

TEST REPORT

Shenzhen VanTop Technology & Innovation Co., Ltd. 502, 5th Flr. BLDG 4, MinQi Technology Park, No. 65 Lishan Road, Taoyuan Street, Nanshan District, Shenzhen, China SZNS220224-05849E-SA 2AQ3A-SP7100R2422

Report Number :

Address :

FCC ID:

Applicant Name :

Test Standard (s)

FCC Part 2.1093 **Sample Description R/C QUADCOPTER** Product Type: Model No .: SP7100 Multiple Model(s) No.: Please see the table on the page 5 Trade Mark: N/A Date Received: 2022/08/04 Test Date: 2022/08/05 2022/08/15 **Report Date:**

Test Result:

* In the configuration tested, the EUT complied with the standards above.

Pass*

Prepared and Checked By:

Trunceti

Lance Li EMC Engineer

Approved By:

Candy . Li

Candy Li EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "+".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk **. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China

 Tel: +86 755-26503290
 Fax: +86 755-26503396
 Web: www.atc-lab.com

Version 801: 2021-11-09

Attestation of Test Results					
MODE		Max. SAR Level(s) Reported(W/kg)	Limit (W/kg)		
General 2.4G	1g Body SAR	0.01	1.6		
	10g Extremity SAR	0.01	4.0		
	FCC 47 CFR part 2. Radiofrequency radiat	1093 ion exposure evaluation: portable devices			
	RF Exposure Procedures: TCB Workshop				
Applicable Standards	IEEE1528:2013 IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques				
	IEC 62209-1:2016 Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz)				
	KDB proceduresKDB 447498 D04 Interim General RF Exposure Guidance v01KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04KDB 865664 D02 RF Exposure Reporting v01r02				
Note: This wireless device has been shown to be capable of compliance for localized specific absorption rate (SAR) for General Population/Uncontrolled Exposure limits specified in FCC 47 CFR part 2.1093 and has been tested in accordance with the measurement procedures specified in IEEE 1528-2013 and RF exposure KDB procedures.					
The results and statements contained in this report pertain only to the device(s) evaluated.					

TABLE OF CONTENTS

4
5
5
6
7
8
9
15
5
6
6
7
10 19
9
9
20
21
21
22
22
23 25
25
26
26
28
29
80
33
34
34
84 85
55 35
86
15

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision	
0	SZNS220224-05849E-SA	Original Report	2022/08/15	

EUT DESCRIPTION

This report has been prepared on behalf of *Shenzhen VanTop Technology & Innovation Co., Ltd.* and their product *R/C QUADCOPTER*, Model: *SP7100*, FCC ID: *2AQ3A-SP7100R2422* or the EUT (Equipment under Test) as referred to in the rest of this report.

Technical Specification

Multiple Model(s) No.:	SP530,SP650 PRO,SP7200,SP7300,SP7500,SP7100 mini,SP680
	(Please refer to DOS for Model difference)
Device Type:	Portable
Exposure Category:	Population / Uncontrolled
Antenna Type(s):	Internal Antenna
Power Sensor	None
Operation Mode :	GFSK
Frequency Band:	General 2.4G: 2407 - 2478 MHz
Power Source:	Rechargeable Battery
Normal Operation:	Handheld and Body-worn

REFERENCE, STANDARDS, AND GUIDELINES

FCC:

- The Report and Order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g as recommended by the ANSI/IEEE standard C95.1-1992 [6] for an uncontrolled environment (Paragraph 65). According to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on Jun 29, 2001 by the FCC, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.
- This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in North America is 1.6 mW/g average over 1 gram of tissue mass.

CE:

- The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 2 mW/g as recommended by EN62209-1 for an uncontrolled environment. According to the Standard, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.
- This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in Europe is 2 mW/g average over 10 gram of tissue mass.
- The test configurations were laid out on a specially designed test fixture to ensure the reproducibility of measurements. Each configuration was scanned for SAR. Analysis of each scan was carried out to characterize the above effects in the device.

SAR Limits

	SAR (W/kg)			
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)		
Spatial Average (averaged over the whole body)	0.08	0.4		
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0		
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0		

FCC Limit(1g Tissue)

CE Limit(10g Tissue)

	SAR (W/kg)			
	(General Population /	(Occupational /		
EXPOSURE LIMITS	Uncontrolled Exposure	Controlled Exposure		
	Environment)	Environment)		
Spatial Average (averaged over the whole body)	0.08	0.4		
Spatial Peak (averaged over any 10 g of tissue)	2.0	10		
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0		

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

General Population/Uncontrolled environments Spatial Peak limit 1.6W/kg (FCC) applied to the EUT.

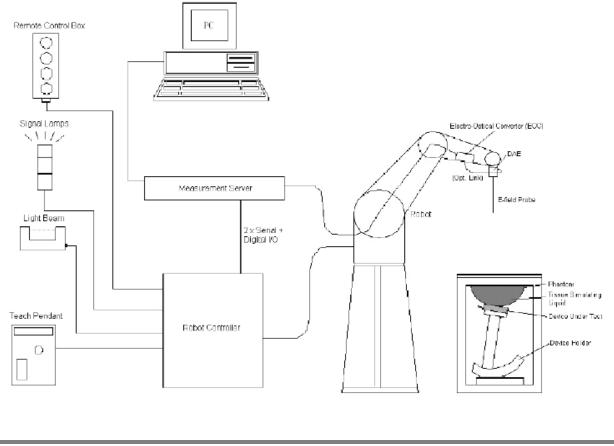
FACILITIES

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358,the FCC Designation No.: CN1189. Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 4297.01

Listed by Innovation, Science and Economic Development Canada (ISEDC), the Registration Number is 5077A.

The test site has been registered with ISED Canada under ISED Canada Registration Number CN0016.


DESCRIPTION OF TEST SYSTEM

These measurements were performed with the automated near-field scanning system DASY5 from Schmid & Partner Engineering AG (SPEAG) which is the Fifth generation of the system shown in the figure hereinafter:

DASY5 System Description

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Staubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal application, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Win7 professional operating system and the DASY52 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

DASY5 Measurement Server

- The DASY5 measurement server is based on a PC/104 CPU board with a 400 MHz Intel ULV Celeron, 128 MB chip-disk and 128 MB RAM. The necessary circuits for communication with the DAE4 (or DAE3) electronics box, as well as the 16-bit AD converter system for optical detection and digital I/O interface are contained on the DASY6 I/O board, which is directly connected to the PC/104 bus of the CPU board.
- The measurement server performs all real-time data evaluations of field measurements and surface detection, controls robot movements, and handles safety operations. The PC operating system cannot interfere with these time-critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program- controlled robot movements. Furthermore, the measurement server is equipped with an expansion port, which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Connection of devices from any other supplier could seriously damage the measurement server.

Data Acquisition Electronics

- The data acquisition electronics (DAE4) consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.
- The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.
- The input impedance of both the DAE4 as well as of the DAE3 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

EX3DV4 E-Field Probes

Frequency	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	\pm 0.3 dB in TSL (rotation around probe axis) \pm 0.5 dB in TSL (rotation normal to probe axis)
Dynamic Range	$ \begin{array}{l} 10 \ \mu W/g \ to > 100 \ m W/g \\ Linearity: \pm \ 0.2 \ dB \ (noise: typically < 1 \ \mu W/g) \end{array} $
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields); the only probe that enables compliance testing for frequencies up to 6 GHz with precision of better 30%.
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

SAM Twin Phantom

- The SAM Twin Phantom (shown in front of DASY5) is a fiberglass shell phantom with shell thickness 2 mm, except in the ear region where the thickness is increased to 6 mm.
- When the phantom is mounted inside allocated slot of the DASY5 platform, phantom reference points can be taught directly in the DASY5 V5.2 software. When the DASY5 platform is used to mount the
- Phantom, some of the phantom teaching points cannot be reached by the robot in DASY5 V5.2. A special tool called P1a-P2aX-Former is provided to transform two of the three points, P1 and P2, to reachable locations. To use these new teaching points, a revised phantom configuration file is required.
- In addition to our standard broadband liquids, the phantom can be used with the following tissue simulating liquids:
- Sugar-water-based liquids can be left permanently in the phantom. Always cover the liquid when the system is not in use to prevent changes in liquid parameters due to water evaporation.
- DGBE-based liquids should be used with care. As DGBE is a softener for most plastics, the liquid should be taken out of the phantom, and the phantom should be dried when the system is not in use (desirable at least once a week).

Do not use other organic solvents without previously testing the solvent resistivity of the phantom. Approximately 25 liters of liquid is required to fill the SAM Twin phantom.

Calibration Frequency Points for EX3DV4 E-Field Probes SN: 7441 Calibrated: 2022/05/16

Calibration Frequency	Frequency Range(MHz)		Conversion Factor		
Point(MHz)	From	То	X	Y	Z
750 Head	650	850	10.04	10.04	10.04
900 Head	850	1000	9.61	9.61	9.61
1450 Head	1350	1550	8.52	8.52	8.52
1750 Head	1650	1850	8.32	8.32	8.32
1900 Head	1850	1950	7.94	7.94	7.94
2000 Head	1950	2100	7.99	7.99	7.99
2300 Head	2200	2400	7.78	7.78	7.78
2450 Head	2400	2550	7.54	7.54	7.54
2600 Head	2550	2700	7.30	7.30	7.30
5250 Head	5140	5360	5.35	5.35	5.35
5600 Head	5490	5700	4.85	4.85	4.85
5750 Head	5700	5860	4.83	4.83	4.83

Area Scans

	≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 mm ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1° 20° ± 1°	
	$ \le 2 \text{ GHz:} \le 15 \text{ mm} \qquad 3 - 4 \text{ GHz:} \le 12 \text{ mm} \\ 2 - 3 \text{ GHz:} \le 12 \text{ mm} \qquad 4 - 6 \text{ GHz:} \le 10 \text{ mm} $	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.	

Zoom Scan (Cube Scan Averaging)

Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}			$\leq 2 \text{ GHz:} \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*
Maximum zoom scan spatial resolution, normal to phantom surface gr	uniform grid: $\Delta z_{Zoom}(n)$		≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm
	graded grid	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
	$\Delta z_{Zoom}(n \ge 1)$: between subsequent points		$\leq 1.5 \cdot \Delta z_{Zoo}$	m(n-1) mm
Minimum zoom scan volume	X V Z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

* When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Tissue Dielectric Parameters for Head

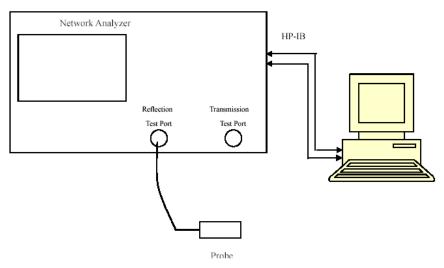
The head tissue dielectric parameters recommended by the IEC 62209-1:2016

Recommended Tissue Dielectric Parameters for Head

Table A.3 - Dielectric properties of the head tissue-equivalent liquid

Frequency	Relative permittivity	Conductivity (a)	
MHz	ε _r	S/m	
300	45,3	0,87	
450	43,5	0,87	
750	41,9	0,89	
835	41,5	0,90	
900	41,5	0,97	
1 450	40,5	1,20	
1 500	40,4	1,23	
1 640	40,2	1,31	
1 750	40,1	1,37	
1 800	40,0	1,40	
1 900	40,0	1,40	
2 000	40,0	1,40	
2 100	39,8	1,49	
2 300	39,5	1,67	
2 450	39,2	1,80	
2 600	39,0	1,96	
3 000	38,5	2,40	
3 500	37,9	2,91	
4 000	37,4	3,43	
4 500	36,8	3,94	
5 000	36,2	4,45	
5 200	36,0	4,66	
5 400	35,8	4,86	
5 600	35,5	5,07	
5 800	35,3	5,27	
6 000	35,1	5,48	

NOTE For convenience, permittivity and conductivity values at those frequencies which are not part of the original data provided by Drossos et al. [33] or the extension to 5 800 MHz are provided (i.e. the values shown *in italics*). These values were linearly interpolated between the values in this table that are immediately above and below these values, except the values at 6 000 MHz that were linearly extrapolated from the values at 3 000 MHz and 5 800 MHz.


EQUIPMENT LIST AND CALIBRATION

Equipments List & Calibration Information

Equipment	Model	S/N	Calibration Date	Calibration Due Date
DASY5 Test Software	DASY52 52.10.4	N/A	NCR	NCR
DASY5 Measurement Server	DASY5 6.0.31	N/A	NCR	NCR
Data Acquisition Electronics	DAE4	1211	2022/03/01	2023/02/28
E-Field Probe	EX3DV4	7441	2022/05/16	2023/05/15
Mounting Device	MD4HHTV5	SD 000 H01 KA	NCR	NCR
SAM Twin Phantom	SAM-Twin V5.0	1744	NCR	NCR
Dipole,2450MHz	D2450V2	751	2020/10/13	2023/10/12
Simulated Tissue Liquid Head	HBBL600-10000V6	SL AAH U16 BC	Each Time	
Network Analyzer	8753D	3410A08288	2022/7/05	2023/7/04
Dielectric Assessment Kit	DAK-3.5	1320	NCR	NCR
Signal Generator	SMB100A	108362	2021/12/23	2022/12/22
USB wideband power sensor	U2021XA	MY52350001	2021/12/23	2022/12/22
Power Amplifier	CBA 1G-070	T44328	2021/12/23	2022/12/22
Linear Power Amplifier	AS0860-40/45	1060913	2021/12/23	2022/12/22
Directional Coupler	4223-20	3.113.277	2021/12/23	2022/12/22
6dB Attenuator	8493B 6dB Attenuator	2708A 04769	2021/12/23	2022/12/22
Spectrum Analyzer	FSV40	101949	2021/12/13	2022/12/12

SAR MEASUREMENT SYSTEM VERIFICATION

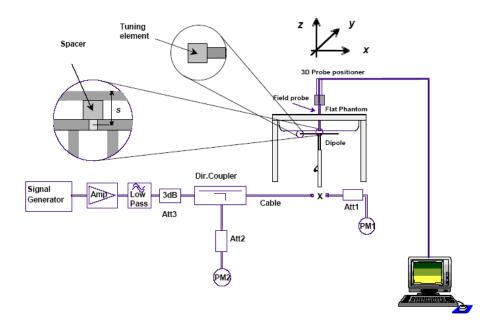
Liquid Verification

Liquid Verification Setup Block Diagram

Liquid Verification Results

Frequency	Liquid Tuno	Liquid Parameter		Target Value		Delta (%)		Tolerance
(MHz)			0 (S/m)	٤r	0' (S/m)	$\Delta \epsilon_r$	ΔO	(%)
2407	Simulated Tissue Liquid Head	41.032	1.789	39.28	1.77	4.46	1.07	±5
2442	Simulated Tissue Liquid Head	40.886	1.791	39.23	1.79	4.22	0.06	±5
2450	Simulated Tissue Liquid Head	40.755	1.796	39.20	1.80	3.97	-0.22	±5
2478	Simulated Tissue Liquid Head	40.216	1.807	39.18	1.81	2.64	-0.17	±5

*Liquid Verification above was performed on 2022/08/05.


System Accuracy Verification

Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of $\pm 10\%$. The validation results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

The spacing distances in the System Verification Setup Block Diagram is given by the following:

- a) $s = 15 \text{ mm} \pm 0.2 \text{ mm}$ for 300 MHz $\leq f \leq 1 000 \text{ MHz}$;
- b) $s = 10 \text{ mm} \pm 0.2 \text{ mm}$ for 1 000 MHz < f \leq 6 000 MHz;
- c) $s=10~mm\pm0.1~mm$ for 6 000 MHz < f ≤10 000 MHz.

System Verification Setup Block Diagram

System Accuracy Check Results

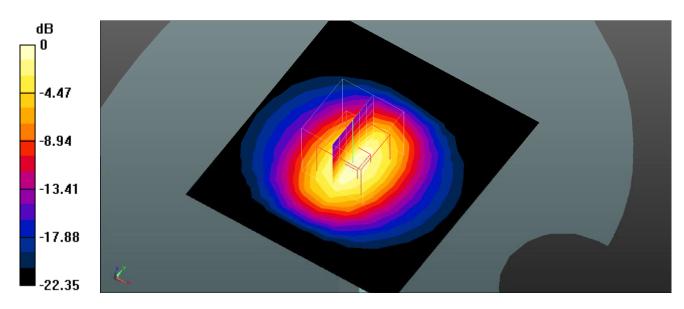
Date	Frequency Band	Liquid Type	Input Power (mW)	:	sured SAR ⁄/kg)	Normalized to 1W (W/kg)	Target Value (W/kg)	Delta (%)	Tolerance (%)
2022/08/05	2450 MHz	Head	100	1g	5.68	56.8	53.0	7.170	±10
2022/08/03	2430 MHZ	Head	100	10g	2.59	25.9	24.4	6.148	±10

*The SAR values above are normalized to 1 Watt forward power.

SAR SYSTEM VALIDATION DATA

System Performance 2450MHz

DUT: D2450V2; Type: 2450 MHz; Serial: 751


Communication System: UID 0, CW (0); Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.796 S/m; ϵ_r = 40.755; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(7.54, 7.54, 7.54) @2450; Calibrated: 2022/05/16
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1211; Calibrated: 2022/03/01
- Phantom: Twin SAM; Type: QD000P40CD; Serial: 1744
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Pin=100mw/Area Scan (101x111x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 6.52 W/kg

Pin=100mw/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 49.72 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 11.8 W/kg SAR(1 g) = 5.68 W/kg; SAR(10 g) = 2.59 W/kg Maximum value of SAR (measured) = 6.32 W/kg

0 dB = 6.32 W/kg = 8.01 dBW/kg

EUT TEST STRATEGY AND METHODOLOGY

Test positions for body-worn and other configurations

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a headset output should be tested with a headset connected to the device. When multiple accessories that do not contain metallic components are supplied with the device, the device may be tested with only the accessory that dictates the closest spacing to the body. When multiple accessories that contain metallic components are supplied with the device, the device must be tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (e.g., the same metallic belt-clip used with different holsters with no other metallic components), only the accessory that dictates the closest spacing to the body must be tested.

Body-worn accessories may not always be supplied or available as options for some devices that are intended to be authorized for body-worn use. A separation distance of 1.5 cm between the back of the device and a flat phantom is recommended for testing body-worn SAR compliance under such circumstances. Other separation distances may be used, but they should not exceed 2.5 cm. In these cases, the device may use body-worn accessories that provide a separation distance greater than that tested for the device provided however that the accessory contains no metallic components.

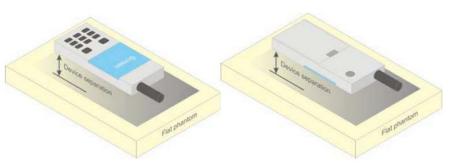


Figure 5 – Test positions for body-worn devices

When SAR measurement is necessary for hand-held devices that do not transmit while at the head or torso, a flat phantom may be used. To assess this type of device, the device shall be placed directly against the flat phantom as shown in Figure 11, for the sides of the device that are in contact with the hand for the intended use.

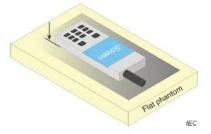


Figure 11 – Test position for hand-held devices, not used at the head or torso

Test Distance for SAR Evaluation

For this case the EUT(Equipment Under Test) is set 0mm away from the phantom, the test distance is 0mm.

SAR Evaluation Procedure

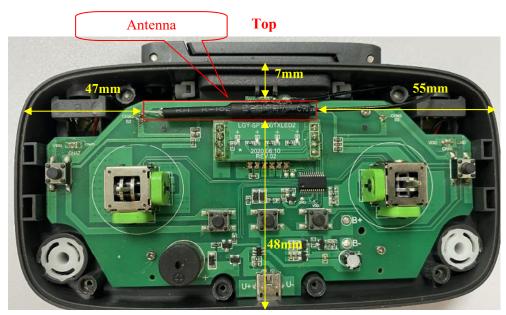
The evaluation was performed with the following procedure:

- Step 1: Measurement of the SAR value at a fixed location above the ear point or central position was used as a reference value for assessing the power drop. The SAR at this point is measured at the start of the test and then again at the end of the testing.
- Step 2: The SAR distribution at the exposed side of the head was measured at a distance of 4 mm from the inner surface of the shell. The area covered the entire dimension of the head or radiating structures of the EUT, the horizontal grid spacing was 15 mm x 15 mm, and the SAR distribution was determined by integrated grid of 1.5mm x 1.5mm. Based on these data, the area of the maximum absorption was determined by spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified.
- Step 3: Around this point, a volume of 30 mm x 30 mm x 30 mm was assessed by measuring 7x 7 x 7 points. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:
 - The data at the surface were extrapolated, since the center of the dipoles is 1.2 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
 - 2) The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one dimensional splines with the "Not a knot"-condition (in x, y and z-directions). The volume was integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the averages.
 - All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- Step 4: Re-measurement of the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation was repeated.

CONDUCTED OUTPUT POWER MEASUREMENT

Maximum Target Output Power

Max Target Power(dBm)							
Mada/David Channel							
Mode/Band	Low	Middle	High				
General 2.4G	17.0 16.0 15.0						


Test Results:

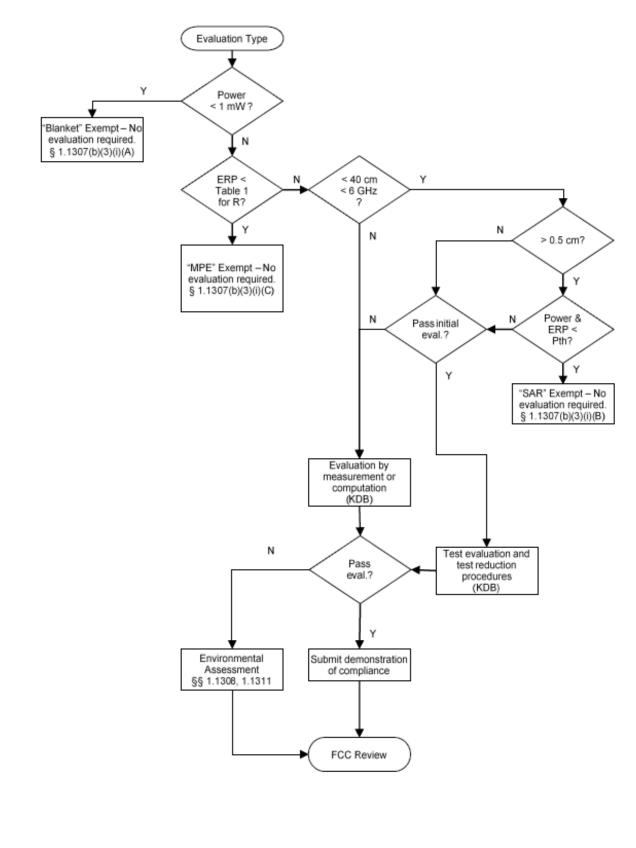
General 2.4G:

Mode	Channel	Channel frequency	Conducted Average
Wioue	Channel	(MHz)	Output
	Low	2407	16.35
GFSK	Middle	2442	15.67
	High	2478	14.84

Standalone SAR test exclusion considerations

Antennas Location:

Bottom


EUT Front View

Antenna Distance To Edge

Antenna Distance To Edge(mm)								
Antenna Front Back Left Right Top Bottom								
General 2.4G	5	13	47	55	7	48		

Standalone SAR test exclusion considerations

General Sequence for Determination of Procedure (exemption or evaluation) to Establish Compliance with Exposure Limits for a Single RF Source:

Shenzhen Accurate Technology Co., Ltd.

Report No.: SZNS220224-05849E-SA

Mode	Frequency (MHz)	Max Target Power (dBm)	Antenna gain (dBi)	P _{Max} (dBm)	P _{Max} (mW)	Separation Distance (mm)	P _{th} (Body) (mW)	SAR Test Exclusion
General 2.4G	2407	17.0	2.0	17.0	50.12	5	2.78	No
General 2.4G	2442	16.0	2.0	16.0	39.81	5	2.75	No
General 2.4G	2478	15.0	2.0	15.0	31.62	5	2.72	No

Mode	Frequency (MHz)	Max Target Power (dBm)	Antenna gain (dBi)	P _{Max} (dBm)	P _{Max} (mW)	Separation Distance (mm)	P _{th} (Extremity) (mW)	SAR Test Exclusion
General 2.4G	2407	17.0	2.0	17.0	50.12	5	6.95	No
General 2.4G	2442	16.0	2.0	16.0	39.81	5	6.88	No
General 2.4G	2478	15.0	2.0	15.0	31.62	5	6.80	No

Note:

1. ERP= Max Target Power+ Antenna gain-2.15

2. P_{Max} refers to the greater value in the conducted average power and ERP. 3. The formula for calculating P_{th} is given below, with distances ranging from 20cm to 40cm.

$$P_{\rm th} (\rm mW) = ERP_{20 \rm \ cm} (\rm mW) = \begin{cases} 2040f & 0.3 \rm \ GHz \le f < 1.5 \rm \ GHz \\ 3060 & 1.5 \rm \ GHz \le f \le 6 \rm \ GHz \end{cases}$$

4. The formula for calculating P_{th} is given below, with distances ranging from 0.5cm to 40cm.

$$P_{\rm th} \,({\rm mW}) = \begin{cases} ERP_{20\,\rm cm} (d/20\,\rm cm)^x & d \le 20\,\rm cm \\ \\ ERP_{20\,\rm cm} & 20\,\rm cm < d \le 40\,\rm cm \end{cases}$$

where

$$x = -\log_{10}\left(\frac{60}{\text{ERP}_{20}\,\mathrm{cm}\sqrt{f}}\right)$$

and f is in GHz, d is the separation distance (cm), and ERP_{20cm} is per Formula (Note 3).
5. When the separation distance is less than 0.5cm, 0.5cm is used as the calculation distance
6. When 10-g extremity SAR applies, SAR test exemption may be considered by applying a factor of 2.5 to the SAR-based exemption thresholds.

Shenzhen Accurate Technology Co., Ltd.

Standalone SAR test exclusion Distance

Mode	Frequency (MHz)	P _{Max} (dBm)	P _{Max} (mW)	Body Exclusion distance (mm)
General 2.4G	2407	17.0	50.12	22.9
General 2.4G	2442	16.0	39.81	20.4
General 2.4G	2478	15.0	31.62	18.1

Mode	Frequency (MHz)	P _{Max} (dBm)	P _{Max} (mW)	Extremity Exclusion distance (mm)
General 2.4G	2407	17.0	50.12	37.2
General 2.4G	2442	16.0	39.81	33.0
General 2.4G	2478	15.0	31.62	29.3

Note:

- 1. Body Exclusion distance(mm)= $200^{*}(P_{th}/ERP_{20cm})^{1/x}$. 2. Extremity Exclusion distance(mm)= $200^{*}(2.5^{*}P_{th}/ERP_{20cm})^{1/x}$.

SAR test exclusion for the EUT edge considerations Result

Body:

Antenna Distance To Edge(mm)								
Mode	Mode Front Back Left Right Top Bottom							
General 2.4G Required Required Exclusion Exclusion Exclusion Exclusion								

Extremity:

Antenna Distance To Edge(mm)								
Mode Front Back Left Right Top Bottom								
General 2.4G	Required	Required	Exclusion	Exclusion	Exclusion	Exclusion		

Note:

Required: The distance to Edge is less than Exclusion distance, testing is required.

Exclusion: The distance to Edge is more than Exclusion distance, testing is not required.

SAR MEASUREMENT RESULTS

This page summarizes the results of the performed dosimetric evaluation.

SAR Test Data

Environmental Conditions

Temperature:	23.2-24.1°C
Relative Humidity:	45-58 %
ATM Pressure:	101.3 kPa
Test Date:	2022/08/05

Testing was performed by Seven Liang, Jacky Yang, Ryse Chai.

General 2.4G:

EUT	Frequency		Max. Meas.	Max. Rated	Scaled	1g	SAR (W/kg)	
Position	(MHz)	Test Mode	Power (dBm)	Power (dBm)	Factor	Meas. SAR	Scaled SAR	Plot
	2407	GFSK	16.35	17.0	1.161	0.000822	0.01	1#
Body Front (0mm)	2442	GFSK	/	/				/
(*****)	2478	GFSK	/	/				/
	2407	GFSK	16.35	17.0	1.161	0.000185	0.01	2#
Body Back (0mm)	2442	GFSK	/	/				/
(*****)	2478	GFSK	/	/				/
	2407	GFSK	16.35	17.0	1.161	0.000842	0.01	3#
Body Top (0mm)	2442	GFSK	/	/	/	/	/	/
(******)	2478	GFSK	/	/	/	/	/	/

EUT	Frequency		Max. Meas.	Max. Rated	Scaled	10g	g SAR (W/kg)	
Position	(MHz)	Test Mode	Power (dBm)	Power (dBm)	Factor	Meas. SAR	Scaled SAR	Plot
	2407	GFSK	16.35	17.0	1.161	0.000307	0.01	1#
Extremity Front (0mm)	2442	GFSK	/	/				/
(******)	2478	GFSK	/	/				/
	2407	GFSK	16.35	17.0	1.161	0.0001	0.01	2#
Extremity Back (0mm)	2442	GFSK	/	/				/
(01111)	2478	GFSK	/	/				/
	2407	GFSK	16.35	17.0	1.161	0.000318	0.01	3#
Extremity Top (0mm)	2442	GFSK	/	/	/	/	/	/
(******)	2478	GFSK	/	/	/	/	/	/

Note:

1. When the 1-g SAR is \leq 0.8W/Kg, testing for other channels are optional.

Shenzhen Accurate Technology Co., Ltd.

- When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance.
 During the test, the rocker housing that hindered the test were removed. Both of them were made of plastic material and did not affect the electrical characteristics of the device under test.

Shenzhen Accurate Technology Co., Ltd.

SAR Measurement Variability

- In accordance with published RF Exposure KDB procedure 865664 D01 SAR measurement 100 MHz to 6 GHz v01. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results
 - 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
 - 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
 - 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
 - Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

The Highest Measured SAR Configuration in Each Frequency Band

SAR probe	Frequency			Meas. SA	R (W/kg)	Largest to
calibration point	Band	Freq.(MHz)	EUT Position	Original	Repeated	Smallest SAR Ratio
/	/	/	/	/	/	/

Note:

- 1. Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is not > 1.20.
- 2. The measured SAR results **do not** have to be scaled to the maximum tune-up tolerance to determine if repeated measurements are required.
- 3. SAR measurement variability must be assessed for each frequency band, which is determined by the **SAR probe calibration point and tissue-equivalent medium** used for the device measurements..

SAR SIMULTANEOUS TRANSMISSION DESCRIPTION

Simultaneous Transmission:

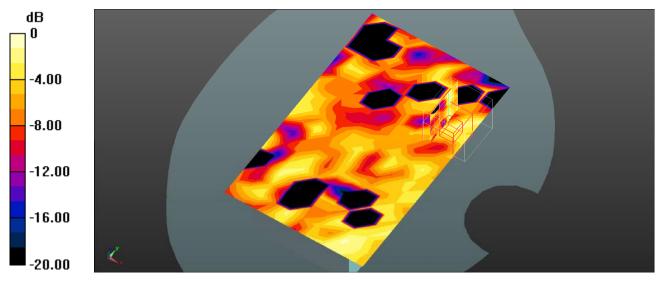
Note: This portable device has no Simultaneous Transmission

SAR Plots

Plots 1#:

DUT: SP7100; Type: R/C QUADCOPTER ; Serial: SZNS220224-05849E-SA-S1

Communication System: UID 0, 2.4G SRD (0); Frequency: 2407 MHz;Duty Cycle: 1:60.9756 Medium parameters used (interpolated): f = 2407 MHz; σ = 1.789 S/m; ϵ_r = 41.032; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(7.54, 7.54, 7.54) @ 2407 MHz; Calibrated: 2022/05/16
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1211; Calibrated: 2022/03/01
- Phantom: Twin SAM; Type: QD000P40CD; Serial: 1744
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Body Front/WLAN 802.11b Low/Area Scan (11x17x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.00257 W/kg

Body Front/WLAN 802.11b Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.000 V/m; Power Drift = -0.17 dB Peak SAR (extrapolated) = 0.00387 W/kg SAR(1 g) = 0.000822 W/kg; SAR(10 g) = 0.000307 W/kg

Maximum value of SAR (measured) = 0.00322 W/kg

0 dB = 0.00322 W/kg = -24.92 dBW/kg

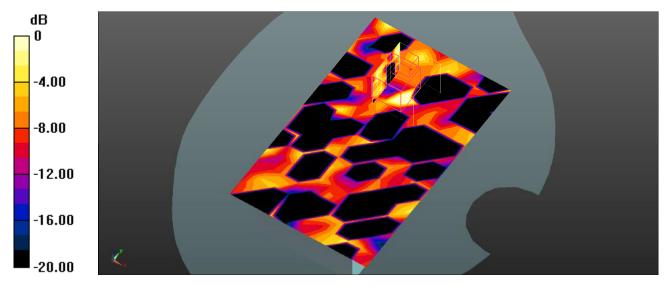
Plots 2#:

DUT: SP7100; Type: R/C QUADCOPTER ; Serial: SZNS220224-05849E-SA-S1

Communication System: UID 0, 2.4G SRD (0); Frequency: 2407 MHz;Duty Cycle: 1:60.9756 Medium parameters used (interpolated): f = 2407 MHz; σ = 1.789 S/m; ϵ_r = 41.032; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(7.54, 7.54, 7.54) @ 2407 MHz; Calibrated: 2022/05/16
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1211; Calibrated: 2022/03/01
- Phantom: Twin SAM; Type: QD000P40CD; Serial: 1744
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)


Body Back/WLAN 802.11b Low/Area Scan (11x17x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.0228 W/kg

Body Back/WLAN 802.11b Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0.2140 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 0.00337 W/kg

SAR(1 g) = 0.000185 W/kg; SAR(10 g) = 3.24e-005 W/kg

Maximum value of SAR (measured) = 0.00337 W/kg

0 dB = 0.00337 W/kg = -24.72 dBW/kg

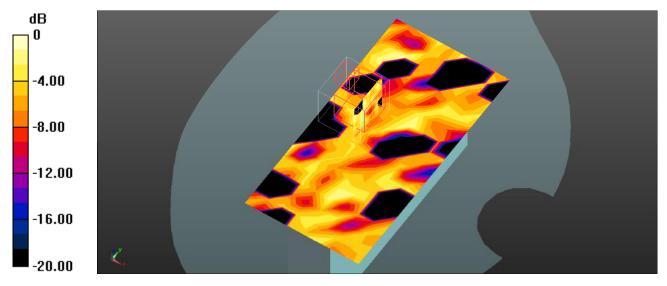
Plots 3#:

DUT: SP7100; Type: R/C QUADCOPTER ; Serial: SZNS220224-05849E-SA-S1

Communication System: UID 0, 2.4G SRD (0); Frequency: 2407 MHz;Duty Cycle: 1:60.9756 Medium parameters used (interpolated): f = 2407 MHz; $\sigma = 1.789$ S/m; $\epsilon_r = 41.032$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(7.54, 7.54, 7.54) @ 2407 MHz; Calibrated: 2022/05/16
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1211; Calibrated: 2022/03/01
- Phantom: Twin SAM; Type: QD000P40CD; Serial: 1744
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)


Body Top/WLAN 802.11b Low/Area Scan (9x17x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.00243 W/kg

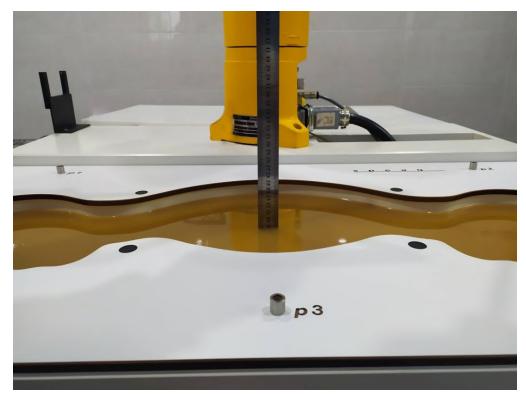
Body Top/WLAN 802.11b Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0.6310 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.00310 W/kg

SAR(1 g) = 0.000842 W/kg; SAR(10 g) = 0.000318 W/kg

Maximum value of SAR (measured) = 0.00303 W/kg

0 dB = 0.00303 W/kg = -25.19 dBW/kg


APPENDIX A MEASUREMENT UNCERTAINTY

The uncertainty budget has been determined for the measurement system and is given in the following Table. Measurement uncertainty evaluation for IEEE1528-2013 SAR test

Source of uncertainty	Tolerance/ uncertaint y ± %	Probability distributio n	Divisor	ci (1 g)	ci (10 g)	Standard uncertai nty ± %, (1 g)	Standard uncertai nty ± %, (10 g)
		Measurement	system	÷	÷		
Probe calibration	6.55	Ν	1	1	1	6.6	6.6
Axial Isotropy	4.7	R	$\sqrt{3}$	1	1	2.7	2.7
Hemispherical Isotropy	9.6	R	$\sqrt{3}$	0	0	0.0	0.0
Boundary effect	1.0	R	$\sqrt{3}$	1	1	0.6	0.6
Linearity	4.7	R	$\sqrt{3}$	1	1	2.7	2.7
Detection limits	1.0	R	$\sqrt{3}$	1	1	0.6	0.6
Readout electronics	0.3	Ν	1	1	1	0.3	0.3
Response time	0.0	R	$\sqrt{3}$	1	1	0.0	0.0
Integration time	0.0	R	$\sqrt{3}$	1	1	0.0	0.0
RF ambient conditions – noise	1.0	R	$\sqrt{3}$	1	1	0.6	0.6
RF ambient conditions-reflections	1.0	R	$\sqrt{3}$	1	1	0.6	0.6
Probe positioner mech. Restrictions	0.8	R	$\sqrt{3}$	1	1	0.5	0.5
Probe positioning with respect to phantom shell	6.7	R	$\sqrt{3}$	1	1	3.9	3.9
Post-processing	2.0	R	$\sqrt{3}$	1	1	1.2	1.2
		Test sample	related				
Test sample positioning	2.8	Ν	1	1	1	2.8	2.8
Device holder uncertainty	6.3	Ν	1	1	1	6.3	6.3
Drift of output power	5.0	R	$\sqrt{3}$	1	1	2.9	2.9
		Phantom and	set-up				
Phantom uncertainty (shape and thickness tolerances)	4.0	R	$\sqrt{3}$	1	1	2.3	2.3
Liquid conductivity target)	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2
Liquid conductivity meas.)	2.5	Ν	1	0.64	0.43	1.6	1.1
Liquid permittivity target)	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4
Liquid permittivity meas.)	2.5	Ν	1	0.6	0.49	1.5	1.2
Combined standard uncertainty		RSS				12.2	12.0
Expanded uncertainty 95 % confidence interval)						24.3	23.9

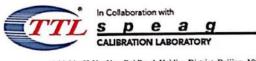
APPENDIX B EUT TEST POSITION PHOTOS

Liquid depth ≥ 15cm Phantom Type: Twin SAM Phantom ; Type: QD000 P40 CD; Serial: 1744

Front to Phantom(0mm)

Version 801: 2021-11-09

Back to Phantom(0mm)


Top to Phantom(0mm)

APPENDIX C PROBE CALIBRATION CERTIFICATES

CALIBRATION C	ERTIFICATE		
Object			
	EX3DV4 - S	IN : 7441	
Calibration Procedure(s)	FF 744 004	00	
	FF-Z11-004	-02 Procedures for Dosimetric E-field Pro	has
	Calibration	Frocedures for Dosimetric E-field Fro	bes
Calibration date:	May 16, 202	22	
All calibrations have been humidity<70%.	n conducted in the	closed laboratory facility: environme	ent temperature(22±3)℃ and
Calibration Equipment used	d (M&TE critical for ca	libration)	
	d (M&TE critical for ca ID #	libration) Cal Date(Calibrated by, Certificate N	lo.) Scheduled Calibration
	•	,	lo.) Scheduled Calibration Jun-22
Primary Standards Power Meter NRP2 Power sensor NRP-Z91	ID # 101919 101547	Cal Date(Calibrated by, Certificate N 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466)	
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91	ID # 101919 101547 101548	Cal Date(Calibrated by, Certificate N 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466)	Jun-22
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenua	ID # 101919 101547 101548 tor 18N50W-10dB	Cal Date(Calibrated by, Certificate N 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 20-Jan-21(CTTL, No.J21X00486)	Jun-22 Jun-22 Jun-22 Jan-23
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenua Reference 20dBAttenua	ID # 101919 101547 101548 tor 18N50W-10dB tor 18N50W-20dB	Cal Date(Calibrated by, Certificate N 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 20-Jan-21(CTTL, No.J21X00486) 20-Jan-21(CTTL, No.J21X00485)	Jun-22 Jun-22 Jun-22 Jan-23 Jan-23
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenua Reference 20dBAttenua Reference Probe EX3DV	ID # 101919 101547 101548 tor 18N50W-10dB tor 18N50W-20dB V4 SN 7464	Cal Date(Calibrated by, Certificate N 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 20-Jan-21(CTTL, No.J21X00486) 20-Jan-21(CTTL, No.J21X00485) 26-Jan-22(SPEAG, No.EX3-7464_J	Jun-22 Jun-22 Jun-22 Jan-23 Jan-23 Jan-23
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenua Reference 20dBAttenua	ID # 101919 101547 101548 tor 18N50W-10dB tor 18N50W-20dB	Cal Date(Calibrated by, Certificate N 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 20-Jan-21(CTTL, No.J21X00486) 20-Jan-21(CTTL, No.J21X00485)	Jun-22 Jun-22 Jun-22 Jan-23 Jan-23 Jan-23
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenua Reference 20dBAttenua Reference Probe EX3DV	ID # 101919 101547 101548 tor 18N50W-10dB tor 18N50W-20dB V4 SN 7464	Cal Date(Calibrated by, Certificate N 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 20-Jan-21(CTTL, No.J21X00486) 20-Jan-21(CTTL, No.J21X00485) 26-Jan-22(SPEAG, No.EX3-7464_J	Jun-22 Jun-22 Jun-22 Jan-23 Jan-23 Jan-23
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenua Reference 20dBAttenua Reference Probe EX3DV DAE4 Secondary Standards SignalGenerator MG370	ID # 101919 101547 101548 tor 18N50W-10dB tor 18N50W-20dB V4 SN 7464 SN 1555 ID # 00A 6201052605	Cal Date(Calibrated by, Certificate N 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 20-Jan-21(CTTL, No.J21X00486) 20-Jan-21(CTTL, No.J21X00485) 26-Jan-22(SPEAG, No.EX3-7464_J 20-Aug-21(SPEAG, No.DAE4-1555 Cal Date(Calibrated by, Certificate No.) 16-Jun-21(CTTL, No.J21X04467)	Jun-22 Jun-22 Jun-22 Jan-23 Jan-23 Jan-23 [an22) Jan-23 _Aug21/2) Aug-22
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenua Reference 20dBAttenua Reference Probe EX3DV DAE4 Secondary Standards	ID # 101919 101547 101548 tor 18N50W-10dB tor 18N50W-20dB V4 SN 7464 SN 1555 ID # 1004 6201052605 IC MY46110673	Cal Date(Calibrated by, Certificate N 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 20-Jan-21(CTTL, No.J21X00486) 20-Jan-21(CTTL, No.J21X00485) 26-Jan-22(SPEAG, No.EX3-7464_J 20-Aug-21(SPEAG, No.DAE4-1555 Cal Date(Calibrated by, Certificate No.) 16-Jun-21(CTTL, No.J21X04467) 14-Jan-22(CTTL, No.J22X00406)	Jun-22 Jun-22 Jun-22 Jan-23 Jan-23 Jan-23 Jan-23 Aug21/2) Aug-22 Scheduled Calibration Jun-22 Jan-23
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenua Reference 20dBAttenua Reference Probe EX3DV DAE4 Secondary Standards SignalGenerator MG370 Network Analyzer E5071	ID # 101919 101547 101548 tor 18N50W-10dB tor 18N50W-20dB V4 SN 7464 SN 1555 ID # 00A 6201052605 IC MY46110673 Name	Cal Date(Calibrated by, Certificate N 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 20-Jan-21(CTTL, No.J21X00486) 20-Jan-21(CTTL, No.J21X00485) 26-Jan-22(SPEAG, No.DAE4-1555 26-Jan-22(SPEAG, No.DAE4-1555 Cal Date(Calibrated by, Certificate No.) 16-Jun-21(CTTL, No.J21X04467) 14-Jan-22(CTTL, No.J22X00406) Function	Jun-22 Jun-22 Jun-22 Jan-23 Jan-23 Jan-23 Aug21/2) Aug-22 Scheduled Calibration Jun-22 Jan-23
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenua Reference 20dBAttenua Reference Probe EX3DV DAE4 Secondary Standards SignalGenerator MG370 Network Analyzer E5071	ID # 101919 101547 101548 tor 18N50W-10dB tor 18N50W-20dB V4 SN 7464 SN 1555 ID # 1004 6201052605 IC MY46110673	Cal Date(Calibrated by, Certificate N 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 20-Jan-21(CTTL, No.J21X00486) 20-Jan-21(CTTL, No.J21X00485) 26-Jan-22(SPEAG, No.EX3-7464_J 20-Aug-21(SPEAG, No.DAE4-1555 Cal Date(Calibrated by, Certificate No.) 16-Jun-21(CTTL, No.J21X04467) 14-Jan-22(CTTL, No.J22X00406)	Jun-22 Jun-22 Jun-22 Jan-23 Jan-23 Jan-23 Jan-23 Aug21/2) Aug-22 Scheduled Calibration Jun-22 Jan-23
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenua Reference 20dBAttenua Reference Probe EX3DV DAE4 Secondary Standards SignalGenerator MG370 Network Analyzer E5071 Calibrated by:	ID # 101919 101547 101548 tor 18N50W-10dB tor 18N50W-20dB V4 SN 7464 SN 1555 ID # 00A 6201052605 IC MY46110673 Name Yu Zongying	Cal Date(Calibrated by, Certificate N 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 20-Jan-21(CTTL, No.J21X00486) 20-Jan-21(CTTL, No.J21X00485) 26-Jan-22(SPEAG, No.DAE4-1555 26-Jan-22(SPEAG, No.DAE4-1555 Cal Date(Calibrated by, Certificate No.) 16-Jun-21(CTTL, No.J21X04467) 14-Jan-22(CTTL, No.J22X00406) Function SAR Test Engineer	Jun-22 Jun-22 Jun-22 Jan-23 Jan-23 Jan-23 Aug21/2) Aug-22 Scheduled Calibration Jun-22 Jan-23
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenua Reference 20dBAttenua Reference Probe EX3DV DAE4 Secondary Standards SignalGenerator MG370	ID # 101919 101547 101548 tor 18N50W-10dB tor 18N50W-20dB V4 SN 7464 SN 1555 ID # 00A 6201052605 IC MY46110673 Name	Cal Date(Calibrated by, Certificate N 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 20-Jan-21(CTTL, No.J21X00486) 20-Jan-21(CTTL, No.J21X00485) 26-Jan-22(SPEAG, No.DAE4-1555 26-Jan-22(SPEAG, No.DAE4-1555 Cal Date(Calibrated by, Certificate No.) 16-Jun-21(CTTL, No.J21X04467) 14-Jan-22(CTTL, No.J22X00406) Function	Jun-22 Jun-22 Jun-22 Jan-23 Jan-23 Jan-23 Aug21/2) Aug-22 Scheduled Calibration Jun-22 Jan-23
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenua Reference 20dBAttenua Reference Probe EX3DV DAE4 Secondary Standards SignalGenerator MG370 Network Analyzer E5071 Calibrated by:	ID # 101919 101547 101548 tor 18N50W-10dB tor 18N50W-20dB V4 SN 7464 SN 1555 ID # 00A 6201052605 IC MY46110673 Name Yu Zongying	Cal Date(Calibrated by, Certificate N 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 20-Jan-21(CTTL, No.J21X00486) 20-Jan-21(CTTL, No.J21X00485) 26-Jan-22(SPEAG, No.DAE4-1555 26-Jan-22(SPEAG, No.DAE4-1555 Cal Date(Calibrated by, Certificate No.) 16-Jun-21(CTTL, No.J21X04467) 14-Jan-22(CTTL, No.J22X00406) Function SAR Test Engineer	Jun-22 Jun-22 Jun-22 Jan-23 Jan-23 Jan-23 Aug21/2) Aug-22 Scheduled Calibration Jun-22 Jan-23
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenua Reference 20dBAttenua Reference Probe EX3DV DAE4 Secondary Standards SignalGenerator MG370 Network Analyzer E5071 Calibrated by: Reviewed by:	ID # 101919 101547 101548 tor 18N50W-10dB 18N50W-20dB V4 SN 7464 SN 1555 ID # 00A 6201052605 MY46110673 Name Yu Zongying Lin Hao	Cal Date(Calibrated by, Certificate N 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 15-Jun-21(CTTL, No.J21X04466) 20-Jan-21(CTTL, No.J21X00486) 20-Jan-21(CTTL, No.J21X00485) 26-Jan-22(SPEAG, No.DAE4-1555 26-Jan-22(SPEAG, No.DAE4-1555 Cal Date(Calibrated by, Certificate No.) 16-Jun-21(CTTL, No.J21X04467) 14-Jan-22(CTTL, No.J22X00406) Function SAR Test Engineer SAR Test Engineer SAR Project Leader	Jun-22 Jun-22 Jun-22 Jan-23 Jan-23 Jan-23 Aug21/2) Aug-22 Scheduled Calibration Jun-22 Jan-23

	In Collaboration with	
TTL	<u>spea</u>	
	CALIBRATION LABORATOR	RY
Tel: +86-10-6	luaYuanBei Road, Haidian Dist 52304633-2117	
E-mail: cttl@	chinattl.com http://www	w.caict.ac.cn
Glossary:		
ISL	tissue simulating liquid	
NORMx,y,z	sensitivity in free space	
ConvF DCP	sensitivity in TSL / NO diode compression po	
CF	crest factor (1/duty_cy	
A,B,C,D		t linearization parameters
Polarization Φ	Φ rotation around prot	be axis
Polarization 0		axis that is in the plane normal to probe axis (at measurement center)
	θ=0 is normal to probe	
Connector Angle	information used in DA Performed According	ASY system to align probe sensor X to the robot coordinate system g to the Following Standards:
		mended Practice for Determining the Peak Spatial-Averaged
		the Human Head from Wireless Communications Devices:
Measurement	Techniques", June 2013	j
b) IEC 62209-1,	*Measurement procedu	ure for the assessment of Specific Absorption Rate (SAR) from
	body-mounted devices	s used next to the ear (frequency range of 300 MHz to 6 GHz)",
July 2016	Procedure to determine	e the Specific Absorption Rate (SAR) for wireless communication
		human body (frequency range of 30 MHz to 6 GHz)", March
2010		
		quirements for 100 MHz to 6 GHz"
	ed and Interpretation	
		larization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide).
		alues, i.e., the uncertainties of NORMx,y,z does not effect the
	ertainty inside TSL (see	
		ncy_response (see Frequency Response Chart). This Y4 software versions later than 4.2. The uncertainty of the
		he stated uncertainty of ConvF.
		ization parameters assessed based on the data of power sweep
(no uncertair	nty required). DCP does	s not depend on frequency nor media.
		atio that is not calibrated but determined based on the signal
characteristi		are numerical linearization parameters assessed based on the
		dulation signal. The parameters do not depend on frequency nor
media VR is	the maximum calibratic	on range expressed in RMS voltage across the diode.
ConvF and E	Boundary Effect Parame	eters: Assessed in flat phantom using E-field (or Temperature
Transfer Star	ndard for f≤800MHz) and	id inside waveguide using analytical field distributions based on
power meas	urements for f >800MHz	z. The same setups are used for assessment of the parameters
applied for b	oundary compensation	(alpha, depth) of which typical uncertainty valued are given.
		Y4 software to improve probe accuracy close to the boundary.
		o NORMx,y,z* ConvF whereby the uncertainty corresponds to ependent ConvF is used in DASY version 4.4 and higher which
	ding the validity from ±50	
		<i>m isotropy):</i> in a field of low gradients realized using a flat
phantom exp	osed by a patch antenn	na.
 Sensor Offse 	et: The sensor offset con	rresponds to the offset of virtual measurement center from the
probe tip (on	probe axis). No toleran	ice required.
 Connector A (no uncertair 	<i>ngle:</i> The angle is asses ity required).	ssed using the information gained by determining the NORMx
Certificate No:Z		Page 2 of 9

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 http://www.caict.ac.cn E-mail: cttl@chinattl.com

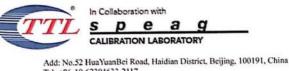
DASY/EASY - Parameters of Probe: EX3DV4 - SN:7441

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m)2) A	0.40	0.47	0.39	±10.0%
DCP(mV) ^B	90.9	102.2	105.6	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	c	D dB	VR mV	Unc ^E (<i>k</i> =2)
0 CW	0	x	0.0	0.0	1.0	0.00	147.5	±2.7%
	1-511040H	Y	0.0	0.0	1.0		169.7	
		z	0.0	0.0	1.0		155.0	


The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 4).

⁶ Numerical linearization parameter: uncertainty not required.
 ⁶ Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No:Z22-60101

Page 3 of 9

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: ettl@chinattl.com http://www.caiet.ac.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7441

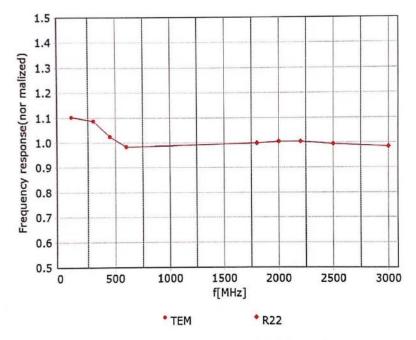
f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (<i>k</i> =2)
750	41.9	0.89	10.04	10.04	10.04	0.12	1.39	±12.1%
900	41.5	0.97	9.61	9.61	9.61	0.16	1.41	±12.1%
1450	40.5	1.20	8.52	8.52	8.52	0.28	0.95	±12.1%
1750	40.1	1.37	8.32	8.32	8.32	0.29	0.88	±12.1%
1900	40.0	1.40	7.94	7.94	7.94	0.27	1.03	±12.1%
2000	40.0	1.40	7.99	7.99	7.99	0.25	1.15	±12.1%
2300	39.5	1.67	7.78	7.78	7.78	0.65	0.65	±12.1%
2450	39.2	1.80	7.54	7.54	7.54	0.65	0.67	±12.1%
2600	39.0	1.96	7.30	7.30	7.30	0.64	0.67	±12.1%
3300	38.2	2.71	7.09	7.09	7.09	0.47	0.89	±13.3%
3500	37.9	2.91	6.89	6.89	6.89	0.42	0.95	±13.3%
3700	37.7	3.12	6.55	6.55	6.55	0.42	1.01	±13.3%
3900	37.5	3.32	6.60	6.60	6.60	0.35	1.35	±13.3%
4400	36.9	3.84	6.34	6.34	6.34	0.35	1.35	±13.3%
4600	36.7	4.04	6.26	6.26	6.26	0.45	1.20	±13.3%
4800	36.4	4.25	6.16	6.16	6.16	0.45	1.25	±13.3%
4950	36.3	4.40	5.85	5.85	5.85	0.50	1.15	±13.3%
5250	35.9	4.71	5.35	5.35	5.35	0.55	1.15	±13.3%
5600	35.5	5.07	4.85	4.85	4.85	0.55	1.20	±13.3%
5750	35.4	5.22	4.83	4.83	4.83	0.55	1.20	±13.3%

Calibration Parameter Determined in Head Tissue Simulating Media

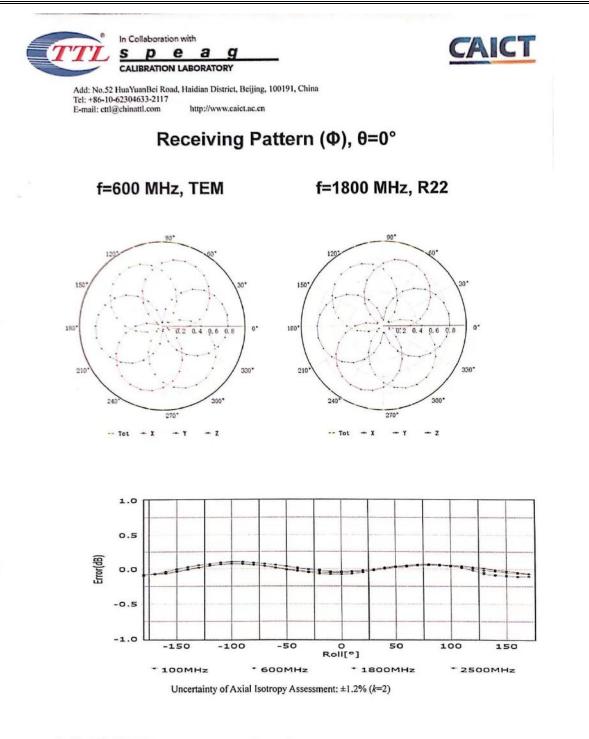
^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

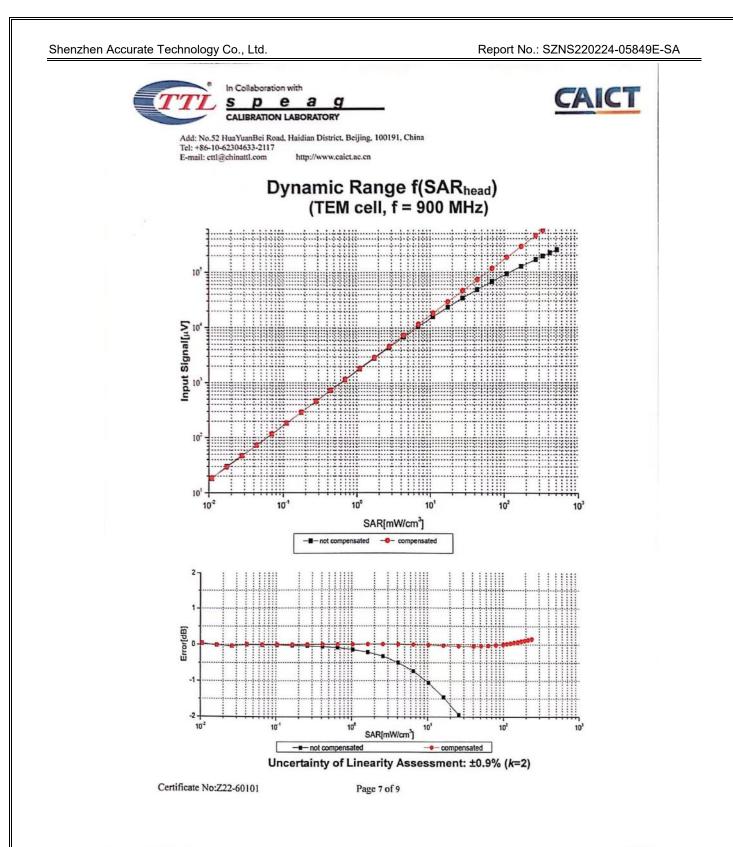
^F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No:Z22-60101


Page 4 of 9

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn

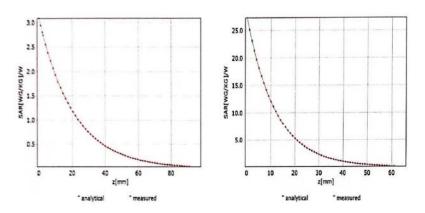

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)


Certificate No:Z22-60101

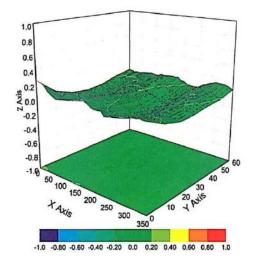
Page 5 of 9

Certificate No:Z22-60101

Page 6 of 9

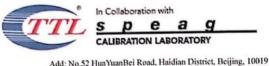


Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: ettl@chinattl.com http://www.caiet.ac.cn


Conversion Factor Assessment

f=750 MHz,WGLS R9(H_convF)

f=1750 MHz,WGLS R22(H_convF)


Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2)

Certificate No:Z22-60101

Page 8 of 9

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.en

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7441

Other Probe Parameters Triangular Sensor Arrangement 100.7 Connector Angle (°) Mechanical Surface Detection Mode enabled disable **Optical Surface Detection Mode** 337mm **Probe Overall Length** 10mm **Probe Body Diameter** 9mm **Tip Length** 2.5mm **Tip Diameter** 1mm Probe Tip to Sensor X Calibration Point 1mm **Probe Tip to Sensor Y Calibration Point** Probe Tip to Sensor Z Calibration Point 1mm Recommended Measurement Distance from Surface 1.4mm

Certificate No:Z22-60101

Page 9 of 9

APPENDIX D DIPOLE CALIBRATION CERTIFICATES

TI	T sp	eag 🧼	中国认可国际互认
		ITION LABORATORY	AS 校准 CALIBRATION
Tel: +86-10-623046 E-mail: ettl@chinat	633-2079 Fax: 1	strict, Beijing, 100191, China +86-10-62304633-2504 /www.chinattl.cn	CNAS L0570
Client BAC			20-60412
CALIBRATION CI	ERTIFICAT	ſE	
Object	D2450	V2 - SN: 751	
	02400	ve - 64. 101	
Calibration Procedure(s)	FF-Z11	1-003-01	
	Calibra	tion Procedures for dipole validation kits	
Calibration date:	Octobe	er 13, 2020	
his calibration Certificate	documents the	traceability to national standards, which rea	
neasurements(SI). The mea		the uncertainties with confidence probability	are given on the following
neasurements(SI). The me ages and are part of the ce	ertificate.		
neasurements(SI). The me ages and are part of the ce All calibrations have been umidity<70%.	ertificate. I conducted in	the closed laboratory facility: environment	
neasurements(SI). The measurements(SI). The measurements(SI) calibrations have been numidity<70%.	ertificate. I conducted in	the closed laboratory facility: environment or calibration)	temperature(22±3)*C and
neasurements(SI). The measurements(SI). The measurements(SI). The measurement of the centre of the c	ertificate. I conducted in	the closed laboratory facility: environment	
neasurements(SI). The measurements(SI). The measurements(SI). The measurement of the centrement of the	ertificate. I conducted in I (M&TE critical fi	the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.)	temperature(22±3)*C and Scheduled Calibration
neasurements(SI). The measurements(SI). The measurements(SI). The measurement of the centre of the c	ertificate. I conducted in I (M&TE critical fi ID # 106276 101369 SN 3617	the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL, No.J20X02965) 12-May-20 (CTTL, No.J20X02965) 30-Jan-20(SPEAG,No.EX3-3617_Jan20)	temperature(22±3)*C and Scheduled Calibration May-21 May-21 Jan-21
neasurements(SI). The measurements(SI). The measurements(SI). The measurement of the centre of the c	ertificate.	the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL, No.J20X02965) 12-May-20 (CTTL, No.J20X02965)	temperature(22±3)*C and Scheduled Calibration May-21 May-21
neasurements(SI). The measurements(SI). The measurements(SI). The measurement of the centre of the c	ertificate. I conducted in I (M&TE critical fi ID # 106276 101369 SN 3617	the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL, No.J20X02965) 12-May-20 (CTTL, No.J20X02965) 30-Jan-20(SPEAG,No.EX3-3617_Jan20)	temperature(22±3)*C and Scheduled Calibration May-21 May-21 Jan-21
neasurements(SI). The measurements(SI). The measurements(SI). The measurement of the centre of the c	I conducted in Conducted in CM&TE critical fi 106276 101369 SN 3617 SN 771	the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL, No.J20X02965) 12-May-20 (CTTL, No.J20X02965) 30-Jan-20(SPEAG,No.EX3-3617_Jan20) 10-Feb-20(CTTL-SPEAG,No.Z20-60017) Cal Date(Calibrated by, Certificate No.)	temperature(22±3)*C and Scheduled Calibration May-21 May-21 Jan-21 Feb-21
neasurements(SI). The measurements(SI). The measurements(SI). The measurement of the centre of the c	I conducted in Conducted in CM&TE critical fi 106276 101369 SN 3617 SN 771 ID #	the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL, No.J20X02965) 12-May-20 (CTTL, No.J20X02965) 30-Jan-20(SPEAG,No.EX3-3617_Jan20) 10-Feb-20(CTTL-SPEAG,No.Z20-60017) Cal Date(Calibrated by, Certificate No.)	temperature(22±3)*C and Scheduled Calibration May-21 May-21 Jan-21 Feb-21 Scheduled Calibration
neasurements(SI). The measurements(SI). The measurements(SI). The measurement of the centre of the c	ertificate. conducted in (M&TE critical fi 106276 101369 SN 3617 SN 771 ID # MY49071430	the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL, No.J20X02965) 12-May-20 (CTTL, No.J20X02965) 30-Jan-20(SPEAG,No.EX3-3617_Jan20) 10-Feb-20(CTTL-SPEAG,No.Z20-60017) Cal Date(Calibrated by, Certificate No.) 25-Feb-20 (CTTL, No.J20X00516)	temperature(22±3)*C and Scheduled Calibration May-21 May-21 Jan-21 Feb-21 Scheduled Calibration Feb-21
neasurements(SI). The measurements(SI). The measurements(SI). The measurement of the centre of the c	ertificate. conducted in (M&TE critical fi 106276 101369 SN 3617 SN 771 ID # MY49071430 MY46110673	the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL, No.J20X02965) 12-May-20 (CTTL, No.J20X02965) 30-Jan-20(SPEAG,No.EX3-3617_Jan20) 10-Feb-20(CTTL-SPEAG,No.Z20-60017) Cal Date(Calibrated by, Certificate No.) 25-Feb-20 (CTTL, No.J20X00516) 10-Feb-20 (CTTL, No.J20X00515)	temperature(22±3)*C and Scheduled Calibration May-21 May-21 Jan-21 Feb-21 Scheduled Calibration Feb-21 Feb-21
neasurements(SI). The measurements(SI). The measurements(SI). The measurements(SI). The measurement of the cells and are part of the cells and are p	ertificate. I conducted in I (M&TE critical fi 106276 101369 SN 3617 SN 771 ID # MY49071430 MY46110673 Name Zhao Jing	the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL, No.J20X02965) 12-May-20 (CTTL, No.J20X02965) 30-Jan-20(SPEAG,No.EX3-3617_Jan20) 10-Feb-20(CTTL-SPEAG,No.Z20-60017) Cal Date(Calibrated by, Certificate No.) 25-Feb-20 (CTTL, No.J20X00516) 10-Feb-20 (CTTL, No.J20X00515) Function SAR Test Engineer	temperature(22±3)*C and Scheduled Calibration May-21 May-21 Jan-21 Feb-21 Scheduled Calibration Feb-21 Feb-21
neasurements(SI). The measurements(SI). The measurements(SI). The measurement of the centre of the c	ertificate. I conducted in I (M&TE critical fill ID # 106276 101369 SN 3617 SN 771 ID # MY49071430 MY46110673 Name	the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.) 12-May-20 (CTTL, No.J20X02965) 12-May-20 (CTTL, No.J20X02965) 30-Jan-20(SPEAG,No.EX3-3617_Jan20) 10-Feb-20(CTTL-SPEAG,No.Z20-60017) Cal Date(Calibrated by, Certificate No.) 25-Feb-20 (CTTL, No.J20X00516) 10-Feb-20 (CTTL, No.J20X00515) Function	temperature(22±3)*C and Scheduled Calibration May-21 May-21 Jan-21 Feb-21 Scheduled Calibration Feb-21 Feb-21

Certificate No: Z20-60412

Page 1 of 6

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z20-60412

Page 2 of 6

Add: No.51 Xucyuan Road, Haidian District, Beljing, 100191, China Tol: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ett0@chinottLcom http://www.chinottl.en

Measurement Conditions DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

Conductivity
1.80 mho/m
1 mho/m ± 6 %

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.0 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.12 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.4 W/kg ± 18.7 % (k=2)

Certificate No: Z20-60412

Page 3 of 6

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

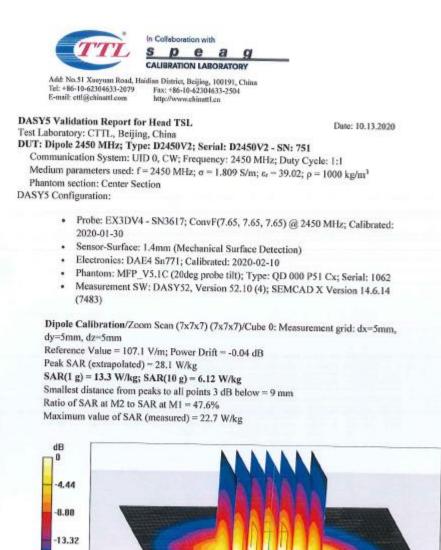
Impedance, transformed to feed point	53.6Ω+ 4.03 jΩ	
Return Loss	- 25.7dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.022 ns	

After long term use with 100W radiated power, only a slight warming of the dipote near the feedpoint can be measured.

The dipole is made of standard seminigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.


Additional EUT Data

Manufactured by	SPEAG

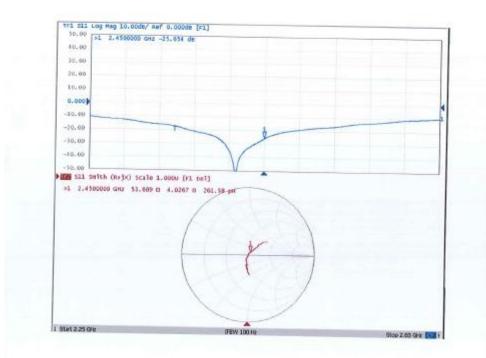
Certificate No: Z20-60412

Page 4 of 6

Version 801: 2021-11-09

-17.76

22.20


Certificate No: Z20-60412

Page 5 of 6

0 dB = 22.7 W/kg = 13.56 dBW/kg

Impedance Measurement Plot for Head TSL

Certificate No: Z20-60412

Page 6 of 6

***** END OF REPORT *****