	と 河J CHNOLOGY				
	TEST REPOR	۲۲			
FCC ID:	2AQ5C-HGSW1				
Test Report No::	TCT240226E001				
Date of issue:	Mar. 04, 2024				
Testing laboratory::	SHENZHEN TONGCE TESTIN	IG LAB			
Testing location/ address:	2101 & 2201, Zhenchang Factor Fuhai Subdistrict, Bao'an Distri 518103, People's Republic of C	ct, Shenzhen, Guangdong,			
Applicant's name::	Hypercel Corporation				
Address:	28385 Constellation Rd. Valen	cia, California 91355, United States			
Manufacturer's name :	Shenzhen Hypercel Technology Co., Ltd				
Address:	Room 605, No.4 Building, Tongtai Times Center, No.6259 Bao'a Avenue, Bao'an District, Shenzhen City 518103, China				
Standard(s):	FCC CFR Title 47 Part 15 Subpart C Section 15.247 FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2013				
Product Name::	Smart Watch				
Trade Mark:	N/A				
Model/Type reference :	Activ8				
Rating(s):	Rechargeable Li-ion Battery DO	C 3.8V			
Date of receipt of test item:	Feb. 26, 2024				
Date (s) of performance of test:	Feb. 26, 2024 ~ Mar. 04, 2024				
Tested by (+signature) :	Onnado YE	Onnado VENGCE			
Check by (+signature) :	Beryl ZHAO				
Approved by (+signature):	Tomsin	omsit's st			
TONGCE TESTING LAB. TH	his document may be altered or ily, and shall be noted in the rev	he written approval of SHENZHEN revised by SHENZHEN TONGCE rision section of the document. The			

Table of Contents

TCT通测检测 TESTING CENTRE TECHNOLOGY

1. General Product Information	
1.1. EUT description	
1.2. Model(s) list	
1.3. Operation Frequency	
2. Test Result Summary	
3. General Information	
3.1. Test environment and mode	
3.2. Description of Support Units	5
4. Facilities and Accreditations	6
4.1. Facilities	6
4.2. Location	6
4.3. Measurement Uncertainty	
5. Test Results and Measurement Data	
5.1. Antenna requirement	7
5.2. Conducted Emission	
5.3. Conducted Output Power	
5.4. 20dB Occupy Bandwidth	
5.5. Carrier Frequencies Separation	
5.6. Hopping Channel Number	
5.7. Dwell Time	
5.8. Pseudorandom Frequency Hopping Sequence	
5.9. Conducted Band Edge Measurement	
5.10.Conducted Spurious Emission Measurement	
5.11.Radiated Spurious Emission Measurement	
Appendix A: Test Result of Conducted Test	
Appendix B: Photographs of Test Setup	
Appendix C: Photographs of EUT	

1. General Product Information

1.1. EUT description

Product Name:	Smart Watch	$(\mathbf{c}^{\mathbf{c}})$
Model/Type reference:	Activ8	
Sample Number:	TCT240226E001-0101	
Bluetooth Version:	V5.2 (This report is for BDR+EDR)	
Operation Frequency:	2402MHz~2480MHz	
Transfer Rate:	1/2/3 Mbits/s	
Number of Channel:	79	
Modulation Type:	GFSK, π/4-DQPSK, 8DPSK	
Modulation Technology:	FHSS	
Antenna Type:	Internal Antenna	
Antenna Gain:	0.17dBi	
Rating(s):	Rechargeable Li-ion Battery DC 3.8V	

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

None.

1.3. Operation Frequency

402MHz	20	0.1001.411				Frequency
	25	2422MHz	40	2442MHz	60	2462MHz
403MHz	21	2423MHz 41		2443MHz	61	2463MHz
412MHz	30	2432MHz	50	2452MHz	70	2472MHz
413MHz	31	2433MHz	51	2453MHz	71	2473MHz
	:					
420MHz	38	2440MHz	58	2460MHz	78	2480MHz
421MHz	39	2441MHz	59	2461MHz	(c)-	
24	 412MHz 413MHz 420MHz 421MHz	412MHz 30 413MHz 31 420MHz 38 421MHz 39	412MHz 30 2432MHz 413MHz 31 2433MHz 420MHz 38 2440MHz 421MHz 39 2441MHz	412MHz 30 2432MHz 50 413MHz 31 2433MHz 51 420MHz 38 2440MHz 58 421MHz 39 2441MHz 59	412MHz 30 2432MHz 50 2452MHz 413MHz 31 2433MHz 51 2453MHz 420MHz 38 2440MHz 58 2460MHz 421MHz 39 2441MHz 59 2461MHz	412MHz 30 2432MHz 50 2452MHz 70 413MHz 31 2433MHz 51 2453MHz 71 420MHz 38 2440MHz 58 2460MHz 78

Remark: Channel 0, 39 & 78 have been tested for GFSK, $\pi/4$ -DQPSK, 8DPSK modulation mode.

Report No.: TCT240226E001

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna Requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247 (b)(1)	PASS
20dB Occupied Bandwidth	§15.247 (a)(1)	PASS
Carrier Frequencies Separation	§15.247 (a)(1)	PASS
Hopping Channel Number	§15.247 (a)(1)	PASS
Dwell Time	§15.247 (a)(1)	PASS
Radiated Emission	§15.205/§15.209	PASS
Band Edge	§15.247(d)	PASS

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

3. General Information

3.1. Test environment and mode

Operating Environment:					
Condition	Conducted Emission	Radiated Emission			
Temperature:	23.3 °C	21.5 °C			
Humidity:	48 % RH	50 % RH			
Atmospheric Pressure:	1010 mbar	1010 mbar			
Test Software:					
Software Information: FCC_assist_1.0.4(1)					
Power Level:	Power Level: 6				
Test Mode:					
Engineer mode: Keep the EUT in continuous transmitting by select channel and modulations with Fully-charged battery					

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case(Z axis) are shown in Test Results of the following pages. DH1 DH3 DH5 all have been tested , only worse case DH1 is reported.

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	EP-TA200	R37M4PR7QD4 SE3	1	SAMSUNG

Note:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

- IC Registration No.: 10668A-1
- SHENZHEN TONGCE TESTING LAB
- CAB identifier: CN0031

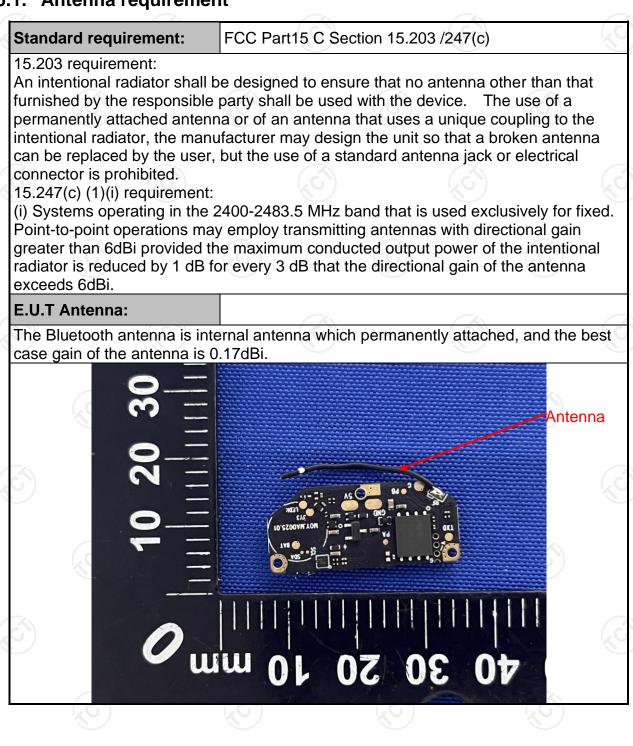
The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory, Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

4.3. Measurement Uncertainty


The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
7	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

5. Test Results and Measurement Data

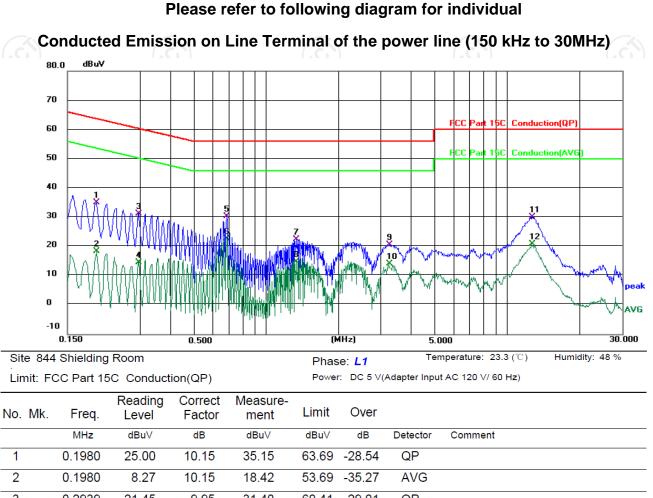
5.1. Antenna requirement

5.2. Conducted Emission

5.2.1. Test Specification

Test Requirement: Test Method: Frequency Range:	FCC Part15 C Section ANSI C63.10:2013	15.207					
Frequency Range:	ANSI C63.10:2013						
		ANSI C63.10:2013					
	150 kHz to 30 MHz						
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto						
	Frequency range	Limit (dBuV)				
	(MHz)	Quasi-peak	Average				
Limits:	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
		50					
	Reference	e Plane					
Test Setup:	40cm E.U.T AC power Test table/Insulation plane Remarkc E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Ne Test table height=0.8m	EMI Receiver	r]— AC power				
Test Mode:	Charging + Transmittin	0					
Test Procedure:	 The E.U.T is connected to an adapter through a lin impedance stabilization network (L.I.S.N.). Th provides a 50ohm/50uH coupling impedance for th measuring equipment. The peripheral devices are also connected to the mai power through a LISN that provides a 50ohm/50u coupling impedance with 50ohm termination. (Pleas refer to the block diagram of the test setup an photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 						
Test Result:	PASS						

5.2.2. Test Instruments


Conducted Emission Shielding Room Test Site (843)							
Equipment Manufacturer		Model Serial Number		Calibration Due			
EMI Test Receiver	R&S	ESCI3	100898	Jun. 29, 2024			
Line Impedance Stabilisation Newtork(LISN)	Stabilisation Schwarzbeck		8126453	Feb. 01, 2025			
Line-5	ТСТ	CE-05	/	Jul. 03, 2024			
EMI Test Software	Shurple Technology	EZ-EMC	1	1			

Page 9 of 94

5.2.3. Test data

TCT通测检测 TESTING CENTRE TECHNOLOGY

1	0.1980	25.00	10.15	35.15	63.69 -28.54	QP	
2	0.1980	8.27	10.15	18.42	53.69 -35.27	AVG	
3	0.2939	21.45	9.95	31.40	60.41 -29.01	QP	
4	0.2939	4.66	9.95	14.61	50.41 -35.80	AVG	
5	0.6860	21.11	9.27	30.38	56.00 -25.62	QP	
6 *	0.6860	13.45	9.27	22.72	46.00 -23.28	AVG	
7	1.3340	12.48	10.00	22.48	56.00 -33.52	QP	
8	1.3340	4.87	10.00	14.87	46.00 -31.13	AVG	
9	3.2580	10.64	10.04	20.68	56.00 -35.32	QP	
10	3.2580	4.09	10.04	14.13	46.00 -31.87	AVG	
11	12.7339	20.02	10.16	30.18	60.00 -29.82	QP	
12	12.7339	10.83	10.16	20.99	50.00 -29.01	AVG	
				-			

Note:

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$ Q.P. =Quasi-Peak AVG =average * is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Page 10 of 94

Report No.: TCT240226E001

Report No.: TCT240226E001 Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz) dBu¥ 80.0 70 Conduction(QP) 60 Conduction(AVG 50 40 30 11 20 9 10 12 10 NJM. 0 ٩VG -10 0.150 0.500 (MHz) 30.000 5.000 Site 844 Shielding Room Temperature: 23.3 (℃) Humidity: 48 % Phase: N Limit: FCC Part 15C Conduction(QP) Power: DC 5 V(Adapter Input AC 120 V/ 60 Hz) Reading Correct Measure-No. Mk. Freq. Limit Over Level Factor ment MHz dB dBu∨ dBu∨ dB dBuV Detector Comment 1 0.1580 26.90 10.10 37.00 65.57 -28.57 QP 2 4.20 0.1580 10.10 14.30 55.57 -41.27 AVG 63.69 -29.32 24.22 QP 3 0.1980 10.15 34.37 4 0.1980 5.90 10.15 16.05 53.69 -37.64 AVG QP 5 0.6660 19.10 9.30 28.40 56.00 -27.60 0.6660 9.82 9.30 19.12 46.00 -26.88 AVG 6 QP 7 1.5500 7.47 10.00 17.47 56.00 -38.53 8 1.5500 1.34 10.00 11.34 46.00 -34.66 AVG 9 3.4140 5.31 10.06 15.37 56.00 -40.63 QP 10 3.4140 -0.01 10.06 10.05 46.00 -35.95 AVG 12.6340 13.68 10.23 23.91 60.00 -36.09 QP 11 12 12.6340 5.55 10.23 15.78 50.00 -34.22 AVG

Note1:

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ - Limits $(dB\mu V)$ Q.P. =Quasi-Peak AVG =average * is meaning the worst frequency has been tested in the frequency re-

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note2:

Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (Highest channel and 8DPSK) was submitted only.

5.3. Conducted Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.
Test Setup:	Spectrum Analyzer
Test Mode:	Transmitting mode with modulation
Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.
Test Result:	PASS

5.3.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB	\bigcirc 1	

5.4. 20dB Occupy Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	KDB 558074 D01 v05r02		
Limit:	N/A C		
Test Setup:	Spectrum Analyzer EUT		
Test Mode:	Transmitting mode with modulation		
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 		
Test Result:	PASS		

5.4.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB	/	/

5.5. Carrier Frequencies Separation

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.

5.5.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB	1	1

Page 14 of 94

5.6. Hopping Channel Number

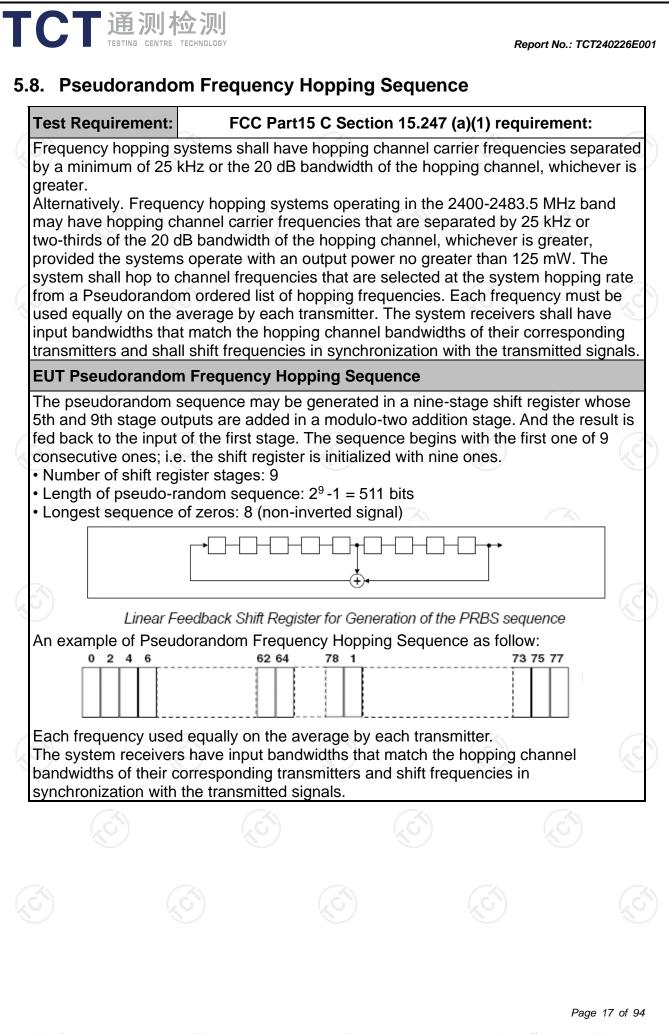
5.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. The number of hopping frequency used is defined as the number of total channel. Record the measurement data in report.
Test Result:	PASS
5.6.2 Tost Instruments	

5.6.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB	1	/
(\mathbf{G})	(.G)			

5.7.1. Test Specification


TCT 通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Test Result:	PASS

5.7.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB		

Page 16 of 94

5.9. Conducted Band Edge Measurement

5.9.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz (≥1% span=10MHz), VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report.
Test Result:	PASS

5.9.2. Test Instruments

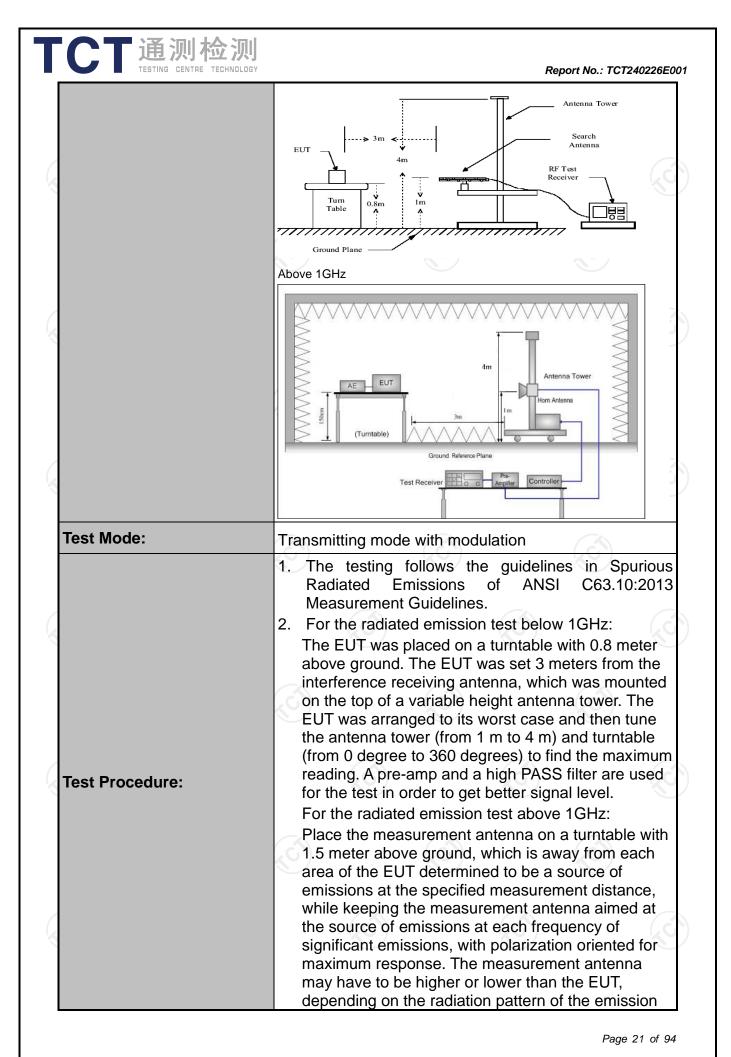
Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB	1	1
(\mathcal{S})			$\langle G \rangle$	(\mathcal{G})

5.10. Conducted Spurious Emission Measurement

5.10.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Test Result:	PASS

5.10.2. Test Instruments


Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB		

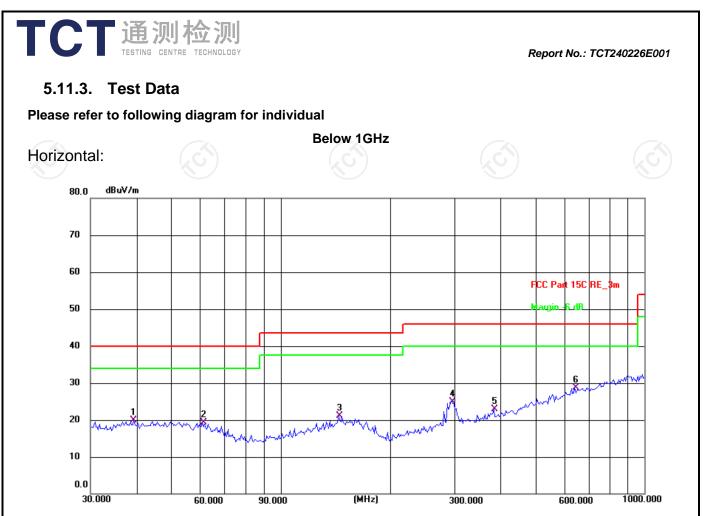
5.11.1. Test Specification

TCT通测检测 TESTING CENTRE TECHNOLOGY

	FCC Part15	C Section	15.209			
Test Method:	ANSI C63.10	0:2013				
Frequency Range:	9 kHz to 25 (GHz	Z			6
Measurement Distance:	3 m		9		R.)
Antenna Polarization:	Horizontal &	Vertical				
	Frequency	Detector	RBW	VBW Rema		Remark
	9kHz- 150kHz	Quasi-peak	200Hz	1kHz	Quas	si-peak Value
Receiver Setup:	150kHz- 30MHz	Quasi-peak	k 9kHz	30kHz	Quas	si-peak Value
•	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quas	si-peak Value
	Above 1GHz	Peak	1MHz	3MHz	P	eak Value
	Above IGI12	Peak	1MHz	10Hz	Ave	erage Value
			Field Stre	enath	Ме	asurement
	Frequen	ncy	(microvolts	-		nce (meters)
	0.009-0.4	490	2400/F(I			300
	0.490-1.7	705	24000/F(30
	1.705-3		30			30
	30-88	1	100			3
1	88-216		150		-	3
Limit:	216-96		200			3
	Above 9	60	500			3
	Frequency		d Strength volts/meter)	Measure Distan (meter	ce	Detector
	Above 1GH	z	500	3		Average
	For radiated emis	ssions below	5000 30MHz		Compu	
		16		Pre -/	Amplifier	LIG
Test setup:	0.Sm	Turn table	Im Im	_	teceiver	
Test setup:				_ [teceiver	

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

	receiving the m measurement a maximizes the antenna elevati restricted to a r above the grou 3. Set to the max EUT transmit of 4. Use the followi (1) Span shall emission b (2) Set RBW= for f>1GHz Sweep = = max ho (3) For avera	ned at the emission source aximum signal. The final antenna elevation shall b emissions. The measure ion for maximum emission ange of heights of from and or reference ground p ximum power setting an	e that which ement ons shall be 1 m to 4 m blane. d enable the ettings: oture the RBW=1MHz = peak; Trace uty cycle
	On time =N Where N length of Average I Level + 20	N1*L1+N2*L2++Nn-1*L 1 is number of type 1 pul type 1 pulses, etc. Emission Level = Peak E 0*log(Duty cycle)	ses, L1 is
Test results:	On time =N Where N length of Average R Level + 20 Corrected	N1*L1+N2*L2++Nn-1*L 1 is number of type 1 pul type 1 pulses, etc. Emission Level = Peak E	ses, L1 is mission r + Cable
Test results:	On time =N Where N length of Average R Level + 20 Corrected Loss + Rea	N1*L1+N2*L2++Nn-1*L 1 is number of type 1 pul type 1 pulses, etc. Emission Level = Peak E 0*log(Duty cycle) Reading: Antenna Facto	ses, L1 is mission r + Cable
Test results:	On time =N Where N length of Average R Level + 20 Corrected Loss + Rea	N1*L1+N2*L2++Nn-1*L 1 is number of type 1 pul type 1 pulses, etc. Emission Level = Peak E 0*log(Duty cycle) Reading: Antenna Facto	ses, L1 is mission r + Cable
Test results:	On time =N Where N length of Average R Level + 20 Corrected Loss + Rea	N1*L1+N2*L2++Nn-1*L 1 is number of type 1 pul type 1 pulses, etc. Emission Level = Peak E 0*log(Duty cycle) Reading: Antenna Facto	ses, L1 is mission r + Cable

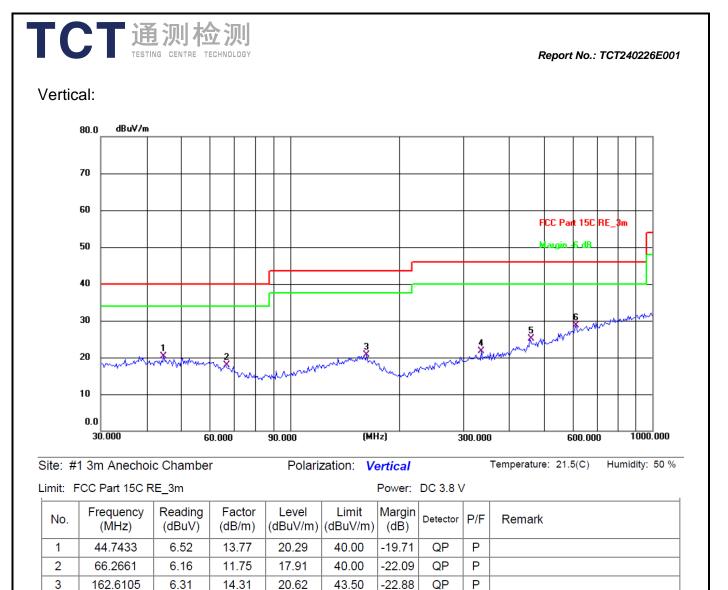


TCT通测检测 TESTING CENTRE TECHNOLOGY

	Radiated En	nission Test Site	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESIB7	100197	Jun. 29, 2024
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 29, 2024
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Feb. 01, 2025
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Feb. 01, 2025
Pre-amplifier	HP	8447D	2727A05017	Jun. 27, 2024
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jul. 02, 2024
Broadband Antenna	Schwarzbeck	VULB9163	340	Jul. 01, 2024
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jul. 01, 2024
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 01, 2025
Antenna Mast	Keleto	RE-AM	/	/
Coaxial cable	SKET	RC-18G-N-M	1	Feb. 01, 2025
Coaxial cable	SKET	RC_40G-K-M	/	Feb. 01, 2025
EMI Test Software	Shurple Technology	EZ-EMC		1

Page 23 of 94

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com


Site: #1 3m Anechoic Chamber

Polarization: Horizontal

Temperature: 21.5(C) Humidity: 50 %

Limit: F	CC Part 15C R	E_3m			Power: DC 3.8 V				
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	39.4371	5.81	14.17	19.98	40.00	-20.02	QP	Ρ	
2	60.9176	6.57	12.71	19.28	40.00	-20.72	QP	Ρ	
3	144.3348	7.09	14.08	21.17	43.50	-22.33	QP	Ρ	
4	295.1469	11.11	13.81	24.92	46.00	-21.08	QP	Ρ	
5	385.2805	7.00	15.94	22.94	46.00	-23.06	QP	Ρ	
6 *	642.8613	7.27	21.42	28.69	46.00	-17.31	QP	Ρ	

 Image: Sector of the sector

Note: 1. The low frequency,	which started from 9KHz~30MHz,	was pre-scanned and the	result which was 20dB lower

46.00

46.00

46.00

-24.34

-20.97

-17.21

QP

QP

QP

Ρ

Ρ

Ρ

than the limit line per 15.31(o) was not reported. 2. Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK,

Pi/4 DQPSK, 8DPSK) and the worst case Mode (Highest channel and 8DPSK) was submitted only. 3. Freq. = Emission frequency in MHz

- Measurement ($dB\mu V/m$) = Reading level ($dB\mu V$) + Corr. Factor (dB) Correction Factor= Antenna Factor + Cable loss – Pre-amplifier Limit ($dB\mu V/m$) = Limit stated in standard
- $Over (dB) = Measurement (dB\mu V/m) Limits (dB\mu V/m)$

14.86

17.82

20.86

337.2155

459.1144

616.3716

4

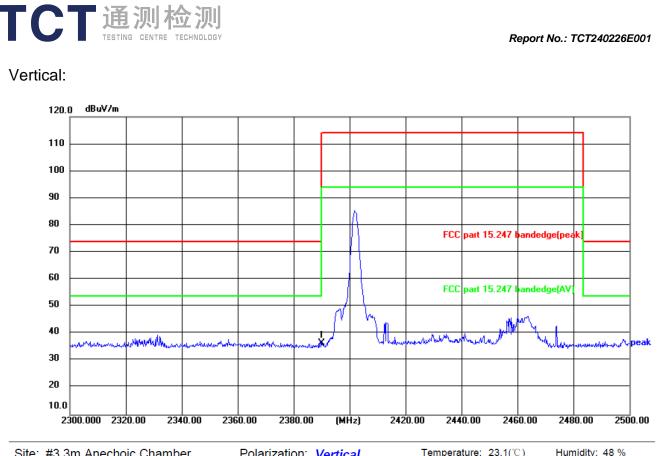
5

6

6.80

7.21

7.93


* is meaning the worst frequency has been tested in the test frequency range.

21.66

25.03

28.79

TCT通测检测 TESTING CENTRE TECHNOLOGY Report No.: TCT240226E001 Test Result of Radiated Spurious at Band edges Lowest channel 2402: Horizontal: dBu¥/m 120.0 110 100 90 80 FCC part 15.247 t andedge(pe 70 60 FCC part 15.247 bandedge(AV 50 40 MANTING AND del Anten. ł 30 20 10.0 2300.000 2320.00 2340.00 2360.00 2380.00 (MHz) 2420.00 2440.00 2460.00 2480.00 2500.00 Site: #3 3m Anechoic Chamber Temperature: 23.1(℃) Humidity: 48 % Polarization: Horizontal Limit: FCC part 15.247 bandedge(peak) Power:DC 3.8 V Frequency Reading Factor Level Limit Margin No. Detector P/F Remark (MHz) (dBuV) (dB/m)(dBuV/m) (dBuV/m) (dB) 1 * 2390.000 53.37 -17.10 36.27 74.00 -37.73 Ρ peak Page 26 of 94

Site: #3 3m Anechoic ChamberPolarization: VerticalTemperature: 23.1(°C)Humidity: 48 %Limit: FCC part 15.247 bandedge(peak)Power:DC 3.8 V

			• • •						
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	2390.000	53.61	-17.10	36.51	74.00	-37.49	peak	Ρ	

Report No.: TCT240226E001 Highest channel 2480: Horizontal: 120.0 dBuV/m 110 100 90 80 FCC part 15.247 bandedge(p Д 70 60 FCC part 15.247 bandedge(A) 50 40 No Charles Monument Anthony white Willingen 30 20 10.0 2300.000 2320.00 2340.00 2360.00 2380.00 (MHz) 2420.00 2440.00 2460.00 2480.00 2500.00 Temperature: 23.1(℃) Humidity: 48 % Site: #3 3m Anechoic Chamber Polarization: Horizontal Power:DC 3.8 V Limit: FCC part 15.247 bandedge(peak) Frequency Reading Factor Limit Margin Level Detector P/F Remark No. (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 2483.500 65.70 -16.88 74.00 1 * 48.82 -25.18 Ρ peak

Page 28 of 94

ertica	u.											
12	20.0 dBu¥/m											
1	10				- [-						 	\neg
10	DO											-
91	D											-
80								FCC	part 15.247	bandedge(pe	ak	
70												
61 51								FCC	part 15.247	bandedge(A)	1 be	
41										hľ	×	
31	Harrison	- worth Mary Antiden		be where the second	her Adamson and an	ulument	Narambre	ninethydd	when a here	×	Marin	wv
20												
10	0.0 2300.000 23	20.00 234	40.00 23	60.00 238	30.00 (M	Hz)	2420.00		0.00 24	60.00 24	80.00 2	
nit: F o.	3 3m Anech CC part 15. Frequency (MHz) 2483.500			Polarizatio	F	ower:Do	C 3.8 V		ture: 23.1([*] Remark		midity: 48	
nit: F o. *	CC part 15. Frequency (MHz)	247 bande Reading (dBuV) 65.56	dge(peak Factor (dB/m) -16.88 ducted in	Level (dBuV/m) 48.68	F Limit (dBuV/m) 74.00	Power:DO Margin (dB) -25.32	C 3.8 V Detector peak	P/F P	Remark			%
nit: F o. *	CC part 15. Frequency (MHz) 2483.500	247 bande Reading (dBuV) 65.56	dge(peak Factor (dB/m) -16.88 ducted in	Level (dBuV/m) 48.68	F Limit (dBuV/m) 74.00	Power:DO Margin (dB) -25.32	C 3.8 V Detector peak	P/F P	Remark			
nit: F o. *	CC part 15. Frequency (MHz) 2483.500	247 bande Reading (dBuV) 65.56	dge(peak Factor (dB/m) -16.88 ducted in	Level (dBuV/m) 48.68	F Limit (dBuV/m) 74.00	Power:DO Margin (dB) -25.32	C 3.8 V Detector peak	P/F P	Remark			%
nit: F o. *	CC part 15. Frequency (MHz) 2483.500	247 bande Reading (dBuV) 65.56	dge(peak Factor (dB/m) -16.88 ducted in	Level (dBuV/m) 48.68	F Limit (dBuV/m) 74.00	Power:DO Margin (dB) -25.32	C 3.8 V Detector peak	P/F P	Remark			%
nit: F o. *	CC part 15. Frequency (MHz) 2483.500	247 bande Reading (dBuV) 65.56	dge(peak Factor (dB/m) -16.88 ducted in	Level (dBuV/m) 48.68	F Limit (dBuV/m) 74.00	Power:DO Margin (dB) -25.32	C 3.8 V Detector peak	P/F P	Remark			%

Above 1GHz

Modulation	Type: 8D	PSK							
Low chann	el: 2402 N	1Hz							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4804	Н	43.39		0.66	44.05		74	54	-9.95
7206	Н	33.37		9.50	42.87		74	54	-11.13
	Н)			754	
	$\langle G \rangle$		(.G			G)		(G)	
4804	V	45.49		0.66	46.15	<u> </u>	74	54	-7.85
7206	V	35.95		9.50	45.45		74	54	-8.55
	V								

Middle cha	nnel: 2441	MHz		XC)				N N
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak		Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4882	Н	44.84		0.99	45.83	<u> </u>	74	54	-8.17
7323	KOĤ)	33.31	- KO	9.87	43.18	<u>0</u>	74	54	-10.82
	Ŧ								
			r			r			
4882	V	44.16		0.99	45.15		74	54	-8.85
7323	V	34.82		9.87	44.69		74	54	-9.31
27	V				//		K2		

High chann	nel: 2480 N	/IHz							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4960	Н	44.17		1.33	45.50		74	54	-8.50
7440	Н	33.79		10.22	44.01		74	54	-9.99
	Н	<u> </u>							
.G)		(G)		(.0			(.G)		Ĺ.Ġ
4960	V	43.48		1.33	44.81		74	54	-9.19
7440	V	32.51		10.22	42.73		74	54	-11.27
	V								

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB

below the limits or the field strength is too small to be measured.

6. Measurements were conducted in all three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (8DPSK) was submitted only.

7. All the restriction bands are compliance with the limit of 15.209.

Appendix A: Test Result of Conducted Test

(Maxi	mum Conduc	ted Output Pov	ver	
Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH1	2402	-0.23	30	Pass
NVNT	1-DH1	2441	0.77	30	Pass
NVNT	1-DH1	2480	0.90	30	Pass
NVNT	2-DH1	2402	0.60	21	Pass
NVNT	2-DH1	2441	1.52	21	Pass
NVNT	2-DH1	2480	1.57	21	Pass
NVNT	3-DH1	2402	0.93	21	Pass
NVNT	3-DH1	2441	1.79	21	Pass
NVNT	3-DH1	2480	1.82	21	Pass
		KY/			

Page 31 of 94

Test Graphs Power NVNT 1-DH1 2402MHz

TCT通测检测 TESTING CENTRE TECHNOLOGY

n Analyzei

Center Freq 2.441000000 GHz

Ref Offset 7.14 dB

UR.

Power NVNT 1-DH1 2441MHz

PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB

SENSE: PULSE SOURCE OFF ALIGN AU

Avg Type: Log-Pwr Avg|Hold: 800/800

0 dB/div og	IB/div Ref 20.00 dBm					0.767 dBm			
10.0									
			1						
0.00									
10.0									
10.0									
20.0									
30.0									
40.0									
+0.0									
50.0									
50.0									
70.0									
enter 2.	441000 GHz						Span	6.000 MHz	
Res BW	2.0 MHz	#VE	W 6.0 MHz			Swee	o 1.000 ms	6.000 MHz (1001 pts)	
SG					STATUS				

Page 32 of 94

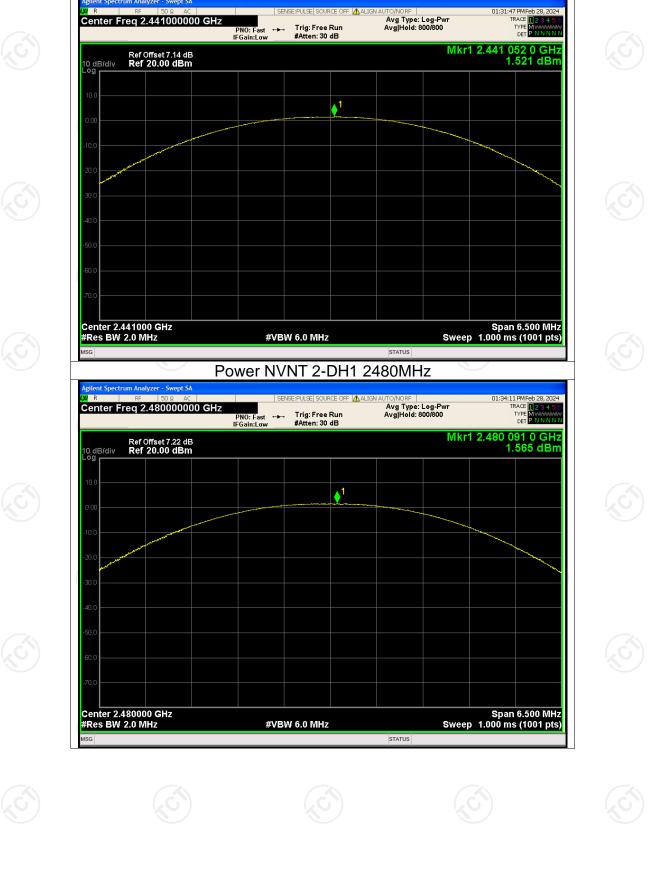
Report No.: TCT240226E001

01:10:57 PMFeb 28, 2024

Mkr1 2.440 838 GH:

TRACE 1234 TYPE MWWW DET PNNN

3m


Power NVNT 1-DH1 2480MHz gilent Spectrum Analyzer - Swept SA SENSE:PULSE SOURCE OFF 🗥 ALIGN AUTO/NORF | Avg Type: Log-Pwr Trig: Free Run Avg|Hold: 800/800 01:13:29 PMFeb 28, 20 TRACE 1 2 3 4 TYPE MWWW DET P N N N Center Freq 2.480000000 GHz PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.479 754 GHz 0.897 dBm Ref Offset 7.22 dB Ref 20.00 dBm **♦**¹ Center 2.480000 GHz #Res BW 2.0 MHz Span 6.000 MHz Sweep 1.000 ms (1001 pts) #VBW 6.0 MHz STATUS Power NVNT 2-DH1 2402MHz ım Analyzer - Swept SA

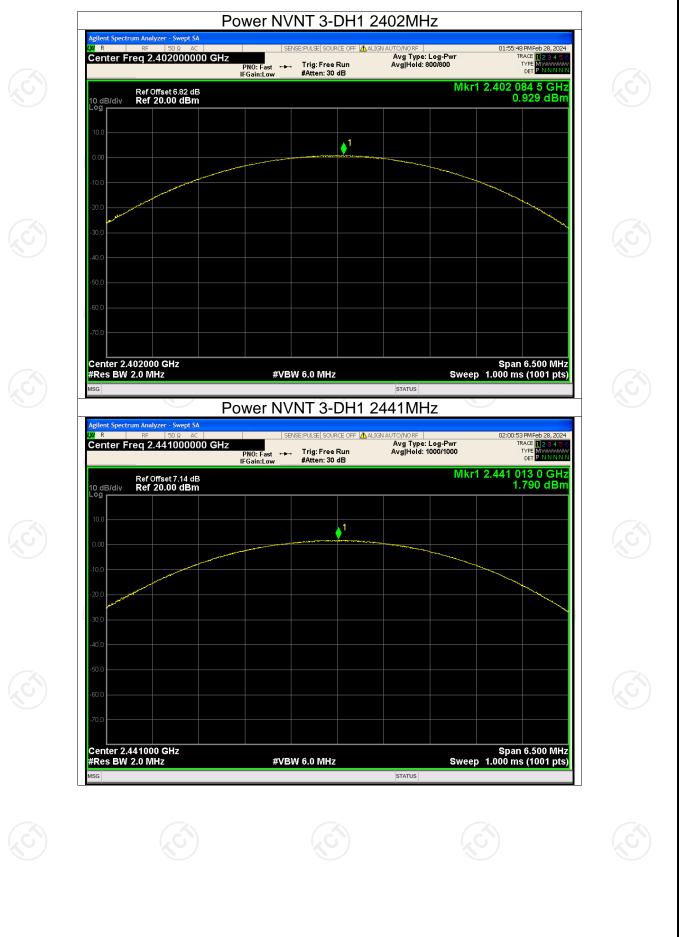
R

10 dB/div Log

Center Fre	enter Freq 2.402000000 GHz		PNO: Fast + Trig: Free Run IFGain:Low #Atten: 30 dB		Avg Type: Log-Pwr Avg Hold: 800/800		TRACE 12345 TYPE MWWWW DET PNNNN	
	Ref Offset 6.82 dB Ref 20.00 dBm					Mkr1	2.402 16 0.	7 70 GH 597 dBr
10.0								
0.00				♦ ¹				
10.0								
20.0								
30.0								
10.0								
50.0								
60.0								
70.0								
enter 2.40 Res BW 2	02000 GHz .0 MHz	#VE	3W 6.0 MHz			Sweep	Span 1.333 ms	6.500 MI (10001 pt
SG					STATUS			

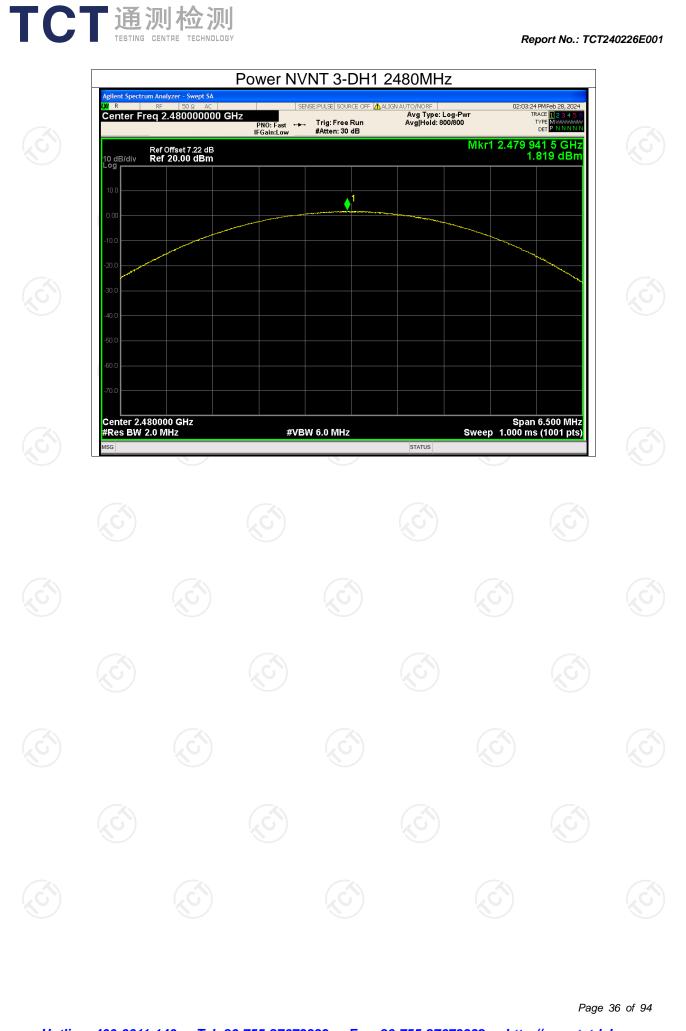
Report No.: TCT240226E001

Power NVNT 2-DH1 2441MHz


R

gilent Spectrum Analyzer - Swept SA

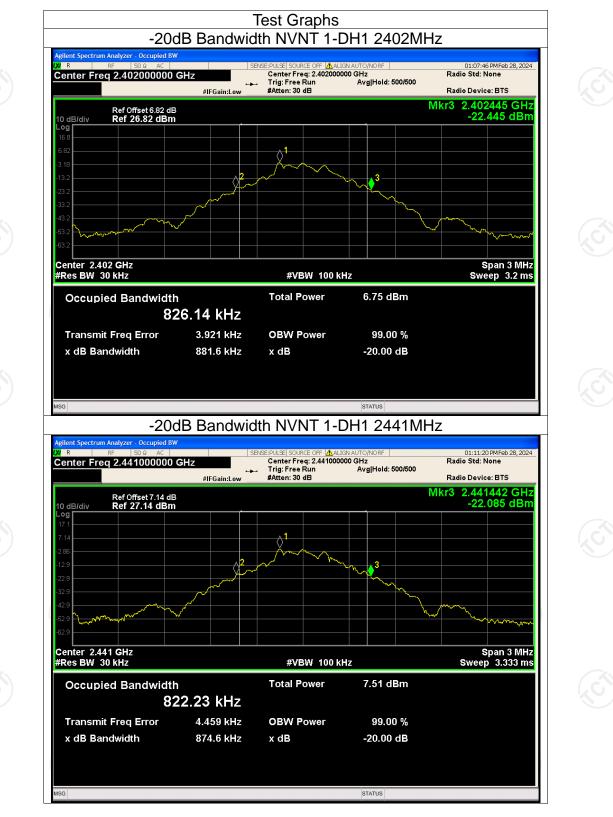
Report No.: TCT240226E001


Page 34 of 94

eb 28, 2024

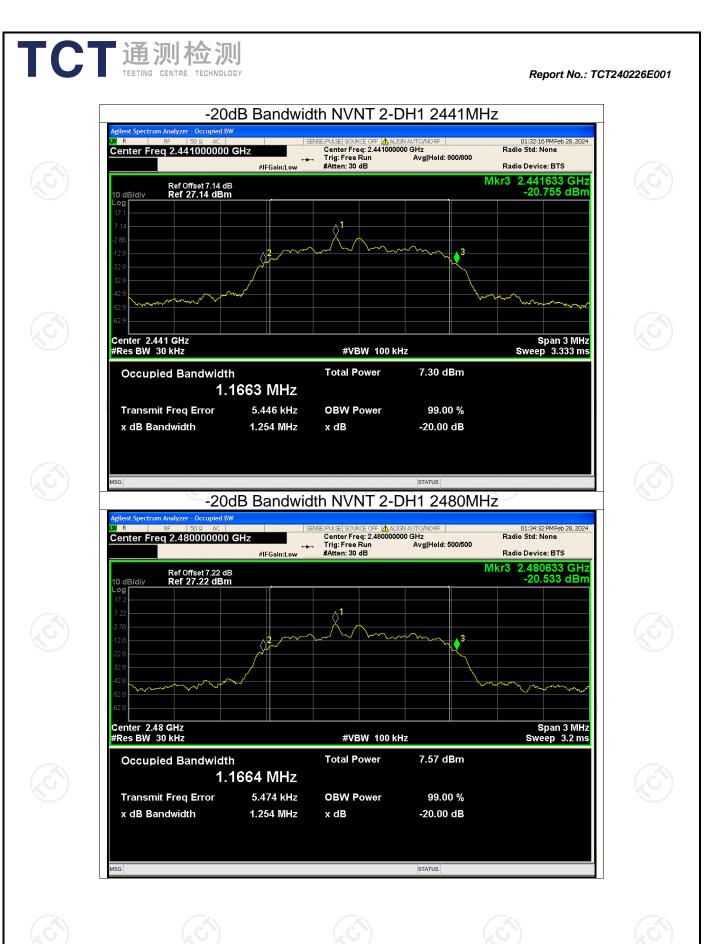
Report No.: TCT240226E001

Page 35 of 94


TCT通测检测 TESTING CENTRE TECHNOLOGY

-20dB Bandwidth

Condition	Mode	Frequency (MHz)	-20 dB Bandwidth (MHz)	Verdict
NVNT	1-DH1	2402	0.882	Pass
NVNT 🚫	1-DH1	2441	0.875	Pass
NVNT	1-DH1	2480	0.877	Pass
NVNT	2-DH1	2402	1.252	Pass
NVNT	2-DH1	2441	1.254	Pass
NVNT	2-DH1	2480	1.254	Pass
NVNT	3-DH1	2402	1.242	Pass
NVNT	3-DH1	2441	1.224	Pass
NVNT	3-DH1	2480	1.225	Pass
No.		No.		



Page 38 of 94

Condition	Mode	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict	
NVNT	1-DH1	2401.848	2402.846	0.998	0.882	Pass	
NVNT	1-DH1	2440.846	2441.848	1.002	0.882	Pass	
NVNT	1-DH1	2478.848	2479.848	1	0.882	Pass	
NVNT	2-DH1	2401.842	2402.844	1.002	0.836	Pass	
NVNT	2-DH1	2440.846	2441.846	1	0.836	Pass	
NVNT 🐇	2-DH1	2478.846	2479.848	1.002	0.836	Pass	
NVNT	3-DH1	2401.846	2402.846	1	0.828	Pass	
NVNT	3-DH1	2440.848	2441.852	1.004	0.828	Pass	
NVNT	3-DH1	2478.848	2479.854	1.006	0.828	Pass	
KO)		KO)			•		

Carrier Frequencies Separation

Page 43 of 94

Mkr1 2.401 848 GHz -0.294 dBm Ref Offset 6.82 dB Ref 20.00 dBm 10 dB/div ∟og **r** \Diamond^2 **♦**¹ Center 2.402500 GHz #Res BW 100 kHz Span 2.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz FUNCTION FUNCTION WIDTH FUNCTION VALUE -0.294 dBm -0.267 dBm N 1 f N 1 f 2.401 848 GHz 2.402 846 GHz 5 8 9 10 11 STATUS CFS NVNT 1-DH1 2441MHz 01:13:05 PMFeb 28, 2024 U R SENSE: PULSE SOURCE OFF 🚹 ALIGN AU TRACE 1 2 3 4 TYPE MWWW DET P N N N Center Freq 2.441500000 GHz Avg Type: Log-Pwr Avg|Hold>100/100 PNO: Wide Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.440 846 GHz 0.634 dBm Ref Offset 7.14 dB Ref 20.00 dBm 10 dB/di Log r $\sqrt{2}$ ø Span 2.000 MHz Sweep 1.000 ms (1001 pts) Center 2.441500 GHz #Res BW 100 kHz #VBW 300 kHz FUNCTION WIDTH 0.634 dBm 0.713 dBm 2.440 846 GHz 2.441 848 GHz N 1 f 1 f 8 10 STATUS

Test Graphs CFS NVNT 1-DH1 2402MHz

SENSE:PULSE SOURCE OFF 🛕

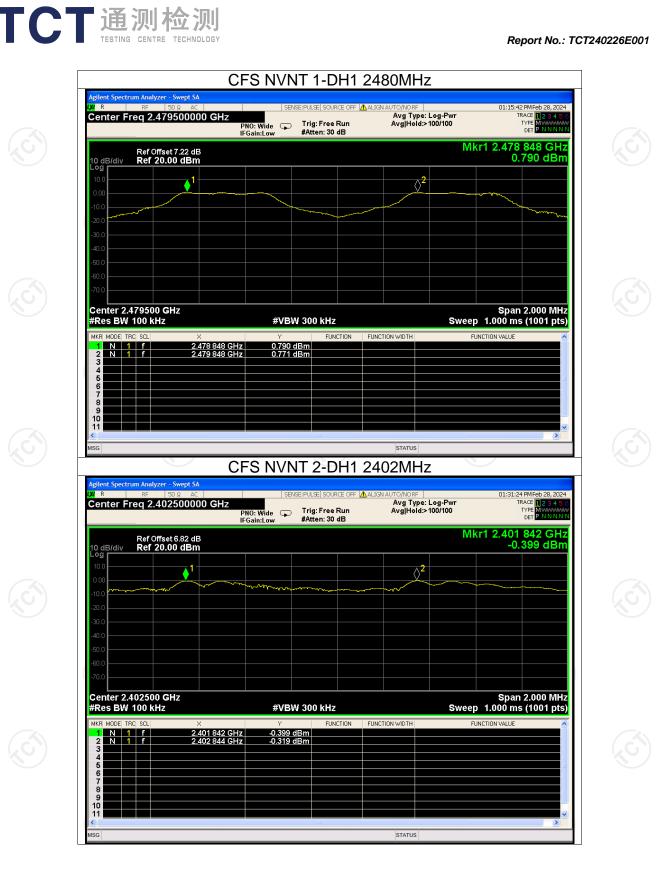
PNO: Wide 🖵 Trig: Free Run IFGain:Low #Atten: 30 dB Avg Type: Log-Pwr Avg|Hold:>100/100

TCT通测检测 TESTING CENTRE TECHNOLOGY

R

gilent Spectrum Analyzer - Swept SA

Center Freq 2.402500000 GHz


Report No.: TCT240226E001

Page 44 of 94

01:10:34 PM Feb 28, 2024

123456 MWW/WWW

TRACE 1 TYPE M DET P

SENSE:PULSE SOURCE OFF ALIGN AUTO/NORF Avg Type: Log-Pwr Trig: Free Run Avg|Hold:> 100/100 01:44:27 PMFe TRACE Center Freq 2.441500000 GHz PNO: Wide Free Run IFGain:Low #Atten: 30 dB TYPE DET Mkr1 2.440 846 GHz 0.537 dBm Ref Offset 7.14 dB Ref 20.00 dBm 10 dB/div Log $\langle \rangle^2$ Center 2.441500 GHz #Res BW 100 kHz Span 2.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz MKR MODE FUNCTION FUNCTION WIDTH FUNCTION VALUE N 1 f N 1 f 2.440 846 GHz 2.441 846 GHz 0.537 dBm 0.551 dBm 3 5 6 7 9 10 11 STATUS CFS NVNT 2-DH1 2480MHz Swept S/ 38 PM Feb 28, 20 TRACE 1 2 3 4 TYPE MWWWW DET P N N N U F SENSE: PULSE SOURCE OFF 🛕 ALIGN A Avg Type: Log-Pwr Avg|Hold>100/100 Center Freq 2.479500000 GHz PNO: Wide Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.478 846 GHz 0.675 dBm Ref Offset 7.22 dB Ref 20.00 dBm 10 dB/di Log **⊘**² Span 2.000 MHz Sweep 1.000 ms (1001 pts)

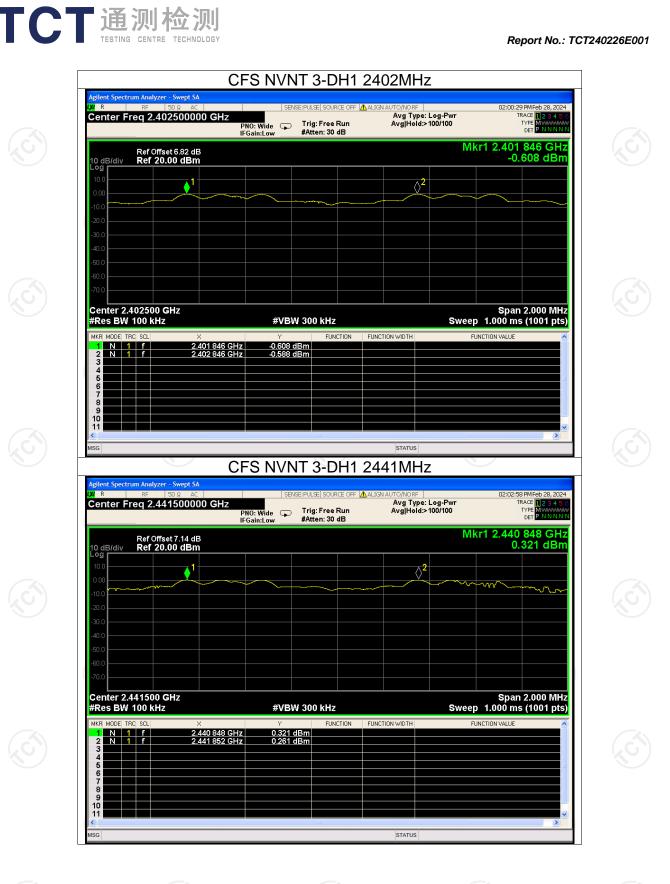
CFS NVNT 2-DH1 2441MHz

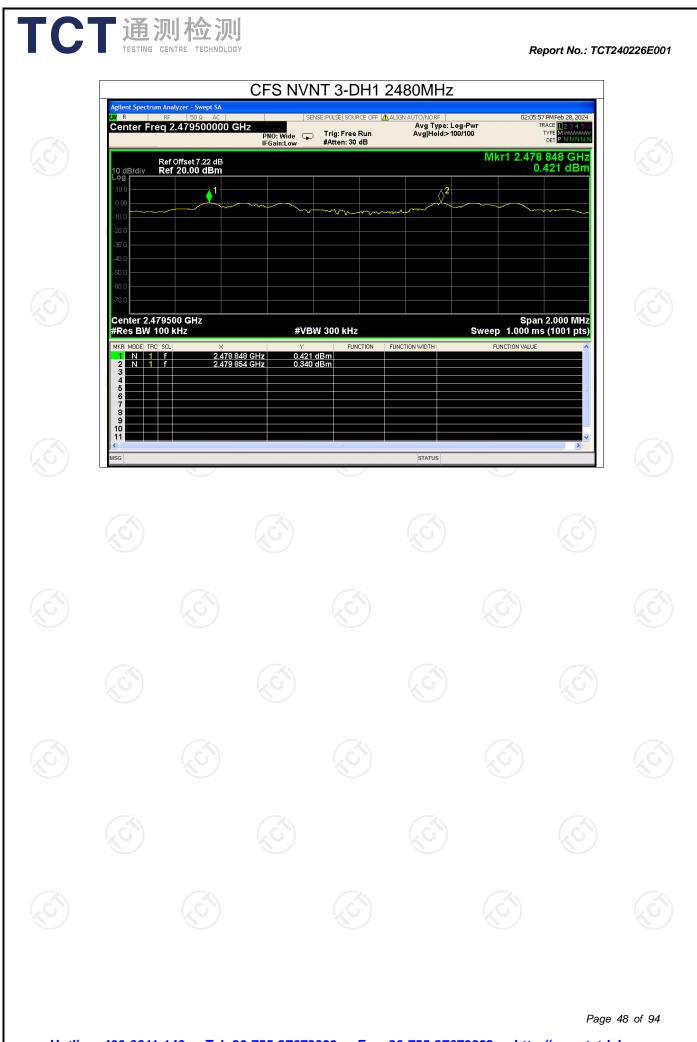
Center 2.479500 GHz #Res BW 100 kHz #VBW 300 kHz FUNCTION WIDTH FUNCTION FUNCTION VALUE MKPI MODE 2.478 846 GHz 2.479 848 GHz 0.675 dBm 0.674 dBm 1 f 1 f

Page 46 of 94

STATUS

Ň





gilent Spectrum Analyzer - Swept SA

Hotline: 400-6611-140	Tel: 86-755-27673339	Fax: 86-755-27673332	http://www.tct-lab.com

Condition	Mode	Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH1	2402	No-Hopping	-50	-20	Pass
NVNT	1-DH1	2480	No-Hopping	-51.23	-20	Pass
NVNT	2-DH1	2402	No-Hopping	-50.72	-20	Pass
NVNT	2-DH1	2480	No-Hopping	-51.38	-20	Pass
NVNT	3-DH1	2402	No-Hopping	-50.66	-20	Pass
NVNT 🐇	3-DH1	2480	No-Hopping	-51.03	-20	Pass

Band Edge

Report No.: TCT240226E001

j A

C

Page 49 of 94

Test Graphs

ø

SENSE: PULSE SOURCE OFF

PNO: Wide +++ Trig: Free Run IFGain:Low #Atten: 30 dB

Band Edge NVNT 1-DH1 2402MHz

Report No.. TCT2

No-Hopping Ref

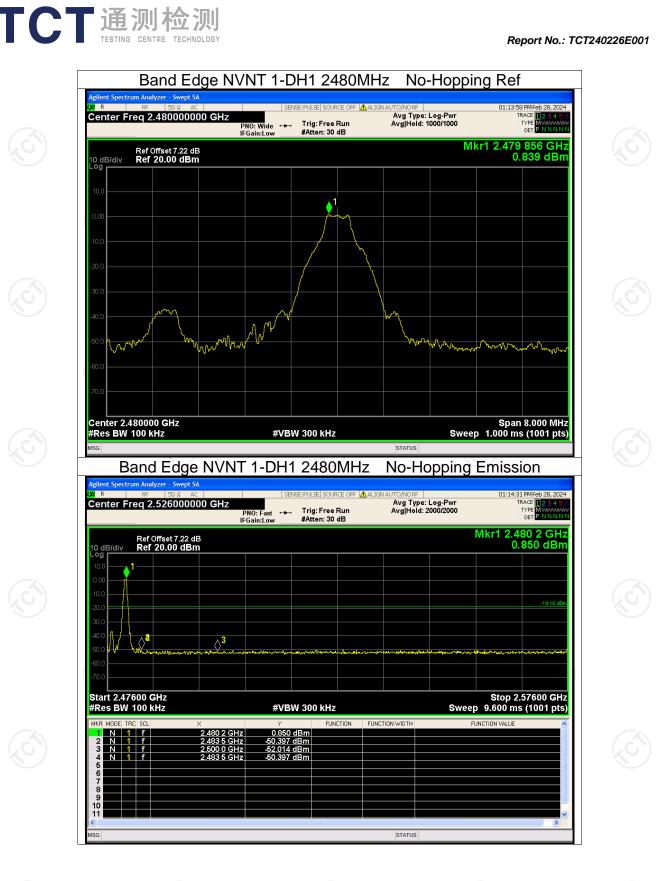
Avg Type: Log-Pwr Avg|Hold: 2000/2000

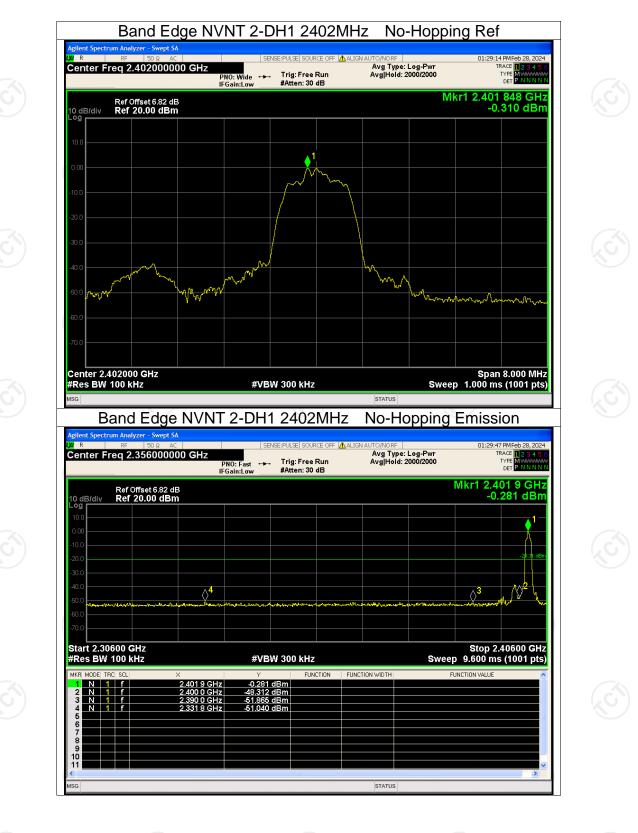
gilent Spectrum Analyzer - Swept SA

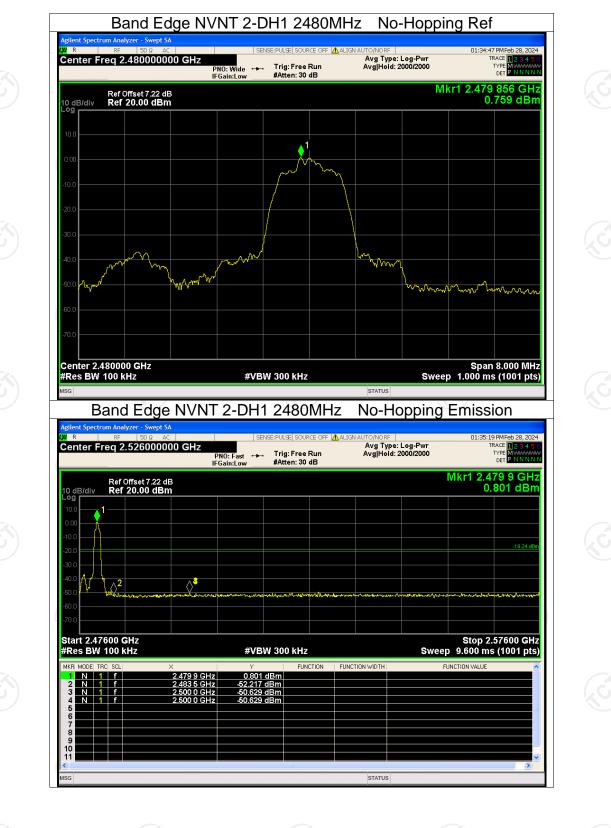
Center Freq 2.402000000 GHz

Ref Offset 6.82 dB Ref 20.00 dBm

R


10 dB/div Log Report No.: TCT240226E001


Feb 28, 2024


Page 50 of 94

TRACE TYPE DET

Mkr1 2.401 848 GHz -0.289 dBm

Report No.: TCT240226E001

Page 53 of 94

~~~~ March Mor Center 2.402000 GHz #Res BW 100 kHz Span 8.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz STATUS Band Edge NVNT 3-DH1 2402MHz **No-Hopping Emission** l R SENSE: PULSE SOURCE OFF ALIG Center Freq 2.356000000 GHz Avg Type: Log-Pwr Avg|Hold: 2000/2000 TRACE PNO: Fast 🔸 Trig: Free Run IFGain:Low #Atten: 30 dB TYPE DET Mkr1 2.401 9 GHz -0.505 dBm Ref Offset 6.82 dB Ref 20.00 dBm 10 dB/di Log  $\Diamond^4$  $\wedge$  $\Diamond^3$ Start 2.30600 GHz #Res BW 100 kHz Stop 2.40600 GHz Sweep 9.600 ms (1001 pts) #VBW 300 kHz FUNCTION WIDTH FUNCTION EUNCTION VALUE -0.505 dBm -47.537 dBm -53.087 dBm -51.174 dBm N 1 f N 1 f N 1 f 400 0 GHz 390 0 GHz 2 359 0 GH 10 11



No-Hopping Ref

01:56:31 PMFe TRACE

Mkr1 2.401 856 GHz -0.514 dBm

TYPE DET

SENSE:PULSE SOURCE OFF ALIGN AUTO/NORF Avg Type: Log-Pwr Trig: Free Run Avg|Hold: 2000/2000

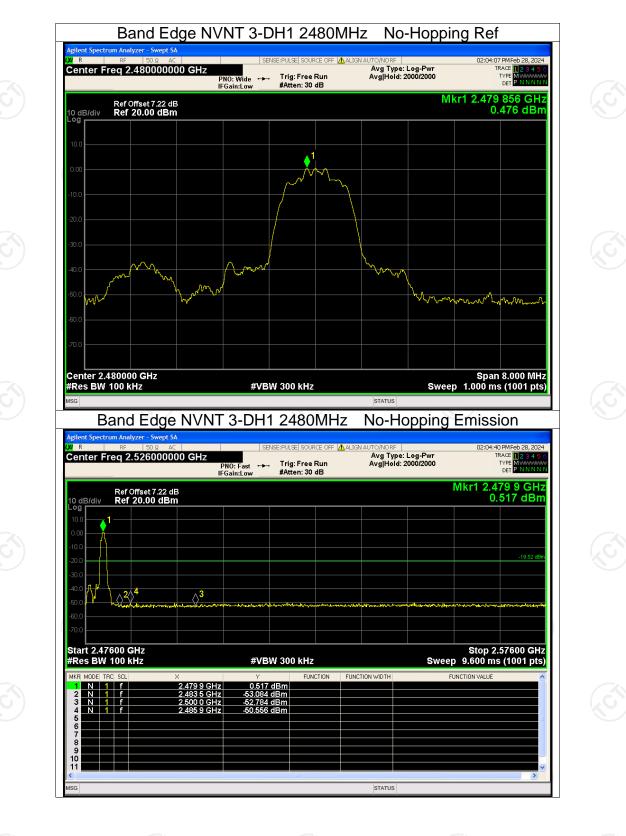


ISG

Center Freq 2.402000000 GHz

Ref Offset 6.82 dB Ref 20.00 dBm

Band Edge NVNT 3-DH1 2402MHz


PNO: Wide 🛶 Trig: Free Run IFGain:Low #Atten: 30 dB





STATUS

Page 54 of 94



| Band Edge(Hopping) |       |                    |                 |                    |                |         |  |
|--------------------|-------|--------------------|-----------------|--------------------|----------------|---------|--|
| Condition          | Mode  | Frequency<br>(MHz) | Hopping<br>Mode | Max Value<br>(dBc) | Limit<br>(dBc) | Verdict |  |
| NVNT               | 1-DH1 | 2402               | Hopping         | -50.21             | -20            | Pass    |  |
| NVNT               | 1-DH1 | 2480               | Hopping         | -50.43             | -20            | Pass    |  |
| NVNT               | 2-DH1 | 2402               | Hopping         | -50.18             | -20            | Pass    |  |
| NVNT               | 2-DH1 | 2480               | Hopping         | -49.29             | -20            | Pass    |  |
| NVNT               | 3-DH1 | 2402               | Hopping         | -49.94             | -20            | Pass    |  |
| NVNT 🐇             | 3-DH1 | 2480               | Hopping         | -50.60             | -20            | Pass    |  |

### Band Edge(Hopping)



TCT 通测检测 TESTING CENTRE TECHNOLOGY

Page 56 of 94

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

# TRACE TYPE DET Avg Type: Log-Pwr Avg|Hold: 5000/5000 PNO: Wide ---- Trig: Free Run IFGain:Low #Atten: 30 dB 123456 MWWWWW PNNNN Mkr1 2.405 856 GHz -0.226 dBm Ref Offset 6.82 dB Ref 20.00 dBm 10 dB/div Log SW Center 2.402000 GHz #Res BW 100 kHz Span 8.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz STATUS Band Edge(Hopping) NVNT 1-DH1 2402MHz Hopping Emission R SENSE: PULSE SOURCE OFF 🚹 ALIGN AU 01:17:30 PMFeb 28, 2024 TRACE TYPE DET Center Freq 2.356000000 GHz Avg Type: Log-Pwr Avg|Hold: 4000/4000 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.403 9 GHz -0.290 dBm Ref Offset 6.82 dB Ref 20.00 dBm 10 dB/div Log r 3 $\Diamond^3$ . 10 Stop 2.40600 GHz Sweep 9.600 ms (1001 pts) Start 2.30600 GHz #Res BW 100 kHz #VBW 300 kHz FUNCTION WIDTH тіом -40.988 dBn -52.644 dBn -50.442 dBn .400 NN 10 STATUS

Report No.: TCT240226E001

Page 57 of 94

Hopping Ref

6 PM Feb 28, 2024

**Test Graphs** 

SENSE: PULSE SOURCE OFF 🧥

Band Edge(Hopping) NVNT 1-DH1 2402MHz

TCT通测检测 TESTING CENTRE TECHNOLOGY

R

gilent Spectrum Analyzer - Swept SA

Center Freq 2.402000000 GHz



Page 58 of 94




Page 59 of 94





Page 61 of 94



## Conducted RF Spurious Emission

| Condition | Mode  | Frequency (MHz) | Max Value (dBc) | Limit (dBc) | Verdict |  |  |  |
|-----------|-------|-----------------|-----------------|-------------|---------|--|--|--|
| NVNT      | 1-DH1 | 2402            | -39.10          | -20         | Pass    |  |  |  |
| NVNT      | 1-DH1 | 2441            | -40.59          | -20         | Pass    |  |  |  |
| NVNT      | 1-DH1 | 2480            | -40.84          | -20         | Pass    |  |  |  |
| NVNT      | 2-DH1 | 2402            | -39.67          | -20         | Pass    |  |  |  |
| NVNT      | 2-DH1 | 2441            | -49.75          | -20         | Pass    |  |  |  |
| NVNT      | 2-DH1 | 2480            | -40.16          | -20         | Pass    |  |  |  |
| NVNT 🚫    | 3-DH1 | 2402            | -39.19          | -20         | Pass    |  |  |  |
| NVNT      | 3-DH1 | 2441            | -39             | -20         | Pass    |  |  |  |
| NVNT      | 3-DH1 | 2480            | -40.33          | -20         | Pass    |  |  |  |
|           |       |                 |                 |             |         |  |  |  |



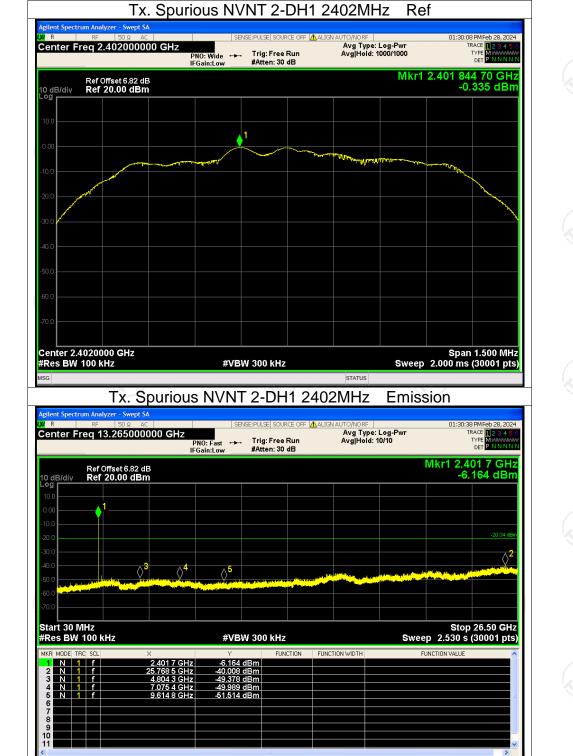






Page 63 of 94




**Test Graphs** 

TCT通测检测 TESTING CENTRE TECHNOLOGY

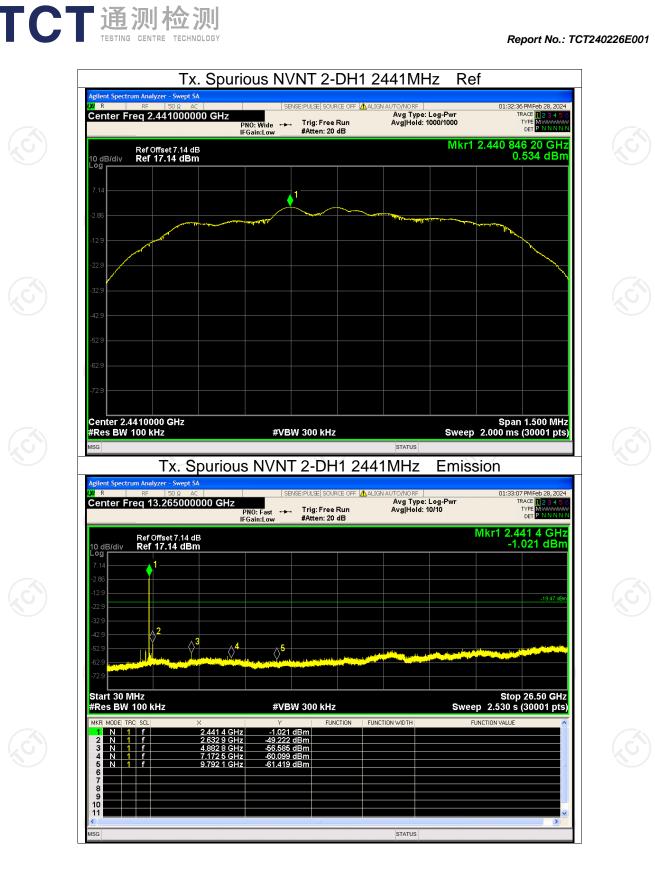




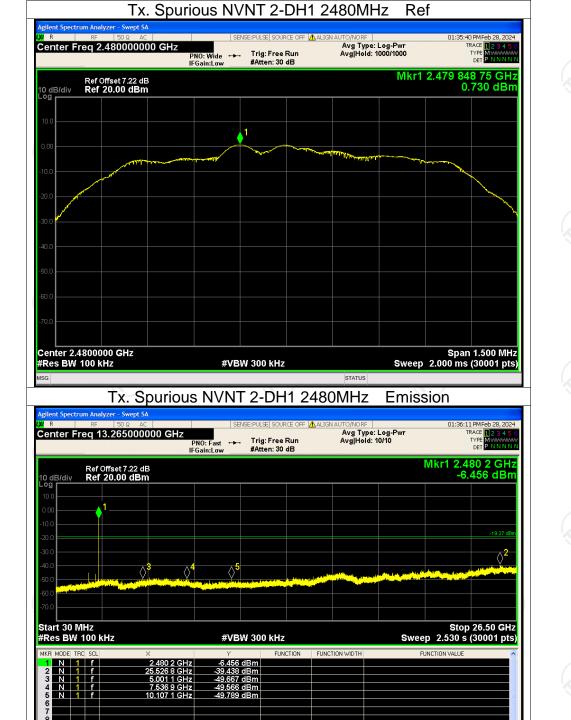







ISG

STATUS









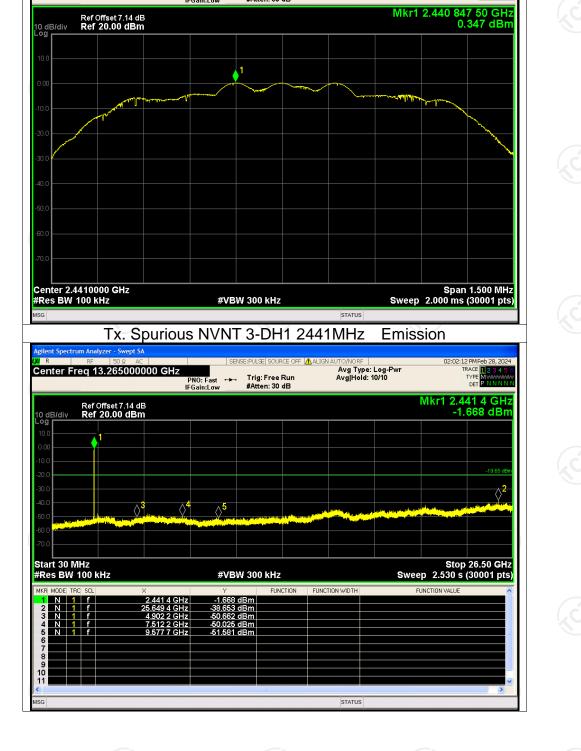

STATUS





10 11 <




SENSE:PULSE SOURCE OFF ▲ ALIGN AUTO/NORF AVG Type: Log-Pwr → Trig: Free Run Avg|Hold: 1000/1000 R 25 PM Feb 28, 20 TRACE 1234 TYPE MWWW DET PNNN 01:53 Center Freq 2.402000000 GHz PNO: Wide 🛶 Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.401 847 10 GHz -0.569 dBm Ref Offset 6.82 dB Ref 20.00 dBm 10 dB/div vv Center 2.4020000 GHz #Res BW 100 kHz Span 1.500 MHz Sweep 2.000 ms (30001 pts) #VBW 300 kHz STATUS Tx. Spurious NVNT 3-DH1 2402MHz Emission l R SENSE: PULSE SOURCE OFF ALIGN A 56 PMFe TRACE TYPE DET eb 28, 20 Center Freq 13.265000000 GHz Avg Type: Log-Pwr Avg|Hold: 10/10 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.401 7 GHz -3.399 dBm Ref Offset 6.82 dB Ref 20.00 dBm 10 dB/di Log {\}<sup>2</sup>  $\Diamond^4$ វា ⊘5 Start 30 MHz #Res BW 100 kHz Stop 26.50 GHz Sweep 2.530 s (30001 pts) #VBW 300 kHz FUNCTION WIDTH FUNCTION FUNCTION VALUE MKD MODE N 1 f N 1 f N 1 f N 1 f N 1 f 2.401 7 24.976 2 4.999 3 -39 -39.769 dBm -49.729 dBm -49.863 dBm -51.645 dBm GHz 4.999 3 GHz 7.011 9 GHz 9.712 7 GHz 10 11 ISG STATUS

Tx. Spurious NVNT 3-DH1 2402MHz

gilent Sp

Report No.: TCT240226E001

Ref



Tx. Spurious NVNT 3-DH1 2441MHz

PNO: Wide 🛶 Trig: Free Run IFGain:Low #Atten: 30 dB

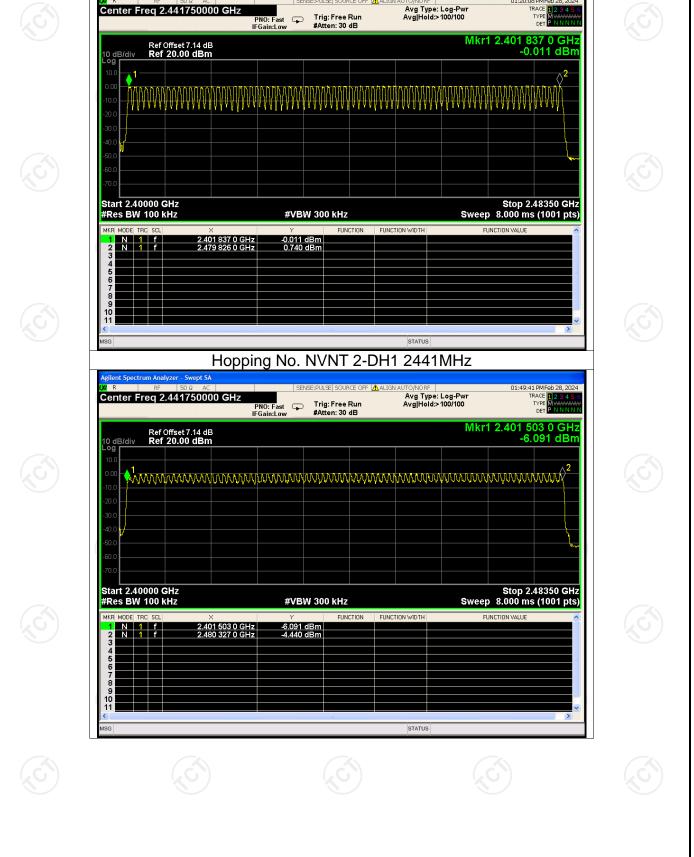
SENSE:PULSE SOURCE OFF ALIGN AUTO/NORF

gilent Sp

Center Freq 2.441000000 GHz

R

Ref


02:01:41 PM Feb 28, 20 TRACE 1 2 3 4 TYPE MWWW DET P N N N







|      | Verd<br>Pas | Limit<br>15 | Channel<br>umber | <b>lopping N</b><br>79 |   | Mode              | Condition<br>NVNT | ( |
|------|-------------|-------------|------------------|------------------------|---|-------------------|-------------------|---|
| is 🚽 | Pas         | 15          |                  | 79                     | 1 | 2-DH              | NVNT              |   |
| S    | Pas         | 15          |                  | 79                     | 1 | 3-DH <sup>2</sup> | NVNT              |   |
|      |             |             |                  |                        |   |                   |                   |   |
|      |             |             |                  |                        |   |                   |                   |   |
|      |             |             |                  |                        |   |                   |                   |   |
|      |             |             |                  |                        |   |                   |                   |   |
|      |             |             |                  |                        |   |                   |                   |   |
|      |             |             |                  |                        |   |                   |                   |   |
|      |             |             |                  |                        |   |                   |                   |   |
|      |             |             |                  |                        |   |                   |                   |   |
|      |             |             |                  |                        |   |                   |                   |   |
|      |             |             |                  |                        |   |                   |                   |   |



**Test Graphs** Hopping No. NVNT 1-DH1 2441MHz

LSE SOURCE OF

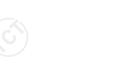
ilent Spectrum Analyzer - Swept SA

Report No.: TCT240226E001

Feb 28, 2024

Page 74 of 94

|                                                                          | Ηz                      | H1 2441MI                                          | NVNT 3-D                                                  | pping No.    | Ho<br>Analyzer - Swept SA         | Agilant Spectrum                                          |  |
|--------------------------------------------------------------------------|-------------------------|----------------------------------------------------|-----------------------------------------------------------|--------------|-----------------------------------|-----------------------------------------------------------|--|
| 52 PMFeb 28, 2024<br>TRACE 1 2 3 4 5 6<br>TYPE MWWWWW<br>DET P N N N N N | Pwr<br>00               | LIGN AUTO/NORF<br>Avg Type: Log-<br>Avg Hold>100/1 | NSE:PULSE SOURCE OFF 🛕<br>Trig: Free Run<br>#Atten: 30 dB |              | RF 50Ω AC<br>2.441750000 G        | LXI R                                                     |  |
| .379 dBm                                                                 |                         |                                                    |                                                           |              | ef Offset 7.14 dB<br>ef 20.00 dBm |                                                           |  |
|                                                                          | սունումը ու հետուն      |                                                    | NNY YYYYYYYYYYYY                                          | ቢሱባንሳለንሳሳለሳላ | wwwwwwww                          | -10.0<br>-20.0<br>-30.0                                   |  |
|                                                                          |                         |                                                    |                                                           |              |                                   | -40.0                                                     |  |
| 2.48350 GHz<br>is (1001 pts)                                             | Stop 2<br>Sweep 8.000 m |                                                    | W 300 kHz                                                 | #VB          | 0 kHz                             | Start 2.4000<br>#Res BW 10                                |  |
|                                                                          | TORCHOR WALSE           |                                                    | dBm                                                       | 0 GHz -4.379 | f 2.401 670                       | 1 N 1<br>2 N 1<br>3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 |  |
|                                                                          |                         |                                                    |                                                           |              |                                   | 6<br>7<br>8<br>9<br>10<br>11                              |  |
| <u>&gt;</u>                                                              |                         | STATUS                                             |                                                           |              |                                   | MSG                                                       |  |
|                                                                          |                         |                                                    |                                                           |              |                                   |                                                           |  |
|                                                                          |                         |                                                    |                                                           |              |                                   |                                                           |  |
|                                                                          |                         |                                                    |                                                           |              |                                   |                                                           |  |
|                                                                          |                         |                                                    |                                                           |              |                                   |                                                           |  |
|                                                                          |                         |                                                    |                                                           |              |                                   |                                                           |  |
|                                                                          |                         |                                                    |                                                           |              |                                   |                                                           |  |
|                                                                          |                         |                                                    |                                                           |              |                                   |                                                           |  |
|                                                                          |                         |                                                    |                                                           |              |                                   |                                                           |  |
|                                                                          |                         |                                                    |                                                           |              |                                   |                                                           |  |
|                                                                          |                         |                                                    |                                                           |              |                                   |                                                           |  |


Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

| ГСТ | 通测检测                      |
|-----|---------------------------|
|     | TESTING CENTRE TECHNOLOGY |

Report No.: TCT240226E001

|           |       |                    | Dwe                   | II Time                        |                |                        |               |         |
|-----------|-------|--------------------|-----------------------|--------------------------------|----------------|------------------------|---------------|---------|
| Condition | Mode  | Frequency<br>(MHz) | Pulse<br>Time<br>(ms) | Total<br>Dwell<br>Time<br>(ms) | Burst<br>Count | Period<br>Time<br>(ms) | Limit<br>(ms) | Verdict |
| NVNT      | 1-DH1 | 2441               | 0.38                  | 120.84                         | 318            | 31600                  | 400           | Pass    |
| NVNT      | 1-DH3 | 2441               | 1.64                  | 246                            | 150            | 31600                  | 400           | Pass    |
| NVNT      | 1-DH5 | 2441               | 2.89                  | 329.46                         | 114            | 31600                  | 400           | Pass    |
| NVNT 🐇    | 2-DH1 | 2441               | 0.39                  | 123.63                         | 317            | 31600                  | 400           | Pass    |
| NVNT      | 2-DH3 | 2441               | 1.64                  | 270.60                         | 165            | 31600                  | 400           | Pass    |
| NVNT      | 2-DH5 | 2441               | 2.89                  | 315.01                         | 109            | 31600                  | 400           | Pass    |
| NVNT      | 3-DH1 | 2441               | 0.39                  | 124.41                         | 319            | 31600                  | 400           | Pass    |
| NVNT      | 3-DH3 | 2441               | 1.64                  | 246                            | 150            | 31600                  | 400           | Pass    |
| NVNT      | 3-DH5 | 2441               | 2.89                  | 323.68                         | 112            | 31600                  | 400           | Pass    |

























Page 76 of 94

Tel: 86-755-27673339 http://www.tct-lab.com Hotline: 400-6611-140 Fax: 86-755-27673332

 Test Graphs

 Dwell NVNT 1-DH1 2441MHz One Burst

 Tig Delay-5000 μs

 Trig Delay-5000 μs

 Center Freq 2.441000000 GHz

 Trig Delay-5000 μs

 Trig Video #Atten: 30 dB

FUNCTION WIDTH

FUNCTION

#VBW 3.0 MHz

0.37 dB 0.01 dBm

380.0 μs (Δ) 497.0 μs

Ref Offset 7.14 dB Ref 20.00 dBm

1<u>Δ</u>2

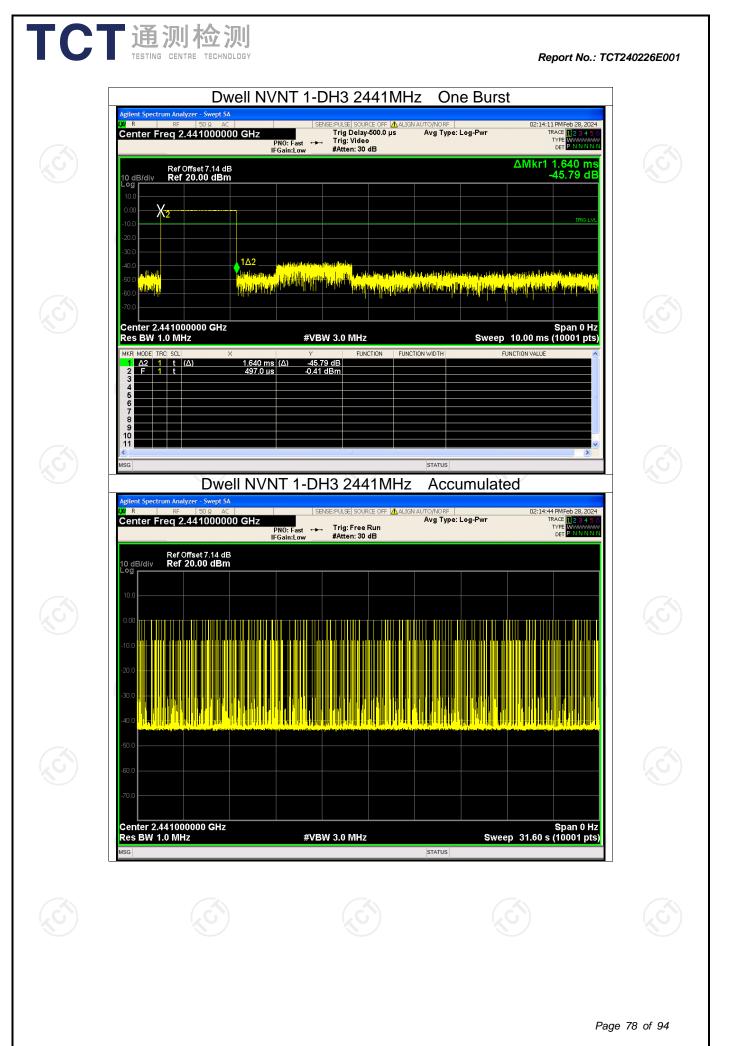
10 dB/div ∟og **r** 

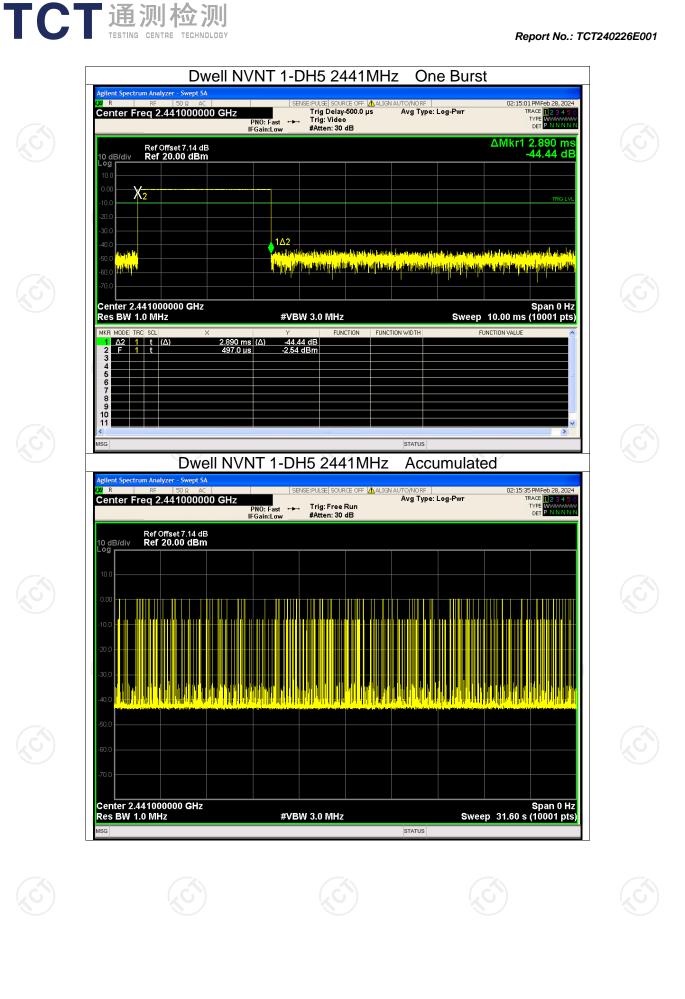
X

Center 2.441000000 GHz Res BW 1.0 MHz

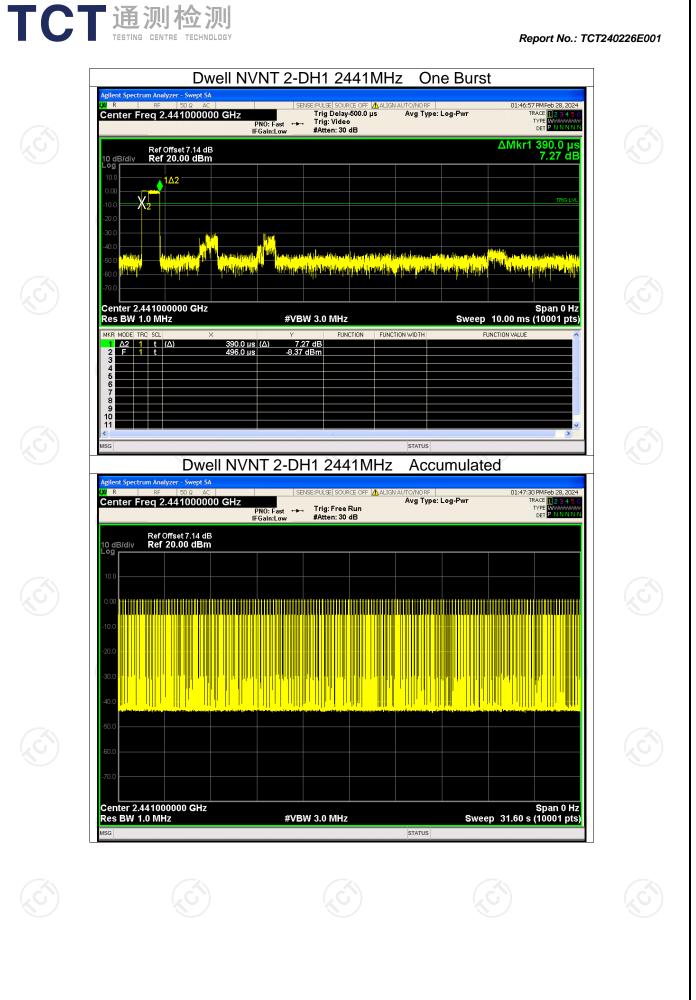
> 1 t (Δ) 1 t



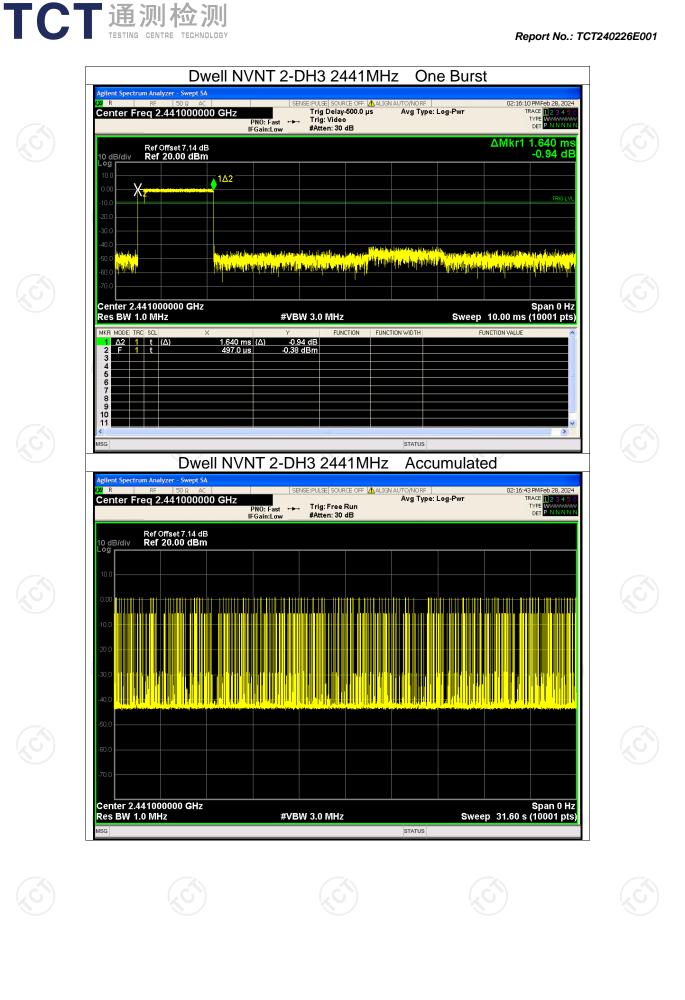

Feb 28, 2024


TRACE 12345 C TYPE WMMMMM DET PNNNNN

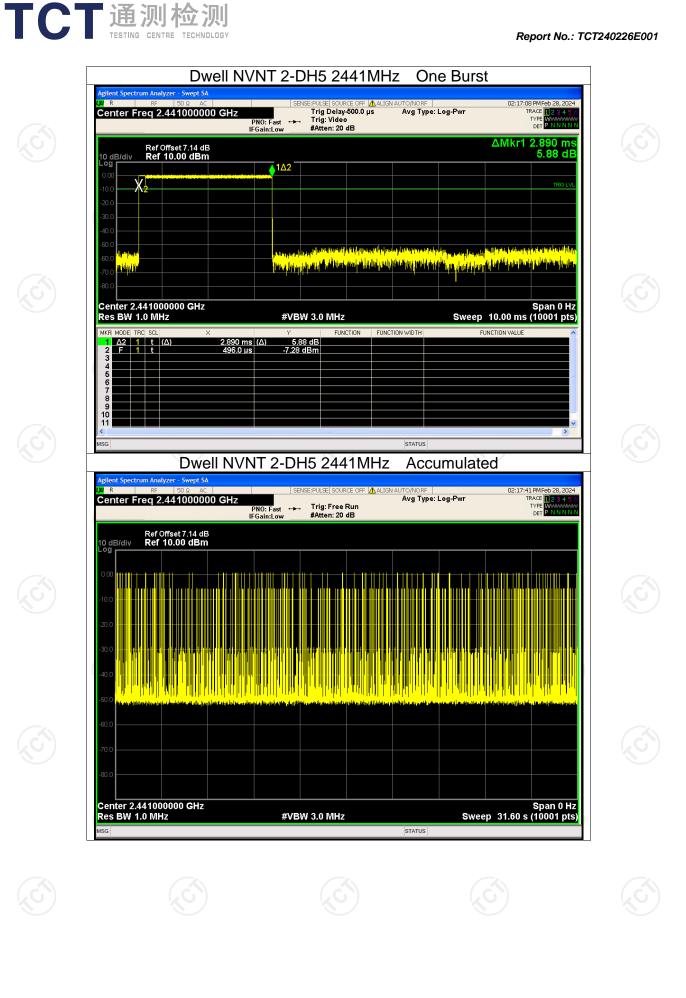
ΔMkr1 380.0 μs 0.37 dB


Span 0 Hz Sweep \_10.00 ms (10001 pts)

FUNCTION VALUE

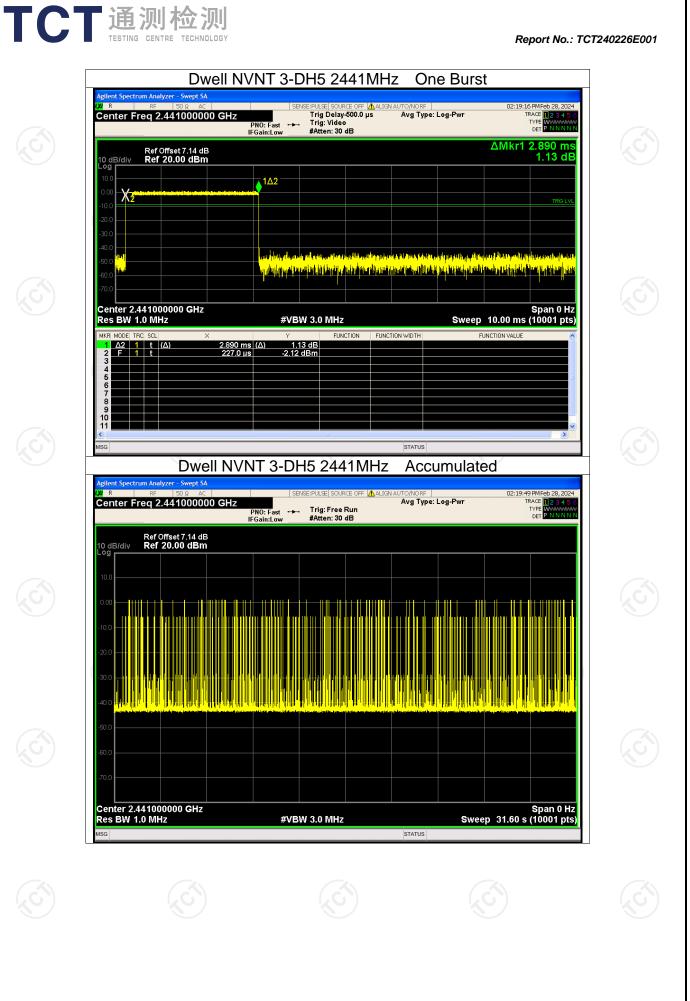






Page 79 of 94



Page 80 of 94




Page 81 of 94



Page 82 of 94

| Т通测机                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 应 训J<br>TECHNOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                     | Report No.: TCT2402                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Agilent Spectrum Analyzer -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     | st                                                                              |
| Center Freq 2.441                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 Ω AC SENSE/PULSE SOURCE<br>0000000 GHZ Trig Delay-50<br>PN0: Fast +→ Trig: Video<br>IFGain:Low #Atten: 30 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OFF ALIGN AUTO/NORF<br>0.0 μs Avg Type: Log-Pwr                                                                                                                                                                                     | 02:17:57 PMFeb 28, 2024<br>TRACE 12 2 3 4 5 6<br>TYPE WWWWWWWW<br>DET P.N.N.N.N |
| Ref Offser<br>10 dB/div Ref 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.14 dB<br>0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                     | ΔMkr1 1.640 ms<br>0.25 dB                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1Δ2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                     | TRIGLVL                                                                         |
| -10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     |                                                                                 |
| -40.0<br>-50.0 Web144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | and the state of t | da i polisiona se e e e e e e e e e e e e e e e e e e                                                                                                                                                                               | galarah ku an kala ata ata barata any any ting daya ku a                        |
| -60.0 <mark>Juli/an/kax</mark><br>-70.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | li pi ta patuliti, ana shanishin bini di gi patuliti, di ga dani ngi na dani ngi na dani ngi na dani ngi na dan<br>Tangan ta ngi na dani ngi na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | en an an Arthrid an Arthread an Arthread an Arthread an Arthread an Arthread and Arthread and Arthread and Arth<br>Arthread and Arthread | eler is juriel (dans) and is easily critical a                                  |
| Center 2.44100000<br>Res BW 1.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | #VBW 3.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                     | Span 0 Hz<br>ep 10.00 ms (10001 pts)                                            |
| MKR         MODE         TRC         SCL           1         Δ2         1         t         (Δ)           2         F         1         t         (Δ)           3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | χ         γ         FUNCTION           1.640 ms         (Δ)         0.25 dB         0.25 dB           497.0 μs         -1.27 dBm         -1.27 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IN FUNCTION WIDTH                                                                                                                                                                                                                   | FUNCTION VALUE                                                                  |
| 4<br>5<br>6<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     |                                                                                 |
| 8<br>9<br>10<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     |                                                                                 |
| MSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STATUS                                                                                                                                                                                                                              |                                                                                 |
| Agilent Spectrum Analyzer -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D.Ω AC SENSE:PULSE SOURCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                     | 02:18:30 PMFeb 28, 2024                                                         |
| Center Freq 2.441                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 000000 GHz<br>PNO: Fast Trig: Free Ru<br>IFGain:Low #Atten: 30 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Avg Type: Log-Pwr                                                                                                                                                                                                                   | TRACE 123456<br>TYPE WWWWWW<br>DET PINNNNN                                      |
| Ref Offset<br>10 dB/div Ref 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.14 dB<br>0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                     |                                                                                 |
| 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     |                                                                                 |
| -20.0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     |                                                                                 |
| -30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     |                                                                                 |
| -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     |                                                                                 |
| -60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     |                                                                                 |
| -70.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     |                                                                                 |
| Center 2.44100000<br>Res BW 1.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ) GHz<br>#VBW 3.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sw                                                                                                                                                                                                                                  | Span 0 Hz<br>reep 31.60 s (10001 pts)                                           |
| MSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STATUS                                                                                                                                                                                                                              |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     |                                                                                 |

