

FCC Test Report

Report No.: 2405S70990EA

Applicant: Shenzhen VanTop Technology & Innovation Co., Ltd.

Address: 506, BLDG 4, Pingshan minQi Technology Park, No. 65 Lishan

Road, Pingshan Community, Taoyuan Street, Nanshan District,

Shenzhen, China

Product Name: REMOTE

Product Model: DR-STE51B

Multiple Models: N/A

Trade Mark: SNAPTAIN, AMETA

FCC ID: 2AQ3A-STE51BR2425

Standards: FCC CFR Title 47 Part 15C (§15.249)

Test Date: 2024-04-19 to 2024-09-25

Test Result: Complied

Report Date: 2024-09-25

Reviewed by:

Approved by:

Abel Chen

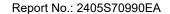
Project Engineer

Jacob Kong

Jacob Gong

Manager

Prepared by:


World Alliance Testing & Certification (Shenzhen) Co., Ltd

No. 1002, East Block, Laobing Building, Xingye Road 3012, Xixiang street, Bao'an District, Shenzhen, Guangdong, People's Republic of China

This report may contain data that are not covered by the NVLAP accreditation and shall be marked with an asterisk "★"

Report Template: TR-4-E-049/V1.0 Page 1 of 34

Announcement

- 1. This test report shall not be reproduced in full or partial, without the written approval of World Alliance Testing & Certification (Shenzhen) Co., Ltd
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.
- 4. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.
- 5. The information marked "#" is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Customer model name, addresses, names, trademarks etc. are included.

Revision History

Version No.	Issued Date	Description
00	2024-09-25	Original

Report Template: TR-4-E-049/V1.0 Page 2 of 34

Contents

1	Gener	al Information	4
	1.1	Client Information	4
	1.2	Product Description of EUT	4
	1.3	Antenna information	4
	1.4	Related Submittal(s)/Grant(s)	4
	1.5	Measurement Uncertainty	5
	1.6	Laboratory Location	5
	1.7	Test Methodology	5
2	Descr	iption of Measurement	6
	2.1	Test Configuration	6
	2.2	Test Auxiliary Equipment	6
	2.3	Interconnecting Cables	6
	2.4	Block Diagram of Connection between EUT and AE	6
	2.5	Test Setup	7
	2.6	Test Procedure	8
	2.7	Measurement Method	10
	2.8	Measurement Equipment	10
3	Test F	Results	11
	3.1	Test Summary	.11
	3.2	Limit	12
	3.3	AC Line Conducted Emissions Test Data	13
	3.4	Radiated emission Test Data	14
	3.5	Bandwidth Test Data	32
4	Test S	Setup Photo	33
_		Disease.	~ 4

1 General Information

1.1 Client Information

Applicant:	Shenzhen VanTop Technology & Innovation Co., Ltd.		
Address:	506, BLDG 4, Pingshan minQi Technology Park, No. 65 Lishan Road,		
	Pingshan Community, Taoyuan Street, Nanshan District, Shenzhen, China		
Manufacturer:	Shenzhen VanTop Technology & Innovation Co., Ltd.		
Address:	506, BLDG 4, Pingshan minQi Technology Park, No. 65 Lishan Road,		
	Pingshan Community, Taoyuan Street, Nanshan District, Shenzhen, China		

1.2 Product Description of EUT

The EUT is REMOTE that contains a 2.4G SRD radio, this report covers the full testing of the 2.4G SRD radio.

Sample Serial Number	2JZD-1 for RE test, 2JZD-3 for RF test (assigned by WATC)
Sample Received Date	2024-04-18
Sample Status	Good Condition
Frequency Range	2440-2475MHz
Maximum E-field Strength:	100.90dBμV/m @3m
Modulation Technology	GFSK
Antenna Gain [#]	0.58dBi
Spatial Streams [#]	SI (1TX)
Power Supply	DC 4.5V from battery
Operating temperature#	0 deg.C to +40 deg.C
Adapter Information	N/A
Modification	Sample No Modification by the test lab

1.3 Antenna information

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Device Antenna information:

The antenna is an internal antenna which cannot replace by end-user. Please see product internal photos for details.

1.4 Related Submittal(s)/Grant(s)

No Related Submittal(s)/Grant(s)

Report Template: TR-4-E-049/V1.0 Page 4 of 34

1.5 Measurement Uncertainty

Parameter		Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))
AC Power Lines Conducted Emissions		±3.14dB
	Below 30MHz	±2.78dB
Emissions, Radiated	Below 1GHz	±4.84dB
	Above 1GHz	±5.44dB
Bandwidth		0.34%

Note 1: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Note 2: The Decision Rule is based on simple acceptance with ISO Guide 98-4:2012 Clause 8.2 (Measurement uncertainty is not taken into account when stating conformity with a specified requirement.)

1.6 Laboratory Location

World Alliance Testing & Certification (Shenzhen) Co., Ltd

No. 1002, East Block, Laobing Building, Xingye Road 3012, Xixiang street, Bao'an District, Shenzhen, Guangdong, People's Republic of China

Tel: +86-755-29691511, Email: qa@watc.com.cn

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 463912, the FCC Designation No. : CN5040.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0160.

1.7 Test Methodology

FCC CFR 47 Part 2

FCC CFR 47 Part 15

ANSI C63.10-2013

Report Template: TR-4-E-049/V1.0 Page 5 of 34

2 Description of Measurement

2.1 Test Configuration

Operating channels:								
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)			
1	2440	18	2457	36	2475			
2	2441	19	2458	/	/			
		•••		1	1			
17	2456			/	1			

According to ANSI C63.10-2013 chapter 5.6.1 Table 11 requirement, select lowest/middle/highest frequency in the frequency range in which device operates for testing. The detailed frequency points are as follows:

Lowest channel		Middle channel		Highest channel	
Channel No.	hannel No. Frequency (MHz)		Frequency (MHz)	Channel No.	Frequency (MHz)
1	2440	18	2457	36	2475

Test Mode:					
Transmitting mode:	smitting mode: Keep the EUT in continuous transmitting with modulation				
Exercise software [#] :	Eng	jineering mode, EUT was configured to test mode by applicant			
Mode		Power Level Setting [#]			
		Low Channel	Middle Channel	High Channel	
SRD		Default Default Default		Default	
The exercise software and the maximum power setting that provided by manufacturer.					

Worst-Case Configuration:

For radiated emissions, EUT was investigated in three orthogonal orientation, the worst-case orientation was recorded in report

For radiated emission 9kHz-30MHz and above 18GHz were performed with the EUT transmits at the channel with highest output power as worst-case scenario.

2.2 Test Auxiliary Equipment

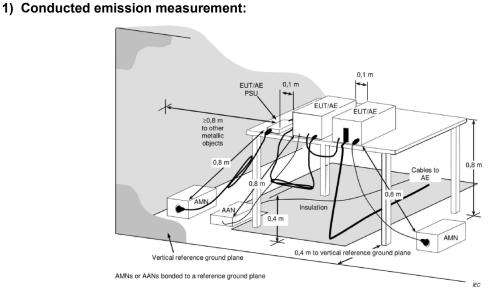
Manufacturer Description		Model	Serial Number
1	1	1	1

2.3 Interconnecting Cables

Manufacturer	Description	Length(m)	From	То
1	1	1	1	1

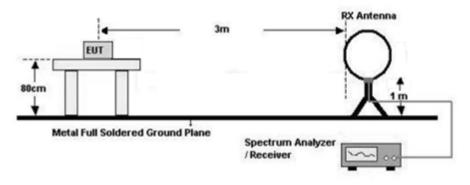
2.4 Block Diagram of Connection between EUT and AE

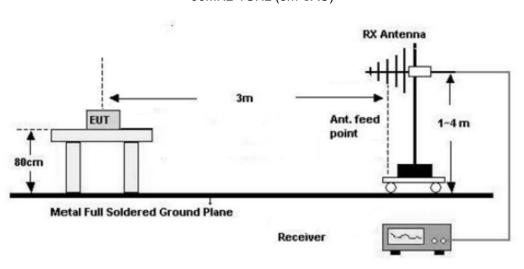
EUT


Note: for reference only, the actual connection setup used for testing please refer to the test photos.

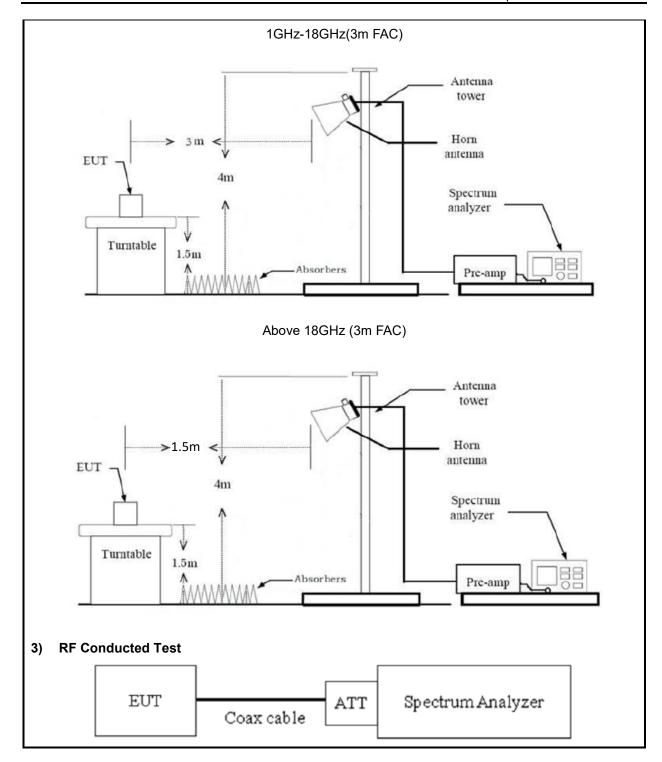
Report Template: TR-4-E-049/V1.0 Page 6 of 34

2.5 Test Setup




Note: The 0.8 m distance specified between EUT/AE/PSU and AMN/AAN, is applicable only to the EUT being measured. If the device is AE then it shall be >0.8 m.

2) Radiated emission measurement:


Below 30MHz (3m SAC)

30MHz-1GHz (3m SAC)

2.6 Test Procedure

Conducted emission:

- 1. The E.U.T is placed on a non-conducting table 40cm from the vertical ground plane and 80cm above the horizontal ground plane (Please refer to the block diagram of the test setup and photographs).
- Both sides of A.C. line are checked for maximum conducted interference. In order to find the
 maximum emission, the relative positions of equipment and all of the interface cables must be
 changed according to ANSI C63.10 on conducted measurement.
- 3. Line conducted data is recorded for both Line and Neutral

Radiated Emission Procedure:

a) For below 30MHz

- 1. All measurements were made at a test distance of 3 m. The measured data was extrapolated from the test distance (3m) to the specification distance (300 m from 9-490 kHz and 30 m from 490 kHz- 30 MHz) to clearly show the relative levels of fundamental and spurious emissions and demonstrate compliance with the requirement that the level of any spurious emissions be below the level of the intentionally transmitted signal. The extrapolation factor for the limits were 40*Log (test distance / specification distance).
- 2. Loop antenna use, investigation was done on the three antenna orientations (parallel, perpendicular, gound-parallel)

b) For 30MHz-1GHz:

- 1. The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 3 m.
- 2. EUT works in each mode of operation that needs to be tested. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.

c) For above 1GHz:

- 1. The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a 3 m fully anechoic room. The measurement distance from the EUT to the receiving antenna is 3 m (1-18GHz) and 1.5 m (above 18GHz).
- 2. EUT works in each mode of operation that needs to be tested, and having the EUT continuously working. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.
- 3. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
- 4. Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field.

Bandwidth Test:

- 1. The antenna port of EUT was connected to the RF port of the Spectrum analyzer through Attenuator and RF cable.
- 2. The EUT is keeping in continuous transmission mode.
- 3. Test the bandwidth and record the result

2.7 Measurement Method

Description of Test	Measurement Method
AC Line Conducted Emissions	ANSI C63.10-2013 Section 6.2
20dB Emission Bandwidth	ANSI C63.10-2013 Section 6.9.2
Field strength of fundamental and Radiated emission	ANSI C63.10-2013 Section 6.3&6.4&6.5&6.6&7.5

2.8 Measurement Equipment

				0.11	0.17			
Manufacturer	Description	Model	Management No.	Calibration Date	Calibration Due Date			
Radiated Emission Test								
R&S	EMI test receiver	ESR3	102758	2023/7/3	2024/7/2			
ROHDE& SCHWARZ	SPECTRUM ANALYZER	FSV40-N	101608	2023/7/3	2024/7/2			
SONOMA INSTRUMENT	Low frequency amplifier	310	186014	2023/7/12	2024/7/11			
COM-POWER	preamplifier	PAM-118A	18040152	2023/8/21	2024/8/20			
COM-POWER	Amplifier	PAM-840A	461306	2023/8/8	2024/8/7			
BACL	Loop Antenna	1313-1A	4010611	2024/2/7	2027/2/6			
SCHWARZBECK	Log - periodic wideband antenna	VULB 9163	9163-872	2023/7/7	2024/7/6			
Astro Antenna Ltd	Horn antenna	AHA-118S	3015	2023/7/6	2024/7/5			
Ducommun technologies	Horn Antenna	ARH-4223-02	1007726-03	2023/7/10	2024/7/9			
Oulitong	Band Reject Filter	OBSF-2400-248 3.5-50N	OE02103119	2023/9/15	2024/9/14			
N/A	Coaxial Cable	N/A	NO.9	2023/8/8	2024/8/7			
N/A	Coaxial Cable	N/A	NO.10	2023/8/8	2024/8/7			
N/A	Coaxial Cable	N/A	NO.11	2023/8/8	2024/8/7			
Audix	Audix Test Software		191218 V9	1	1			
		RF Conducted	Test					
ROHDE& SCHWARZ	SPECTRUM ANALYZER	FSU-26	200680/026	2023/7/12	2024/7/11			

Note: All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or International standards.

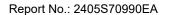
Report Template: TR-4-E-049/V1.0 Page 10 of 34

3 Test Results

3.1 Test Summary

FCC Rules	Description of Test	Result
FCC §15.203	Antenna Requirement	Compliance
FCC §15.207(a)	AC Line Conducted Emissions	N/A
FCC §15.215(c)	20dB Emission Bandwidth	Compliance
FCC §15.205, §15.209, §15.249	Field strength of fundamental and Radiated emission	Compliance

Report Template: TR-4-E-049/V1.0 Page 11 of 34


3.2 Limit

Test items		Limit					
AC Line Conducted Emissions	See details §15.207 (a)						
	· ·	The field strength of fundamental and harmonic emissions measured at 3 n shall not exceed the limits as below:					
	Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)				
	902-928 MHz	50	500				
	2400-2483.5 MHz	50	500				
	5725-5875 MHz	50	500				
	24.0-24.25 GHz	250	2500				
Field strength of fundamental and Radiated emission	fundamental emiss measurements usi (CISPR) quasi-pea Emissions radiated harmonics, shall be fundamental or to the lesser attenuat For frequencies abbased on average not exceed the ma	ak detector. I outside of the specified freque e attenuated by at least 50 dB the general radiated emission I tion. Toove 1000 MHz, the field streng limits. However, the peak field	-928 MHz, which is based on mmittee on Radio Interference ency bands, except for below the level of the imits in § 15.209, whichever is				

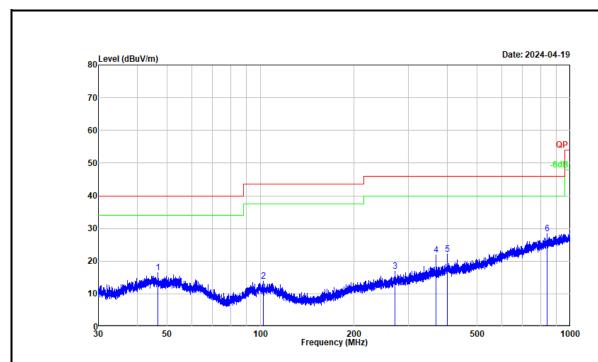
3.3 AC Line Conducted Emissions Test Data

Not applicable, the device only powered by battery

3.4 Radiated emission Test Data

9 kHz-30MHz:

Test Date:	2024-04-19	Test By:	Luke Li
Environment condition:	Temperature: 22.4°C; Relative	Humidity:69%; ATM Pr	essure: 100.1kPa


For radiated emissions below 30MHz, there were no emissions found within 20dB of limit.

Report Template: TR-4-E-049/V1.0 Page 14 of 34

30MHz-1GHz:

Test Date:	2024-04-19~2024-04-25	Test By:	Luke Li
Environment condition:	Temperature: 22.4~23.8°C; Re	,	

Project No. : 2405570990E

Test Mode : Transmitting

Test Voltage : Power By Battery

Environment : 22.4°C/69%R.H./100.1kPa

Tested by : Luke Li Polarization : horizontal Remark : 2440MHz

400.035

839.531

--No. Result Limit Over Limit Frequency Reading Factor Detector $(dB\mu V)$ (dB/m)(MHz) (dBμV/m) (dBμV/m) (dB) 1 46.771 28.64 -12.18 16.46 40.00 -23.54 Peak 13.79 101.972 27.86 -14.07 43.50 -29.71 Peak 2 271.995 28.90 3 -11.99 16.91 46.00 -29.09 Peak 4 368.066 31.18 -9.36 21.82 46.00 -24.18 Peak

22.14

28.49

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

-8.54

-1.52

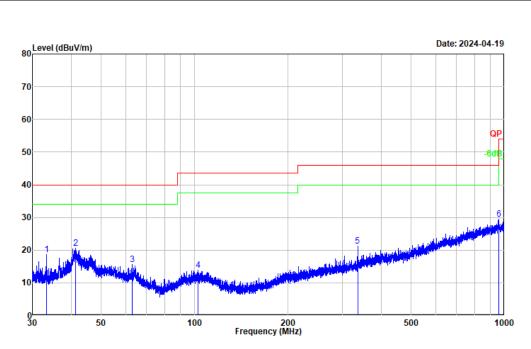
30.68

30.01

5

46.00

46.00


-23.86

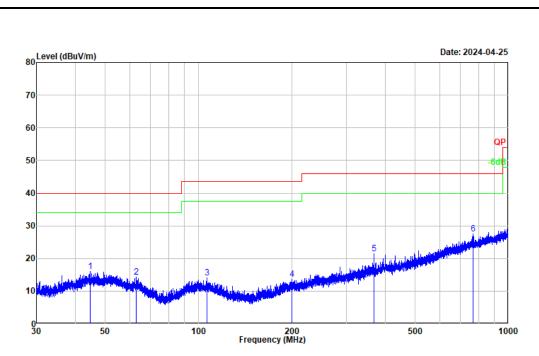
-17.51

Peak

Peak

Project No. : 2405570990E

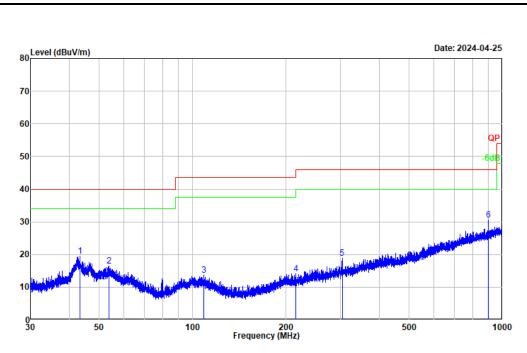
Test Mode : Transmitting


Test Voltage : Power By Battery

Environment : 22.4 °C/69%R.H./100.1kPa

Tested by : Luke Li Polarization : vertical Remark : 2440MHz

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	33.328	33.86	-15.12	18.74	40.00	-21.26	Peak
2	41.314	33.21	-12.72	20.49	40.00	-19.51	Peak
3	62.849	29.74	-14.02	15.72	40.00	-24.28	Peak
4	102.600	28.00	-14.07	13.93	43.50	-29.57	Peak
5	335.989	31.47	-10.20	21.27	46.00	-24.73	Peak
6	958.789	29.10	0.40	29.50	46.00	-16.50	Peak



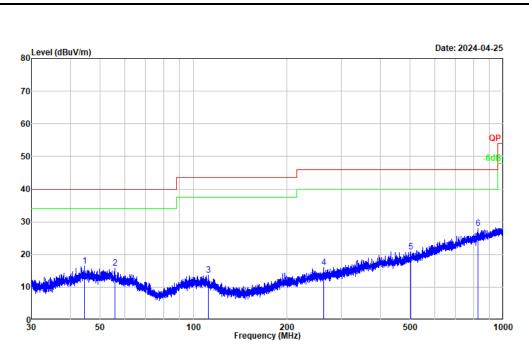
Project No. : 2405S70990E Test Mode : Transmitting
Test Voltage : Power By Battery
Environment : 23.8°C/65%R.H./101.1kPa

Tested by : Luke Li Polarization : horizontal Remark : 2457MHz

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector	
1	44.687	28.27	-12.23	16.04	40.00	-23.96	Peak	
2	62.849	28.31	-14.02	14.29	40.00	-25.71	Peak	
3	106.402	28.07	-13.99	14.08	43.50	-29.42	Peak	
4	199.858	27.50	-13.81	13.69	43.50	-29.81	Peak	
5	368.066	30.80	-9.36	21.44	46.00	-24.56	Peak	
6	767.040	29.68	-2.25	27.43	46.00	-18.57	Peak	

Project No. : 2405570990E

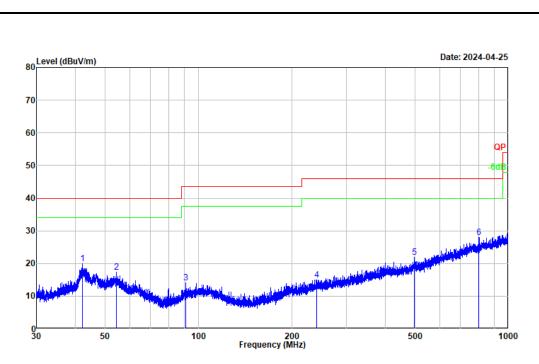
Test Mode : Transmitting


Test Voltage : Power By Battery

Environment : 23.8°C/65%R.H./101.1kPa

Tested by : Luke Li Polarization : vertical Remark : 2457MHz

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	43.412	31.98	-12.37	19.61	40.00	-20.39	Peak
2	53.674	28.99	-12.42	16.57	40.00	-23.43	Peak
3	108.712	27.68	-14.10	13.58	43.50	-29.92	Peak
4	215.793	27.96	-13.80	14.16	43.50	-29.34	Peak
5	304.031	30.08	-11.24	18.84	46.00	-27.16	Peak
6	899.741	31.42	-0.75	30.67	46.00	-15.33	Peak



Project No. : 2405S70990E Test Mode : Transmitting
Test Voltage : Power By Battery
Environment : 23.8°C/65%R.H./101.1kPa

Tested by : Luke Li Polarization : horizontal Remark : 2475MHz

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector	
1	44.452	28.74	-12.25	16.49	40.00	-23.51	Peak	
2	55.809	28.60	-12.86	15.74	40.00	-24.26	Peak	
3	111.805	28.09	-14.49	13.60	43.50	-29.90	Peak	
4	263.313	28.19	-12.17	16.02	46.00	-29.98	Peak	
5	502.456	27.96	-7.15	20.81	46.00	-25.19	Peak	
6	826.024	29.66	-1.65	28.01	46.00	-17.99	Peak	

Project No. : 2405570990E

Test Mode : Transmitting

Test Voltage : Power By Battery

Environment : 23.8℃/65%R.H./101.1kPa

Tested by : Luke Li Polarization : vertical Remark : 2475MHz

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector	
1	42.286	32.48	-12.47	20.01	40.00	-19.99	Peak	
2	54.360	29.97	-12.57	17.40	40.00	-22.60	Peak	
3	90.749	29.60	-15.54	14.06	43.50	-29.44	Peak	
4	240.682	27.67	-12.67	15.00	46.00	-31.00	Peak	
5	496.326	29.21	-7.24	21.97	46.00	-24.03	Peak	
6	803.876	29.95	-1.96	27.99	46.00	-18.01	Peak	

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Remark:

Result = Reading + Factor

Factor = Antenna factor + Cable loss – Amplifier gain

Over Limit = Result - Limit

Report No.: 2405S70990EA

Above 1GHz:

Test Date:	2024-04-19	Test By:	Luke Li
Environment condition:	Temperature: 22.4°C; Relative	Humidity:69%; ATM Pr	essure: 100.1kPa

Frequency (MHz)	Reading level (dBµV)	Polar	Corrected Factor (dB/m)	Corrected Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark
Low Channel							
2440.000	102.68	horizontal	-1.78	100.90	114.00	-13.10	Peak
2440.000	94.21	vertical	-1.78	92.43	114.00	-21.57	Peak
2400.000	49.30	horizontal	-1.76	47.54	74.00	-26.46	Peak
2400.000	48.54	vertical	-1.76	46.78	74.00	-27.22	Peak
4880.000	55.38	horizontal	0.44	55.82	74.00	-18.18	Peak
7320.000	53.20	horizontal	3.04	56.24	74.00	-17.76	Peak
4880.000	55.43	vertical	0.44	55.87	74.00	-18.13	Peak
7320.000	51.54	vertical	3.04	54.58	74.00	-19.42	Peak
			Middle C	hannel			
2457.000	101.57	horizontal	-1.79	99.78	114.00	-14.22	Peak
2457.000	95.26	vertical	-1.79	93.47	114.00	-20.53	Peak
4914.000	56.22	horizontal	0.62	56.84	74.00	-17.16	Peak
7371.000	51.62	horizontal	3.10	54.72	74.00	-19.28	Peak
4914.000	56.68	vertical	0.62	57.30	74.00	-16.70	Peak
7371.000	51.47	vertical	3.10	54.57	74.00	-19.43	Peak
			High Ch	annel			
2475.000	100.82	horizontal	-1.76	99.06	114.00	-14.94	Peak
2475.000	94.43	vertical	-1.76	92.67	114.00	-21.33	Peak
2483.500	48.87	horizontal	-1.75	47.12	74.00	-26.88	Peak
2483.500	49.47	vertical	-1.75	47.72	74.00	-26.28	Peak
4950.000	56.60	horizontal	0.87	57.47	74.00	-16.53	Peak
7425.000	51.13	horizontal	3.10	54.23	74.00	-19.77	Peak
4950.000	56.80	vertical	0.87	57.67	74.00	-16.33	Peak
7425.000	51.03	vertical	3.10	54.13	74.00	-19.87	Peak

Remark:

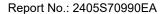
Corrected Amplitude= Reading level + corrected Factor

Corrected Factor = Antenna factor + Cable loss – Amplifier gain

Margin = Corrected Amplitude – Limit

The emission levels of other frequencies that were lower than the limit 20dB not show in test report. For emissions in 18GHz-25GHz range, all emissions were investigated and in the noise floor level.

Report Template: TR-4-E-049/V1.0 Page 21 of 34

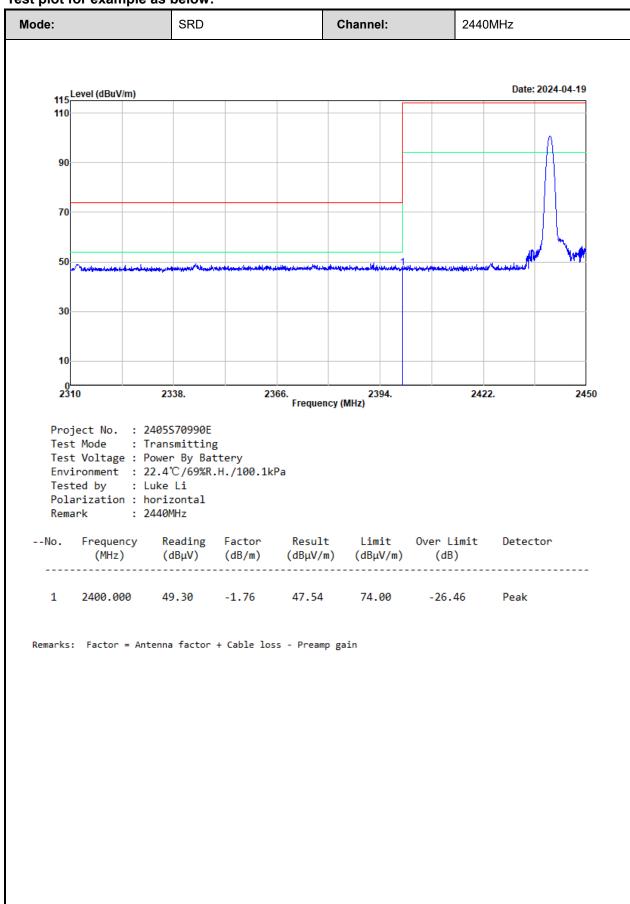

Field strength of average:

Frequency (MHz)	Peak level (dBµV/m)	Polar (H/V)	Duty Cycle Factor (dB)	Average Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark	
	Low Channel							
2440.000	100.90	horizontal	-31.16	69.74	94	-24.26	Average	
2440.000	92.43	vertical	-31.16	61.27	94	-32.73	Average	
2400.000	47.54	horizontal	-31.16	16.38	54	-37.62	Average	
2400.000	46.78	vertical	-31.16	15.62	54	-38.38	Average	
4880.000	55.82	horizontal	-31.16	24.66	54	-29.34	Average	
7320.000	56.24	horizontal	-31.16	25.08	54	-28.92	Average	
4880.000	55.87	vertical	-31.16	24.71	54	-29.29	Average	
7320.000	54.58	vertical	-31.16	23.42	54	-30.58	Average	
			Middle C	hannel				
2457.000	99.78	horizontal	-31.16	68.62	94	-25.38	Average	
2457.000	93.47	vertical	-31.16	62.31	94	-31.69	Average	
4914.000	56.84	horizontal	-31.16	25.68	54	-28.32	Average	
7371.000	54.72	horizontal	-31.16	23.56	54	-30.44	Average	
4914.000	57.30	vertical	-31.16	26.14	54	-27.86	Average	
7371.000	54.57	vertical	-31.16	23.41	54	-30.59	Average	
			High Ch	annel				
2475.000	99.06	horizontal	-31.16	67.9	94	-26.1	Average	
2475.000	92.67	vertical	-31.16	61.51	94	-32.49	Average	
2483.500	47.12	horizontal	-31.16	15.96	54	-38.04	Average	
2483.500	47.72	vertical	-31.16	16.56	54	-37.44	Average	
4950.000	57.47	horizontal	-31.16	26.31	54	-27.69	Average	
7425.000	54.23	horizontal	-31.16	23.07	54	-30.93	Average	
4950.000	57.67	vertical	-31.16	26.51	54	-27.49	Average	
7425.000	54.13	vertical	-31.16	22.97	54	-31.03	Average	

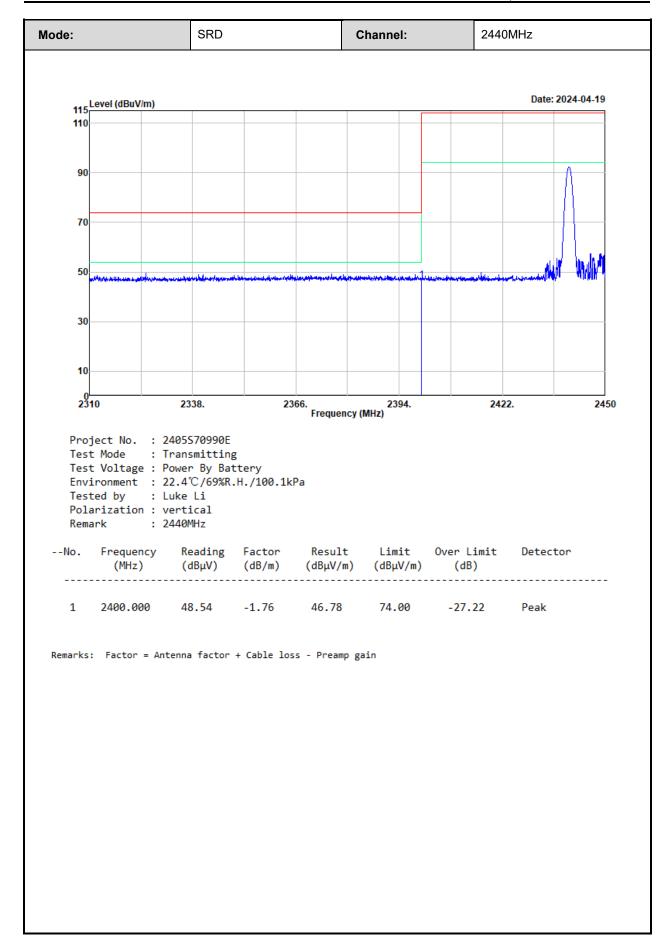
Remark:

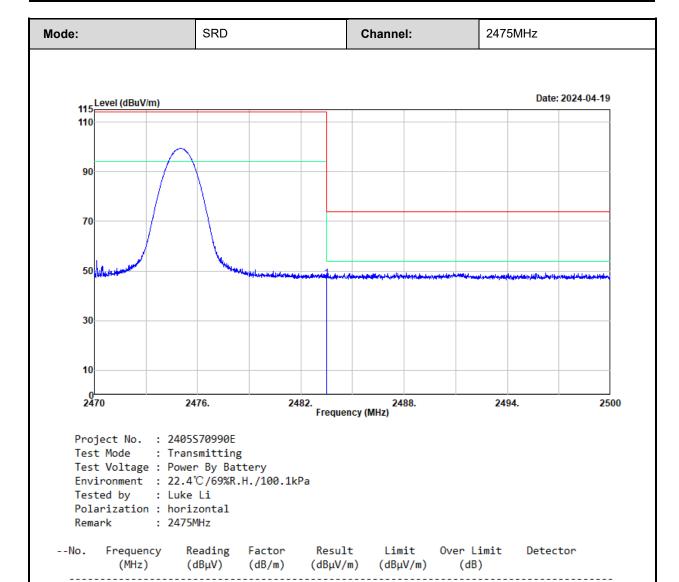
Average Amplitude= Peak level + Duty Cycle Factor Margin= Average Amplitude - Limit

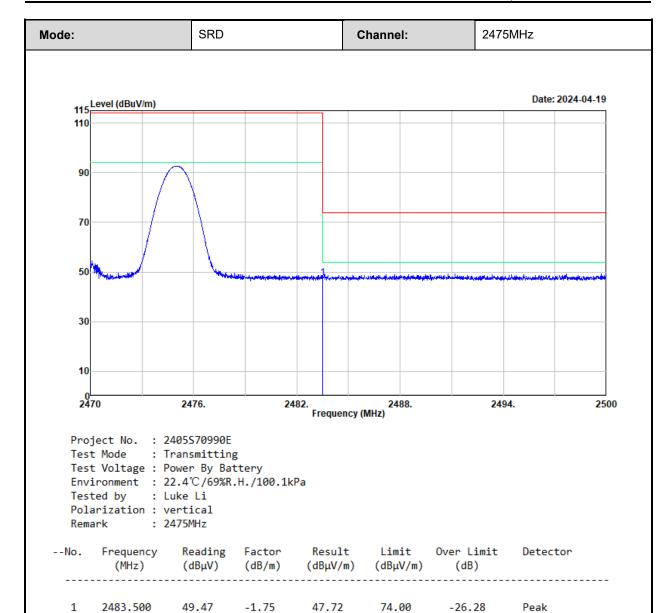
Duty Cycle=Ton/Tp=0.3478/12.5725=2.766% Duty Cycle Factor=20*log(Duty Cycle)=-31.16

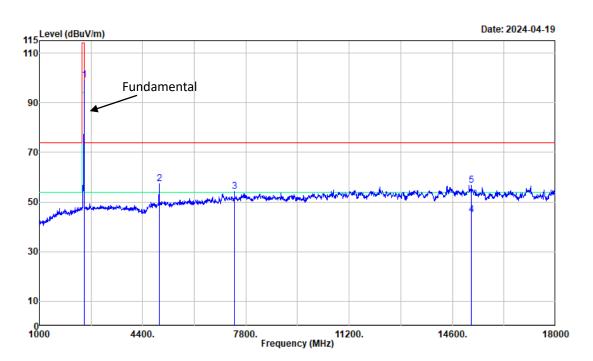

Test plot for duty cycle

Test Date:	2024-04-25	Test By:	Ryan Zhang	
Environment condition:	Temperature: 23.6°C; Relative Humidity:66%; ATM Pressure: 101.0kPa			




Test plot for example as below:




1 2483.500 48.87 -1.75 47.12 74.00 -26.88 Peak

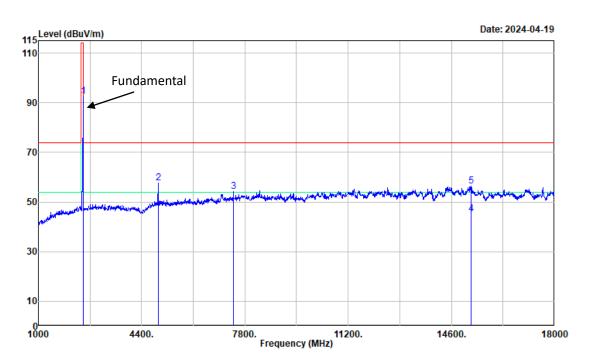
Project No. : 2405S70990E

Test Mode : Transmitting

Test Voltage : Power By Battery

Environment : $22.4\,^{\circ}\text{C/69}$ %R.H./100.1kPa

Tested by : Luke Li Polarization : horizontal Remark : 2475MHz


No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector	
1	2475.000	100.82	-1.76	99.06	114.00	-14.94	Peak	
2	4950.000	56.60	0.87	57.47	74.00	-16.53	Peak	
3	7425.000	51.13	3.10	54.23	74.00	-19.77	Peak	
4	15219.110	36.06	8.75	44.81	54.00	-9.19	Average	
5	15219.110	48.04	8.75	56.79	74.00	-17.21	Peak	

Remarks: Factor = Antenna factor + Cable loss - Preamp gain Result = Reading + Factor

Result = Reading + Factor
Over Limit = Result - Limit

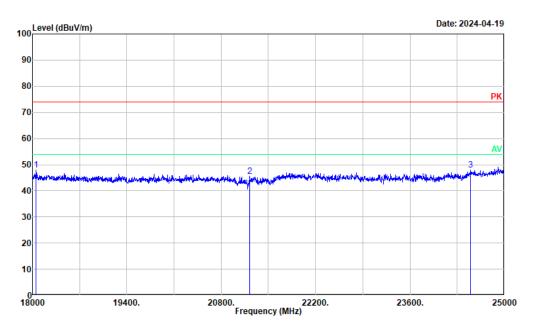
Project No. : 2405S70990E

Test Mode : Transmitting

Test Voltage : Power By Battery

Environment : $22.4\,^{\circ}\text{C/69}$ %R.H./100.1kPa

Tested by : Luke Li Polarization : vertical Remark : 2475MHz


No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBµV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector	
1	2475.000	94.43	-1.76	92.67	114.00	-21.33	Peak	
2	4950.000	56.80	0.87	57.67	74.00	-16.33	Peak	
3	7425.000	51.03	3.10	54.13	74.00	-19.87	Peak	
4	15253.130	36.20	8.84	45.04	54.00	-8.96	Average	
5	15253.130	47.48	8.84	56.32	74.00	-17.68	Peak	

Remarks: Factor = Antenna factor + Cable loss - Preamp gain Result = Reading + Factor

Result = Reading + Factor
Over Limit = Result - Limit

Project No. : 2405570990E

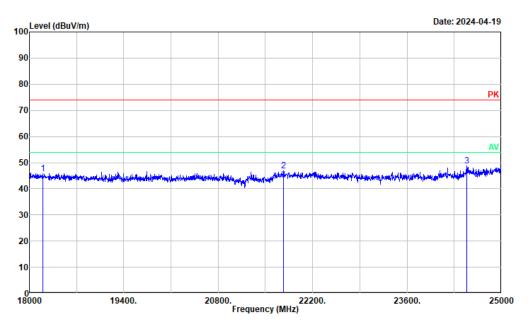
Test Mode : Transmitting

Test Voltage : Power By Battery

Environment : 22.4°C/69%R.H./100.1kPa

Tested by : Luke Li

Tested by : Luke Li Polarization : horizontal Remark : 2440MHz


No.	Frequency (MHz)	Reading (dBµV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBµV/m)	Over Limit (dB)	Detector
1	18056.030	53.42	-5.49	47.93	74.00	-26.07	Peak
2	21221.610	52.81	-7.38	45.43	74.00	-28.57	Peak
3	24499.250	53.86	-5.76	48.10	74.00	-25.90	Peak

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Report Template: TR-4-E-049/V1.0 Page 30 of 34

Project No. : 2405570990E

Test Mode : Transmitting

Test Voltage : Power By Battery

Environment : 22.4°C/69%R.H./100.1kPa

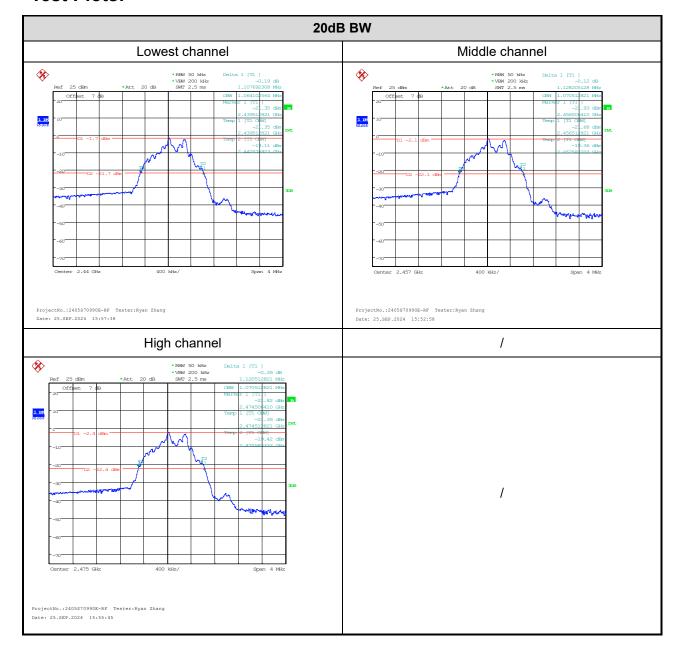
Tested by : Luke Li

Tested by : Luke Li Polarization : vertical Remark : 2440MHz

No.	Frequency (MHz)	Reading (dBµV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBµV/m)	Over Limit (dB)	Detector
1	18199.600 21767.880	51.62 54.03	-5.72 -7.03	45.90 47.00	74.00 74.00	-28.10 -27.00	Peak Peak
3	24481.740	54.50	-5.76	48.74	74.00	-25.26	Peak

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Report Template: TR-4-E-049/V1.0 Page 31 of 34



3.5 Bandwidth Test Data

Test Date:	2024-09-25	Test By:	Ryan Zhang		
Environment condition:	Temperature: 25.7°C; Relative Humidity:47%; ATM Pressure: 101.2kPa				

Channel	20dB BW [MHz]
Low	1.108
Middle	1.128
High	1.121

Test Plots:

4 Test Setup Photo

Please refer to the attachment 2405S70990E Test Setup photo.

5 E.U.T Photo

Please refer to the attachment 2405S70990E External photo and 2405S70990E Internal photo.

---End of Report---