_mp_SetParam :: Set specific parameters<index,value> bt_mp_SetParam1 :: Set series 1 parameters bt_mp_SetParam2 :: Set series 2 parameters bt_mp_SetConfig :: Set configurations to the specific file bt_mp_Exec :: Execute specific action<action id> bt_mp_Report :: Report specific info according to item selected bt_mp_RegRW :: R/W Modem, RF, SYS & BB registers >

7.1.2. Bluetooth MP initialize commands at Linux/Android platform

MP Command	Parameters	Return	Description
rtlbtmp	None	[success]	Start the MP CMD tool.
	USB: enable usb:/dev/rtk_btusb		Enable USB I/F Bluetooth MP stack and download FW code. Device node is fixed as /dev/rtk_btusb .
enable	UART5: enable uart:/dev/ttyS0 enable uart5:/dev/ttyS0 UART4: enable uart4:/dev/ttyS0	[success]	Enable Uart I/F Bluetooth MP stack and download FW code. Device node is chosen by vendor specifically . H5 (UART5) or H4 (UART4) is determined by the chip configurations. Customers can consult FAE for detailed information.
disable	None	[success]	Disable Bluetooth MP stack and close the device.
quit	None	None	Exit from the MP CMD tool.
help	None	None	List all MP CMDs supported.

These commands used to initialize Bluetooth DUT in MP mode are listed as below:

Table 17: BT_MP_initialize_CMD

NOTE: Before running the MP CMD tool, BT on UI settings should be <u>disabled</u>; otherwise, MP tool will be at abnormal status.

7.1.3. Bluetooth MP mode control parameters commands

These commands used to set/get Bluetooth DUT parameters.

MP Command	Parameters		Return	
bt_mp_SetParam Ir	In deed we have 0. In death we have 1 In death we have N	Determ Indee	Return	
	indexu,valueu;index1,value1;;indexN,valueN	Return Index	Status	
		Daturn Inday	Return	Daturn Valua
ot_mp_GetParam	index	Keturn maex	Status	Keturn value

Table 18:	BT MP	CONTROL	PARAM	CMD

Bluetooth Control Commands: Set/Get parameter command Set parameters :

bt_mp_SetParam

Check the parameters :

bt_mp_GetParam

The Format is :

bt_mp_SetParam Index0,value0; Index1,..;IndexN,valueN

INDEX	VALUE	Length (Byte)	Value Range	Table Index
0	PGRawData	256	Row data	None (Not support Combo Chip WIFI+BT series)
1	ChannelNumber	1	0~78	None
2	PacketType	1	0~9	Refer to PKT_TYPE
3	PayloadType	1	0~7	Refer to PAYLOAD_TYPE and LE_PAYLOAD_TYPE
4	TxPacketCount (only for packet tx)	2	0~0xFFF	Refer to 2.3.3.1.3
5	TxGainValue	1		
6	WhiteningCoeffValue	1	0x00~0x7F	Enable Whitening : 0x00~0x7f Disable Whitening : 0x80
7	TxGainIndex	1	0x00:	Refer to 2.3.3.1.5
			Default tx gain	
----	--	---	--	---
9	PacketHeader	4	0x0~0x3FFFF	Refer to PACKET_HEADER
10	HoppingFixChannel (for Hopping mode)	1	0 : Disable 1 : Enable fix Channel	None
11	HitTarget	6	6 bytes	None
14	Xtal	4	0~0x7F	Depend on chip serials. (Not support Combo Chip WIFI+BT series)
15	LEDataLen	1	BT4.0 : 0x00~0x25 BT5.0 : 0x00~0xFF	BLE TX Data Length
16	РНҮ	1	1~4	Refer to BLE5.0_TX_PKT_TYPE and BLE5.0_RX_PKT_TYPE
17	ModulationIndex	1	0,1	Refer to BLE5.0_MODULATION_TYPE
18	 a. set/get enable/disable tx power tracking b. bt_diff_s0s1 c. set gain K d. set flatness e. set tx default power f. SET_K_TX_CH_P WR g. TX_PATH_LOSS_ MODULE h. CONFIG_EXTEND i. set Antenna s0/s1 j. set hopping start channel and stop channel 			TBD
19	calculate_XtalBoundary calculate_XtalNormal	2		TBD

Table 19: BT PARAM_INDEX

BT PKT_TYPE

NAME	INDEX	Payload Length in bits
BT_PKT_DH1	0	0~27*8
BT_PKT_DH3	1	0~183*8
BT_PKT_DH5	2	0~339*8
BT_PKT_2DH1	3	0~54*8
BT_PKT_2DH3	4	0~367*8
BT_PKT_2DH5	5	0~679*8
BT_PKT_3DH1	6	0~83*8
BT_PKT_3DH3	7	0~552*8
BT_PKT_3DH5	8	0~1021*8
BT_PKT_LE	9	0~39*8

Table 20: BT PKT_TYPE

BLE5.0_Tx_PKT_TYPE

NAME	INDEX
BLE5_TX_1M_PHY	1
BLE5_TX_2M_PHY	2
LE5_TX_CODED_PHY_S8	3
LE5_TX_CODED_PHY_S2	4

Table 21: BT BLE5.0_Tx_PKT_TYPE

BLE5.0_Rx_PKT_TYPE

NAME	INDEX
BLE5_TX_1M_PHY	1
BLE5_TX_2M_PHY	2
LE5_TX_CODED_PHY_LR	3

Table 22: BT BLE5.0_Rx_PKT_TYPE

BLE5.0_MODULATION_TYPE

NAME	INDEX
STANDARD_MODULATION_INDEX	0
STABLE_MODULATION_INDEX	1

Table 23: BT BLE5.0_MODULATION_TYPE

NAME	INDEX
BT_PAYLOAD_TYPE_ALL0	0
BT_PAYLOAD_TYPE_ALL1	1
BT_PAYLOAD_TYPE_0101	2
BT_PAYLOAD_TYPE_1010	3
BT_PAYLOAD_TYPE_0x0_0xF	4
BT_PAYLOAD_TYPE_0000_1111	5
BT_PAYLOAD_TYPE_1111_0000	6
BT_PAYLOAD_TYPE_PRBS9	7

The payload types are defined in Table PAYLOAD TYPE.

Table 24: BT PAYLOAD_TYPE

LE_PAYLOAD_TYPE

NAME	INDEX
BT_LE_PAYLOAD_TYPE_PRBS9	0
BT_LE_PAYLOAD_TYPE_1111_0000	1
BT_LE_PAYLOAD_TYPE_1010	2
BT_LE_PAYLOAD_TYPE_PRBS15	3
BT_LE_PAYLOAD_TYPE_ALL1	4
BT_LE_PAYLOAD_TYPE_ALL0	5
BT_LE_PAYLOAD_TYPE_0000_1111	6
BT_LE_PAYLOAD_TYPE_0101	7

Table 25: BT LE_PAYLOAD_TYPE

PACKET TYPE

PACKET TYPE	PAYLOAD(Bits)	PACKET HEADER HEX
DH1	216	33820
DH3	1464	39858
DH5	2712	A078
2DH1	432	33820
2DH3	2936	C050
2DH5	5432	3F870
3DH1	664	15C40
3DH3	4416	39858
3DH5	8168	A078

Table 26: BT PACKET_HEADER

Bluetooth TxPacketCount parameter

TxPacketCount is used to set how many Tx packets will be transmitted.The range ofTxPacketCount is from 0 to 0xFFF.If TxPacketCount value set to "0", it means to send Txpacket counts continuously.

Bluetooth WhiteningCoeffValue parameter

The range of **WhiteningCoeffValue** is from **0 to 0x7F**. If WhiteningCoeffValue is "0x80", it means to disable whitening.

Bluetooth TX gain cal (K) value

Set Tx gain Cal value will change BR/EDR(1/2/3M) and BLE TX power at the same time.

7.1.4. Bluetooth MP mode execute commands

Using this command to control bt mp action, and get current report.

MP Command	Parameters	Return	
bt_mp_Exec	Action	Return Action	Return Status

You can use

> 2 2

bt_mp_Exec ACTION_INDEX

The definition of ACTION_INDEX can refer to "BT_ACTIONCONTROL_TAG" Table. **Example:** If you want to run FW packet Tx, please use

bt_mp_Exec 30	// Start	FW_PACKET_TX_START
bt_mp_Exec 31	//Stop	FW_PACKET_TX_STOP
<pre>bt_mp_Exec 12 t_mp_Exec[Success:0] bt_mp_Exec,12,0x00</pre>		
<pre>bt_mp_Exec 14 t_mp_Exec[Success:0] bt_mp_Exec,14,0x00</pre>		

Command /define	Index	Support Chip RTL8761B
HCI_RESET	0	
TEST_MODE_ENABLE	1	
WRITE_EFUSE_DATA	2	
SET_TX_GAIN_TABLE	3	
SET_TX_DAC_TABLE	4	
SET_DEFAULT_TX_GAIN_TABLE	5	
SET_DEFAULT_TX_DAC_TABLE	6	
SET_POWER_GAIN_INDEX	7	
SET_POWER_GAIN	8	
SET_POWER_DAC	9	
SET_XTAL	10	
REPORT_CLEAR	11	
PACKET_TX_START	12	
PACKET_TX_UPDATE	13	
PACKET_TX_STOP	14	
CONTINUE_TX_START	15	
CONTINUE_TX_UPDATE	16	
CONTINUE_TX_STOP	17	
PACKET_RX_START	18	
PACKET_RX_UPDATE	19	
PACKET_RX_STOP	20	
HOPPING_DWELL_TIME	21	
LE_TX_DUT_TEST_CMD	22	
LE_RX_DUT_TEST_CMD	23	
LE_DUT_TEST_END_CMD	24	
READ_EFUSE_DATA	25	
LE_ CONTINUE _TX _START	28	
LE CONTINUE _TX _STOP	29	
FW_PACKET_TX_START	30	
FW_PACKET_TX_STOP	31	
FW_PACKET_RX_START	32	
FW_PACKET_RX_STOP	33	
FW_CONTINUE_TX_START	34	
FW_CONTINUE_TX_STOP	35	
FW_LE_CONTINUE_TX_START	36	

©2019 Realtek Semiconductor Corp.

FW_LE_CONTINUE_TX_STOP	37	
FW_READ_TX_POWER_INFO	38	
SET_GPIO3_0	39	
SET_ANT_INFO	40	
SET_ANT_DIFF_S0S1	41	
TX_POWER_TRACKING	42	
SET_K_TX_CH_PWR	43	
WRITE_FLASH_CONFIG	44	
TX_POWER_GAIN_K	45	
TX_POWER_FLATNESS	46	
TX_PATH_LOSS_MODULE	47	
CONFIG_EXTEND	48	
READ_FLASH_CONFIG	49	
UNLOCK_8822C	50	
SetTxPower_8822C_8761B	51	

Table 27: BT_ACTIONCONTROL_TAG

7.1.5. Bluetooth MP mode report commands

These commands used to report Bluetooth DUT Tx/Rx status are listed as below:

bt_mp_Report "Item Index"

Item Index	Item Index			R	(eturn				
PKT TX = 1	1		TXBits	TxCounts					
CONT TX = 2	2		TXBits	TxCounts					
PKT RX = 3	3		RxRssi	RXBits	RxCounts	RxErrorBits			
Tx Gain Table = 4	4		Tx Gain Table						
Tx DAC Table = 5	5		Tx DAC Table						
Xtal = 6	6		Xtal						
Thermal = 7	7		Thermal		\Box				
Stage = 8	8		Stage						
Efuse = 10	10		Efuse						
LE RX = 11	11		RxCounts						
LE CONT TX=12	12		TXBits	TxCounts					
FW_PKT_TX=13	13	SU	TXBits	TxCounts					
FW_CONT_TX=14	14	Stati	TXBits	TxCounts					
FW_PKT_RX=15	15		RxRssi	RXBits	RxCounts	RxErrorBits			
FW_LE_CONT_TX=16	16		TXBits	TxCounts	\Box				
			Man ta manan		default tx p	ower index			
TX_POWER_INFO=17	17		Max tx power			214	BLE	BLE	L
			muex	IM	2M	3M	1 M	2M	R
REPORT_GPIO3_0	18								
REPORT_MP_DEBUG_M	10								
ESSAGE	19								
REPORT_MP_FT_VALU E	20								
REPORT_POWER_TRAC KING	21								

©2019 Realtek Semiconductor Corp.

REPORT_MP_TXCAL_IN	22	TryCoinK Elatracc(ISP		Flatness	TXPathLos		
FO	44	TXGallik	Flatiless(LSD)	(MSB)	8		
REPORT_FLASH_CONFI	02						
G	23						
REPORT_XTALBOUNDA	24		DIV fue o(I CD)	DIV_frac			
RY	24	DIV_INC	DIV_frac(LSB)	(MSB)			
REPORT_XTALNORMA L	25	NewXtalIndex					

7.2. Bluetooth eFuse definition about calibrates of Tx power

First, view the eFuse (config file) content about setting of power index and channel adjust value. Normal driver will load this value in initial step. So this value must be well-calibrated and filled on correct eFuse location. Please check next page for detail introduction of Tx power setting of efuse (config file).

Efuse Offset	Explanation
0x278[1]	Tx gain K valid bit*
0x278[2]	Flatness K valid bit**
0x279[7:0]	TX Gain K
0x27A[7:0]~0x27B[7:0]	Flatness K
0x280[7:0]	1M Max TX Power [#]
0x281[7:0]	2M Max TX Power [#]
0x282[7:0]	3M Max TX Power [#]
0x283[7:0]	LE 1M Max TX Power [#]
0x28C[7:0]	Tmeter module K

Table 28: BT Tx gain index offset in eFuse

*After TX gain K flow please remember to enable this bit which 0x278 will be 02

**After TX flatness K flow please remember to enable this bit which 0x278 will be 04

Note: If both TX gain K & TX flatness K are been done please enable both valid bits which 0x278 will be 06

[#] Please note that RTK adapt max Tx setting for 8822C series combo chip in different certification (FCC, CE, etc.) in order to confirm radio characteristic of our work could still pass compliance rule under extreme condition. For general purpose, Tx value for MP is set to 5 dBm to obtain the best power consumption performance and user experience. Therefore, customer who uses our module may need to provide permissive change files during certification of your own product for different Tx power setting. Here listed the main power restraint due to CE compliance, EIRP should less than 10 dBm. <u>Efuse notification</u>: Default Tx setting of efuse map release by RTK is set to 5 dBm which the setting is shown below as Fig A. If customer need to adopt other Tx target power for their own product please following the power table listed in "<u>7.4.Bluetooth Tx power table</u>" and <u>revise the efuse map by themselves</u>. For example 4 dBm setting is shown in Fig B. This efuse map file need to burn in DUT after passing through Tx calibration flow. Please note that Max Tx power variation could achieve +- 2 dB due to PCB or component variation even after calibration. Therefore we suggest customer take +- 2dB margin during changing Tx value of efuse map file. For example, if the Max power of the product could not exceed 6 dBm then Tx value for 4 dBm (Fig. 11) is a better choice.

S0_5	5dBm	efuse	e map	Tx va	alue										
FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF
FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF
BRIM	EDR2M	EDROM	EEM	FF	FF	FF	FF	00	FF						
31	38	38	31	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF
FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF
FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF
S1_	5dBn	n efus	e map	Tx v	alue										
FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF
FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF
EE	FFFDR 2M	EDR3N		FF	FF	FF	FF	00	FF						
38	3F	3F	38	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF
FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF
FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF

Figure 10: BT_5 dBm setting example (Capture image from efuse map file) RTK default map

S0_4	4dBm	efuse	e map	Tx va	alue										
FF															
FF															
	EDR2M	EE	EEM	FF	FF	FF	FF	00	FF						
2F	36	36	2F	FF											
FF															
FF															
S1_	4dBn	n efus	e map	Tx v	alue										
FF															
E C															
FF															
				FF FF	FF FF	FF FF	FF FF	FF 00	FF FF						
FF FF 36	FF FF 3D	FF EF 3D	FF EF 36	FF FF FF	FF FF FF	FF FF FF	FF FF FF	FF 00 FF	FF FF FF						
FF SF 36 FF	FF FF 3D FF	FF EF 3D FF	FF EF 36 FF	FF FF FF FF	FF FF FF FF	FF FF FF FF	FF FF FF FF	FF ØØ FF FF	FF FF FF FF						

Figure 11: BT_4 dBm setting example (Capture image from efuse map file)

7.3. Tx flatness K mapping table

All flatness	value can	map to	below	table:
--------------	-----------	--------	-------	--------

Txpower_flat_diff_value	Efuse Flatness value
6	0x6
5	0x5
4	0x4
3	0x3
2	0x2
1	0x1
0	0x0
-1	0xF
-2	0xE
-3	0xD
-4	0xC
-5	0xB
-6	0xA

The Txpower_flatness value is defined as :

Bits		Define	
0~3	Low Channel Flatness	CH 0~21	
4~7	MidLow Channel Flatness	CH 22~43	
8~11	MidHigh Channel, Flatness	CH 44~61	
12~15	High Channl Flatness	CH 62~78	

For example :

Channel	Measure Tx power(dBm)	Txpower_flat_diff calculate	Txpower_flat_diff	Value	Flatness value
10	-0.6	floor((0-(-0.6))*2)	1	0x1	
32	-0.3	floor((0-(-0.3))*2)	0	0x0	0DE01
52	0.7	floor((0-(0.7))*2)	-2	0xE	UXDEUI
70	1.2	floor((0-(1.2))*2)	-3	0xD	

Note: Efuse offset 0x27A[7:0] = 0x01 , Efuse offset 0x27B[7:0] = 0xDE

7.4. Bluetooth Tx power table

T	GFSK/BLE	EDR config		
1 x power	power (dBm)	power (dBm)		
0x20	-7	-10.5		
0x21	-6.5	-10		
0x22	-6	-9.5		
0x23	-5.5	-9		
0x24	-5	-8.5		
0x25	-4.5	-8		
0x26	-4	-7.5		
0x27	-3.5	-7		
0x28	-3	-6.5		
0x29	-2.5	-6		
0x2A	-2	-5.5		
0x2B	-1.5	-5		
0x2C	-1	-4.5		
0x2D	-0.5	-4		
0x2E	0	-3.5		
0x2F	0.5	-3		
0x30	1	-2.5		
0x31	1.5	-2		
0x32	2	-1.5		
0x33	2.5	-1		
0x34	3	-0.5		
0x35	3.5	0		
0x36	4	0.5		
0x37	4.5	1		
0x38	5	1.5		
0x39	5.5	2		
0x3A	6	2.5		
0x3B	6.5	3		

For	S1	<bt< th=""><th>'/WL</th><th>Port></th></bt<>	'/WL	Port>
-----	-----------	---	------	-------

Tx nower	GFSK/BLE	EDR config
1x power	power (dBm)	power (dBm)
0x3C	7	3.5
0x3D	7.5	4
0x3E	8	4.5
0x3F	8.5	5
0x40	9	5.5
0x41	9.5	6
0x42	10	6.5
0x43	10.5	7
0x44	11	7.5
0x45	11.5	8
0x46	12	8.5
0x47	12.5	9
0x48	13	9.5
0x49	13.5	10

For S0 <bt only="" port=""></bt>			
Tx power	GFSK/BLE		
	power (dBm)		

Ty nowor	GFSK/BLE	EDR config	
1 x power	power (dBm)	power (dBm)	
0x18	-7.5	-11	
0x19	-7	-10.5	
0x1A	-6.5	-10	
0x1B	-6	-9.5	
0x1C	-5.5	-9	
0x1D	-5	-8.5	
0x1E	-4.5	-8	
0x1F	-4	-7.5	
0x20	-3.5	-7	
0x21	-3	-6.5	
0x22	-2.5	-6	
0x23	-2	-5.5	
0x24	-1.5	-5	
0x25	-1	-4.5	
0x26	-0.5	-4	
0x27	0	-3.5	
0x28	0.5	-3	
0x29	1	-2.5	
0x2A	1.5	-2	
0x2B	2	-1.5	
0x2C	2.5	-1	
0x2D	3	-0.5	
0x2E	3.5	0	
0x2F	4	0.5	
0x30	4.5	1	
0x31	5	1.5	
0x32	5.5	2	
0x33	6	2.5	
0x34	6.5	3	
0x35	7	3.5	
0x36	7.5	4	
0x37	8	4.5	
0x38	8.5	5	
0x39	9	5.5	

T	GFSK/BLE	EDR config
Tx power	power (dBm)	power (dBm)
0x3A	9.5	6
0x3B	10	6.5
0x3C	10.5	7
0x3D	11	7.5
0x3E	11.5	8
0x3F	12	8.5
0x40	12.5	9
0x41	13	9.5
0x42	13.5	10

©2019 Realtek Semiconductor Corp.

7.5. Verify Bluetooth BDR/EDR Tx SPEC

To measure the DUT Bluetooth legacy Tx power/initial Carrier offset/modulation characteristics to check whether Tx performance is fine or not. Bluetooth legacy Tx criterion is shown as below. Below SPEC is defined by using 5 dBm as target power at normal temperature 25 degree C. For vender's Tx verification, please adapt target power value as your own SPEC.

Verify Bluetooth Tx Basic 1M									
Test Item	Sub Test item	Channel	Packet Type	Payload Type	SPEC				
Output Power	Peak Power			PRBS9	< 9.5 dBm NOTE: Max variation = target power value +/- 4.5 dB*				
Supuriowei	Average Power	0 6	0 6 DH1	PRBS9	3 dBm ~ 7 dBm NOTE: Max variation = target power variation +/- 2 dB*				
	Delta F1 Avg.	39	DH3	00001111	140KHz ~ 175KHz				
Modulation	Delta F2 Avg DH5	10101010	None						
Characteristics	Delta F2 Max.	70 78	70	70	70	70	70	10101010	> 115KHz
Characteristics	Modulation Index		F2avg/F1avg	> 0.8					
Initial Carrier Frequency				PRBS9	abs. < 20KHz				
20dB BW		-		PRBS9	< 1000KHz				
CF. Drift				PRBS9	abs. < 25KHz				
Max. Drift Rate				PRBS9	< 20KHz/50us				

Table 29: Verify Bluetooth Tx Basic 1M

*Max variation SPEC only available after doing Tx calibration flow

Verify Bluetooth Tx EDR 2M						
Test Item	Sub T	est item	Channel	Packet Type	Payload Type	SPEC
Output Power	Peak	Power	r		0 < 9 dBm	< 9 dBm NOTE: Max variation = target power value +/- 4dB*
	Average Power			0 6 2DH1 39 2DH3 42 2DH5 70 78		3 dBm ~ 7 dBm NOTE: Max variation = target power value +/- 2 dB*
Relative Transmit Power (P _{GFSK} - P _{DPSK})		ower	0 6 39 42 2DH1 2DH3 2DH3 2DH5 70 78			-4 ~ 1
Omega I						abs. < 20KHz
Omega 0						abs. < 10KHz
Om	Omega I +					abs. < 20KHz
RMS Enhanced data rate DEVM		RMS DEVM				< 0.20
carrier freque stability an	carrier frequency Peak stability and DEVM			< 0.35		
modulation ac	curacy	0.99 DEVM				> 0.99

Table 30: Verify Bluetooth Tx EDR 2M

*Max variation SPEC only available after doing Tx calibration flow

Verify Bluetooth Tx EDR 3M					
Tost Itom	Sub Tost itom	Channal	Packet	Payload	SDEC
i est item	Sub Test item	Channel	Туре	Туре	SIEC
					< 9 dBm
	Peak Power				NOTE: Max variation = target
Output Dowor					power value + / - $4dB^*$
Output Fower					3 dBm ~ 7 dBm
	Average Power				NOTE: Max variation = target
		0			power value +/- 2 dB*
Relative Transmit Power		6 39	3DH1 3DH3 3DH5	PRBS9	-4.00dB - 1.00dB
(P _{GFSK} - P _{DPSK})					
Omega I					abs. < 20KHz
On	Omega 0				abs. < 10KHz
Om	ega I +	70	78		abs. < 20KHz
Enhanced data	RMS DEVM	70			< 0.13
rate carrier	Peak DEVM				< 0.25
frequency					
stability and	0.00 DEVM				> 0.00
modulation	0.99 DEVM				~ 0.77
accuracy					

Table 31: Verify Bluetooth Tx EDR 3M

7.6. Verify Bluetooth BDR/EDR Rx SPEC

To Measure the DUT Rx sensitivity to check whether Rx performance is fine or not. The Rx performance test can be measured in signaling mode (ex: Anritsu 8852B, Agilent N4010A) or non-signaling mode (ex: LitePoint IQNxN). Bluetooth Rx criterion is shown as below :

Channel	Davised Type	Lagaan aansitinitu limit	Criterion
Channel	Payload Type	Legacy sensitivity minit	Bluetooth SPEC
0/6/39/42/70/78	PRBS9	EDR1M_BER < 0.01%	< -85 dBm
0/6/39/42/70/78	PRBS9	EDR2M/3M_BER < 0.01%	< -80 dBm

Table 32: Bluetooth Legacy Rx criterion

7.7. Verify Bluetooth BLE Tx Performance (BLE 1M)

To measure the DUT BLE Tx power and modulation index to check whether BLE Tx performance is fine or not. Bluetooth BLE Tx criterion is shown as below. Below Spec is defined by using 5 dBm as target power at normal temperature 25 degree C. For vender's Tx verification, please adapt target power value as your own SPEC.

Test Item	Sub Test Payload Type		Channel	Criterion
	Item	rujiouu rype		Bluetooth SPEC
BLE Output Power	Average Power	PRBS9		3 dBm ~ 7dBm NOTE: Max variation = target power value +/- 2 dB*
	Peak Power	k er		< 9 dBm NOTE: Max variation = target power value + / - 4dB*
Carrie freq. offset & drift	None	PRBS9	0/3/19/22/36/39	< 20KHz
	Delta F1 Avg.	BT_PAYLOAD_TYPE_1111_0 000		225 kHz ~ 275 kHz
Modulation Characteristics	Delta F2 Max.	BT_PAYLOAD_TYPE_1010		> 185 kHz
	F2avg/F1avg	None		> 0.8

Table 33: Bluetooth BLE Tx criterion

*Max variation SPEC only available after doing Tx calibration flow

7.8. Verify Bluetooth BLE 5.0 Tx Performance

To measure the DUT BLE 5.0 Tx power and modulation index to check whether BLE Tx performance fine or not. Bluetooth BLE 5.0 Tx criterion is shown as below. Below SPEC is defined by using 5 dBm as target power at normal temperature 25 degree C. For vender's Tx verification, please adapt target power value as your own spec.

РНҮ	Test Item	Sub Test Item	Pavload Tyne	Channel	Criterion	
SPEC	i est item	Sub rest item	Tayload Type	Channel	Bluetooth SPEC	
2M					3 dBm ~ 7 dBm	
LR S2					NOTE: Max	
		Average Power			variation = target	
					power value +/- 2	
	BLE Output Power		PRBS9		dB*	
LR S8		Peak Power		0/3/19/22/36/39	< 9 dBm NOTE: Max variation = target power value + / - 4dB*	
2M			PRBS9		2M: < 20kHz	
LR S2	Carrie freq. offset & drift	None	PRBS9		S8: < 19.2kHz	
LR S8	unit		PRBS9			
2M		Delta F1 Ava	BT_PAYLOAD_TY		2M: 450 ~ 550 kHz	
2111	Modulation	Delta FI Avg.	Dena FI Avg.	PE_1111_0000		S8: 225 ~ 275 kHz
LR S2	Characteristics	Delta F2 Max.	BT_PAYLOAD_TY		2M: > 370kHz	
		2 0100 I 2 10100A.	PE_1010			
LR S8		F2avg/F1avg	None		2M: > 0.8	

Table 34: Bluetooth BLE 5.0 Tx criterion

*Max variation SPEC only available after doing Tx calibration flow

7.9. Verify Bluetooth BLE Rx Performance

To calculate the Packet Error Rate (PER)

PER%= 100*(1-(Packets Received /Packets Send)

To measure the DUT BLE Rx sensitivity to check whether Rx performance is fine or not. The Bluetooth Rx criterion is shown as below:

Channel	SPEC	Davio ad Turo	DI E consitivity limit	Criterion	
Channel	PHY SPEC	rayload Type	BLE sensitivity mint	Bluetooth SPEC	
	1M	PRBS9	PER<= 30.800 %	< -85 dBm	
0/3/19/22/36/39	2M	PRBS9	PER<= 30.800 %	< -85 dBm	
	LRS2	PRBS9	PER<= 30.800 %	< -85 dBm	
	LRS8	PRBS9	PER<= 30.800 %	< -85 dBm	

 Table 35: Bluetooth BLE Rx criterion

FCC Caution

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:

(1) This device may not cause harmful interference,

(2) this device must accept any interference received, including interference that may cause undesired operati

Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

-Reorient or relocate the receiving antenna.

-Increase the separation between the equipment and receiver.

-Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.

-Consult the dealer or an experienced radio/TV technician for help.

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment.

This equipment should be installed and operated with minimum distance 20cm between the radiator & your body.

Requirement per KDB996369 D03

2.2 List of applicable FCC rules

List the FCC rules that are applicable to the modular transmitter. These are the rules that specifically establish the bands of operation, the power, spurious emissions, and operating fundamental frequencies. DO NOT list compliance to unintentional-radiator rules (Part 15 Subpart B) since that is not a condition of a module grant that is extended to a host manufacturer. See also Section 2.10 below concerning the need to notify host manufacturers that further testing is required.3

Explanation: This module meets the requirements of FCC part 15C(15.247).

2.3 Summarize the specific operational use conditions

Describe use conditions that are applicable to the modular transmitter, including for example any limits on antennas, etc. For example, if point-to-point antennas are used that require reduction in power or compensation for cable loss, then this information must be in the instructions. If the use condition limitations extend to professional users, then instructions must state that this information also extends to the host manufacturer's instruction manual. In addition, certain information may also be needed, such as peak gain per frequency band and minimum gain, specifically for master devices in 5 GHz DFS bands.

Explanation: The EUT has a Ceramic Antenna, and the antenna use a permanently attached antenna which is not replaceable.

2.4 Limited module procedures

If a modular transmitter is approved as a "limited module," then the module manufacturer is responsible for approving the host environment that the limited module is used with. The manufacturer of a limited module must describe, both in the filing and in the installation instructions, the alternative means that the limited module manufacturer uses to verify that the host meets the necessary requirements to satisfy the module limiting conditions.

A limited module manufacturer has the flexibility to define its alternative method to address the conditions that limit the initial approval, such as: shielding, minimum signaling amplitude, buffered modulation/data inputs, or power supply regulation. The alternative method could include that the limited module manufacturer reviews detailed test data or host designs prior to giving the host manufacturer approval.

This limited module procedure is also applicable for RF exposure evaluation when it is necessary to demonstrate compliance in a specific host. The module manufacturer must state how control of the product into which the modular transmitter will be installed will be maintained such that full compliance of the product is always ensured. For additional hosts other than the specific host originally granted with a limited module, a Class II permissive change is required on the module grant to register the additional host as a specific host also approved with the module.

Explanation: The module is not a limited module.

2.5 Trace antenna designs

For a modular transmitter with trace antenna designs, see the guidance in Question 11 of KDB Publication 996369 D02 FAQ – Modules for Micro-Strip Antennas and traces. The integration information shall include for the TCB review the integration instructions for the following aspects: layout of trace design, parts list (BOM), antenna, connectors, and isolation requirements.

a) Information that includes permitted variances (e.g., trace boundary limits, thickness, length, width, shape(s), dielectric constant, and impedance as applicable for each type of antenna);

b) Each design shall be considered a different type (e.g., antenna length in multiple(s) of frequency, the wavelength, and antenna shape (traces in phase) can affect antenna gain and must be considered);

c) The parameters shall be provided in a manner permitting host manufacturers to design the printed circuit (PC) board layout;

d) Appropriate parts by manufacturer and specifications;

e) Test procedures for design verification; and

f) Production test procedures for ensuring compliance.

The module grantee shall provide a notice that any deviation(s) from the defined parameters of the antenna trace, as described by the instructions, require that the host product manufacturer must notify the module grantee that they wish to change the antenna trace design. In this case, a Class II permissive change application is required to be filed by the grantee, or the host manufacturer can take responsibility through the change in FCC ID (new application) procedure followed by a Class II permissive change application.

Explanation: Yes, The module with trace antenna designs, and This manual has been shown the layout of trace design, antenna, connectors, and isolation requirements.

2.6 RF exposure considerations

It is essential for module grantees to clearly and explicitly state the RF exposure conditions that permit a host product manufacturer to use the module. Two types of instructions are required for RF exposure information: (1) to the host product manufacturer, to define the application conditions (mobile, portable - xx cm from a person's body); and (2) additional text needed for the host product manufacturer to provide to end users in their end-product manufacturer is required to take responsibility of the module through a change in FCC ID (new application).

Explanation: This module complies with FCC RF radiation exposure limits set forth for an uncontrolled environment, This equipment should be installed and operated with a minimum distance of 20 centimeters between the radiator and your body." This module is designed to comply with the FCC statement

2.7 Antennas

A list of antennas included in the application for certification must be provided in the instructions. For modular transmitters approved as limited modules, all applicable professional installer instructions must be included as part of the information to the host product manufacturer. The antenna list shall also identify the antenna types (monopole, PIFA, dipole, etc. (note that for example an "omni-directional antenna" is not considered to be a specific "antenna type")).

For situations where the host product manufacturer is responsible for an external connector, for example with an RF pin and antenna trace design, the integration instructions shall inform the installer that unique antenna connector must be used on the Part 15 authorized transmitters used in the host product. The module manufacturers shall provide a list of acceptable unique connectors.

Explanation: The EUT has a Ceramic Antenna, and the antenna use a permanently attached antenna which is unique.

2.8 Label and compliance information

Grantees are responsible for the continued compliance of their modules to the FCC rules. This includes advising host product manufacturers that they need to provide a physical or e-label stating "Contains FCC ID" with their finished product. See Guidelines for Labeling and User Information for RF Devices – KDB Publication 784748.

Explanation:The host system using this module, should have label in a visible area indicated the following texts: "Contains FCC ID: AQ5RWF-M68B-UWK1.

2.9 Information on test modes and additional testing requirements⁵

Additional guidance for testing host products is given in KDB Publication 996369 D04 Module Integration Guide. Test modes should take into consideration different operational conditions for a stand-alone modular transmitter in a host, as well as for multiple simultaneously transmitting modules or other transmitters in a host product.

The grantee should provide information on how to configure test modes for host product evaluation for different operational conditions for a stand-alone modular transmitter in a host, versus with multiple, simultaneously transmitting modules or other transmitters in a host.

Grantees can increase the utility of their modular transmitters by providing special means, modes, or instructions that simulates or characterizes a connection by enabling a transmitter. This can greatly simplify a host manufacturer's determination that a module as installed in a host complies with FCC requirements.

Explanation: KTC can increase the utility of our modular transmitters by providing instructions that simulates or characterizes a connection by enabling a transmitter.

2.10 Additional testing, Part 15 Subpart B disclaimer

The grantee should include a statement that the modular transmitter is **only** FCC authorized for the specific rule parts (i.e., FCC transmitter rules) listed on the grant, and that the host product manufacturer is responsible for compliance to any other FCC rules that apply to the host not covered by the modular transmitter grant of certification. If the grantee markets their product as being Part 15 Subpart B compliant (when it also contains unintentional-radiator digital circuity), then the grantee shall provide a notice stating that the final host product still requires Part 15 Subpart B compliance testing with the modular transmitter installed.

Explanation: The module without unintentional-radiator digital circuity, so the module does not require an evaluation by FCC Part 15 Subpart B. The host shoule be evaluated by the FCC Subpart B.