

Page 1 of 53

APPLICATION CERTIFICATION FCC Part 15C On Behalf of Qingping Technology (Beijing) Co., Ltd.

Qingping Door/Window Contact Sensor Model No.: CGH1

FCC ID: 2AQ3F-CGH1

Prepared for : Qingping Technology (Beijing) Co., Ltd.

Address : Room 401, Block B, Fangheng Times Square, NO.10
Wanging Street, Chapveng District, Paining China

Wangjing Street, Chaoyang District, Bejing, China

Prepared by : Shenzhen Accurate Technology Co., Ltd.

Address : 1/F., Building A, Changyuan New Material Port, Science &

Industry Park, Nanshan District, Shenzhen, Guangdong, P.R.

China

Tel: (0755) 26503290 Fax: (0755) 26503396

Report No. : ATE20200083

Date of Test : February 18-19, 2020 Date of Report : February 19, 2020

Page 2 of 53

TABLE OF CONTENTS

Description Page **Test Report Certification** GENERAL INFORMATION5 Description of Device (EUT)......5 1.1. 1.2. 1.3. Special Accessory and Auxiliary Equipment6 1.4. Measurement Uncertainty......6 1.5. MEASURING DEVICE AND TEST EQUIPMENT......7 2. OPERATION OF EUT DURING TESTING......8 3. 3.1. 3.2. Configuration and peripherals8 TEST PROCEDURES AND RESULTS9 4. 5. 6DB BANDWIDTH TEST......10 5.1. 5.2. The Requirement For Section 15.247(a)(2)......10 5.3. 5.4. Test Procedure 10 5.5. Test Result 11 5.6. MAXIMUM PEAK OUTPUT POWER TEST15 6. 6.1. 6.2. 6.3. 6.4. Test Procedure 15 6.5. Test Result _______16 6.6. 7. Block Diagram of Test Setup......20 7.1. 7.2.

Test Result 21

Operating Condition of EUT25

RADIATED SPURIOUS EMISSION TEST33

7.3.

7.4.

7.5. 7.6.

8.1.

8.2.

8.3.

8.4.

8.5.

8.6.

9.1. 9.2.

9.3.

8.

9.

Page 3 of 53

9.5.	Operating Condition of EUT	36
9.6.	Test Procedure	36
9.7.	Data Sample	
9.8.	Test Result	37
10. PO	WER LINE CONDUCTED EMISSION TEST	50
10.1.	Block Diagram of Test Setup	50
10.2.	Test System Setup.	50
10.3.	Test Limits	51
10.4.	Configuration of EUT on Test	51
10.5.	Operating Condition of EUT	51
10.6.	Test Procedure	51
10.7.	Data Sample	52
10.8.	Result:	52
11. AN	TENNA REQUIREMENT	53
11.1.	The Requirement	53
11.2.	Antenna Construction	

Page 4 of 53

Test Report Certification

Applicant : Qingping Technology (Beijing) Co., Ltd.

Manufacturer : Guangdong Creator & FlyAudio Electronic Technology Co., Ltd.

EUT Description : Qingping Door/Window Contact Sensor

Model No. : CGH1
Trade Mark : qingping

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.10: 2013

The EUT was tested according to DTS test procedure of August 24, 2018 KDB558074 D01 DTS Meas Guidance v05 for compliance to FCC 47CFR 15.247 requirements

The device described above is tested by Shenzhen Accurate Technology Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.247 limits. The measurement results are contained in this test report and Shenzhen Accurate Technology Co., Ltd. is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of Shenzhen Accurate Technology Co., Ltd.

Date of Test:	February 18-19, 2020
Date of Report:	February 19, 2020
	D / In Dang
Test Engineer:	BobWarg
	(Bob Wang, Engineer)
Prepared by :	BECHNOLOGY
	(Bo APPROVED
Approved & Authorized Signer:	(Com Line Manner)
	(Sean Liu, Manager)

Page 5 of 53

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

Model Number CGH1

Bluetooth version V5.0 (BLE 1Mbps+2Mbps)

Frequency Range 2402MHz-2480MHz

Number of Channels 40 Antenna Gain(Max) 0dBi

Antenna type PCB Antenna

Modulation mode : **GFSK** Power supply DC 3V Trade Mark qingping

Applicant Qingping Technology (Beijing) Co., Ltd.

Address Room 401, Block B, Fangheng Times Square, NO.10

Wangjing Street, Chaoyang District, Bejing, China

Manufacturer Guangdong Creator & FlyAudio Electronic Technology

Co., Ltd.

Address Floor 1&3&4, Building D1, The 3rd Industrial Zone,

Banxianshan, Hengli Town, Dongguan, Guangdong,

P.R.China

1.2. Carrier Frequency of Channels

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channe 1	Frequency (MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

Page 6 of 53

1.3. Special Accessory and Auxiliary Equipment

N/A

1.4.Description of Test Facility

EMC Lab : Recognition of accreditation by Federal Communications

Commission (FCC)

The Designation Number is CN1189 The Registration Number is 708358

Listed by Innovation, Science and Economic Development

Canada (ISEDC)

The Registration Number is 5077A-2

Accredited by China National Accreditation Service for

Conformity Assessment (CNAS)

The Registration Number is CNAS L3193

Accredited by American Association for Laboratory

Accreditation (A2LA)

The Certificate Number is 4297.01

Name of Firm • Shenzhen Accurate Technology Co., Ltd.

Site Location . 1/F., Building A, Changyuan New Material Port, Science

& Industry Park, Nanshan District, Shenzhen, Guangdong,

P.R. China

1.5. Measurement Uncertainty

Radiated emission expanded uncertainty : U=2.66dB, k=2

(9kHz-30MHz)

Radiated emission expanded uncertainty : U=4.28dB, k=2

(30MHz-1000MHz)

Radiated emission expanded uncertainty : U=4.98dB, k=2

(1G-18GHz)

Radiated emission expanded uncertainty : U=5.06dB, k=2

(18G-26.5GHz)

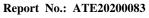
Conduction Emission Expanded Uncertainty : U=2.72dB, k=2

(Mains ports, 9kHz-30MHz)

Conduction Emission Expanded Uncertainty : U=2.94dB, k=2

(Telecommunication ports, 150kHz-30MHz)

Power disturbance Expanded Uncertainty : U=2.92dB, k=2 Harmonic current expanded uncertainty : U=0.512%, k=2



Page 7 of 53

2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Туре	S/N	Calibrated dates	Cal. Interval
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 04, 2020	One Year
Spectrum Analyzer	Rohde&Schwarz	FSV-40	101495	Jan. 04, 2020	One Year
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 04, 2020	One Year
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 04, 2020	One Year
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 04, 2020	One Year
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 04, 2020	One Year
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 04, 2020	One Year
Highpass Filter	Wainwright Instruments	WHKX3.6/18 G-10SS	N/A	Jan. 04, 2020	One Year
Band Reject Filter	Wainwright Instruments	WRCG2400/2 485-2375/2510 -60/11SS	N/A	Jan. 04, 2020	One Year
RF Coaxial Cable (Radiated Emission)	RESENBERGER	N-12m	No.11	Jan. 04, 2020	One Year
RF Coaxial Cable (Radiated Emission)	RESENBERGER	N-0.5m	No.12	Jan. 04, 2020	One Year
RF Coaxial Cable (Radiated Emission)	SUHNER	N-2m	No.13	Jan. 04, 2020	One Year
RF Coaxial Cable (Radiated Emission)	SUHNER	N-0.5m	No.15	Jan. 04, 2020	One Year
RF Coaxial Cable (Radiated Emission)	SUHNER	N-2m	No.16	Jan. 04, 2020	One Year
RF Coaxial Cable (Radiated Emission)	RESENBERGER	N-6m	No.17	Jan. 04, 2020	One Year
Radiated Emission Mea	asurement Software: 1	EZ_EMC V1.1.4	.2		

Page 8 of 53

3. OPERATION OF EUT DURING TESTING

3.1. Operating Mode

The mode is used: **Transmitting mode**

Low Channel: 2402MHz Middle Channel: 2440MHz High Channel: 2480MHz

Note: The equipment under test (EUT) was tested under new battery. The Bluetooth has been tested under continuous transmission mode.

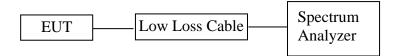
Its duty cycle setting is greater than 98%.

3.2. Configuration and peripherals

EUT
Figure 1 Setup: Transmitting mode

Page 9 of 53

4. TEST PROCEDURES AND RESULTS


FCC Rules	Description of Test	Result
Section 15.247(a)(2)	6dB Bandwidth Test	Compliant
Section 15.247(b)(3)	Maximum Peak Output Power Test	Compliant
Section 15.247(e)	Power Spectral Density Test	Compliant
Section 15.247(d)	Band Edge Compliance Test	Compliant
Section 15.247(d) Section 15.209	Radiated Spurious Emission Test	Compliant
Section 15.207	AC Power Line Conducted Emission Test	N/A
Section 15.203	Antenna Requirement	Compliant

Page 10 of 53

5. 6DB BANDWIDTH TEST

5.1.Block Diagram of Test Setup

5.2. The Requirement For Section 15.247(a)(2)

Section 15.247(a)(2): Systems using digital modulation techniques may operate in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

5.3.EUT Configuration on Test

The equipment is installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.4. Operating Condition of EUT

- 5.4.1. Setup the EUT and simulator as shown as Section 5.1.
- 5.4.2. Turn on the power of all equipment.
- 5.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

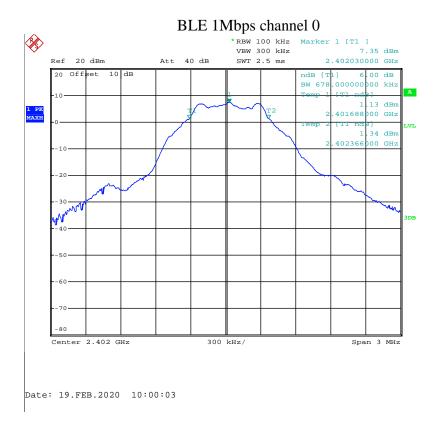
5.5.Test Procedure

- 5.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 5.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz.
- 5.5.3. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

Report No.: ATE20200083 Page 11 of 53

5.6.Test Result

Test Lab: Shielding room Test Engineer: Bob


BLE 1Mbps

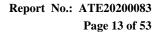
Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit(MHz)	Result
0	2402	0.678	0.5	Pass
19	2440	0.678	0.5	Pass
39	2480	0.678	0.5	Pass

BLE 2Mbps

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit(MHz)	Result
0	2402	1.134	0.5	Pass
19	2440	1.146	0.5	Pass
39	2480	1.140	0.5	Pass

The spectrum analyzer plots are attached as below.

Page 12 of 53


BLE 1Mbps channel 19

BLE 1Mbps channel 39

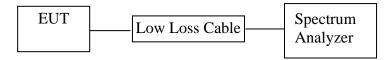
Date: 19.FEB.2020 10:01:25

BLE 2Mbps channel 0

BLE 1Mbps channel 19

BLE 1Mbps channel 39

Date: 19.FEB.2020 11:41:55



Page 15 of 53

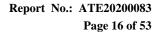
6. MAXIMUM PEAK OUTPUT POWER TEST

6.1.Block Diagram of Test Setup

6.2. The Requirement For Section 15.247(b)(3)

Section 15.247(b)(3): For systems using digital modulation in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands: 1 Watt.

6.3.EUT Configuration on Test


The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.4. Operating Condition of EUT

- 6.4.1. Setup the EUT and simulator as shown as Section 6.1.
- 6.4.2. Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

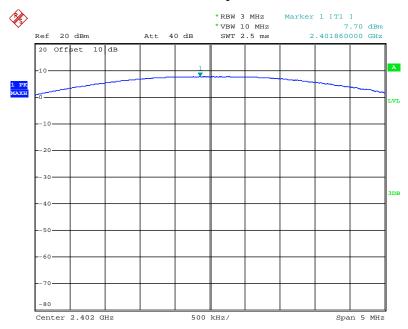
6.5. Test Procedure

- 6.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 6.5.2.Set RBW of spectrum analyzer to 3 MHz and VBW to 10MHz(BLE 1Mbps).
- 6.5.3.Set RBW of spectrum analyzer to 3 MHz and VBW to 10MHz(BLE 2MHz).
- 6.5.4. Measurement the maximum peak output power.

6.6.Test Result

Test Lab: Shielding room Test Engineer: Bob

BLE 1Mbps

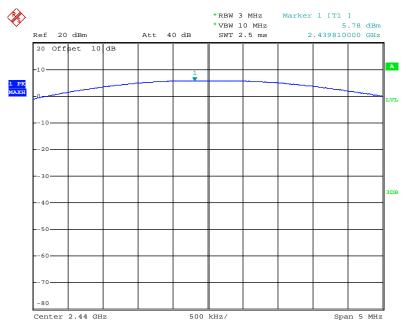

Channel	Frequency (MHz)	Peak Power Output (dBm)	Peak Power Limit (dBm)	Result
0	2402	7.70	30	Pass
19	2440	5.78	30	Pass
39	2480	4.74	30	Pass

BLE 2Mbps

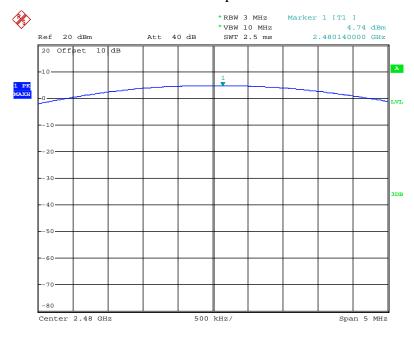
Channel	Frequency (MHz)	Peak Power Output (dBm)	Peak Power Limit (dBm)	Result
0	2402	7.55	30	Pass
19	2440	5.50	30	Pass
39	2480	5.11	30	Pass

The spectrum analyzer plots are attached as below.

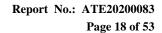
BLE 1Mbps channel 0



Date: 19.FEB.2020 10:07:58

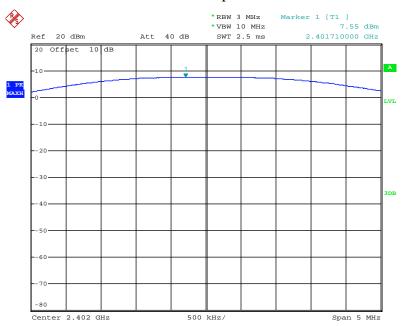


BLE 1Mbps channel 19

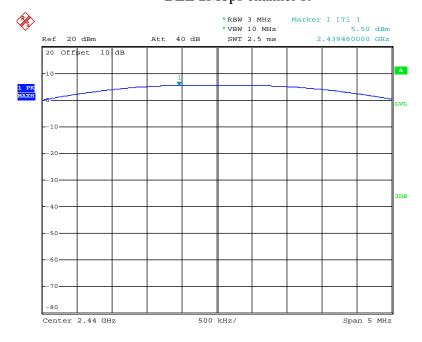


Date: 19.FEB.2020 10:07:41

BLE 1Mbps channel 39

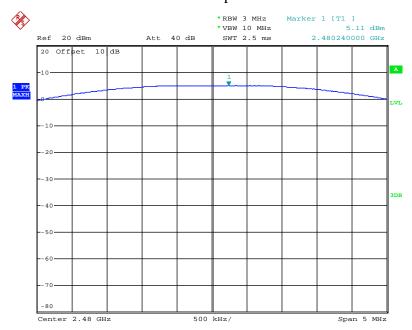


Date: 19.FEB.2020 10:07:15



BLE 2Mbps channel 0

Date: 19.FEB.2020 11:51:00


BLE 2Mbps channel 19

Date: 19.FEB.2020 11:50:36

BLE 2Mbps channel 39

Date: 19.FEB.2020 11:50:11

Page 20 of 53

7. POWER SPECTRAL DENSITY TEST

7.1.Block Diagram of Test Setup

7.2. The Requirement For Section 15.247(e)

Section 15.247(e): For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.3.EUT Configuration on Test

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.4. Operating Condition of EUT

- 7.4.1. Setup the EUT and simulator as shown as Section 7.1.
- 7.4.2.Turn on the power of all equipment.
- 7.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

Report No.: ATE20200083
Page 21 of 53

7.5.Test Procedure

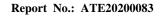
7.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.

7.5.2.Measurement Procedure PKPSD:

- 7.5.3. This procedure must be used if maximum peak conducted output power was used to demonstrate compliance to the fundamental output power limit, and is optional if the maximum (average) conducted output power was used to demonstrate compliance.
 - 1. Set analyzer center frequency to DTS channel center frequency.
 - 2. Set the span to 1.5 times the DTS channel bandwidth.
 - 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
 - 4. Set the VBW \geq 3 x RBW.
 - 5. Detector = peak.
 - 6. Sweep time = auto couple.
 - 7. Trace mode = max hold.
 - 8. Allow trace to fully stabilize.
 - 9. Use the peak marker function to determine the maximum amplitude level.
 - 10. If measured value exceeds limit, reduce RBW (no less than 3kHz) and repeat.
- 7.5.4. Measurement the maximum power spectral density.

7.6.Test Result

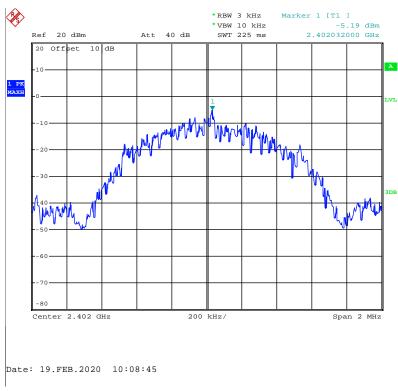
Test Lab: Shielding room Test Engineer: Bob

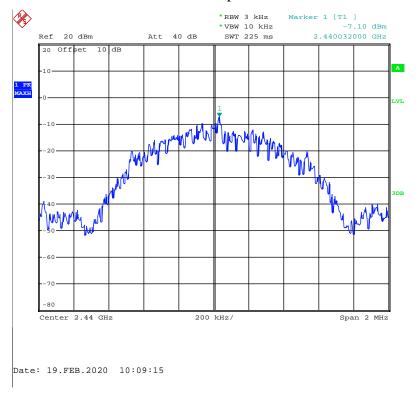

BLE 1Mbps

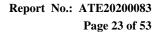
Channel	Frequency (MHz)	PSD (dBm/3KHz)	Limit (dBm/3KHz)	Result
0	2402	-5.19	8	Pass
19	2440	-7.10	8	Pass
39	2480	-8.27	8	Pass

BLE 2Mbps

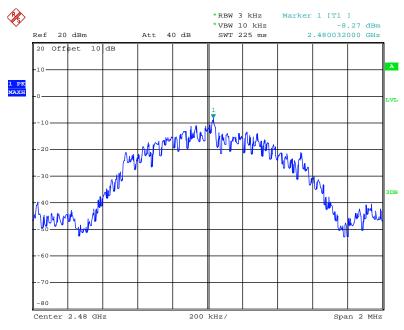
Channel	Frequency (MHz)	PSD (dBm/3KHz)	Limit (dBm/3KHz)	Result
0	2402	-9.52	8	Pass
19	2440	-11.30	8	Pass
39	2480	-12.04	8	Pass

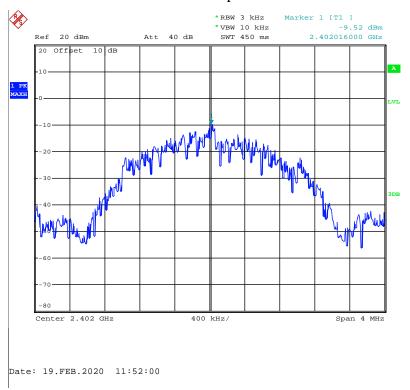

The spectrum analyzer plots are attached as below.

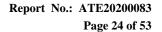

Page 22 of 53



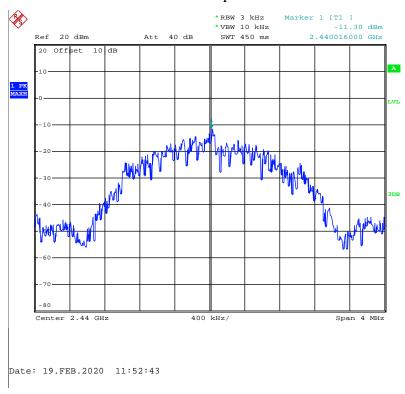
BLE 1Mbps channel 0

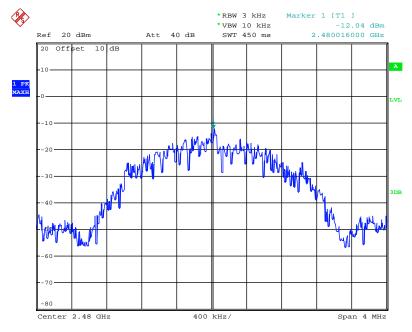

BLE 1Mbps channel 19




BLE 1Mbps channel 39

Date: 19.FEB.2020 10:09:52

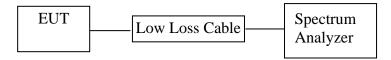

BLE 2Mbps channel 0



BLE 2Mbps channel 19

BLE 2Mbps channel 39

Date: 19.FEB.2020 11:53:20



Page 25 of 53

8. BAND EDGE COMPLIANCE TEST

8.1.Block Diagram of Test Setup

8.2. The Requirement For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

8.3.EUT Configuration on Test

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

8.4. Operating Condition of EUT

- 8.4.1. Setup the EUT and simulator as shown as Section 8.1.
- 8.4.2. Turn on the power of all equipment.
- 8.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2480MHz TX frequency to transmit.

Page 26 of 53

8.5. Test Procedure

Conducted Band Edge:

- 8.5.1. The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 8.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz.

Radiate Band Edge:

- 8.5.3.The EUT is placed on a turntable, which is 0.1m above the ground plane and worked at highest radiated power.
- 8.5.4. The turntable was rotated for 360 degrees to determine the position of maximum emission level.
- 8.5.5.EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 8.5.6.Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
- 8.5.7.RBW=1MHz, VBW=1MHz
- 8.5.8. The band edges was measured and recorded.

Note: All modes of operation were investigated and the worst case (GFSK (BLE 1Mbps)) emissions are reported.

8.6.Test Result

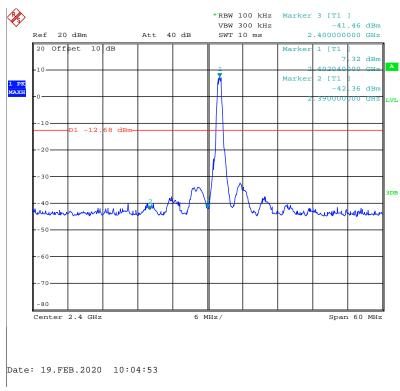
Conducted Band Edge Result

Test Lab: Shielding room Test Engineer: Bob

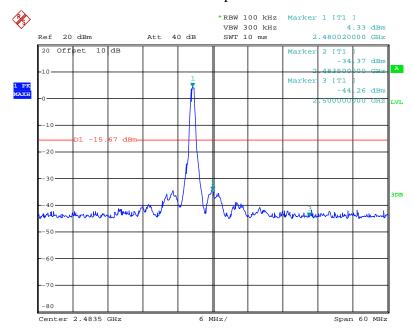

BLE 1Mbps

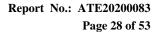
Ī	Channel	Frequency	Delta peak to band emission	Limit(dBc)	Result
ſ	0	2.402GHz	34.14	>20	Pass
Ī	39	2.480GHz	30.04	>20	Pass

BLE 2Mbps

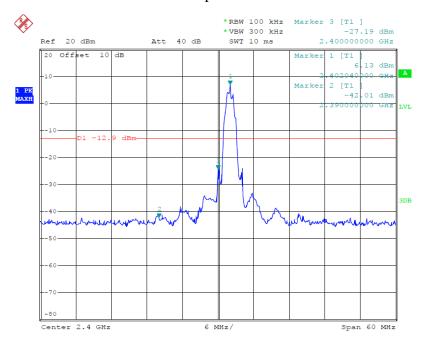

Channel	Frequency	Delta peak to band emission	Limit(dBc)	Result
0	2.402GHz	21.06	>20	Pass
39	2.480GHz	29.26	>20	Pass

The spectrum analyzer plots are attached as below.

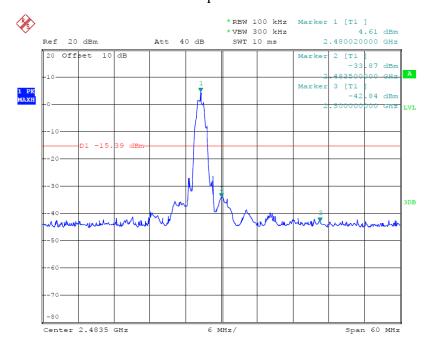



BLE 1Mbps channel 0

BLE 1Mbps channel 39



Date: 19.FEB.2020 10:06:21



BLE 2Mbps channel 0

Date: 19.FEB.2020 11:47:54

BLE 2Mbps channel 39

Date: 19.FEB.2020 11:48:54

Page 29 of 53

Radiated Band Edge Result (BLE 1Mbps)

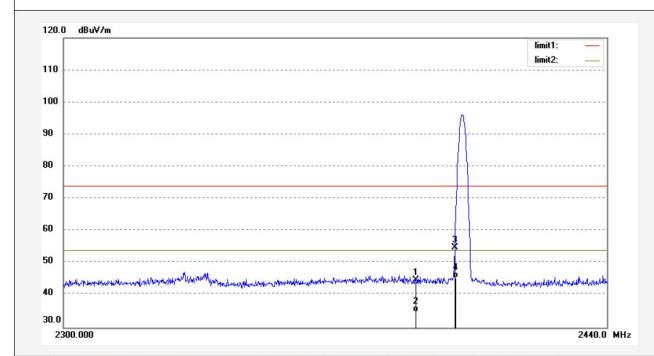
Test Lab: 3m Anechoic chamber Test Engineer: Bob

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: 2020 #48 Polarization: Vertical Standard: FCC PK Power Source: DC 3V

Test item: Radiation Test Date: 20/02/19/
Temp.(C)/Hum.(%) 23 C / 48 % Time: 9/21/56


EUT: qingping Door/Window Contact Sensor Engineer Signature: Bob

Mode: TX2402MHz Distance: 3m

Model: CGH1

Manufacturer: Guangdong Creator

Note: Report NO.:ATE20200083

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2390.000	43.93	0.79	44.72	74.00	-29.28	peak	150	63	
2	2390.000	34.12	0.79	34.91	54.00	-19.09	AVG	150	221	
3	2400.000	53.90	0.88	54.78	74.00	-19.22	peak	150	93	
4	2400.000	44.54	0.88	45.42	54.00	-8.58	AVG	150	148	

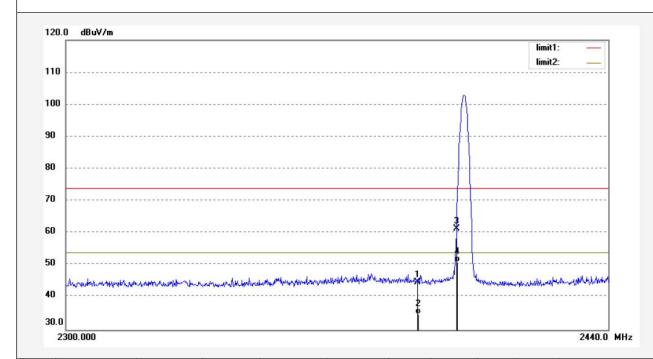
ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20200083

Page 30 of 53

Job No.: 2020 #47 Polarization: Horizontal Standard: FCC PK Power Source: DC 3V


Test item: Radiation Test Date: 20/02/19/
Temp.(C)/Hum.(%) 23 C / 48 % Time: 9/21/23

EUT: qingping Door/Window Contact Sensor Engineer Signature: Bob Mode: TX2402MHz Distance: 3m

Mode: TX2402MHz
Model: CGH1

Manufacturer: Guangdong Creator

Note: Report NO.:ATE20200083

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2390.000	44.05	0.79	44.84	74.00	-29.16	peak	250	196	
2	2390.000	34.15	0.79	34.94	54.00	-19.06	AVG	200	32	
3	2400.000	60.53	0.88	61.41	74.00	-12.59	peak	250	63	
4	2400.000	50.12	0.88	51.00	54.00	-3.00	AVG	200	115	

Site: 1# Chamber

Tel:+86-0755-26503290

Page 31 of 53

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

n,P.R.China Fax:+86-0755-26503396

Polarization: Horizontal

Power Source: DC 3V

Date: 20/02/19/ Time: 9/17/03

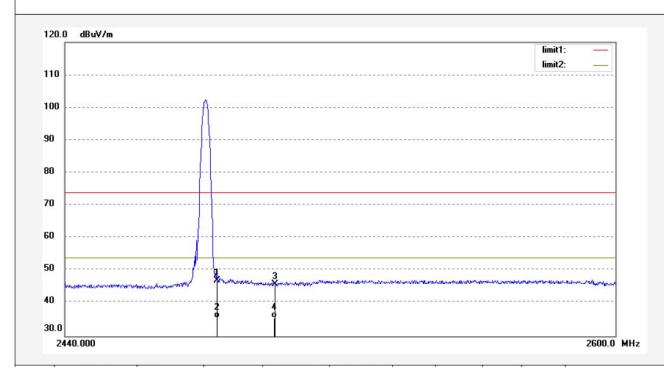
Engineer Signature: Bob

Distance: 3m

Job No.: 2020 #46
Standard: FCC PK
Test item: Radiation Test

lest item: Radiation lest

Temp.(C)/Hum.(%) 23 C / 48 %


EUT: qingping Door/Window Contact Sensor

Mode: TX2480MHz

Model: CGH1

Manufacturer: Guangdong Creator

Note: Report NO.:ATE20200083

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2483.500	45.92	1.10	47.02	74.00	-26.98	peak	250	182	
2	2483.500	34.42	1.10	35.52	54.00	-18.48	AVG	200	51	
3	2500.000	44.75	1.10	45.85	74.00	-28.15	peak	250	156	
4	2500.000	34.42	1.10	35.52	54.00	-18.48	AVG	200	63	

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20200083

Page 32 of 53

Polarization: Vertical

Date: 20/02/19/ Time: 9/16/12

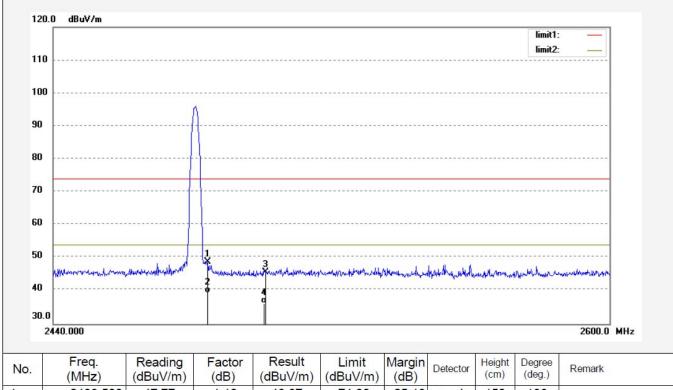
Engineer Signature: Bob

Distance: 3m

Job No.: 2020 #45 Standard: FCC PK Power Source: DC 3V

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

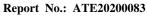

EUT: gingping Door/Window Contact Sensor

TX2480MHz Mode:

Model: CGH1

Manufacturer: Guangdong Creator

Note: Report NO.:ATE20200083

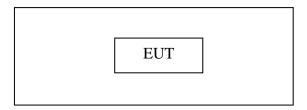


No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2483.500	47.77	1.10	48.87	74.00	-25.13	peak	150	186	
2	2483.500	38.16	1.10	39.26	54.00	-14.74	AVG	150	63	
3	2500.000	44.61	1.10	45.71	74.00	-28.29	peak	150	218	
4	2500.000	35.15	1.10	36.25	54.00	-17.75	AVG	150	82	

Note:

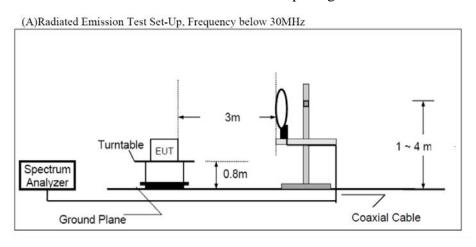
- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

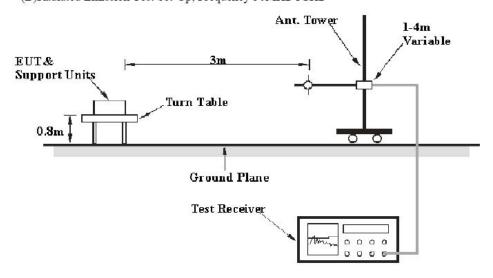


Page 33 of 53

9. RADIATED SPURIOUS EMISSION TEST


9.1.Block Diagram of Test Setup

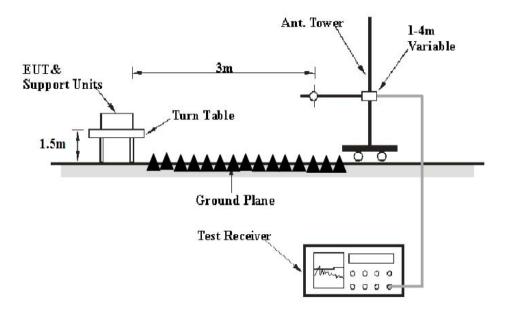
9.1.1.Block diagram of connection between the EUT and peripherals

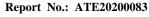


Setup: Transmitting mode

9.1.2.Semi-Anechoic Chamber Test Setup Diagram

(B)Radiated Emission Test Set-Up, Frequency 30MHz-1GHz




Page 34 of 53

(C) Radiated Emission Test Set-Up, Frequency above 1GHz

9.2. The Limit For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

Page 35 of 53

9.3. Restricted bands of operation

9.3.1.FCC Part 15.205 Restricted bands of operation

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	$\binom{2}{}$
13.36-13.41			

¹Until February 1, 1999, this restricted band shall be 0.490-0.510

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

9.4. Configuration of EUT on Test

The equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

²Above 38.6

Page 36 of 53

9.5. Operating Condition of EUT

- 9.5.1. Setup the EUT and simulator as shown as Section 9.1.
- 9.5.2. Turn on the power of all equipment.
- 9.5.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

9.6.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground(Below 1GHz). The EUT and its simulators are placed on a turntable, which is 1.5 meter high above ground(Above 1GHz). The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI C63.10:2013 on radiated emission measurement. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.

The bandwidth of test receiver is set at 9 kHz in below 30MHz. and set at 120 kHz in 30-1000MHz, and 1MHz in above 1000MHz.

The final measurement in band 9-90 kHz, 110-490 kHz and above 1000MHz is performed with Average detector. Except those frequency bands mention above, the final measurement for frequencies below 1000MHz is performed with Quasi Peak detector. The field strength is calculated by adding the antenna factor, and cable loss, and subtracting the amplifier gain from the measured reading.

Page 37 of 53

9.7.Data Sample

Frequency	Reading	Factor	Result	Limit	Margin	Remark
(MHz)	(dBµv)	(dB/m)	(dBµv/m)	(dBµv/m)	(dB)	
X.XX	43.85	-22.22	21.63	43.5	-21.87	QP

Frequency(MHz) = Emission frequency in MHz

Reading(dBµv) = Uncorrected Analyzer/Receiver reading

Factor (dB/m) = Antenna factor + Cable Loss - Amplifier gain

Result($dB\mu v/m$) = Reading($dB\mu v$) + Factor(dB/m)

Limit $(dB\mu v/m) = Limit$ stated in standard

Margin (dB) = Result(dB μ v/m) - Limit (dB μ v/m)

QP = Quasi-peak Reading

Calculation Formula:

 $Margin(dB) = Result (dB\mu V/m) - Limit(dB\mu V/m)$

Result($dB\mu V/m$)= Reading($dB\mu V$)+ Factor(dB/m)

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the limit.

9.8.Test Result

Pass.

Testing is carried out with frequency rang 9kHz to the tenth harmonics, which above 3th Harmonics are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

The measurements greater than 20dB below the limit from 9kHz to 30MHz and 18 to 26.5GHz.

The spectrum analyzer plots are attached as below.

Note: All modes of operation were investigated and the worst case (GFSK (BLE 1Mbps)) emissions are reported.

Test Lab: 3m Anechoic chamber

Test Engineer: Bob

Below 1GHz

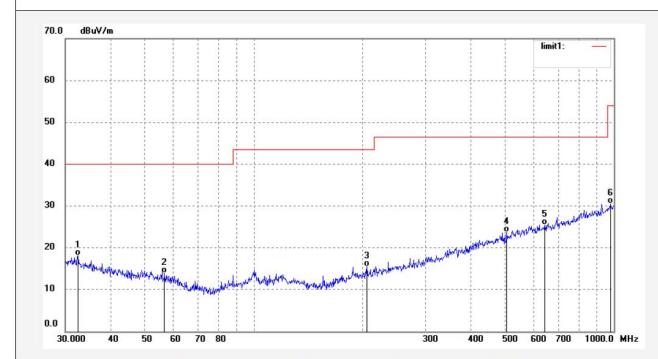
Report No.: ATE20200083 Page 38 of 53

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: 2020 #33 Polarization: Vertical Standard: FCC Class B 3M Radiated Power Source: DC 3V


Test item: Radiation Test Date: 20/02/18/
Temp.(C)/Hum.(%) 23 C / 48 % Time: 11/18/18

EUT: qingping Door/Window Contact Sensor Engineer Signature: Bob

Mode: TX2402MHz Distance: 3m

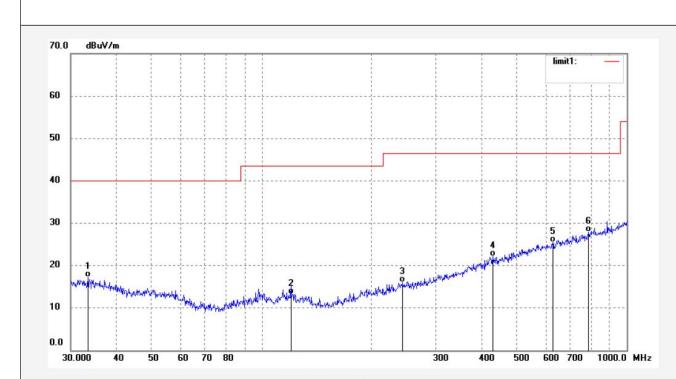
Model: CGH1

Manufacturer: Guangdong Creator

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	32.5197	28.79	-10.68	18.11	40.00	-21.89	QP	100	86	
2	56.5929	28.17	-14.28	13.89	40.00	-26.11	QP	100	117	
3	206.3976	28.72	-13.27	15.45	43.50	-28.05	QP	100	52	
4	504.7062	29.40	-5.68	23.72	46.50	-22.78	QP	100	215	
5	642.8613	29.00	-3.52	25.48	46.50	-21.02	QP	100	62	
6	979.1803	28.89	1.59	30.48	54.00	-23.52	QP	100	103	

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20200083


Page 39 of 53

Job No.: 2020 #34 Polarization: Horizontal Standard: FCC Class B 3M Radiated Power Source: DC 3V

Test item: Radiation Test Date: 20/02/18/
Temp.(C)/Hum.(%) 23 C / 48 % Time: 11/19/36

EUT: qingping Door/Window Contact Sensor Engineer Signature: Bob

Mode: TX2402MHz Distance: 3m Model: CGH1

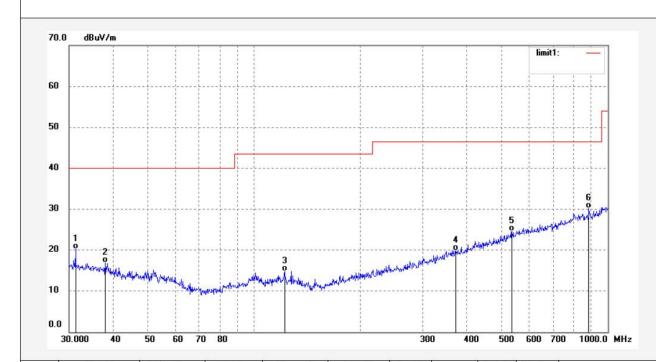
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	33.4448	28.48	-11.26	17.22	40.00	-22.78	QP	200	154	
2	120.2766	27.45	-14.18	13.27	43.50	-30.23	QP	200	159	
3	243.3771	27.86	-11.82	16.04	46.50	-30.46	QP	200	82	
4	429.5228	29.15	-7.05	22.10	46.50	-24.40	QP	200	115	
5	627.2738	29.11	-3.61	25.50	46.50	-21.00	QP	200	320	
6	785.0934	29.23	-1.32	27.91	46.50	-18.59	QP	200	116	

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20200083

Page 40 of 53


Job No.: 2020 #35 Polarization: Horizontal Standard: FCC Class B 3M Radiated Power Source: DC 3V

Test item: Radiation Test Date: 20/02/18/ Temp.(C)/Hum.(%) 23 C / 48 % Time: 11/21/15

EUT: qingping Door/Window Contact Sensor Engineer Signature: Bob

Mode: TX2440MHz Distance: 3m Model: CGH1

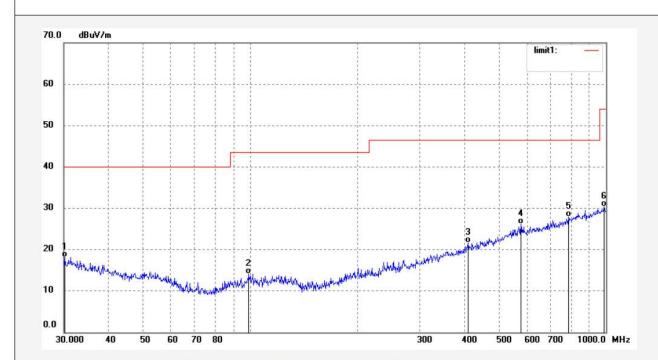
Manufacturer: Guangdong Creator

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	31.2893	31.25	-11.05	20.20	40.00	-19.80	QP	200	106	
2	37.9450	28.98	-12.08	16.90	40.00	-23.10	QP	200	320	
3	121.9753	29.23	-14.38	14.85	43.50	-28.65	QP	200	112	
4	372.0045	28.43	-8.48	19.95	46.50	-26.55	QP	200	52	
5	535.7073	29.56	-4.92	24.64	46.50	-21.86	QP	200	101	
6	884.5027	29.92	0.20	30.12	46.50	-16.38	QP	200	201	

Report No.: ATE20200083
Page 41 of 53

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

ACCURATE TECHNOLOGY CO., LTD. F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China


Job No.: 2020 #36 Polarization: Vertical Standard: FCC Class B 3M Radiated Power Source: DC 3V

Test item: Radiation Test Date: 20/02/18/
Temp.(C)/Hum.(%) 23 C / 48 % Time: 11/22/42

EUT: qingping Door/Window Contact Sensor Engineer Signature: Bob

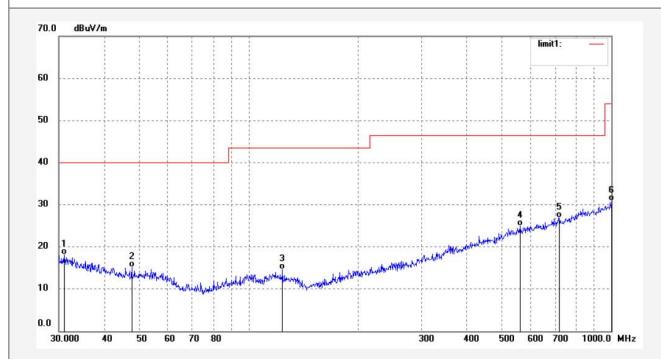
Mode: TX2440MHz Distance: 3m

Model: CGH1

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	30.2109	28.13	-9.99	18.14	40.00	-21.86	QP	100	163	
2	99.1795	28.45	-14.40	14.05	43.50	-29.45	QP	100	201	
3	410.3824	29.13	-7.55	21.58	46.50	-24.92	QP	100	128	
4	576.6443	30.40	-4.16	26.24	46.50	-20.26	QP	100	93	
5	785.0933	29.15	-1.32	27.83	46.50	-18.67	QP	100	214	
6	989.5353	28.72	1.69	30.41	54.00	-23.59	QP	100	152	

Report No.: ATE20200083
Page 42 of 53

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396


Job No.: 2020 #37 Polarization: Vertical Standard: FCC Class B 3M Radiated Power Source: DC 3V

Test item: Radiation Test Date: 20/02/18/
Temp.(C)/Hum.(%) 23 C / 48 % Time: 11/23/50

EUT: qingping Door/Window Contact Sensor Engineer Signature: Bob

Mode: TX2480MHz Distance: 3m

Model: CGH1

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	31.0705	28.36	-10.25	18.11	40.00	-21.89	QP	100	106	
2	47.6584	28.78	-13.62	15.16	40.00	-24.84	QP	100	302	
3	124.1329	29.32	-14.64	14.68	43.50	-28.82	QP	100	159	
4	560.6928	29.42	-4.45	24.97	46.50	-21.53	QP	100	215	
5	719.1994	29.45	-2.51	26.94	46.50	-19.56	QP	100	213	
6	1000.0000	29.07	1.84	30.91	54.00	-23.09	QP	100	69	

Report No.: ATE20200083 Page 43 of 53

Site: 1# Chamber Tel:+86-0755-26503290

Fax:+86-0755-26503396

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Polarization: Horizontal Power Source: DC 3V

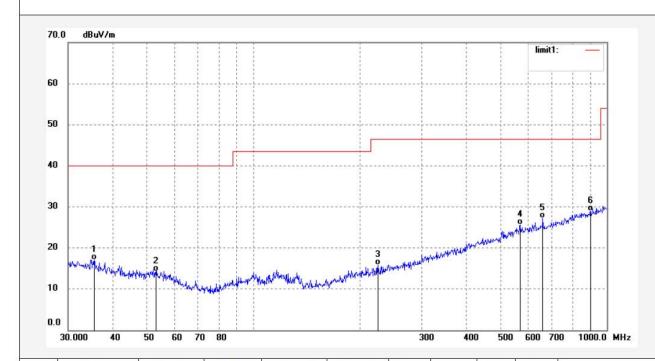
Date: 20/02/18/ Time: 11/25/27

Engineer Signature: Bob

Distance: 3m

Job No.: 2020 #38

Standard: FCC Class B 3M Radiated


Test item: Radiation Test
Temp.(C)/Hum.(%) 23 C / 48 %

EUT: qingping Door/Window Contact Sensor

Mode: TX2480MHz

Model: CGH1

Manufacturer: Guangdong Creator

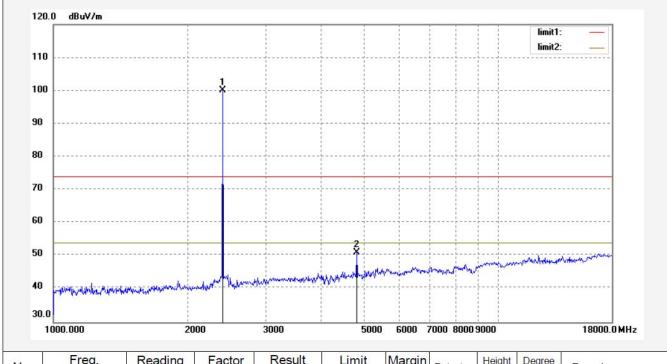
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	35.6240	28.67	-11.56	17.11	40.00	-22.89	QP	200	63	
2	53.5052	28.21	-13.87	14.34	40.00	-25.66	QP	200	215	
3	225.3079	28.23	-12.43	15.80	46.50	-30.70	QP	200	45	
4	568.6127	29.95	-4.34	25.61	46.50	-20.89	QP	200	102	
5	658.8361	30.53	-3.27	27.26	46.50	-19.24	QP	200	320	
6	900.1473	28.76	0.28	29.04	46.50	-17.46	QP	200	106	

Above 1GHz

Report No.: ATE20200083 Page 44 of 53

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396


Job No.: 2020 #39 Polarization: Horizontal Standard: FCC PK Power Source: DC 3V

Test item: Radiation Test Date: 20/02/19/
Temp.(C)/Hum.(%) 23 C / 48 % Time: 8/51/57

EUT: qingping Door/Window Contact Sensor Engineer Signature: Bob

Mode: TX2402MHz Distance: 3m Model: CGH1

Manufacturer: Guangdong Creator

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2402.000	99.17	0.88	100.05			peak	200	93	
2	4804.000	43.64	7.40	51.04	74.00	-22.96	peak	200	116	

Site: 1# Chamber

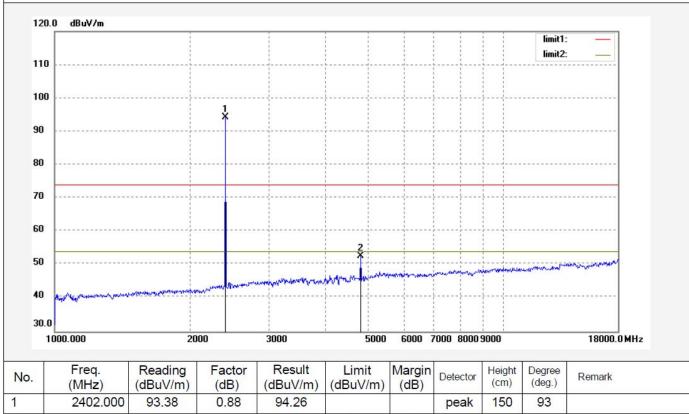
Report No.: ATE20200083

Page 45 of 53

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: 2020 #40 Polarization: Vertical Standard: FCC PK Power Source: DC 3V

Test item: Radiation Test Date: 20/02/19/ Temp.(C)/Hum.(%) 23 C / 48 % Time: 8/53/45


EUT: qingping Door/Window Contact Sensor Engineer Signature: Bob

Mode: TX2402MHz Distance: 3m

Model: CGH₁

Manufacturer: Guangdong Creator

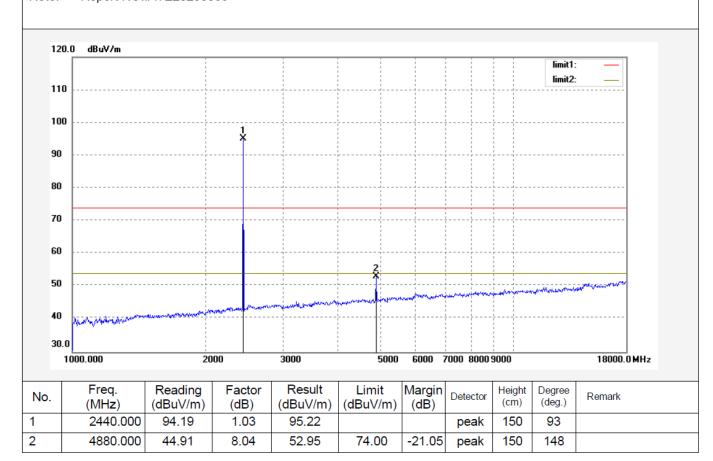
Report NO.:ATE20200083 Note:

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2402.000	93.38	0.88	94.26			peak	150	93	
2	4804.000	45.22	7.40	52.62	74.00	-21.38	peak	150	175	

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20200083

Page 46 of 53


Job No.: 2020 #41 Polarization: Vertical Standard: FCC PK Power Source: DC 3V

 Test item:
 Radiation Test
 Date: 20/02/19/

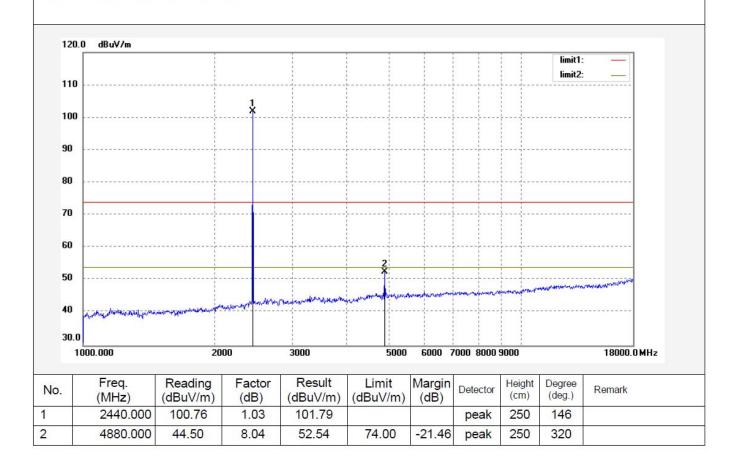
 Temp.(C)/Hum.(%)
 23 C / 48 %
 Time: 9/02/36

EUT: qingping Door/Window Contact Sensor Engineer Signature: Bob Mode: TX2440MHz Distance: 3m

Model: CGH1

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20200083


Page 47 of 53

Job No.: 2020 #42 Polarization: Horizontal Standard: FCC PK Power Source: DC 3V

Test item: Radiation Test Date: 20/02/19/
Temp.(C)/Hum.(%) 23 C / 48 % Time: 9/05/42

EUT: qingping Door/Window Contact Sensor Engineer Signature: Bob

Mode: TX2440MHz Distance: 3m Model: CGH1

Page 48 of 53

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: 2020 #43
Standard: FCC PK
Test item: Radiation Test

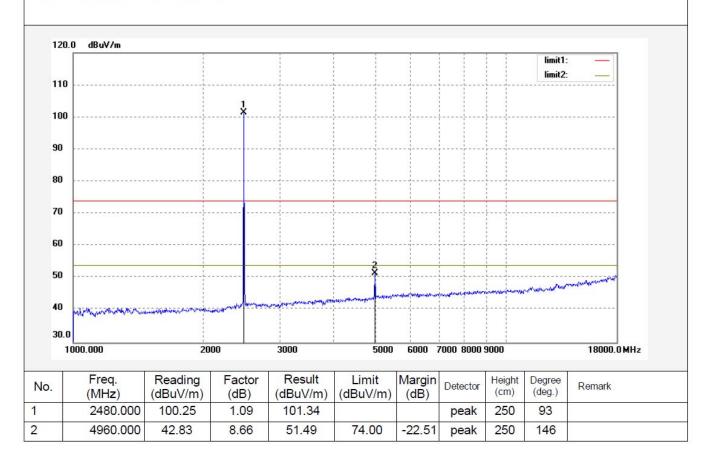
Temp.(C)/Hum.(%) 23 C / 48 %

EUT: qingping Door/Window Contact Sensor

Mode: TX2480MHz Model: CGH1

Manufacturer: Guangdong Creator

Note: Report NO.:ATE20200083


Polarization: Horizontal

Power Source: DC 3V Date: 20/02/19/

Date: 20/02/19/ Time: 9/11/17

Engineer Signature: Bob

Distance: 3m

ATC[®]

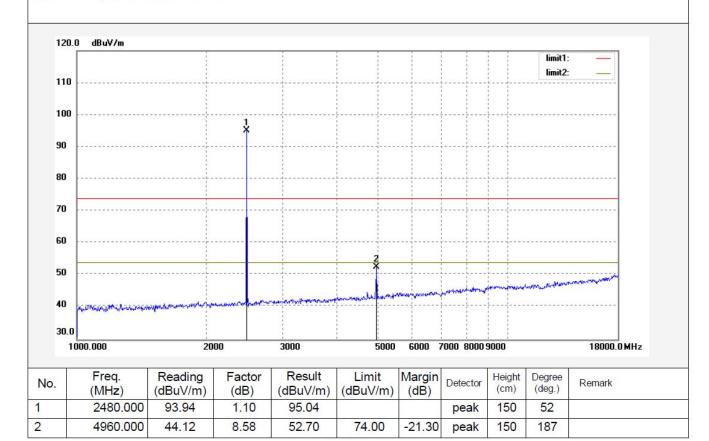
ACCURATE TECHNOLOGY CO., LTD.

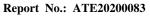
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20200083

Page 49 of 53

Job No.: 2020 #44 Polarization: Vertical Standard: FCC PK Power Source: DC 3V

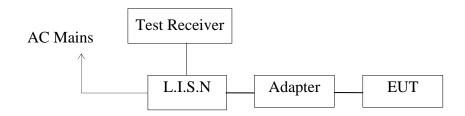

 Test item:
 Radiation Test
 Date: 20/02/19/

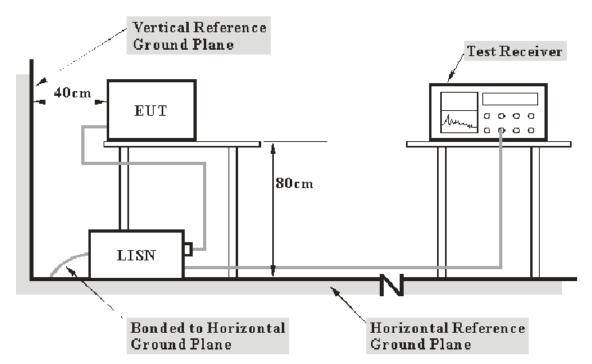

 Temp.(C)/Hum.(%)
 23 C / 48 %
 Time: 9/13/43

EUT: qingping Door/Window Contact Sensor Engineer Signature: Bob

Mode: TX2480MHz Distance: 3m Model: CGH1

Manufacturer: Guangdong Creator




Page 50 of 53

10.POWER LINE CONDUCTED EMISSION TEST

10.1.Block Diagram of Test Setup

10.2.Test System Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

Page 51 of 53

10.3.Test Limits

Frequency	Limit dB(μV)						
(MHz)	Quasi-peak Level	Average Level					
0.15 - 0.50	66.0 – 56.0 *	56.0 – 46.0 *					
0.50 - 5.00	56.0	46.0					
5.00 - 30.00	60.0	50.0					

NOTE1: The lower limit shall apply at the transition frequencies.

NOTE2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

10.4.Configuration of EUT on Test

The equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

10.5. Operating Condition of EUT

- 10.5.1. Setup the EUT and simulator as shown as Section 10.1.
- 10.5.2. Turn on the power of all equipment.
- 10.5.3.Let the EUT work in test mode and measure it.

10.6.Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.10: 2013 on Conducted Emission Measurement.

The bandwidth of test receiver is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

Page 52 of 53

10.7.Data Sample

Frequency	Transducer	QuasiPeak	Average	QuasiPeak	Average	QuasiPeak	Average	Remark
(MHz)	value	Level	Level	Limit	Limit	Margin	Margin	(Pass/Fail)
	(dB)	(dBµV)	(dBµV)	$(dB\mu V)$	(dBµV)	(dB)	(dB)	
X.XX	10.5	51.1	34.2	56.0	46.0	4.9	11.8	Pass

$$\label{eq:frequency} \begin{split} & Frequency(MHz) = Emission \ frequency \ in \ MHz \\ & Transducer \ value(dB) = Insertion \ loss \ of \ LISN + Cable \ Loss \\ & Level(dB\mu V) = Quasi-peak \ Reading/Average \ Reading + Transducer \ value \\ & Limit \ (dB\mu V) = Limit \ stated \ in \ standard \end{split}$$

Calculation Formula:

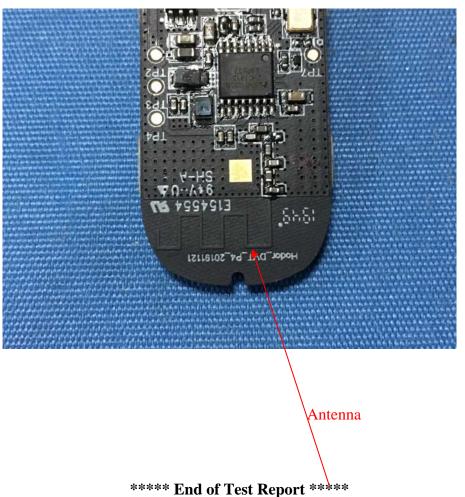
 $Margin = Limit (dB\mu V) - Level (dB\mu V)$

10.8.Result:

N/A

Note: The EUT is powered by battery(DC 3V). Therefore, the test is not applicable and skipped.

Page 53 of 53


11.ANTENNA REQUIREMENT

11.1.The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

11.2.Antenna Construction

Device is equipped with permanent attached antenna, which isn't displaced by other antenna. The Max Antenna gain of EUT is 0dBi. Therefore, the equipment complies with the antenna requirement of Section 15.203.

