

# **RADIO TEST REPORT**

S

3

Report No:STS1809077W01

Issued for

NINGBO VEALITE ILLUMINATION CO., LTD

Building 3# 1,5F, No.671 Wuxiang Middle Rd, Yinzhou District, Ningbo, China

| Product Name:  | sensor                |
|----------------|-----------------------|
| Brand Name:    | N/A                   |
| Model Name:    | BMS401                |
| Series Model:  | BCS401, BDS401, WP401 |
| FCC ID:        | 2AQ3JBMS401           |
| Test Standard: | FCC Part 15.231       |

Any reproduction of this document must be done in full. No single part of this document may be reproduced permission from STS, All Test Data Presented in this report is only applicable to presented set sample.





Page 2 of 30

Report No.: STS1809077W01

# **TEST REPORT CERTIFICATION**

|                     | NINGBO VEALITE ILLUMINATION CO.,LTD                                                                                            |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Address             | Building 3# 1,5F, No.671 Wuxiang Middle Rd, Yinzhou District, Ningbo, China                                                    |
|                     | NINGBO VEALITE ILLUMINATION CO.,LTD                                                                                            |
| Address:            | Building 3# 1,5F, No.671 Wuxiang Middle Rd, Yinzhou District,<br>Ningbo, China                                                 |
| Product description |                                                                                                                                |
| Product Name:       | sensor                                                                                                                         |
| Brand Name:         | N/A                                                                                                                            |
| Model Name:         | BMS401                                                                                                                         |
| Series Model:       | BCS401, BDS401, WP401                                                                                                          |
| Test Standards      | FCC Part 15.231                                                                                                                |
| Test procedure      | ANSI C63.10-2013                                                                                                               |
|                     | een tested by STS, the test results show that the equipment with the FCC requirements. And it is applicable only to the tested |

This report shall not be reproduced except in full, without the written approval of STS, this document only be altered or revised by STS, personal only, and shall be noted in the revision of the document.

Date of Test .....

Date of performance of tests...... 11 Sep. 2018 ~ 30 Sep. 2018

Date of Issue ...... 30 Sep. 2018

Test Result..... Pass

**Testing Engineer** (Chris chen) **Technical Manager** ean She 1 (Sean she) Authorized Signatory : (Vita Li)

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com



Page 3 of 30

# TABLE OF CONTENTS

Page

| 1. SUMMARY OF TEST RESULTS                                  | 6  |
|-------------------------------------------------------------|----|
| 1.1 TEST FACTORY                                            | 6  |
| 1.2 MEASUREMENT UNCERTAINTY                                 | 6  |
| 2. GENERAL INFORMATION                                      | 7  |
| 2.1 GENERAL DESCRIPTION OF THE EUT                          | 7  |
| 2.2 DESCRIPTION OF TEST MODES                               | 8  |
| 2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED | 8  |
| 2.4 DESCRIPTION OF SUPPORT UNITS                            | 9  |
| 2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS                      | 10 |
| 3. EMC EMISSION TEST                                        | 11 |
| 3.1 CONDUCTED EMISSION MEASUREMENT                          | 11 |
| 3.2 TEST PROCEDURE                                          | 12 |
| 3.3 TEST SETUP                                              | 12 |
| 3.4 EUT OPERATING CONDITIONS                                | 12 |
| 3.5 TEST RESULTS                                            | 13 |
| 4. RADIATED EMISSION MEASUREMENT                            | 14 |
| 4.1 RADIATED EMISSION LIMITS                                | 14 |
| 4.2 TEST PROCEDURE                                          | 15 |
| 4.3 DEVIATION FROM TEST STANDARD                            | 15 |
| 4.7 FIELD STRENGTH CALCULATION                              | 18 |
| 5. BANDWIDTH TEST                                           | 22 |
| 5.1 APPLIED PROCEDURES / LIMIT                              | 22 |
| 5.2 TEST REQUIREMENTS                                       | 22 |
| 5.3 TEST PROCEDURE                                          | 22 |
| 5.4 TEST SETUP                                              | 22 |
| 5.5 EUT OPERATION CONDITIONS                                | 22 |
| 5.6 TEST RESULTS                                            | 23 |
| 6. DUTY CYCLE                                               | 24 |
| 6.1 TEST PROCEDURE                                          | 24 |
| 6.2 TEST SETUP                                              | 24 |
| 6.3 EUT OPERATION CONDITIONS                                | 24 |
| 6.4 TEST RESULTS                                            | 25 |
| 7. AUTOMATICALLY DEACTIVATE                                 | 27 |
| 7.1 STANDARD REQUIREMENT                                    | 27 |

|                           | Page 4 of 30  | Report No.: STS1809077W0 <sup>7</sup> |
|---------------------------|---------------|---------------------------------------|
| TABL                      | E OF CONTENTS | Page                                  |
| 7.2 TEST PROCEDURE        |               | 27                                    |
| 8. ANTENNA REQUIREMENT    |               | 29                                    |
| 8.1 STANDARD REQUIREME    | NT            | 29                                    |
| 8.2 EUT ANTENNA           |               | 29                                    |
| APPENDIX 1- PHOTOS OF TES | I SETUP       | 30                                    |



Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: 0755-36886288
 Fax: 0755-36886277

 Http://www.stsapp.com
 E-mail: sts@stsapp.com



Page 5 of 30

Report No.: STS1809077W01

# **Revision History**

| Rev. | Issue Date                                       | e Date Report NO. |               | Contents |
|------|--------------------------------------------------|-------------------|---------------|----------|
| 00   | 00 27 Sept. 2018 STS1809077W01 ALL Initial Issue |                   | Initial Issue |          |
|      |                                                  |                   |               |          |



Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com



# 1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

| FCC Part 15.231,Subpart C       |                            |          |        |  |
|---------------------------------|----------------------------|----------|--------|--|
| Standard<br>Section             | Test Item                  | Judgment | Remark |  |
| 15.207                          | Conducted Emission         | N/A      |        |  |
| 15.205(a)/15.209/<br>15.231.(b) | Radiated Spurious Emission | PASS     |        |  |
| 15.231(a)(1)/<br>15.231(b)(2)   | Transmission requirement   | PASS     |        |  |
| 15.231(C)                       | 20 dB Bandwidth            | PASS     |        |  |
| 15.203                          | Antenna Requirement        | PASS     |        |  |

NOTE: (1)"N/A" denotes test is not applicable in this Test Report

(2) All tests are according to ANSI C63.10-2013

## 1.1 TEST FACTORY

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road,

Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

CNAS Registration No.: L7649; FCC Registration No.: 625569

IC Registration No.: 12108A; A2LA Certificate No.: 4338.01;

## **1.2 MEASUREMENT UNCERTAINTY**

The reported uncertainty of measurement  $y\pm U$ , where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %  $^\circ$ 

| No. | Item                                     | Uncertainty |
|-----|------------------------------------------|-------------|
| 1   | Conducted Emission (9KHz-150KHz)         | ±2.88dB     |
| 2   | Conducted Emission (150KHz-30MHz)        | ±2.67dB     |
| 3   | RF power,conducted                       | ±0.71dB     |
| 4   | Spurious emissions,conducted ±0.63dB     |             |
| 5   | All emissions, radiated (9KHz-30MHz)     | ±3.02dB     |
| 6   | All emissions, radiated (30MHz-200MHz)   | ±3.80dB     |
| 7   | All emissions, radiated (200MHz-1000MHz) | ±3.97dB     |



# 2. GENERAL INFORMATION

# 2.1 GENERAL DESCRIPTION OF THE EUT

| Product Name            | sensor                                     |  |  |
|-------------------------|--------------------------------------------|--|--|
| Trade Name              | N/A                                        |  |  |
| Model Name              | BMS401                                     |  |  |
| Series Model            | BCS401, BDS401, WP401                      |  |  |
| Model Difference        | only different in model name               |  |  |
| Frequency band          | 433.96MHz                                  |  |  |
| Battery                 | Capacity: 1150 mAh<br>Rated Voltage: DC 3V |  |  |
| Modulation Type         | FSK                                        |  |  |
| Hardware version number | BMS401 V37                                 |  |  |
| Software version number | BMS401 V12                                 |  |  |
| Connecting I/O Port(s)  | N/A                                        |  |  |

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

## 2. Table for filed Antenna

| Ant. | Brand | Model Name | Antenna Type | Connector | Gain (dBi) | NOTE    |
|------|-------|------------|--------------|-----------|------------|---------|
| 1    | N/A   | BMS401     | Wire         | N/A       | 5.5        | Antenna |



# 2.2 DESCRIPTION OF TEST MODES


To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

| Pretest Mode | Description |
|--------------|-------------|
| Mode 1       | TX Mode     |

|                 | For Radiated Emission |  |  |
|-----------------|-----------------------|--|--|
| Final Test Mode | Description           |  |  |
| Mode 1          | TX Mode               |  |  |

# 2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

During test, Keep EUT is in continuous transmission mode, Both open button and closed button have been tested, The two keys were tested to assess and only record the worst case in the report(Open botton).



Page 9 of 30



## 2.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| Item | Equipment | Mfr/Brand | Model/Type No. | Serial No. | Note |
|------|-----------|-----------|----------------|------------|------|
| N/A  | N/A       | N/A       | N/A            | N/A        | N/A  |
|      |           |           |                |            |      |
|      |           |           |                |            |      |
|      |           |           |                |            |      |
|      |           |           |                |            |      |
|      |           |           |                |            |      |

| Item | Shielded Type | Ferrite Core | Length | Note |
|------|---------------|--------------|--------|------|
| N/A  | N/A           | N/A          | N/A    | N/A  |
|      |               |              |        |      |
|      |               |              |        |      |
|      |               |              |        |      |
|      | λ.            |              |        |      |

Note:

(1)The support equipment was authorized by Declaration of Confirmation.

(2)For detachable type I/O cable should be specified the length in cm in  $\[$ Length $\]$  column.



Page 10 of 30

# 2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

# Radiation Test equipment

| Kind of Equipment            | Manufacturer | Type No.             | Serial No. | Last calibration | Calibrated until |
|------------------------------|--------------|----------------------|------------|------------------|------------------|
| EMI Test Receiver            | R&S          | ESCI                 | 102086     | 2017.10.15       | 2018.10.14       |
| Bilog Antenna                | TESEQ        | CBL6111D             | 34678      | 2017.11.02       | 2018.11.01       |
| Horn Antenna                 | Schwarzbeck  | BBHA 9120D<br>(1201) | 9120D-1343 | 2017.10.27       | 2018.10.26       |
| PreAmplifier<br>(1G-26.5GHz) | Agilent      | 8449B                | 60538      | 2017.10.15       | 2018.10.14       |
| Passive Loop<br>(9K30MHz)    | ZHNAN        | ZN3090C              | 16035      | 2018.03.11       | 2019.03.10       |
| Low frequency cable          | EM           | R01                  | N/A        | 2018.03.11       | 2019.03.10       |
| Low frequency cable          | EM           | R06                  | N/A        | 2018.03.11       | 2019.03.10       |
| High frequency cable         | SCHWARZBECK  | R04                  | N/A        | 2018.03.11       | 2019.03.10       |
| High frequency cable         | SCHWARZBECK  | R02                  | N/A        | 2018.03.11       | 2019.03.10       |
| Pre-mplifier<br>(0.1M-3GHz)  | EM           | EM330                | 60538      | 2018.03.11       | 2019.03.10       |
| Semi-anechoic<br>chamber     | Changling    | 966                  | N/A        | 2017.10.15       | 2018.10.14       |
| Signal Analyzer              | Agilent      | N9020A               | MY49100060 | 2017.10.15       | 2018.10.14       |

Shenzhen STS Test Services Co., Ltd.



# 3. EMC EMISSION TEST

## 3.1 CONDUCTED EMISSION MEASUREMENT

## 3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

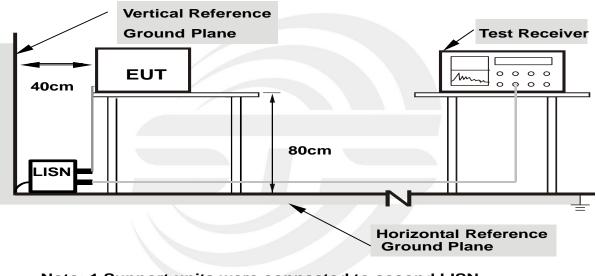
operating frequency band. In case the emission fall within the restricted band specified on Part 15. 207(a) limit in the table below has to be followed.

|                 | Class B (dBuV) |           | Standard |  |
|-----------------|----------------|-----------|----------|--|
| FREQUENCY (MHz) | Quasi-peak     | Average   | Standard |  |
| 0.15 -0.5       | 66 - 56 *      | 56 - 46 * | CISPR    |  |
| 0.50 -5.0       | 56.00          | 46.00     | CISPR    |  |
| 5.0 -30.0       | 60.00          | 50.00     | CISPR    |  |

| 0.15 -0.5 | 66 - 56 * | 56 - 46 * | FCC |
|-----------|-----------|-----------|-----|
| 0.50 -5.0 | 56.00     | 46.00     | FCC |
| 5.0 -30.0 | 60.00     | 50.00     | FCC |

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " \* " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.


The following table is the setting of the receiver

| Receiver Parameters | Setting  |
|---------------------|----------|
| Attenuation         | 10 dB    |
| Start Frequency     | 0.15 MHz |
| Stop Frequency      | 30 MHz   |
| IF Bandwidth        | 9 kHz    |



## 3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b.Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c.I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d.LISN at least 80 cm from nearest part of EUT chassis.
- e.For the actual test configuration, please refer to the related Item -EUT Test Photos.



# 3.3 TEST SETUP

Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

#### 3.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.



# 3.5 TEST RESULTS

| Temperature:  | 26 °C  | Relative Humidity: | 54% |
|---------------|--------|--------------------|-----|
| Test Voltage: | DC 3 V | Phase :            | L/N |
| Test Mode:    | N/A    |                    |     |

Note: EUT is only power by battery, So it is not applicable for this test.



Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: 0755-36886288
 Fax: 0755-36886277

 Http://www.stsapp.com
 E-mail: sts@stsapp.com



# 4. RADIATED EMISSION MEASUREMENT

## 4.1 RADIATED EMISSION LIMITS

In case the emission fall within the restricted band specified on Part 15.205(a), then the Part 15.209(a) and Part 15.231(b) limit in the table below has to be followed.

## LIMITS OF RADIATED EMISSION MEASUREMENT (0.009MHz - 1000MHz)

| Frequencies | Field Strength     | Measurement Distance |
|-------------|--------------------|----------------------|
| (MHz)       | (micorvolts/meter) | (meters)             |
| 0.009~0.490 | 2400/F(KHz)        | 300                  |
| 0.490~1.705 | 24000/F(KHz)       | 30                   |
| 1.705~30.0  | 30                 | 30                   |
| 30~40.66    | 100                | 3                    |
| 40.70~70    | 100                | 3                    |

| Fundamental Frequency<br>(MHz) | Field Strength of fundamental (microvolts/meter) | Field Strength of Unwanted<br>Emissions<br>(microvolts/meter) |  |
|--------------------------------|--------------------------------------------------|---------------------------------------------------------------|--|
| 40.66~40.70                    | 2,250                                            | 225                                                           |  |
| 70~130                         | 1,250                                            | 125                                                           |  |
| 130~174                        | 1,250 to 3,750**                                 | 125 to 375**                                                  |  |
| 174~260                        | 3750                                             | 375                                                           |  |
| 260~470                        | 3,750 to 12,500**                                | 375 to 1,250**                                                |  |
| Above 470                      | 12,500                                           | 1,250                                                         |  |

#### LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

|                 | Class B (dBuV/m) (at 3M) |         |  |
|-----------------|--------------------------|---------|--|
| FREQUENCY (MHz) | PEAK                     | AVERAGE |  |
| Above 1000      | 74                       | 54      |  |

NOTE:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2)Emission level (dBuV/m)=20log Emission level (uV/m).



Page 15 of 30

Report No.: STS1809077W01

| Spectrum Parameter                    | Setting               |
|---------------------------------------|-----------------------|
| Detector                              | Peak                  |
| Attenuation                           | Auto                  |
| Start Frequency                       | 1000 MHz              |
| Stop Frequency                        | 10th carrier harmonic |
| RB / VB (emission in restricted band) | 1 MHz / 3 MHz         |

| Receiver Parameter     | Setting                              |
|------------------------|--------------------------------------|
| Attenuation            | Auto                                 |
| Start ~ Stop Frequency | 9kHz~90kHz / RB 200Hz for PK & AV    |
| Start ~ Stop Frequency | 90kHz~110kHz / RB 200Hz for QP       |
| Start ~ Stop Frequency | 110kHz~490kHz / RB 200Hz for PK & AV |
| Start ~ Stop Frequency | 490kHz~30MHz / RB 9kHz for QP        |
| Start ~ Stop Frequency | 30MHz~1000MHz / RB 120kHz for QP     |

# 4.2 TEST PROCEDURE

a. The test is performed in a 3m Semi-Anechoic Chamber; the antenna factor, cable loss and so on of the site (factors) is calculated to correct the reading. The EUT is placed on a 0.8m high insulating Turn Table, and keeps 3m away from the Test Antenna, which is mounted on a variable-height antenna master tower.

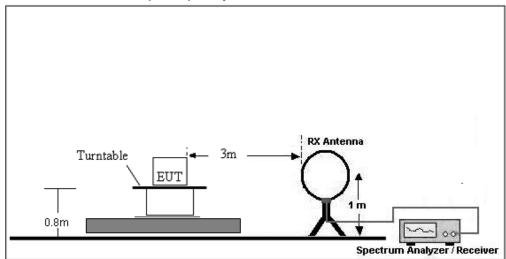
During test, The table was rotated 360 degrees to determine the position of the highest radiation.

- b. In the frequency range of 9KHz to 30MHz, magnetic field is measured with Loop Test Antenna. The Test Antenna is positioned with its plane vertical at 1m distance from the EUT. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.
- c. In the frequency range 30MHz-1GHz, Bi-Log Test Antenna used. Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength. The emission levels at both horizontal and vertical polarizations should be tested.
- d. In the frequency above 1GHz, Place the measurement antenna 3m away from the EUT for each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- f. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.

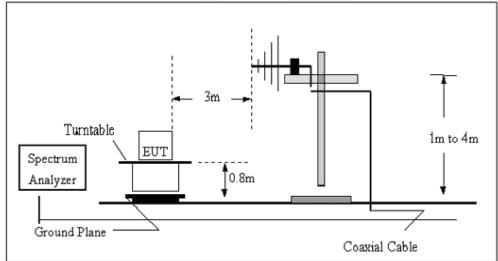
h. For the actual test configuration, please refer to the related Item –EUT Test Photos. Both horizontal and vertical antenna polarities and performed pretest to three orthogonal axis were tested. The worst case emissions were reported

4.3 DEVIATION FROM TEST STANDARD

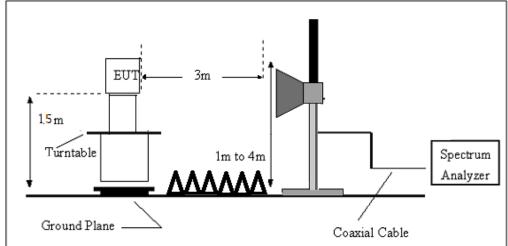
No deviation


Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com




# 4.4 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz



(B) Radiated Emission Test-Up Frequency 30MHz~1GHz



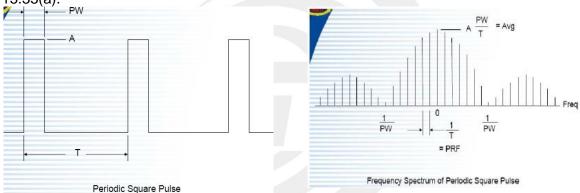
(C) Radiated Emission Test-Up Frequency Above 1GHz







## 4.5 EUT OPERATING CONDITIONS


The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

# 4.6 TEST RESULTS

### INTRODUCTION TO PDCF

reference: (§15.35 Measurement detector functions and bandwidths.)

a. Part 15 of the FCC Rules provides for the operation of low power communication devices without an individual license (e.g., intrusion detectors, pulsed water tank level gauges, etc.), subject to certain requirements. Some of these devices use extremely narrow pulses to generate wideband emissions, which are measured to determine compliance with the rules. These measurements are typically performed with a receiver or spectrum analyzer. Depending on a number of factors (e.g., resolution bandwidth, pulsewidth, etc.), the spectrum analyzer may not always display the true peak value of the measured emission. This effect, called "pulse desensitization," relates to the capabilities of the measuring instrument. For the measurement and reporting of the true peak of pulsed emissions, it may be necessary to apply a "pulse desensitization correction factor" (PDCF) to the measured value, pursuant to 47 CFR 15.35(a).



If using spectrum analyzer to measure pulse signal , it have to make sure the RBW use is at least 2/PW.

•When RBW is less than 2/PW , you are able to measure the true peak level of the pulse signal. If this is the case , PDCF is required to compensate to determine true peak value.

Pulse desensitization:

PW =38160usec,Period=10000usec, Level=A RBW>2/PW=0.052K, 1/T=0.1K

RDW>2/PW=0.032R, 1/1=0.1R

- NOTE: 2 / PW < RBW, first don't need
- b. For the actual test, please refer to the ANSI C63.10,Annex C refer to section 6. for more detail



# 4.7 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG Where FS = Field Strength CL = Cable Attenuation Factor (Cable Loss) RA = Reading Amplitude AG = Amplifier Gain AF = Antenna Factor

For example

| Frequency | FS       | RA       | AF   | CL   | AG   | Factor |
|-----------|----------|----------|------|------|------|--------|
| (MHz)     | (dBµV/m) | (dBµV/m) | (dB) | (dB) | (dB) | (dB)   |
| 300       | 40       | 58.1     | 12.2 | 1.6  | 31.9 | -18.1  |

Factor=AF+CL-AG

# 4.8 TEST RESULTS

(Radiated Emission<30MHz (9KHz-30MHz, H-field))

| Freq. | Reading  | Limit    | Margin | State |
|-------|----------|----------|--------|-------|
| (MHz) | (dBuV/m) | (dBuV/m) | (dB)   | P/F   |
|       |          |          |        | PASS  |
|       |          | -        |        | PASS  |

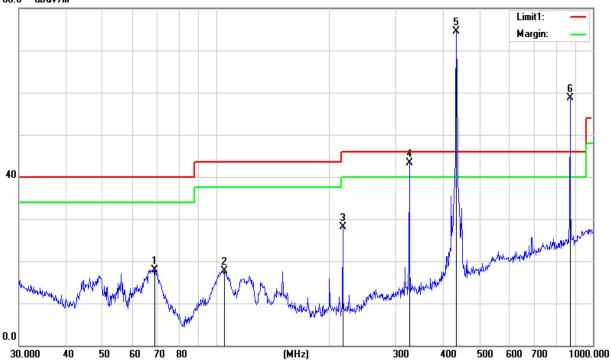
Note:The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB); Limit line = specific limits(dBuv) + distance extrapolation factor.



## Between 30MHz - 5000 MHz

| Temperature:  | <b>25.7</b> ℃ | Relative Humidity: | 54%        |
|---------------|---------------|--------------------|------------|
| Test Voltage: | DC 3 V        | Phase:             | Horizontal |
| Test Mode:    | Mode 1        |                    |            |


| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor (dB) | Results<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector |
|-----|--------------------|-------------------|-------------|---------------------|-------------------|----------------|----------|
| 1   | 68.8721            | 42.11             | -24.13      | 17.98               | 40.00             | -22.02         | QP       |
| 2   | 105.2717           | 36.49             | -18.74      | 17.75               | 43.50             | -25.75         | QP       |
| 3   | 216.7828           | 47.42             | -19.32      | 28.10               | 46.00             | -17.90         | QP       |
| 4   | 325.5958           | 57.45             | -14.12      | 43.33               | 46.00             | -2.67          | QP       |
| 5   | 433.9600           | 85.35             | -10.90      | 74.45               | 100.83            | -26.38         | PK       |
| 6   | 867.9200           | 61.41             | -2.61       | 58.80               | 60.83             | -2.03          | QP       |

#### AV

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor (dB) | Results<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector |
|-----|--------------------|-------------------|-------------|---------------------|-------------------|----------------|----------|
| 7   | 433.9600           | 74.45             | -6.12       | 68.33               | 80.83             | -12.50         | AV       |

#### Remark:

- 1. All readings are Quasi-Peak and Average values.
- 2. Margin = Result (Result = Reading + Factor )-Limit
  - 80.0 dBu¥/m



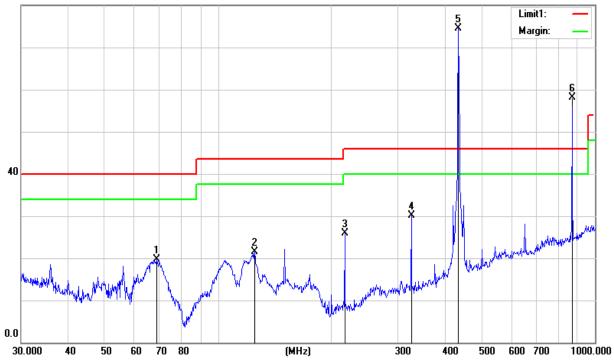


Page 20 of 30

Report No.: STS1809077W01

| Temperature:  | <b>25.7</b> ℃ | Relative Humidity: | 54%      |
|---------------|---------------|--------------------|----------|
| Test Voltage: | DC 3 V        | Phase:             | Vertical |
| Test Mode:    | Mode 1        |                    |          |

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor (dB) | Results<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector |
|-----|--------------------|-------------------|-------------|---------------------|-------------------|----------------|----------|
| 1   | 68.6310            | 43.75             | -24.14      | 19.61               | 40.00             | -20.39         | QP       |
| 2   | 125.0066           | 39.02             | -17.61      | 21.41               | 43.50             | -22.09         | QP       |
| 3   | 216.7828           | 45.27             | -19.32      | 25.95               | 46.00             | -20.05         | QP       |
| 4   | 325.5957           | 44.13             | -14.12      | 30.01               | 46.00             | -15.99         | QP       |
| 5   | 433.9600           | 85.45             | -10.90      | 74.55               | 100.83            | -26.28         | PK       |
| 6   | 867.9200           | 60.68             | -2.62       | 58.06               | 60.83             | -2.77          | QP       |


# AV

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor (dB) | Results<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector |
|-----|--------------------|-------------------|-------------|---------------------|-------------------|----------------|----------|
| 7   | 433.9600           | 74.55             | -6.12       | 68.43               | 80.83             | -12.60         | AV       |

#### Remark:

2. Margin = Result (Result = Reading + Factor )-Limit

80.0 dBuV/m



<sup>1.</sup> All readings are Quasi-Peak and Average values.

Page 21 of 30





# PEAK TEST RESULTS:

|           |          |            |           |      | Antenna | Corrected | Corrected | FCC I      | Part    | RX      |
|-----------|----------|------------|-----------|------|---------|-----------|-----------|------------|---------|---------|
| Frequency | Reading  | Detector   | Amplifier | Loss | Factor  | Factor    | Amplitude | 15.231/15. | 209/205 | Antenna |
|           |          |            |           |      | Tactor  | 1 actor   | Amplitude | Limit      | Margin  | Polar   |
| (MHz)     | (dBµV/m) | (PK/QP/AV) | (dB)      | (dB) | (dB)    | (dB)      | (dBµV/m)  | (dBµV/m)   | (dB)    | (H/V)   |
| 1301.88   | 60.94    | PK         | 45.1      | 4.0  | 25.1    | -16.00    | 44.94     | 74         | -29.06  | Н       |
| 1301.88   | 61.28    | PK         | 45.1      | 4.0  | 25.1    | -16.00    | 45.28     | 74         | -28.72  | V       |
| 1735.84   | 59.59    | PK         | 44.1      | 5.3  | 25      | -13.80    | 45.79     | 74         | -28.21  | Н       |
| 1735.84   | 58.73    | PK         | 44.1      | 5.3  | 25      | -13.80    | 44.93     | 74         | -29.07  | V       |
| 2169.8    | 56.75    | PK         | 43.8      | 5.4  | 25.9    | -12.47    | 44.28     | 74         | -29.72  | н       |
| 2169.8    | 56.79    | PK         | 43.8      | 5.4  | 25.9    | -12.47    | 44.32     | 74         | -29.68  | V       |
| 2603.76   | 52.79    | PK         | 44.4      | 6.0  | 27.6    | -10.77    | 42.02     | 74         | -31.98  | Н       |
| 2603.76   | 52.74    | PK         | 44.4      | 6.0  | 27.6    | -10.77    | 41.97     | 74         | -32.03  | V       |

Note: Above 2.6 GHz The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.



Shenzhen STS Test Services Co., Ltd.



# 5. BANDWIDTH TEST

# 5.1 APPLIED PROCEDURES / LIMIT

| FCC Part 15.231,Subpart C |              |                                                                                             |                          |        |  |  |  |
|---------------------------|--------------|---------------------------------------------------------------------------------------------|--------------------------|--------|--|--|--|
| Section                   | Test Item    | Limit                                                                                       | Frequency Range<br>(MHz) | Result |  |  |  |
| 15.231(C)                 | 20 Bandwidth | The 20dB bandwidth of the<br>emissions shall not exceed<br>0.25% of the center<br>frequency | 433.96                   | PASS   |  |  |  |

| Spectrum Parameter | Setting                 |
|--------------------|-------------------------|
| Attenuation        | Auto                    |
| Span Frequency     | > Measurement Bandwidth |
| RB                 | 10 kHz (20dB Bandwidth) |
| VB                 | 30 kHz (20dB Bandwidth) |
| Detector           | Peak                    |
| Trace              | Max Hold                |
| Sweep Time         | Auto                    |

## **5.2 TEST REQUIREMENTS**

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

## 5.3 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting : RBW= 10KHz, VBW=30KHz, Sweep time = Auto.

## 5.4 TEST SETUP

| EUT | SPECTRUM |
|-----|----------|
|     | ANALYZER |

# 5.5 EUT OPERATION CONDITIONS

TX mode.



# 5.6 TEST RESULTS

| Centre     |       | Measure    | ement                 |
|------------|-------|------------|-----------------------|
| Frequency  |       | Limit(kHz) | Frequency Range (MHz) |
| 433.96 MHz | 44.23 | 1084.9     | PASS                  |

# CH00 -1Mbps

| RL RF 50 Q AC           |             | SENSE:INT                       | ALIGNAUTO       | 10:55:06 AM Sep 27, 201 |
|-------------------------|-------------|---------------------------------|-----------------|-------------------------|
| enter Freq 433.960000 N | IHz         | Center Freq: 433.9600           |                 | Radio Std: None         |
|                         | #IFGain:Low | Trig: Free Run<br>#Atten: 10 dB | Avg Hold:>10/10 | Radio Device: BTS       |
|                         | #IFGain:Low | WAtten. IV db                   |                 | Radio Device. D15       |
|                         |             |                                 |                 |                         |
| dB/div Ref 10.00 dBm    |             |                                 |                 |                         |
| 9                       |             |                                 |                 |                         |
| .0                      |             |                                 |                 |                         |
|                         |             |                                 |                 |                         |
| .0                      |             |                                 |                 |                         |
|                         |             |                                 |                 |                         |
| .0                      |             |                                 |                 |                         |
| .0                      |             |                                 |                 |                         |
| .0                      |             |                                 |                 |                         |
| .0                      |             |                                 |                 |                         |
| 1.0                     |             |                                 |                 |                         |
|                         |             |                                 |                 |                         |
| enter 434 MHz           |             |                                 |                 | Span 150 kH             |
| Res BW 10 kHz           |             | #VBW 30 kH                      | Iz              | Sweep 1.867 m           |
| Occupied Bandwidth      |             | Total Power                     | -5.24 dBm       |                         |
|                         |             | Total Tower                     | -5.24 0011      |                         |
| 76                      | 6.685 kHz   |                                 |                 |                         |
| Transmit Freq Error     | -4.101 kHz  | OBW Power                       | 99.00 %         |                         |
| x dB Bandwidth          | 44.23 kHz   | x dB                            | -20.00 dB       |                         |
|                         | 44.23 KHZ   | XUD                             | -20.00 UB       |                         |
|                         |             |                                 |                 |                         |
|                         |             |                                 |                 |                         |
|                         |             |                                 |                 |                         |
|                         |             |                                 | STATUS          |                         |

Shenzhen STS Test Services Co., Ltd.

Page 24 of 30



# 6. DUTY CYCLE

# 6.1 TEST PROCEDURE

The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.

The Duty Cycle Was Determined By The Following Equation: To Calculate The Actual Field Intensity, The Duty Cycle Correction Factor In Decibel Is Needed For Later Use And Can Be Obtained From Following Conversion

Duty Cycle(%)=Total On Interval In A Complete Pulse Train/ Length Of A Complete Pulse Train \* %

Duty Cycle Correction Factor(Db)=20 \* Log10(Duty Cycle(%)

## 6.2 TEST SETUP



# 6.3 EUT OPERATION CONDITIONS

TX mode.



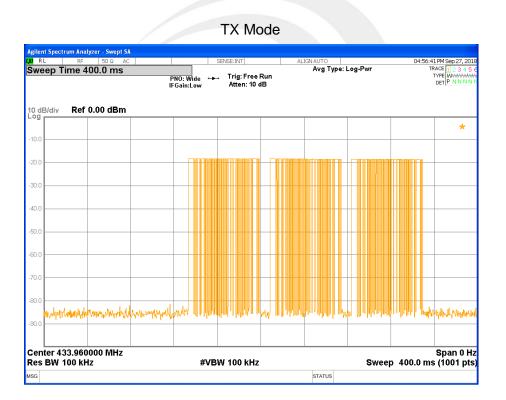
Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: 0755-36886288
 Fax: 0755-36886277

 Http://www.stsapp.com
 E-mail: sts@stsapp.com

Page 25 of 30




## 6.4 TEST RESULTS

| FCC Part                                        | 15.231(a) |
|-------------------------------------------------|-----------|
| Total On interval in a complete pulse train(ms) | 38.16     |
| Length of a complete pulse train(ms)            | 100       |
| Duty Cycle(%)                                   | 38.16%    |
| Duty Cycle Correction Factor(dB)                | -8.37     |

Refer to the duty cycle plot (as below), This device meets the FCC requirement. Length of a complete pulse train

Remark:FCC part15.35(c) required that a complete pulse train is more than 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.





# TX Mode

|             |    | RF  |      | 50 s | 2   | AC | :   |   |    |   |    |     |          |   |   |   |    | 1  | GEN | VS | E:F | UL | SE |    |           |   |     |   |   |     | A    | LIGN AU |      |              |   |   |   |    |    |    |   |    | 0  | 6:3 |   |   |     | Sep      |             |     |    |
|-------------|----|-----|------|------|-----|----|-----|---|----|---|----|-----|----------|---|---|---|----|----|-----|----|-----|----|----|----|-----------|---|-----|---|---|-----|------|---------|------|--------------|---|---|---|----|----|----|---|----|----|-----|---|---|-----|----------|-------------|-----|----|
|             |    |     |      |      |     |    |     |   |    |   |    |     | NO<br>Ga |   |   |   |    |    |     |    |     |    |    |    | ee<br>3 d |   | un  |   |   |     |      |         | -    | Гуре<br>ain: |   | - |   | •  |    |    |   |    |    |     |   | T | YPE | 1<br>  W | <b>6</b> 44 | Añ, | AA |
| B/div       | R  | lef | 0.0  | 0 d  | IBI | m  |     |   |    |   |    |     |          |   |   |   |    |    |     |    |     |    |    |    |           |   |     |   |   |     |      |         |      |              |   |   |   |    |    | _  |   |    |    |     |   |   |     |          |             |     |    |
|             |    |     | 11   |      | []  | 1  |     | 1 | 1  |   |    | Î   |          |   |   | Π | Ĩ  | 1  | 1   |    |     |    | 1  | 1  | 1         |   |     |   | ſ | Π   | Î    |         |      |              | T |   | Π | 11 |    |    |   |    |    | Î   |   |   | 1   |          | 10          | 1   |    |
|             |    |     |      |      |     |    |     |   |    |   |    |     |          |   |   |   |    | +  |     |    |     |    |    |    |           |   |     |   |   |     |      |         |      |              | + |   |   |    |    |    |   |    |    |     |   |   |     |          |             |     |    |
|             |    |     |      |      |     |    |     |   |    |   |    |     |          |   |   |   |    |    |     |    |     |    |    |    |           |   |     | ╢ |   |     |      |         |      |              | + |   |   |    |    |    |   |    |    |     |   |   | ╞   |          |             |     | Í  |
|             |    |     |      |      |     |    |     |   | ſ  |   |    | I   |          |   |   |   |    | ļ  | ſ   |    |     |    |    |    |           |   |     |   |   |     |      |         |      |              |   |   |   | Π  |    |    |   |    |    |     |   |   |     |          |             |     |    |
|             |    |     |      |      |     |    |     |   |    |   |    | ł   |          |   |   |   |    |    |     |    |     |    |    |    |           |   |     | ╞ |   |     |      |         |      |              |   |   |   |    |    |    |   |    |    |     |   |   | ł   |          |             |     |    |
| 14VI        | ųч | IV  | hllh | W    | մկ  | 1  | uhi | M | łh | 4 | μĻ | ,ll | h        |   | ļ |   | ψI | Ĺ  | Д   | 4  | h   | W  | 41 | ļ  | , bi      | ŀ | ļ   | Ņ | , | U ( | d  , | - MAR   | wły  | nhm          | 4 |   | 1 | ļŀ | h  | 1  | h |    | 4  | 1   | Y | Ч | μh  | Jµ/      | W.          | Jl  | Ŵ  |
| ter 4<br>BW |    |     |      | V    | 1Hz | z  |     |   | _  | _ |    | _   |          | _ | _ | ; | #\ | vi | BI  | N  | 1   | 0  | 0  | kl | Hz        | : |     |   | _ |     | _    |         |      |              |   |   | s | w  | ee |    | 1 | 10 | 0. | 0   | m |   |     | 5a<br>0( |             |     |    |
| MODE        |    |     |      |      |     |    | ×   |   |    |   |    |     |          |   |   |   | _  | ŕ  |     |    |     |    |    | _  | _         | _ | 101 | l |   | FU  | NC   | TION W  | IDTH | 1            |   |   |   |    | _  | FU |   | _  |    | _   | _ |   |     |          |             |     |    |
|             |    |     |      |      |     |    |     |   |    |   |    |     |          |   |   |   |    |    |     |    |     |    |    |    |           |   |     |   |   |     |      |         |      |              |   |   |   |    |    |    |   |    |    |     |   |   |     |          |             |     |    |
|             |    |     |      |      |     |    |     |   |    |   |    |     |          |   |   |   |    |    |     |    |     |    |    |    |           |   |     |   |   |     |      |         |      |              |   |   |   |    |    |    |   |    |    |     |   |   |     |          |             |     |    |
|             |    |     |      |      |     |    |     |   |    |   |    |     |          |   |   |   |    |    |     |    |     |    |    |    |           |   |     |   |   |     |      |         |      |              |   |   |   |    |    |    |   |    |    |     |   |   |     |          |             |     |    |
|             |    |     |      |      |     |    |     |   |    |   |    |     |          |   |   |   |    |    |     |    |     |    |    |    |           |   |     |   |   |     |      |         |      |              |   |   |   |    |    |    |   |    |    |     |   |   |     |          |             |     |    |
|             |    |     |      |      |     |    |     |   |    |   |    |     |          |   |   |   |    |    |     |    |     |    |    |    |           |   |     |   |   |     |      |         |      |              |   |   |   |    |    |    |   |    |    |     |   |   |     |          |             |     |    |
|             |    |     |      |      |     |    |     |   |    |   |    |     |          |   |   |   |    |    |     |    |     |    |    |    |           |   |     |   |   |     |      |         |      |              |   |   |   |    |    |    |   |    |    |     |   |   |     |          | 1           |     | >  |

| Agile         | nt Spe         | etru | m Ana | alvzer | - Swe | ent S | SA   |      | -          |     |          |     |             |      |             |            |          |     |             | -                |    | -    |     | -    |                  | -     |      | -   |    |    | -    |     |      |      |      |       |          |
|---------------|----------------|------|-------|--------|-------|-------|------|------|------------|-----|----------|-----|-------------|------|-------------|------------|----------|-----|-------------|------------------|----|------|-----|------|------------------|-------|------|-----|----|----|------|-----|------|------|------|-------|----------|
| LXI R         |                |      | RF    |        | 50 Ω  |       |      |      |            |     |          |     |             |      | SE          | ENSE       | E:PU     | LSE |             |                  |    |      | A   | LIGN | IAUTO            |       |      |     |    |    |      |     | 06:4 | 9:12 | PM S | Sep 2 | 7,2018   |
| Mai           | rker           | 5 /  | Δ3.   | 880    | 00    | ms    | 5    |      |            |     |          |     |             |      |             |            | _        |     | _           | _                |    |      |     |      | Avg Ty           | pe: L | .og  | Pw  | •  |    |      |     |      |      |      |       | 3456     |
|               |                |      |       |        |       |       |      |      |            |     |          |     | Wid<br>1:Lo |      | +           | •          |          |     | ree<br>:8 d |                  | n  |      |     |      | Ext Gai          | n: -3 | 00 4 | 1B  |    |    |      |     |      |      | DET  | P N   | NNNN     |
| _             |                |      |       |        |       |       |      | _    |            | _   | 11-0     | an  | 1.1.0       | **   | _           |            |          |     |             | -                |    | _    |     | _    | Ent Out          |       |      |     |    |    | _    |     |      |      |      |       |          |
|               |                |      |       |        |       | _     |      |      |            |     |          |     |             |      |             |            |          |     |             |                  |    |      |     |      |                  |       |      |     |    |    | 4    | ZIA | IKI  | Э.   |      |       | ms<br>dB |
| 10 c<br>Log   | IB/div         | /    | Ref   | 0.0    | 0 dl  | Bm    | 1    |      |            |     |          |     |             |      |             | _          |          |     |             | _                |    |      |     | _    |                  |       |      |     |    | _  |      |     |      |      | - 1  | .0/   | uв       |
| -10.0         |                | Π    | Π     | Π      |       |       |      |      |            | 1   |          |     | 1           | П    |             |            |          |     |             |                  |    |      |     |      |                  |       |      | 1   | Π  |    |      | 1   |      |      |      |       | * ∏      |
| -20.0         |                |      |       |        |       |       |      |      |            |     |          |     |             | Ш    |             |            |          |     |             |                  |    |      |     |      |                  |       | ſ.   |     |    |    |      |     |      |      |      |       | 1 (1     |
|               |                |      |       |        |       |       |      |      |            |     |          |     |             |      |             |            |          |     |             |                  |    |      |     |      |                  |       |      |     |    |    |      |     |      |      |      |       |          |
| -30.0         |                |      | Ħ     |        |       | -     |      |      |            |     |          |     | F           | Ħ    |             | T          |          |     |             | -                |    |      |     | T    |                  |       |      | 1   | Ħ  |    |      | T   |      |      |      |       |          |
| -40.0         |                |      |       |        |       | -     |      |      |            |     | +        |     | -           | Ħ    |             |            |          |     |             | +                |    |      |     | +    |                  |       |      | +   |    | +  |      | t   |      |      |      | ľ     |          |
| -50.0         |                |      |       |        |       | -     | -    | +    |            | +   | +        | +   | +           | ₩    |             | +          |          |     |             | +                |    |      |     | ₩    |                  | _     |      | +   | ╟  | +  |      | ╢   | +    |      |      |       |          |
| -60.0         |                |      |       |        |       | _     | 1    | _    |            |     | -        | _   | -           |      |             | -          |          |     |             | -                |    |      |     |      |                  |       |      | -   |    | -  |      | -   | _    |      |      |       |          |
| -70.0         |                |      |       |        |       |       |      |      |            |     | _        | _   |             | 1    |             | -          |          |     |             |                  |    |      |     |      |                  |       |      |     |    | _  |      | -   | _    |      |      |       |          |
| -80.0         |                |      |       |        |       |       |      | .(   |            |     |          | 34  | 4           | A    | <u>1</u>    |            |          |     |             |                  |    |      |     |      | ,                | _     | 54   | 46  | Ш, |    |      |     |      |      |      |       |          |
| -90.0         | - hh           | ିଏ   | 1 40  | · m    | U     | here  | J (M | JU I | a          | Ж   | <u>4</u> | n I | 1           | XX 1 | , NU        | r          | المتح    | her | الروامر     | 1 <sup>7</sup> 1 | ww | Cr-v | տղ  | M    | \ <mark>6</mark> |       | ×    | ԴվԽ | 'h | M  | Մո   | ų   | 4    | JU I | rul  | L.    | իսվ և    |
| 50.0          | 1              |      |       |        |       |       |      |      |            |     |          |     |             |      |             |            |          |     |             |                  |    |      |     |      |                  |       |      |     |    |    |      |     |      |      |      |       |          |
| Cer           | nter           | 433  | 3.96  | 000    | 0 MI  | Hz    |      |      |            |     |          |     |             |      |             |            |          |     |             |                  |    |      |     |      |                  |       |      |     |    |    |      |     |      |      | Sp   | an    | 0 Hz     |
| Res           | s BW           | / 10 | 00 k  | Hz     |       |       |      |      |            |     |          |     |             | #    | VE          | sw         | 10       | 00  | kHz         | 2                |    |      |     |      |                  |       |      | S   | we | ep | ) 4  | 0.0 | 00   | ms   | (1   | 001   | pts)     |
| MKR           | MODE           | TRC  | SCL   |        |       |       | ×    |      |            |     |          |     |             | -    | Y           |            |          | 1   | FUI         | ICTIC            | DN | F    | UNC | тю   | N WIDTH          |       |      |     |    | FL | INCT | ION | VAL  | JE   |      |       | ~        |
| 1             | Δ2             | 1    |       | (Δ)    |       |       |      |      | 400        |     |          | (Δ) |             | ~    |             |            | dB       |     |             |                  |    |      |     |      |                  |       |      |     |    |    |      |     |      |      |      |       |          |
| 2             | F<br>∆4        |      | t     | (Δ)    |       |       |      |      | 4.1<br>.08 |     |          | Δì  |             | -82  | 2.65        |            | ∃m<br>dB |     |             |                  |    |      |     |      |                  |       |      |     |    |    |      |     |      |      |      |       |          |
| 4             | F              |      | t     |        |       |       |      | 1    | 0.9        | 2 m | ıs       |     |             | -84  | 1.56        | 6 dE       | Зm       |     |             |                  |    |      |     |      |                  |       |      |     |    |    |      |     |      |      |      |       |          |
| <b>5</b><br>6 | <u>Δ6</u><br>F |      | t     | (Δ)    |       |       |      |      | .88        |     |          | Δ)  |             | -81  | -1.<br>1.92 | 67<br>2 dE |          |     |             |                  |    |      |     |      |                  |       |      |     |    |    |      |     |      |      |      |       |          |
|               |                |      |       |        |       |       |      |      |            |     |          |     |             |      |             |            |          |     |             |                  |    |      |     |      |                  |       |      |     |    |    |      |     |      |      |      |       |          |
| 7<br>8<br>9   |                |      |       |        |       |       |      |      |            |     |          |     |             |      |             |            |          |     |             |                  |    |      |     |      |                  |       |      |     |    |    |      |     |      |      |      |       |          |
| 10            |                |      |       |        |       |       |      |      |            |     |          |     |             |      |             |            |          |     |             |                  |    |      |     |      |                  |       |      |     |    |    |      |     |      |      |      |       |          |
| 11            |                |      |       |        |       |       |      |      |            |     |          |     |             |      |             |            |          |     |             |                  |    |      |     |      |                  |       |      |     |    |    |      |     |      |      |      |       | >        |
| MSG           |                |      |       |        |       |       |      |      |            |     |          |     |             |      |             |            |          |     |             |                  |    |      |     |      | STATUS           |       |      |     |    |    |      |     |      |      |      | _     |          |
|               |                |      |       |        |       |       |      |      |            |     |          |     |             |      |             |            |          |     |             |                  |    |      |     |      | 5                |       |      |     |    |    |      |     |      |      |      |       |          |

Page 27 of 30



# 7. AUTOMATICALLY DEACTIVATE

# 7.1 STANDARD REQUIREMENT

A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

# 7.2 TEST PROCEDURE

The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.

Spectrum Setting : RBW= 100KHz, VBW=300KHz, Sweep time = Auto. Note:

(1)Refer to the plot (As Below),We find a manually operated transmitter shall employ a switch that will automatically deactivate the transmitteri immediately, within not more than 5 seconds of being released.

(2)The EUT is comply with FCC PART 15 clause 15.231(a)(1).manually working mode are pre-tested.and only the worst result is reported.

## 7.3 TEST SETUP



# 7.4 TEST RESULTS

| Activation time | Limit(Sec) | Result |
|-----------------|------------|--------|
| 0.23 s          | 5 s        | Pass   |



# Page 28 of 30

### Report No.: STS1809077W01

| Agilent Spectrum Analyzer - Swept     |                               |                                             |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                    |
|---------------------------------------|-------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| ARL RF 50Ω A<br>Marker 2 3.39000 s    | AC<br>PNO: Wide<br>IFGain:Low | SENSE:INT<br>Trig: Free Run<br>Atten: 20 dB | ALIGNAUTO<br>Avg Type: L                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IAM Sep 21, 201<br>IRACE 1 2 3 4 5<br>TYPE WWWWWW<br>DET P N N N N |
| 0 dB/div Ref 10.00 dB                 | m                             |                                             |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | r2 3.390<br>4.00 dBr                                               |
| og                                    | $\wedge$ <sup>3</sup>         |                                             |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                    |
| 0.0                                   |                               |                                             |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                    |
| 0.0                                   |                               |                                             |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                    |
| 0.0                                   |                               |                                             |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                    |
| 0.0                                   |                               |                                             |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                    |
| 0.0                                   |                               |                                             |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                    |
| 0.0                                   |                               |                                             |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                    |
| 0.0                                   |                               |                                             |                                                                                                                | much merinan marine marine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                    |
| 0.0                                   |                               |                                             | a na shekara ya shi na ku sa shekara ka shekara shekara shekara shekara shekara shekara shekara shekara shekar | and that have a stand of the second se | - As of A Characteria                                              |
| enter 433.960000 MHz<br>es BW 100 kHz |                               | VBW 100 kHz                                 |                                                                                                                | Sweep 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Span 0 F<br>s (1001 pt                                             |
| KR MODE TRC SCL                       |                               | FUNCTION                                    | FUNCTION WIDTH                                                                                                 | FUNCTION VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                    |
| 1 N 1 t<br>2 N 1 t                    | 3.390 s -74                   | .00 dBm                                     |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                    |
| 3 N 1 t<br>4                          | 3.310 s -3                    | 2.09 dBm                                    |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                    |
| 5                                     |                               |                                             |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                    |
| 7                                     |                               |                                             |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                    |
| 8<br>9                                |                               |                                             |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                    |
| 0                                     |                               |                                             |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                    |
|                                       |                               |                                             |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                    |
| G                                     |                               |                                             | STATUS                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                    |

Mark 1: Start transmitting (detected people, activate)

Mark 3: Stop transmitting (detected close)

Activation time= Mark 2- Mark 1=3.390-3.160=0.23 s



Page 29 of 30

# 8. ANTENNA REQUIREMENT

# 8.1 STANDARD REQUIREMENT

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

## 8.2 EUT ANTENNA

The EUT antenna is Wire antenna. It conforms to the standard requirements.



Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: 0755-36886288
 Fax: 0755-36886277

 Http://www.stsapp.com
 E-mail: sts@stsapp.com



# **APPENDIX 1- PHOTOS OF TEST SETUP**



\* \* \* \* \* END OF THE REPORT \* \* \* \* \*

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: 0755-36886288
 Fax: 0755-36886277

 Http://www.stsapp.com
 E-mail: sts@stsapp.com