	TEST REF	ORT	1				
FCC ID	2AQ5C-HSTWS						
	TCT240606E013						
Date of issue:	Jul. 03, 2024						
Testing laboratory:		TESTING	ΔR				
Testing location/ address:	SHENZHEN TONGCE TESTING LAB 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China						
Applicant's name: :	Hypercel Corporation						
Address:	28385 Constellation Rd States	28385 Constellation Rd., Valencia, California, 91355 United States					
Manufacturer's name :	Shenzhen Hypercel Teo	hnology Co	o., Ltd				
Address:	Room 605, No.4 Building, Tongtai Times Center, No.6259 Bao'an Avenue, Bao'an District, Shenzhen City 518103, China						
Standard(s):	FCC CFR Title 47 Part 15 Subpart C Section 15.247 FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2013						
Product Name::	COMFORTABLE SLEE	P TRUE W	RELESS EARBU	JDS			
Trade Mark:	N/A						
Model/Type reference :	SleepEEZ Earbuds						
Rating(s):	Rechargeable Li-ion Ba	ttery DC 3.7	7V				
Date of receipt of test item	Jun. 06, 2024						
Date (s) of performance of test:	Jun. 06, 2024 ~ Jul. 03,	2024	S C				
Tested by (+signature) :	Yannie ZHONG	Y	annie Zoopece				
Check by (+signature) :	Beryl ZHAO						
Approved by (+signature):	Tomsin Tomsin's st						

TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

TCT 通测检测 TESTING CENTRE TECHNOLOGY

1.	General Product Information
	1.1. EUT description
	1.2. Model(s) list
	1.3. Operation Frequency
2.	Test Result Summary
	General Information5
	3.1. Test environment and mode5
	3.2. Description of Support Units
4.	Facilities and Accreditations
	4.1. Facilities
	4.2. Location
	4.3. Measurement Uncertainty6
5.	Test Results and Measurement Data7
	5.1. Antenna requirement7
	5.2. Conducted Emission
	5.3. Conducted Output Power
	5.4. Emission Bandwidth13
	5.5. Power Spectral Density14
	5.6. Conducted Band Edge and Spurious Emission Measurement
	5.7. Radiated Spurious Emission Measurement17
Ар	pendix A: Test Result of Conducted Test
Ap	opendix B: Photographs of Test Setup
Ap	opendix C: Photographs of EUT

1. General Product Information

1.1. EUT description

Product Name:	COMFORTABLE SLEEP TRUE WIRELESS EARBUDS	
Model/Type reference:	SleepEEZ Earbuds	
Sample Number:	TCT240606E012-0101	
Bluetooth Version:	V5.0 (This report is for BLE)	
Operation Frequency:	2402MHz~2480MHz	
Channel Separation:	2MHz	(3)
Data Rate:	LE 1M PHY, LE 2M PHY	
Number of Channel:	40	
Modulation Type:	GFSK	
Antenna Type:	Chip Antenna	
Antenna Gain:	2.67dBi	
Rating(s):	Rechargeable Li-ion Battery DC 3.7V	

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

None.

1.3. Operation Frequency

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
	····						
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz
Remark:	Channel 0, 1	9 & 39 ha	ave been tes	sted.			<u> </u>

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247 (b)(3)	PASS
6dB Emission Bandwidth	§15.247 (a)(2)	PASS
Power Spectral Density	§15.247 (e)	PASS
Band Edge	§15.247(d)	PASS
Spurious Emission	§15.205/§15.209	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

Page 4 of 56

3. General Information

3.1. Test environment and mode

Operating Environment:		
Condition	Conducted Emission	Radiated Emission
Temperature:	24.1 °C	23.3 °C
Humidity:	46 % RH	52 % RH
Atmospheric Pressure:	1010 mbar	1010 mbar
Test Software:		
Software Information:	FCC Assist 1.0.2.2	
Power Level:	Default	
Test Mode:		

Engineer mode:

Keep the EUT in continuous transmitting by select channel and modulations with Fully-charged battery.

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case (Z axis) are shown in Test Results of the following pages.

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	EP-TA200	R37R55T6KL2SE3		SAMSUNG

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

Page 5 of 56

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

- IC Registration No.: 10668A-1
- SHENZHEN TONGCE TESTING LAB
- CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

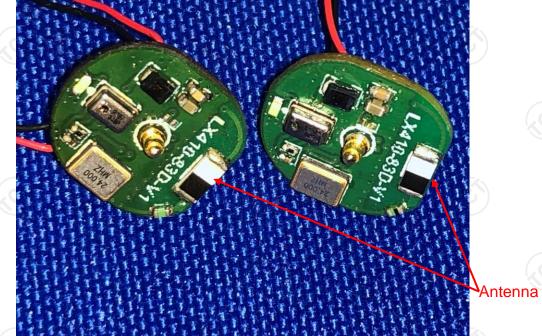
No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

5. Test Results and Measurement Data

5.1. Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

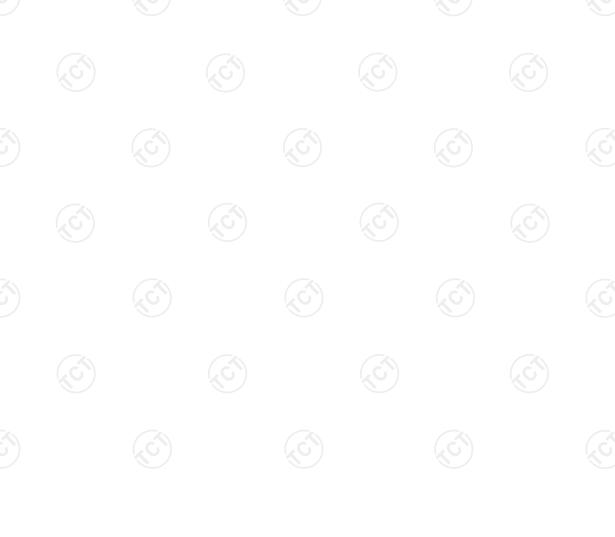

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

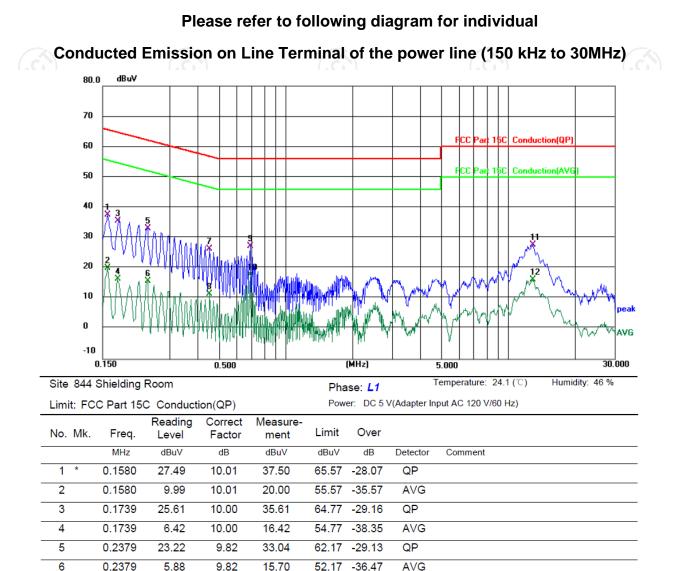
E.U.T Antenna:

The Bluetooth antenna is chip antenna which permanently attached, and the best case gain of the antenna is 2.67dBi.


5.2. Conducted Emission

5.2.1. Test Specification

Test Requirement:	FCC Part15 C Section	15.207 🕗						
Test Method:	ANSI C63.10:2013	ANSI C63.10:2013						
Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz						
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto							
	Frequency range	Limit (dBuV)					
	(MHz)	Quasi-peak	Average					
Limits:	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	5-30	60	50					
	Referenc	e Plane						
Test Setup:	Jp: Remark: E.U.T AC power Test table/Insulation plane Remark: E.U.T AC power Filter EMI Receiver ENI: ENI: ENI: Remark: EST: ENI:							
Test Mode:	Charging + Transmittin	ng Mode						
Test Procedure:	 The E.U.T is connelimpedance stabilizing provides a 500hm/s measuring equipme The peripheral device power through a LI coupling impedance refer to the block photographs). Both sides of A.C. conducted interferer emission, the relative the interface cables ANSI C63.10:2013 conducted interface 	ation network 50uH coupling im nt. ces are also conne SN that provides with 50ohm terr diagram of the line are checkence. In order to fi e positions of equ s must be chang	(L.I.S.N.). This pedance for the ected to the main s a 50ohm/50uh nination. (Please test setup and ed for maximum nd the maximum upment and all o ged according to					


Cond	Conducted Emission Shielding Room Test Site (843)									
Equipment	Manufacturer	Model	Serial Number	Calibration Due						
EMI Test Receiver	R&S	ESCI3	100898	Jun. 26, 2025						
LISN	Schwarzbeck	NSLK 8126	8126453	Jan. 31, 2025						
Attenuator	N/A	10dB	164080	Jun. 26, 2025						
Line-5	ТСТ	CE-05	/	Jun. 26, 2025						
EMI Test Software	EZ_EMC	EMEC-3A1	1.1.4.2	1						

Page 9 of 56

5.2.3. Test data

TCT通测检测 TESTING CENTRE TECHNOLOGY

56.80 -30.41

46.80 -35.32

56.00 -28.80

46.00 -28.16

60.00 -32.32

50.00 -33.70

QP

AVG QP

AVG

QP

AVG

Note:

7

8

9

10 11

12

0.4540

0.4540

0.6900

0.6900

12.8179

12.8179

Freq. = Emission frequency in MHz Reading level ($dB\mu V$) = Receiver reading

17.03

2.12

18.06

8.70

17.06

5.68

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V) = Reading \, level \, (dB\mu V) + Corr. Factor (dB)$

9.36

9.36

9.14

9.14

10.62

10.62

26.39

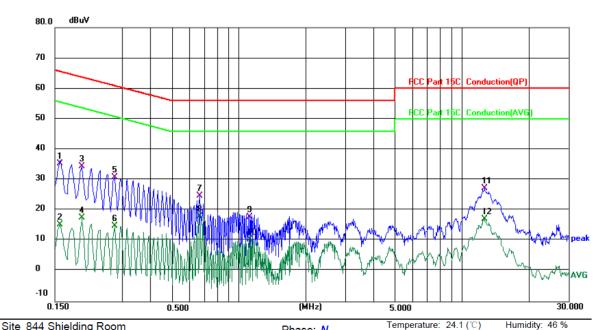
11.48

27.20

17.84

27.68

16.30


Limit $(dB\mu V) = Limit$ stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak

AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

	Sile	044	Shielding	Room			Pha	ase: N			Humary. 40 /0
Limit: FCC Part 15C Conduction(QP)						Power: DC 5 V(Adapter Input AC 120 V/60 Hz)					
-	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
			MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
	1		0.1580	25.26	10.01	35.27	65.57	-30.30	QP		
	2		0.1580	5.31	10.01	15.32	55.57	-40.25	AVG		
	3		0.1980	24.53	10.02	34.55	63.69	-29.14	QP		
	4		0.1980	7.60	10.02	17.62	53.69	-36.07	AVG		
	5		0.2779	20.96	9.83	30.79	60.88	-30.09	QP		
	6		0.2779	5.07	9.83	14.90	50.88	-35.98	AVG		
	7		0.6700	15.61	9.16	24.77	56.00	-31.23	QP		
	8	*	0.6700	8.85	9.16	18.01	46.00	-27.99	AVG		
	9		1.1220	7.97	9.87	17.84	56.00	-38.16	QP		
	10		1.1220	0.60	9.87	10.47	46.00	-35.53	AVG		

60.00 -32.79

50.00 -32.88

QP

AVG

Note1:

11

12

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$ Q.P. =Quasi-Peak

10.62

10.62

27.21

17.12

AVG =average

12.6140

12.6140

16.59

6.50

CT通测检测 TESTING CENTRE TECHNOLOGY

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note2: Speed for 1M and 2M modulations of EUT have been tested, but the test data only show the worst case in this report, and we found the worst case is 2M speed modulation. Measurements were conducted in all three channels (high, middle, low), and the worst case Mode (Middle channel) was submitted only.

5.3. Conducted Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB 558074 D01 v05r02
Limit:	30dBm
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Refer to item 3.1
Test Procedure:	 Set spectrum analyzer as following: a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level.
Test Result:	PASS

5.3.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB	/	/
(\mathcal{C})	(\mathcal{C})	(\mathcal{C})	(\mathcal{L})	

5.4. Emission Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	KDB 558074 D01 v05r02
Limit:	>500kHz
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Refer to item 3.1
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Test Result:	PASS

5.4.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB	<u> </u>	

5.5. Power Spectral Density

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB 558074 D01 v05r02
Limit:	The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Refer to item 3.1
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW) Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report.
Test Result:	PASS

5.5.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB	/	/

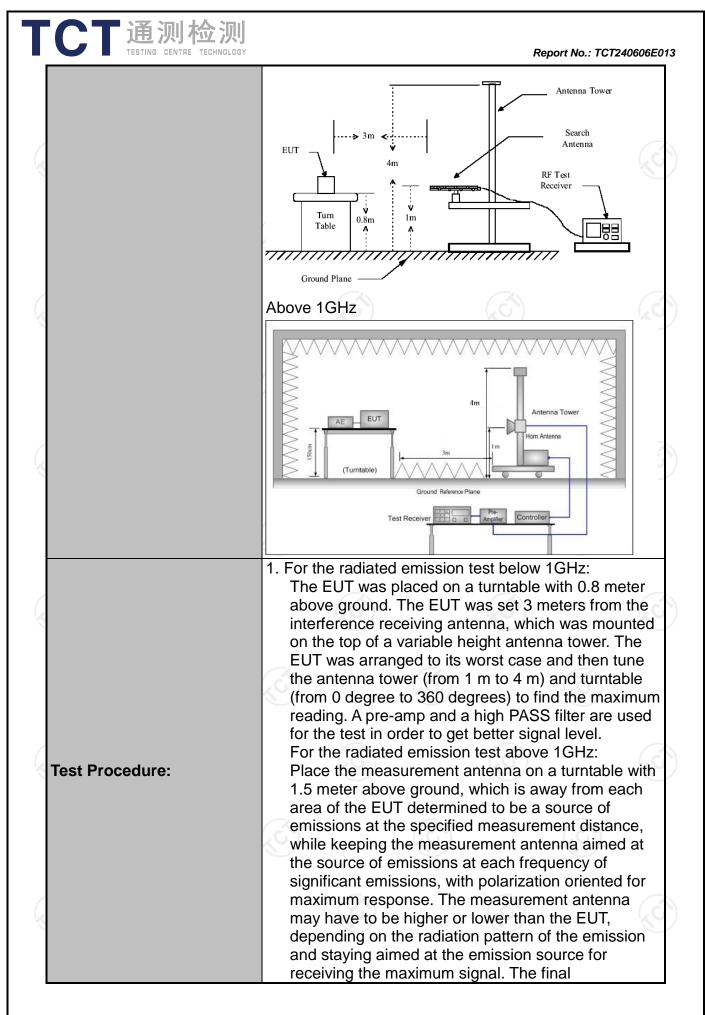
5.6. Conducted Band Edge and Spurious Emission Measurement

5.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Refer to item 3.1
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). Measure and record the results in the test report.
	 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

5.6.2. Test Instruments

~	Name	Manufacturer	Model No.	Serial Numbe	er Calibration Due
Spectrum Analyzer		Agilent	N9020A	MY49100619	Jun. 26, 2025
	biner Box	Ascentest	AT890-RFB	1	/
)		


5.7. Radiated Spurious Emission Measurement

5.7.1. Test Specification

TCT 通测检测 TESTING CENTRE TECHNOLOGY

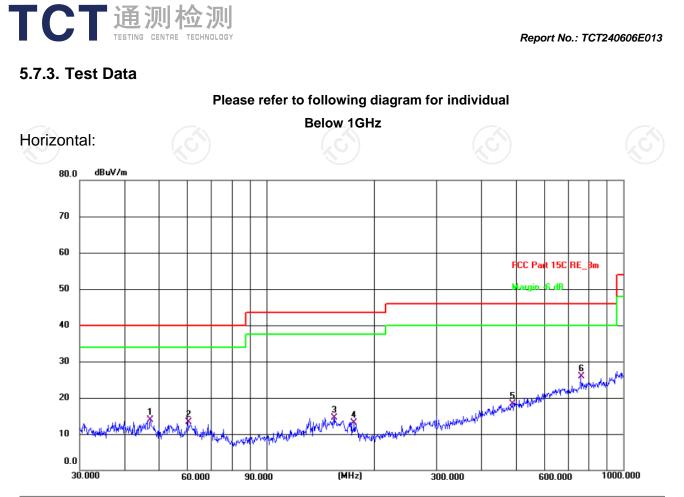
Test Requirement:	FCC Part15 C Section 15.209						
Test Method:	ANSI C63.10:2013						
Frequency Range:	9 kHz to 25 (GHz			C	0	
Measurement Distance:	3 m						
Antenna Polarization:	Horizontal & Vertical						
Operation mode:	Refer to item 3.1						
	Frequency 9kHz- 150kHz 150kHz-	Detector Quasi-peal Quasi-peal		VBW 1kHz 30kHz		Remark si-peak Value si-peak Value	
Receiver Setup:	30MHz 30MHz-1GHz Above 1GHz	Quasi-peal Peak Peak	<pre>120KHz 10KHz 1MHz 1MHz</pre>	300KHz 3MHz 10Hz	Р	si-peak Value eak Value erage Value	
	Frequen 0.009-0.4	су	Field Strength (microvolts/meter) 2400/F(KHz)		Measurement Distance (meters) 300		
	0.490-1.705 1.705-30 30-88		24000/F(KHz) 30 100		30 30 3		
Limit:	88-216 216-960 Above 960		150 200 500			3 3 3	
	Frequency Above 1GHz	(micro	d Strength ovolts/meter) 500 5000	Measure Distan (meter 3 3	се	Detector Average Peak	
Test setup:	For radiated	stance = 3m		Pre -/	Compu		

Page 17 of 56

CT通测检测 TESTING CENTRE TECHNOLOGY	Report No.: TCT240606E0
	 measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. 2. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level 3. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. 4. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=120 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f >1 GHz for peak measurement. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Test mode:	Refer to section 3.1 for details
Test results:	PASS

5.7.2. Test Instruments

	Radiated Emission Test Site (966)							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due				
EMI Test Receiver	R&S	ESCI7	100529	Jan. 31, 2025				
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 26, 2025				
Pre-amplifier	HP	8447D	2727A05017	Jun. 26, 2025				
Pre-amplifier	SKET	LNPA_0118G- 45	SK202101210 2	Jan. 31, 2025				
Pre-amplifier	SKET	LNPA_1840G- 50	SK202109203 500	Jan. 31, 2025				
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jun. 26, 2025				
Broadband Antenna	Schwarzbeck	VULB9163	340	Jun. 28, 2025				
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jun. 28, 2025				
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 02, 2025				
Coaxial cable	SKET	RE-03-D	1	Jun. 26, 2025				
Coaxial cable	SKET	RE-03-M		Jun. 26, 2025				
Coaxial cable	SKET	RE-03-L	/	Jun. 26, 2025				
Coaxial cable	SKET	RE-04-D	10	Jun. 26, 2025				
Coaxial cable	SKET	RE-04-M	/	Jun. 26, 2025				
Coaxial cable	SKET	RE-04-L	/	Jun. 26, 2025				
Antenna Mast	Keleto	RE-AM	1					
EMI Test Software	EZ_EMC	FA-03A2 RE+	1.1.4.2	1				
		TA-UJAZ KE+	1.1.4.2	/				



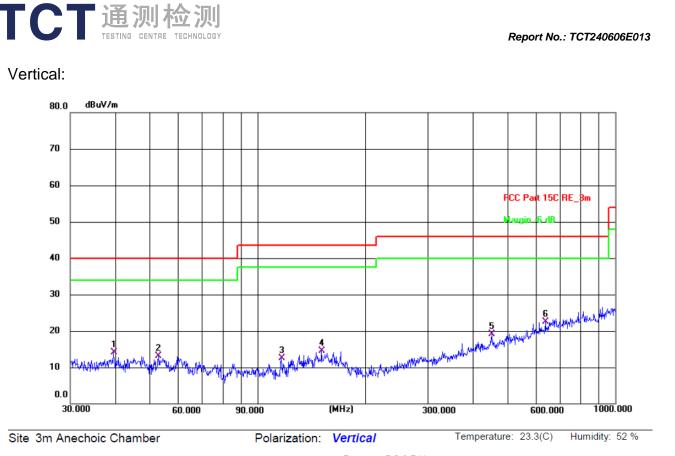
Page 20 of 56

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Site 3m Anechoic Chamber

Polarization: Horizontal

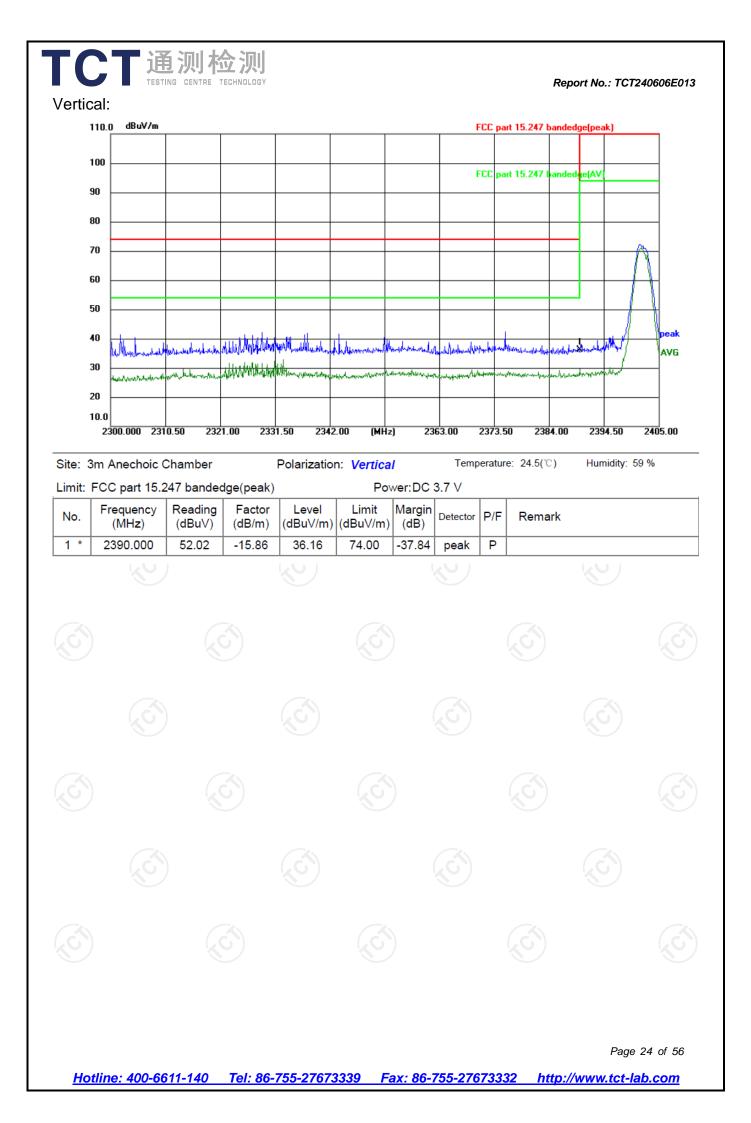
Temperature: 23.3(C) Humidity: 52 %

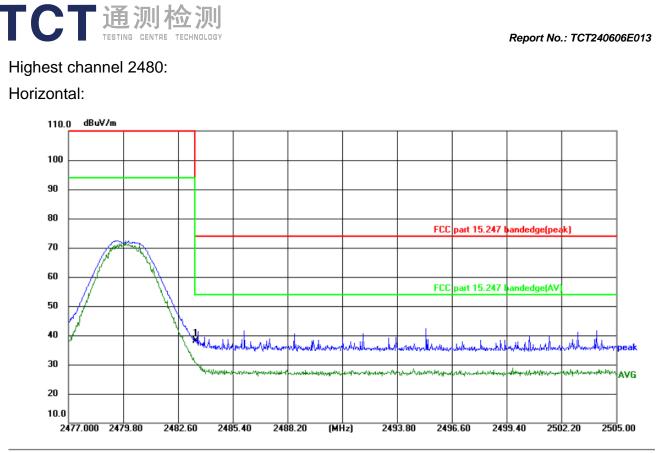

Limit:	ECC F	Part	15C	RF	3m
LIIIII.	1001	an	100		JIII

Power: DC 3.7 V

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	47.3253	32.21	-18.34	13.87	40.00	-26.13	QP	Р	
2	60.2801	31.92	-18.71	13.21	40.00	-26.79	QP	Р	
3	154.8204	31.09	-16.60	14.49	43.50	-29.01	QP	Р	
4	176.2684	31.38	-18.36	13.02	43.50	-30.48	QP	Р	
5	489.0267	30.57	-12.21	18.36	46.00	-27.64	QP	Р	
6 *	760.7035	32.66	-6.71	25.95	46.00	-20.05	QP	Р	

Page 21 of 56

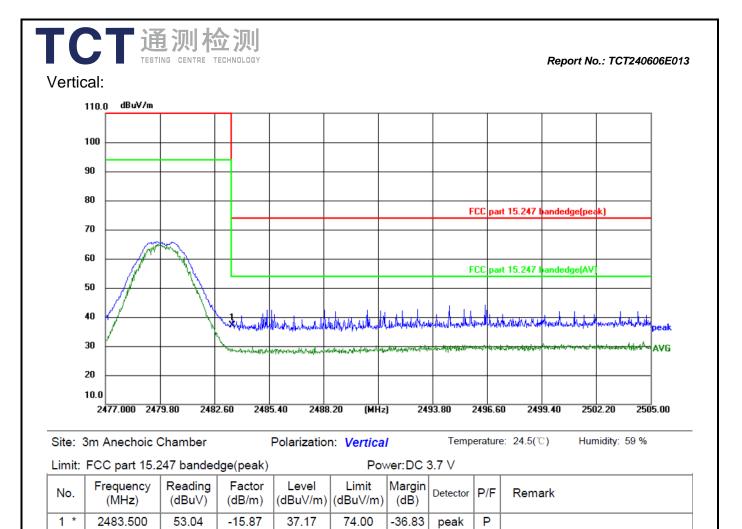



Limit: F	FCC Part 15C R	RE_3m			F	ower: D	DC 3.7 V		
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	39.5757	32.35	-18.24	14.11	40.00	-25.89	QP	Ρ	
2	52.9453	31.79	-18.66	13.13	40.00	-26.87	QP	Ρ	
3	116.5401	31.85	-19.38	12.47	43.50	-31.03	QP	Ρ	
4	151.0666	31.39	-16.83	14.56	43.50	-28.94	QP	Ρ	
5	452.7196	32.28	-13.25	19.03	46.00	-26.97	QP	Ρ	
6 *	638.3686	30.83	-8.41	22.42	46.00	-23.58	QP	Ρ	

- **Note:** 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported
 - 2. Speed for 1M and 2M modulations of EUT have been tested, but the test data only show the worst case in this report, and we found the worst case is 2M speed modulation. Measurements were conducted in all three channels (high, middle, low), and the worst case Mode (Middle channel) was submitted only.
 - 3. Freq. = Emission frequency in MHz
 - Measurement $(dB\mu V/m) = Reading \, level \, (dB\mu V) + Corr. Factor (dB)$ Correction Factor= Antenna Factor + Cable loss – Pre-amplifier Limit $(dB\mu V/m) = Limit \, stated \, in \, standard$
 - Margin (dB) = Measurement (dB μ V/m) Limits (dB μ V/m)
 - * is meaning the worst frequency has been tested in the test frequency range

TCT通测检测 TCT通测检测 Report No.: TCT240606E013 Test Result of Radiated Spurious at Band edges Lowest channel 2402: Horizontal: 110.0 dBuV/m FCC part 15.247 bandedge(peak) 100 FCC part 15.247 bandedge(AV 90 80 70 60 50 AVG 40 Allowarder halloge Adres mak 30 يتأوره وتؤري هتيل ألوالاقلا المراجع والمراجع والم and the second water 20 10.0 2300.000 2310.50 2321.00 2331.50 2342.00 2363.00 2394.50 2405.00 (MHz) 2373.50 2384.00 Humidity: 59 % Site: 3m Anechoic Chamber Polarization: Horizontal Temperature: 24.5(℃) Power:DC 3.7 V Limit: FCC part 15.247 bandedge(peak) Limit Frequency Reading Factor Level Margin No. Detector P/F Remark (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 52.37 1 * 2390.000 -15.86 36.51 74.00 -37.49 Ρ peak

Page 23 of 56



 Site: 3m Anechoic Chamber
 Polarization: Horizontal
 Temperature: 24.5(°C)
 Humidity: 59 %

 Limit: FCC part 15.247 bandedge(peak)
 Power:DC 3.7 V
 Humidity: 59 %

No	Frequency (MHz)			Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	* 2483.500	53.90	-15.87	38.03	74.00	-35.97	peak	Ρ	

Note: Speed for 1M and 2M modulations of EUT have been tested, but the test data only show the worst case in this report, and we found the worst case is 2M speed modulation.

					Above	1GHz				
	Low char	nnel: 2402	MHz							
	Frequency	Ant. Pol.	Peak	AV	Correction			Peak limit	AV limit	Margin
	(MHz)	H/V	reading (dBµV)	reading (dBuV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dĔ)
(.	4804	Н	45.14		0.66	45.80		74	54	-8.20
<u>×</u>	7206	Н	34.66		9.50	44.16		74	54	-9.84
		Н								
	4804	V	46.03		0.66	46.69	×	74	54	-7.31
	7206	V	35.89	- A V	9.50	45.39	<u> </u>	74	54	-8.61
		V								

Middle channel: 2440 MHz

CT 通测检测 TESTING CENTRE TECHNOLOGY

initiaalo eria		, 1011 IZ						
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4880	Н	45.31		0.99	46.30	 74	54	-7.70
7320	Н	35.27		9.87	45.14	 74	54	-8.86
	Н			·	/	 		
			K0				KO I	
4880	V	46.05		0.99	47.04	74	54	-6.96
7320	V	35.20		9.87	45.07	 74	54	-8.93
	V					 		

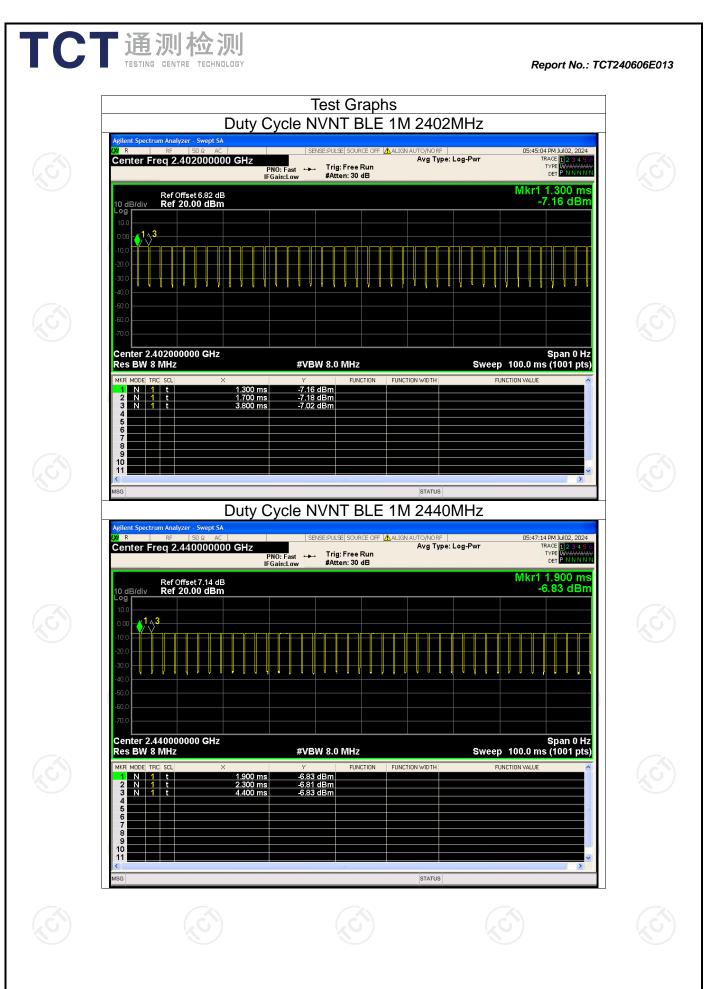
High chanr	nel: 2480 N	ЛНz							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)		n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4960	Н	45.25	-+	1.33	46.58		74	54	-7.42
7440	H	34.88		10.22	45.10	<u> </u>	74	54	-8.90
	Н								
4960	V	44.09		1.33	45.42		74	54	-8.58
7440	V	34.52		10.22	44.74		74	54	-9.26
<u> </u>	V			0	/				

Note:

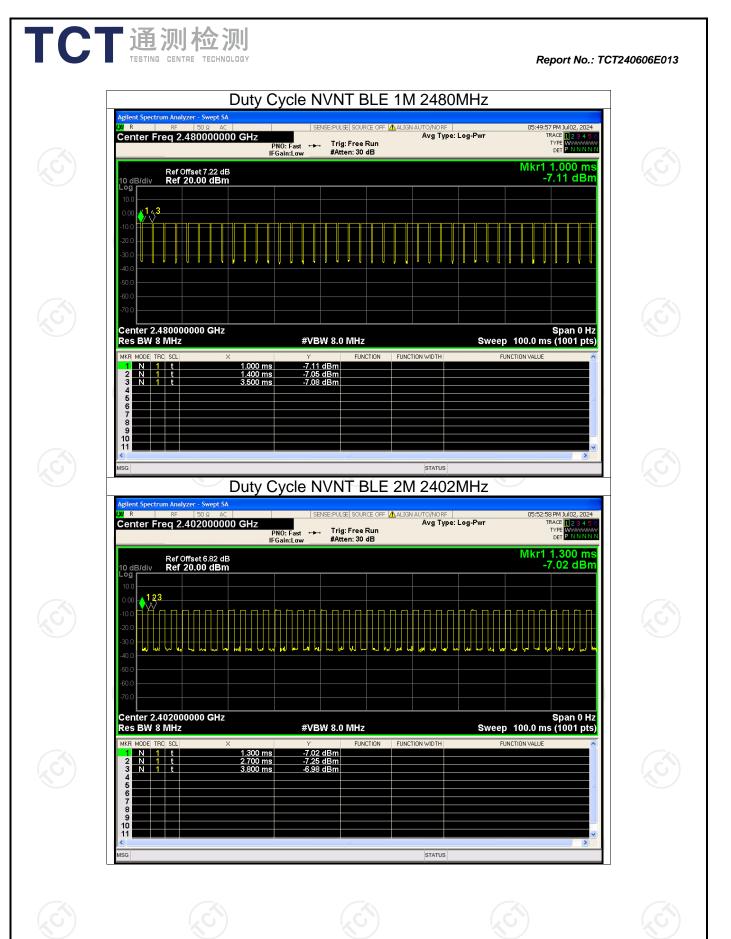
1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

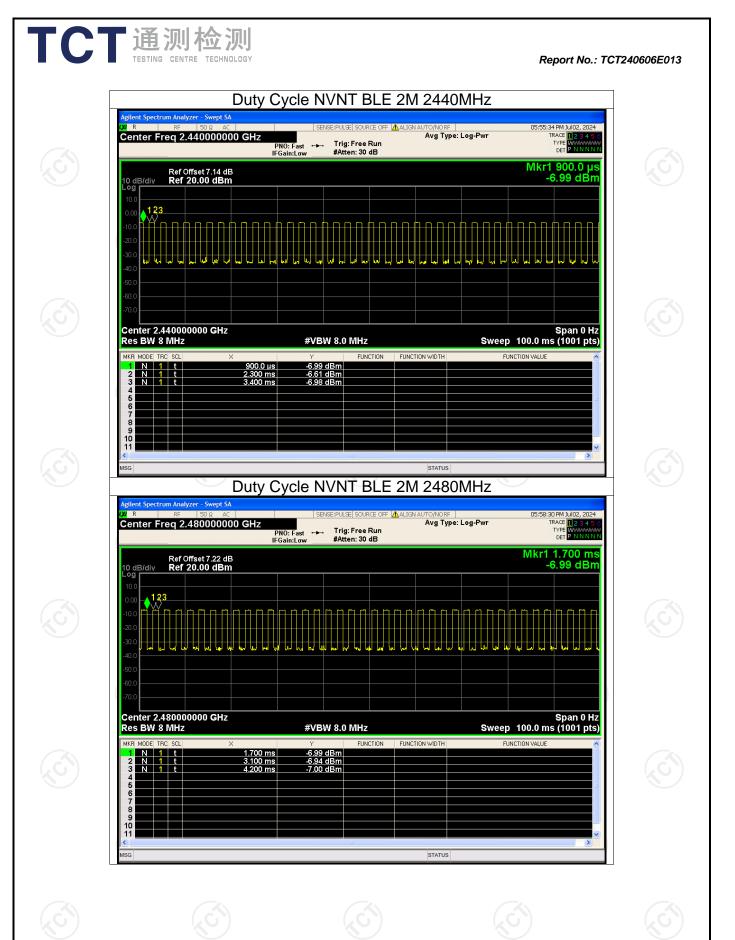
3. The emission levels of other frequencies are very lower than the limit and not show in test report.


4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.
- 6. Speed for 1M and 2M modulations of EUT have been tested, but the test data only show the worst case in this report, and we found the worst case is 2M speed modulation.
- 7. All the restriction bands are compliance with the limit of 15.209.

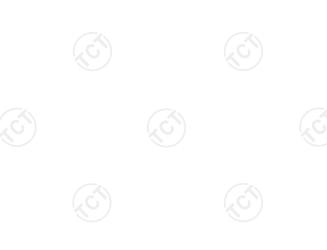

Appendix A: Test Result of Conducted Test

TCT通测检测 TESTING CENTRE TECHNOLOGY


)	(C)			
Condition	Mode	Duty CycleFrequencyDuty Cycle(MHz)(%)		(dB)	1/T (kHz)	
NVNT NVNT NVNT NVNT NVNT NVNT	BLE 1M BLE 1M BLE 1M BLE 2M BLE 2M BLE 2M	2402 2440 2480 2402 2440 2480	88.01 88.01 88.01 47.95 48.05 47.95	0.55 0.55 0.55 3.19 3.18 3.19	0.48 0.48 0.91 0.91 0.91	
<u>Hotline: 40</u>	00-6611-140 Te	el: 86-755-27673;	339 Fax: 86-75	Ρε 5 5-27673332 http://www.tc	nge 28 of 56 t <u>-lab.com</u>	

Page 29 of 56

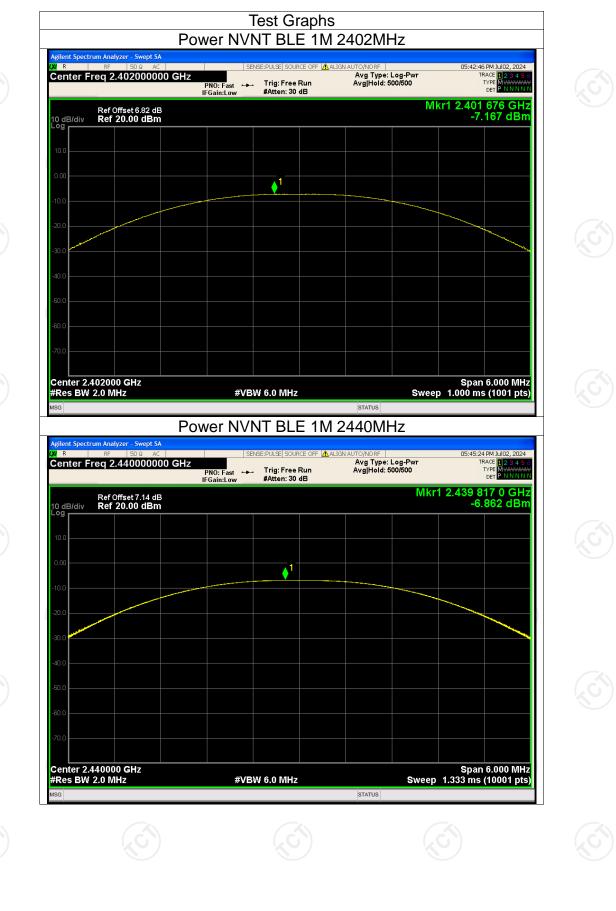
Page 30 of 56

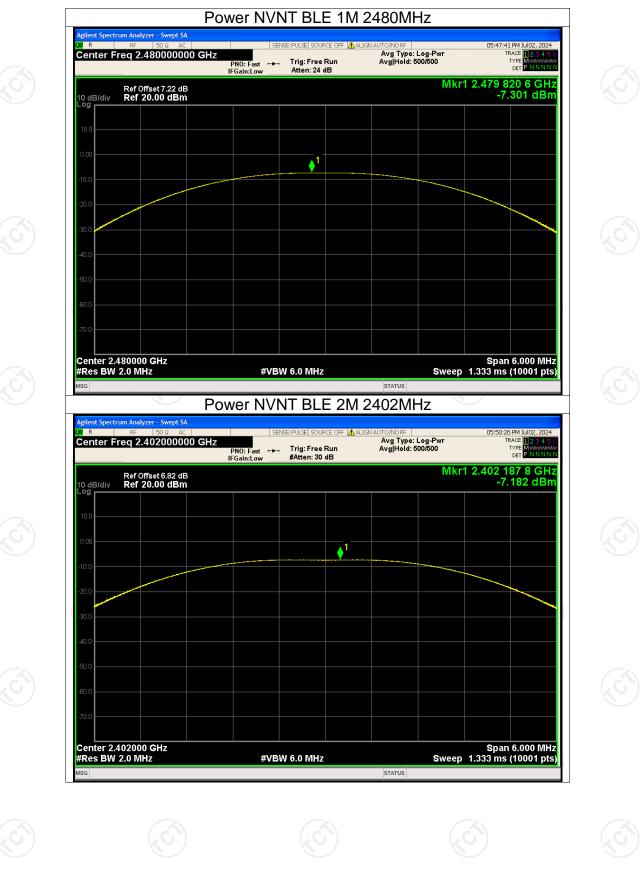

Page 31 of 56

Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT 🐇	BLE 1M	2402	-7.17	30	Pass
NVNT	BLE 1M	2440	-6.86	30	Pass
NVNT	BLE 1M	2480	-7.30	30	Pass
NVNT	BLE 2M	2402	-7.18	30	Pass
NVNT	BLE 2M	2440	-6.80	30	Pass
NVNT	BLE 2M	2480	-7.07	30	Pass

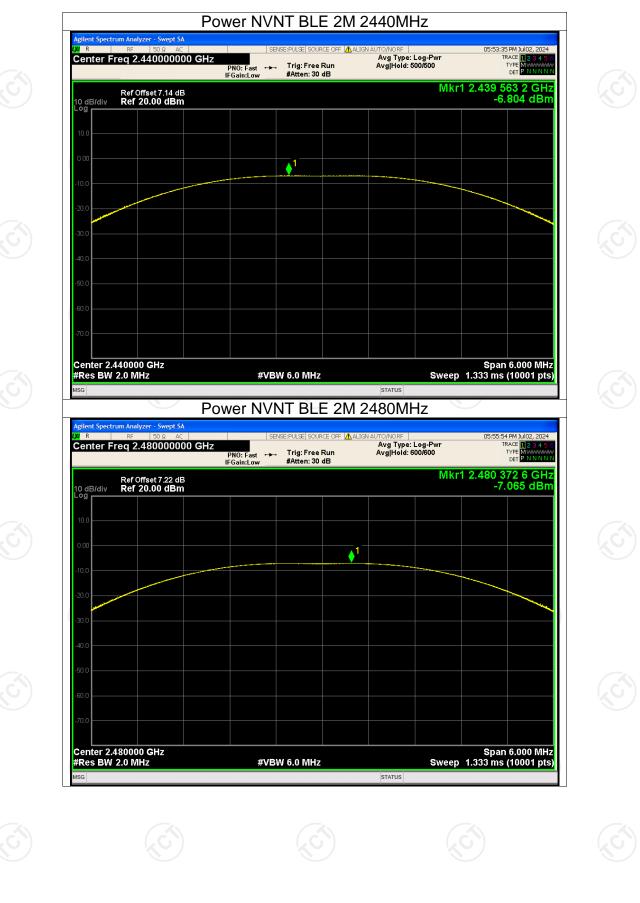
Maximum Conducted Output Power

TCT通测检测 TESTING CENTRE TECHNOLOGY





Page 32 of 56


Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

TCT通测检测 TESTING CENTRE TECHNOLOGY

TCT通测检测 TCT通测检测

TCT通测检测 TCT通测检测

	-6dB Bandwidth										
Condition	Mode	Frequency (MHz)	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict						
NVNT	BLE 1M	2402	0.666	0.5	Pass						
NVNT	BLE 1M	2440	0.654	0.5	Pass						
NVNT	BLE 1M	2480	0.655	0.5	Pass						
NVNT	BLE 2M	2402	1.141	0.5	Pass						
NVNT	BLE 2M	2440	1.142	0.5	Pass						
NVNT	BLE 2M	2480	1.150	0.5	Pass						

TCT通测检测 TESTING CENTRE TECHNOLOGY

Page 36 of 56

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

-649 Hz

654.4 kHz

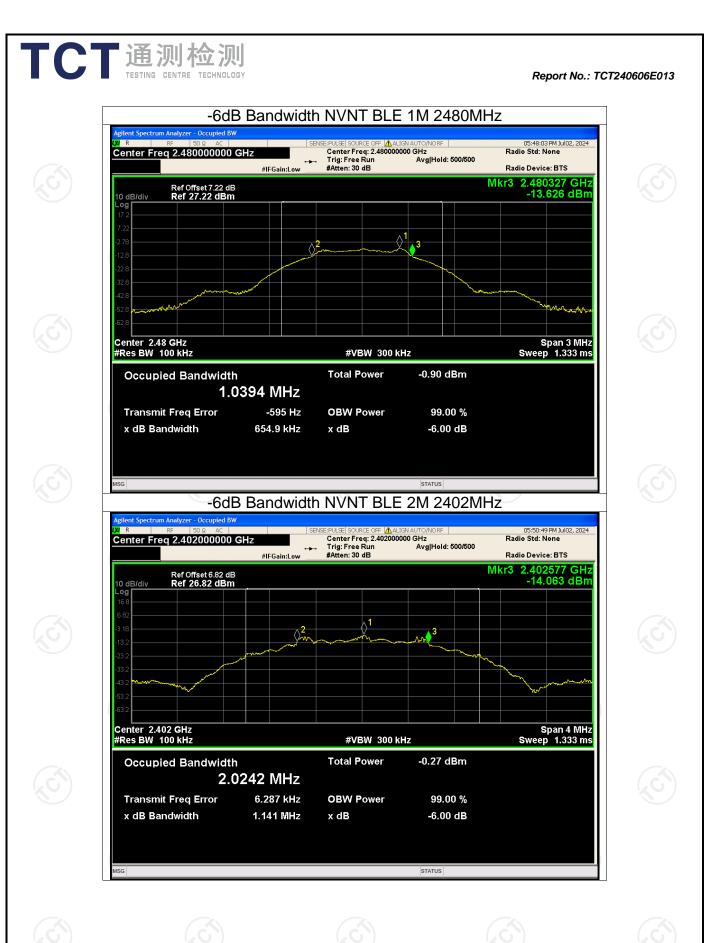
Transmit Freg Error

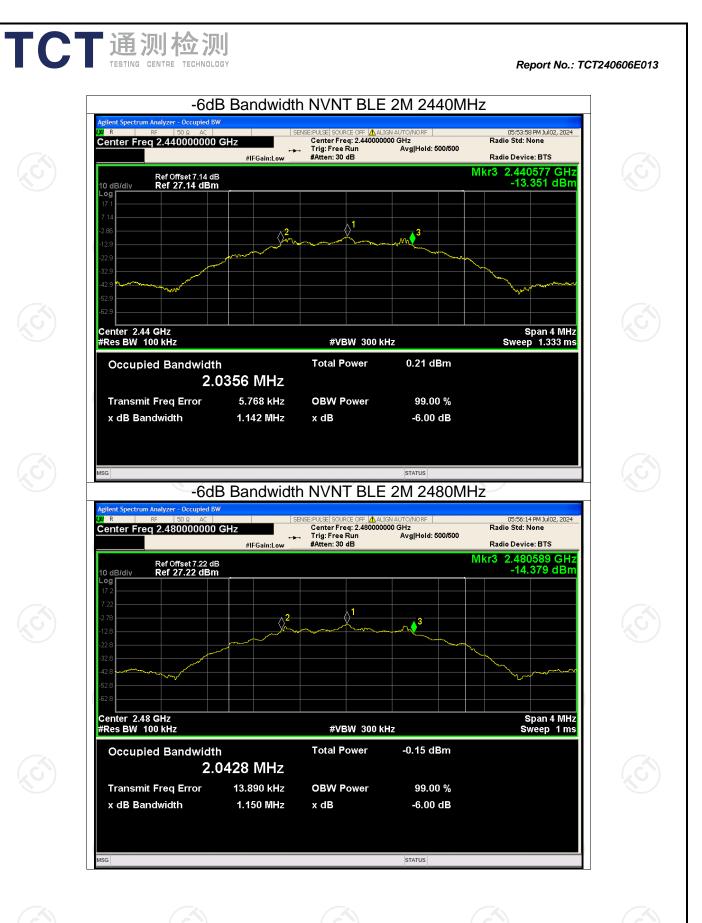
x dB Bandwidth

Test Graphs

CT 通测检测 TESTING CENTRE TECHNOLOGY

Page 37 of 56


OBW Power


x dB

99.00 %

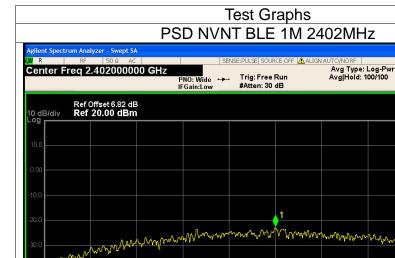
-6.00 dB

STATUS

Page 39 of 56

Report No.: TCT240606E013

Condition	Mode	Frequency (MHz)	Conducted PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
NVNT	BLE 1M	2402	-23.02	8	Pass
NVNT	BLE 1M	2440	-22.92	8	Pass
NVNT	BLE 1M	2480	-23.18	8	Pass
NVNT	BLE 2M	2402	-25.54	8	Pass
NVNT	BLE 2M	2440	-25.22	8	Pass
NVNT	BLE 2M	2480	-25.61	8	Pass


Maximum Power Spectral Density Level

Page 40 of 56

#VBW 10 kHz

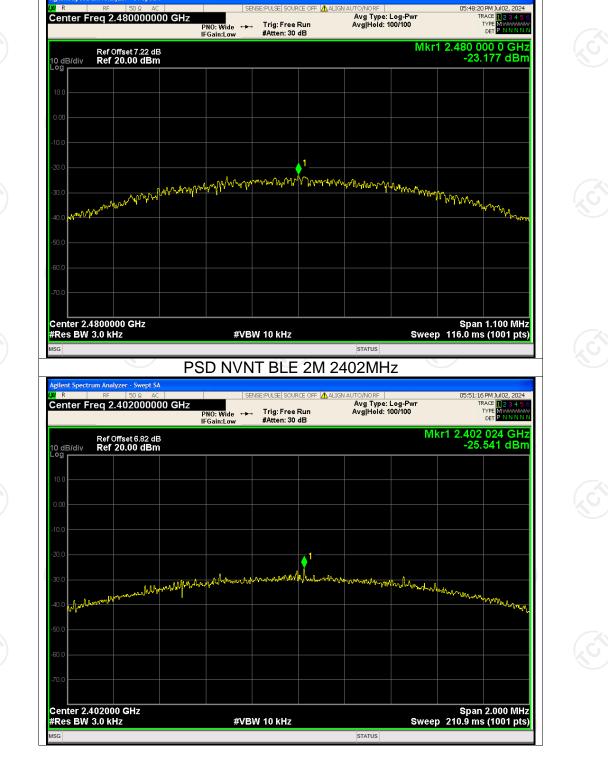
STATUS

TCT通测检测 TESTING CENTRE TECHNOLOGY

Center 2.4400000 GHz #Res BW 3.0 kHz

Mkr1 2.402 000 GHz -23.019 dBm mann പ്പ MY W www.www manga

Page 41 of 56


Span 1.000 MHz Sweep 105.5 ms (1001 pts)

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

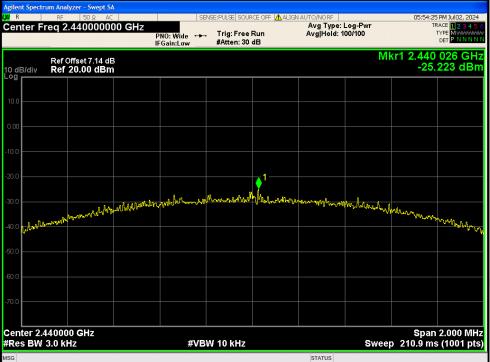
Report No.: TCT240606E013

05:43:24 PM Jul 02, 2024

TRACE 123456 TYPE MMMMMM DET PNNNNN

PSD NVNT BLE 1M 2480MHz gilent Spectrum Analyzer - Swept SA SENSE:PULSE SOURCE OFF ALIGN AUTO/NORF Avg Type: Log-Pwr Trig: Free Run Avg|Hold: 100/100 Center Freq 2.480000000 GHz

TCT通测检测 TESTING CENTRE TECHNOLOGY

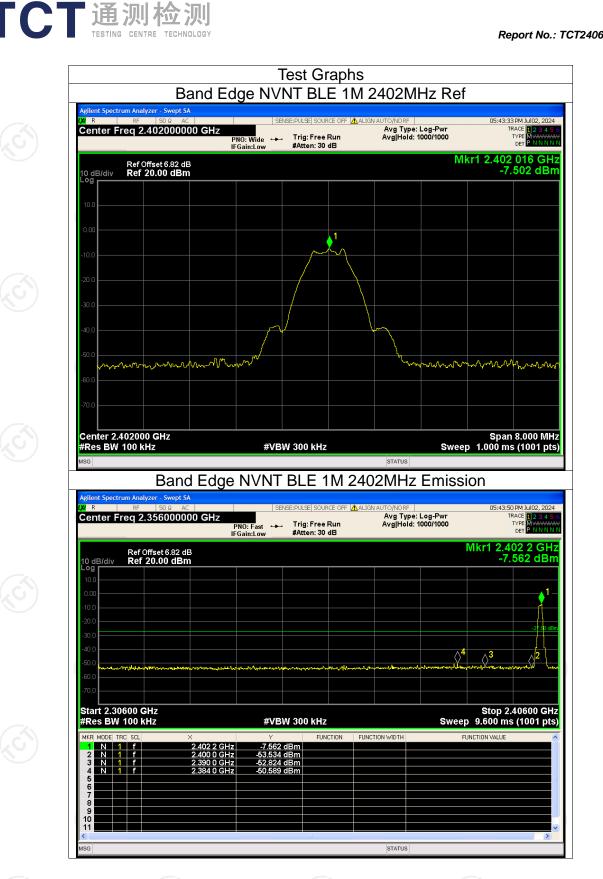

R

Report No.: TCT240606E013

PSD NVNT BLE 2M 2440MHz SENSE:PULSE SOURCE OFF ▲ALIGN AUTO/NORF | Avg Type: Log-Pwr → Trig: Free Run Avg|Hold: 100/100

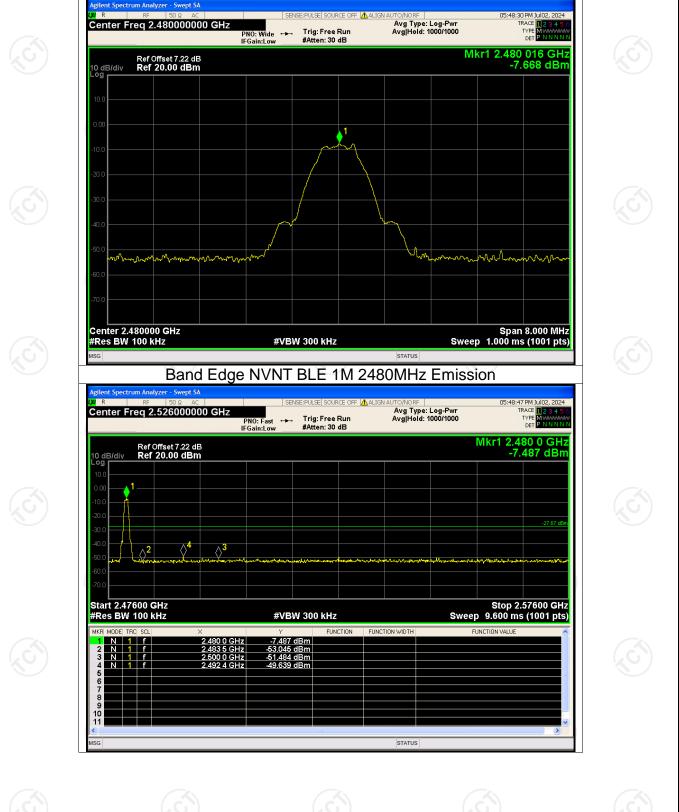
PSD NVNT BLE 2M 2480MHz

	rum Analyzer - Swept S								
Center F	RF 50 Ω A0 req 2.4800000	00 GHz	NO: Wide 🔸 Gain:Low	NSE:PULSE SOUR Trig: Free #Atten: 30	Run	Avg Type: Avg Type: Avg Hold: 1		TF	PM Jul 02, 2024 ACE 1 2 3 4 5 (TYPE M WWWWW DET P N N N N
10 dB/div Log	Ref Offset 7.22 di Ref 20.00 dBn						MI	kr1 2.480 -25.	026 GH: 606 dBm
10.0									
0.00									
-10.0									
-20.0					∮ ¹				
-30.0	www.hulu	while particles	Walds ward	Manana Marina	- Charmenter M	hoomer and the second sec	mahanaly	Murmin	^ა უფარი წ. წ
-50.0									~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-60.0									
-70.0									
Center 2.480000 GHz Span 2.000 MHz Span 2.000 MHz 2.000 MHz Sweep 210.9 ms (1001 pts)									
MSG						STATUS			



Verdict	nit (dBc)	c) Lim	x Value (dB	Band Edge Hz) Max	quency (M	Mode Free		Condit
Pass Pass	-20 -20		-43.08 -41.96		2402 2480	LE 1M LE 1M	NT BLE	NVN NVN
Pass Pass	-20 -20	KP)	-43.65 -42.85	KU -	2402 2480	LE 2M		<u>NVN</u> NVN
					(\mathbf{c}^{*}))		

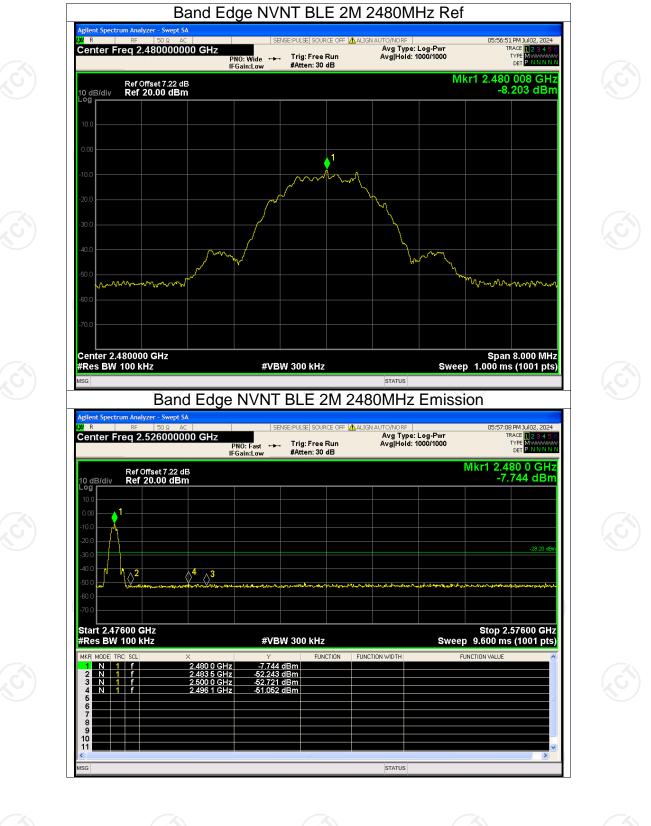
Report No.: TCT240606E013


TCT通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT240606E013

Page 45 of 56

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332


Band Edge NVNT BLE 1M 2480MHz Ref

Report No.: TCT240606E013

http://www.tct-lab.com

Report No.: TCT240606E013

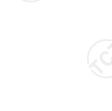
Report No.: TCT240606E013

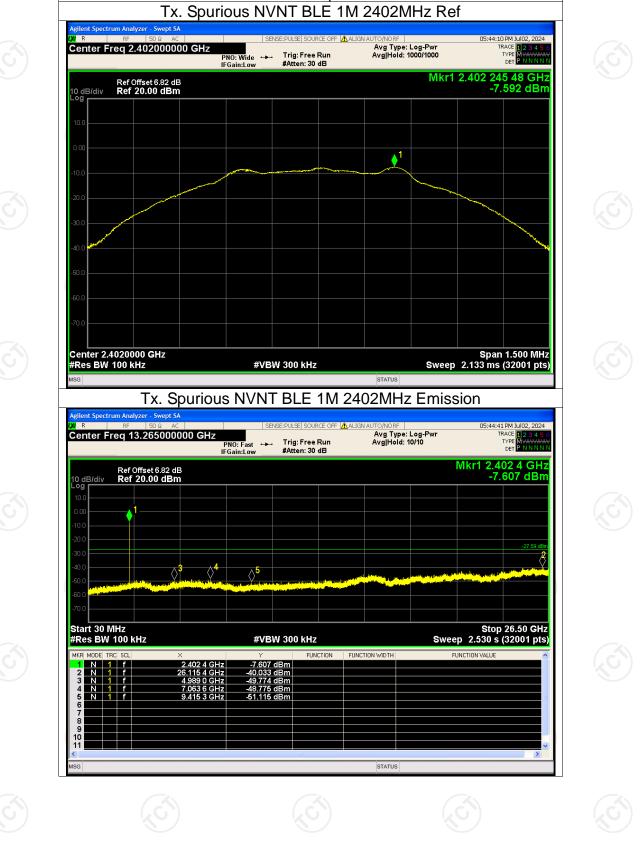
Page 48 of 56

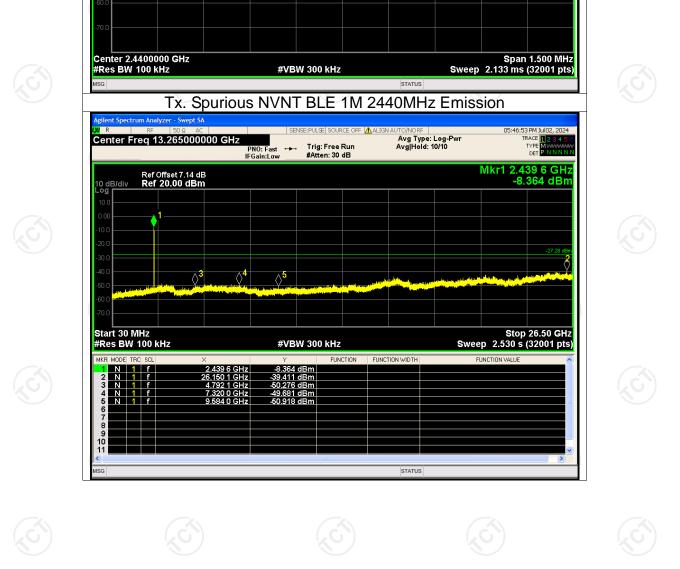
Report No.:	TCT240606E013
-------------	---------------

Conducted RF Spunous Emission										
Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict					
NVNT	BLE 1M	2402	-32.44	-20	Pass					
NVNT	BLE 1M	2440	-32.13	-20	Pass					
NVNT	BLE 1M	2480	-32.54	-20	Pass					
NVNT	BLE 2M	2402	-32.04	-20	Pass					
NVNT	BLE 2M	2440	-32.38	-20	Pass					
NVNT	BLE 2M	2480	-32.38	-20	Pass					

Conducted RF Spurious Emission






Page 49 of 56

Test Graphs

Page 50 of 56

Report No.: TCT240606E013

gilent Spect

10 dB/div

Center Freq 2.440000000 GHz

Ref Offset 7.14 dB Ref 20.00 dBm

R

Tx. Spurious NVNT BLE 1M 2440MHz Ref

05:46:22 PM Jul 02, 2024 TRACE 12345 TYPE MWWWW DET PNNNN

Mkr1 2.440 248 53 GHz -7.279 dBm

SENSE:PULSE SOURCE OFF ALIGN AUTO/NORF

♦¹

PNO: Wide 🛶 Trig: Free Run IFGain:Low #Atten: 30 dB Report No.: TCT240606E013

Page 51 of 56

 Tx. Spurious NVNT BLE 1M 2480MHz Ref

 Genter Spectrum Analyzer - Swept 54

 Center Freq 2.480000000 GHz
 OF 4007 FM M02, 2034

 Avg Type: Log-Pwr Type: Log-Pwr Avg Type:

l R

10 dB/di Log

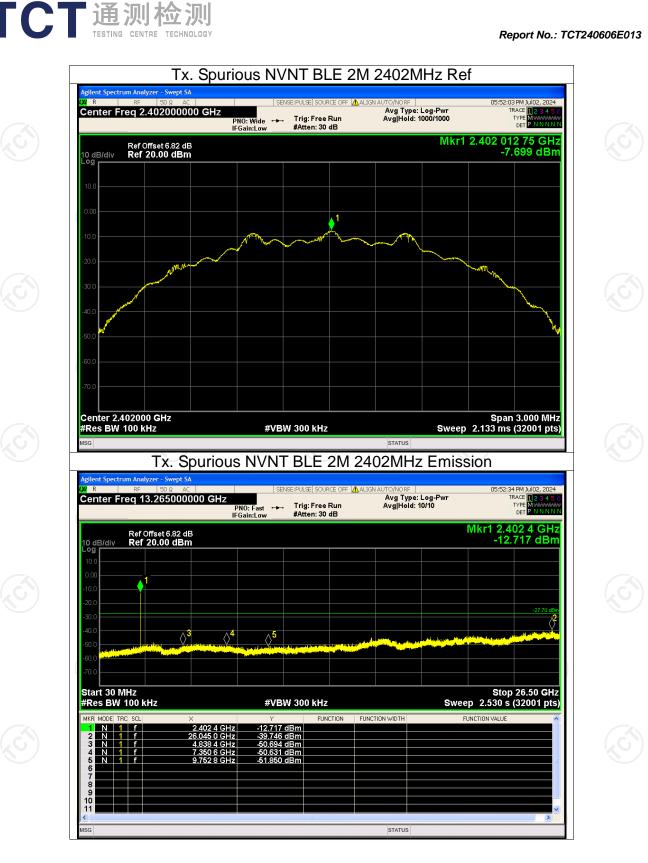
Center Freq 13.265000000 GHz

Ref Offset 7.22 dB Ref 20.00 dBm

Tx. Spurious NVNT BLE 1M 2480MHz Emission

PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB

SENSE: PULSE SOURCE OFF


Avg Type: Log-Pwr Avg|Hold: 10/10

Page 52 of 56

Report No.: TCT240606E013

40 PM Jul 02, 2024 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N

Mkr1 2.480 1 GHz -9.248 dBm

Addient Spectrum Analyzer - Swept SA Ref 0 90 AC 0554-45 PM M02, 204 Center Freq 2,440000000 GHz PRO: Wile Trig: Free Run Frein: Low Trig: Free Run Generation and the second of th

Tx. Spurious NVNT BLE 2M 2440MHz Ref

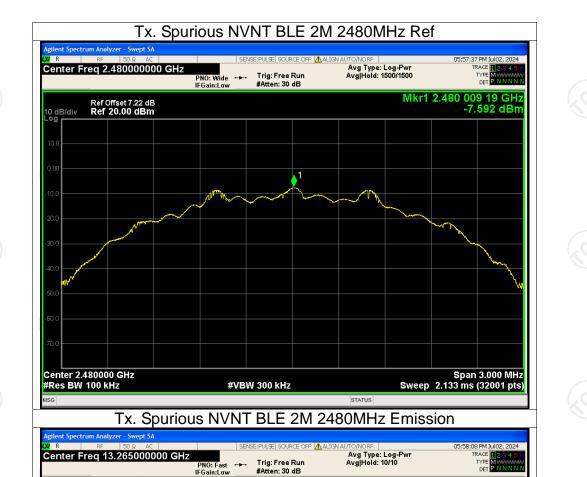
Tx. Spurious NVNT BLE 2M 2440MHz Emission

PNO: Fast ---- Trig: Free Run IFGain:Low #Atten: 30 dB Avg Type: Log-Pwr Avg|Hold: 10/10

Page 54 of 56

55:16 PM Jul 02, 2024 TRACE 1 2 3 4 5 TYPE MWWWWW DET P N N N N

Mkr1 2.440 4 GHz -12.001 dBm

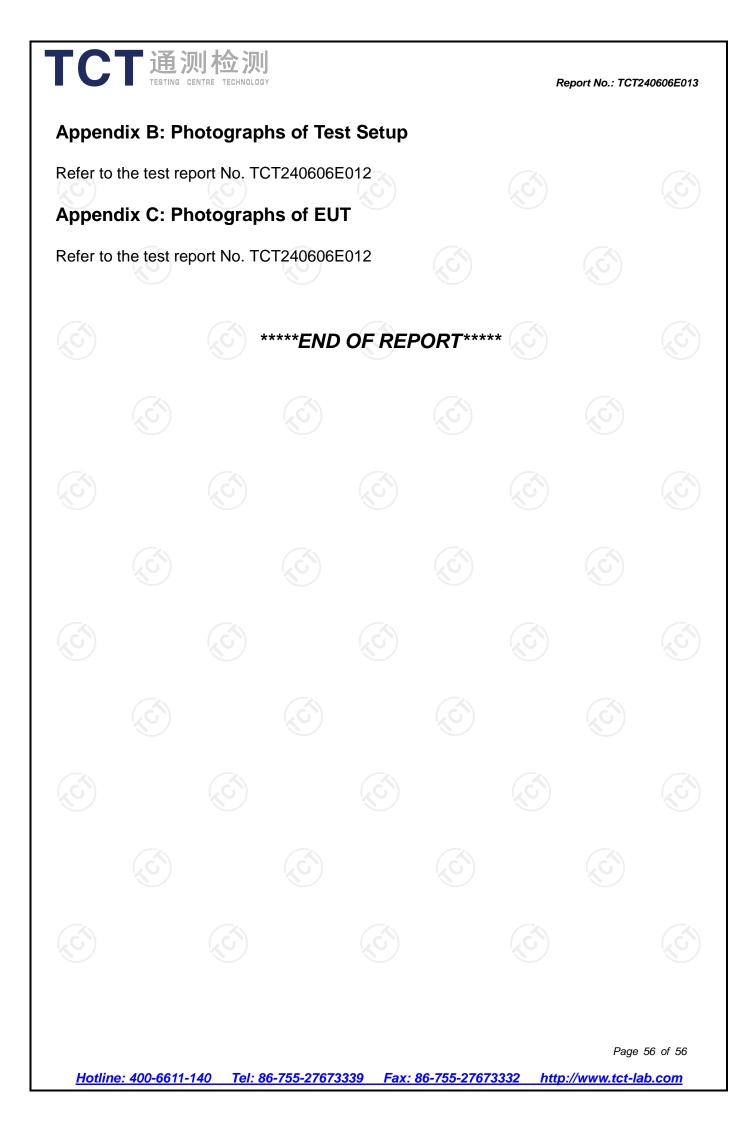

l R

10 dB/di Log

Center Freq 13.265000000 GHz

Ref Offset 7.14 dB Ref 20.00 dBm

Ref Offset 7.22 dB Ref 20.00 dBm


ា

 \Diamond^4

 $\Diamond^{\mathbf{5}}$

10 dB/di Log Report No.: TCT240606E013

Mkr1 2.480 1 GHz -10.816 dBm

