

TEST REPORT

Applicant Name : Address :

Report Number : FCC ID: Shenzhen VanTop Technology & Innovation Co., Ltd. 502, 5th Flr. BLDG 4, MinQi Technology Park, No. 65 Lishan Road, Taoyuan Street, Nanshan District, Shenzhen, China SZNS220224-05823E-RF-00 2AQ3A-SP7100Q0522

Test Standard (s)

FCC PART 15.407

Sample Description

Product Type:R/C QUADCOPTERModel No.:SP7100Multiple Model(s) No.:SP530, SP650 PRO, SP7200, SP7300, SP7500, SP7100 mini ,
SP680 (model difference see product declaration letter of
similarity)Trade Mark:N/ADate Received:2022/02/24Report Date:2022/05/17

Test Result:

Pass*

* In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

Ting Lü EMC Engineer **Approved By:**

Candy. Cr

Candy Li EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "* ".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk ^{**}. Customer model name, addresses, names, trademarks etc. are not considered data. This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to

this report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China Tel: +86 755-26503290 Fax: +86 755-26503396 Web: www.atc-lab.com

Version 10: 2021-11-09

Page 1 of 73

FCC-5G Wi-Fi

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
Test Methodology	••••••
MEASUREMENT UNCERTAINTY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	5
DESCRIPTION OF TEST CONFIGURATION	
EUT EXERCISE SOFTWARE	-
DUTY CYCLE	
Equipment Modifications	
SUMMARY OF TEST RESULTS	
TEST EQUIPMENT LIST	8
FCC §15.407(F)& §1.1310 & §2.1091 – MAXIMUM PERMISSIBLE EXPOSURE (MPE)	9
FCC §15.203 – ANTENNA REQUIREMENT	10
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
§15.205 & §15.209 & §15.407(B) (1), (4), (7), (8), (9), (10) – UNDESIRABLE EMISSION	11
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
Test Procedure	12
CORRECTED FACTOR & MARGIN CALCULATION	
TEST DATA	
FCC §15.407(A),(E) – 26 DB & 6DB EMISSION BANDWIDTH	
Applicable Standard	
Test Procedure	
TEST DATA	
FCC §15.407(A) (1) (3) – CONDUCTED TRANSMITTER OUTPUT POWER	
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	
FCC §15.407(A) (1) (3) - POWER SPECTRAL DENSITY	28
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	29
APPENDIX	
Appendix A1: Emission Bandwidth	
APPENDIX A2: OCCUPIED CHANNEL BANDWIDTH	
APPENDIX A3: MIN EMISSION BANDWIDTH Appendix B: Maximum conducted output power	
APPENDIX B: MAXIMUM CONDUCTED OUTPUT POWER Appendix C: Maximum power spectral density	
APPENDIX C. MAAIMUM FOWER SPECTRAL DENSITY	

Version 10: 2021-11-09

FCC-5G Wi-Fi

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Frequency Range	5G Wi-Fi: 5150-5250MHz; 5725-5850MHz
Mode	802.11a/n20/n40
Maximum Conducted Average Ouput Power	5150-5250 MHz: 17.91dBm 5725-5850 MHz: 20.11dBm
Modulation Technique	OFDM
Antenna Specification*	Antenna gain: 3.07dBi (It is provided by the manufacturer)
Voltage Range	DC 7.6V from Battery
Sample serial number	SZNS220224-05823E-RF-S1 for Radiated Emissions SZNS220224-05823E-RF-S2 for RF Conducted Test (Assigned by ATC)
Sample/EUT Status	Good condition

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and E of the Federal Communication Commissions rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart E, section 15.203, 15.205, 15.209 and 15.407 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices. And KDB789033 D02 General U-NII Test Procedures New Rules v02r01.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Each test item follows test standards and with no deviation.

Measurement Uncertainty

Para	meter	Uncertainty		
Occupied Char	nnel Bandwidth	5%		
RF Fre	equency	$0.082*10^{-7}$		
RF output pov	wer, conducted	0.73dB		
Unwanted Emis	ssion, conducted	1.6dB		
AC Power Lines Conducted Emissions		2.72dB		
	9kHz - 30MHz	2.66dB		
- · ·	30MHz - 1GHz	4.28dB		
Emissions, Radiated	1GHz - 18GHz	4.98dB		
Radiated	18GHz - 26.5GHz	5.06dB		
	26.5GHz - 40GHz	4.72dB		
Temperature		1℃		
Humidity		6%		
Supply	voltages	0.4%		

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189.

Accredited by American Association for Laboratory Accreditation (A2LA). The Certificate Number is 4297.01

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0016. The Registration Number is 5077A.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode, which was provided by manufacturer.

The device supports 5G Wi-Fi 802.11a/n20/n40 modes.

For 5150-5250MHz Band, 6 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	44	5220
38	5190	46	5230
40	5200	48	5240

For 802.11a/n20 mode: channel 36, 40, 48 were tested; For 802.11n40 mode: channel 38, 46 were tested.

For 5725-5850MHz Band, 7 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
149	5745	157	5785
151	5755	159	5795
153	5765	161	5805
/	/	165	5825

For 802.11a/n20 mode: channel 149, 157, 165 were tested; For 802.11n40 mode: channel 151, 159 were tested.

EUT Exercise Software

"SecureCRT*" software was used and power level as below:

U-NII	Mode	Data rate	Power Level*	
	802.11a	6Mbps	Default	
5150 - 5250MHz	802.11n-HT20	MCS0	Default	
	802.11n-HT40	MCS0	Default	
	802.11a	6Mbps	Default	
5725 - 5850MHz	802.11n-HT20	MCS0	Default	
	802.11n-HT40	MCS0	Default	

The worse-case data rates are determined to be as follows for each mode based upon investigations by measuring the output power and PSD across all data rates, bandwidths, and modulations.

The software and power level was provided by applicant.

EUT have two antennas, for 802.11 a mode, EUT support SISO transmit, for 802.11 n20/n40 mode, EUT support MIMO transmit.

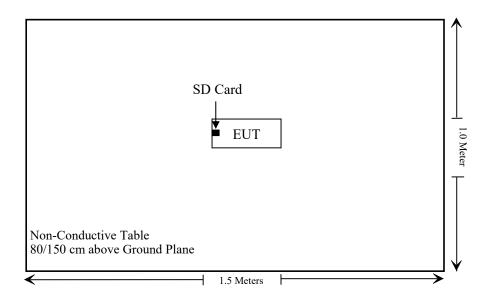
Duty cycle

Test Result: Pass. Please refer to the Appendix.

Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number	
aigo	SD Card	U312	Unknown	

External I/O Cable

Cable Description	Length (m)	From/Port	То
/	/	/	/

Block Diagram of Test Setup

For radiated emission:

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.407 (f), §1.1310 & §2.1091	MAXIMUM PERMISSIBLE EXPOSURE (MPE)	Compliant
§15.203	Antenna Requirement	Compliant
§15.407(b)(8) & §15.207(a)	Conducted Emissions	Not Applicable
§15.205 & §15.209 & §15.407(b) (1), (4), (7), (8), (9), (10)	Undesirable Emission& Restricted Bands	Compliant
§15.407(a) (12), (e)	26 dB Emission Bandwidth & 6dB Bandwidth	Compliant
§15.407(a) (1), (3)	Conducted Transmitter Output Power	Compliant
§15.407 (a) (1), (3)	Power Spectral Density	Compliant
§15.407 (h)	Transmit Power Control (TPC)	Not Applicable*
§15.407 (h)	Dynamic Frequency Selection (DFS)	Not Applicable**

Not Applicable: EUT was powered by battery when operate. Not Applicable*: the EUT has no TPC function which was declared by the applicant. Not Applicable**: EUT does not operate within frequency range of 5250-5350MHz and 5470-5725MHz.

TEST EQUIPMENT LIST

Manufacturer Description		Model	Serial Number	Calibration Date	Calibration Due Date		
Radiated Emissions Test							
Rohde& Schwarz	Test Receiver	ESR	102725	2021/12/13	2022/12/12		
Rohde&Schwarz	Spectrum Analyzer	FSV40	101949	2021/12/13	2022/12/12		
SONOMA INSTRUMENT	Amplifier	310 N	186131	2021/11/09	2022/11/08		
A.H. Systems, inc.	Preamplifier	PAM-0118P	135	2021/11/09	2022/11/08		
Quinstar	Amplifier	QLW- 18405536-J0	15964001002	2021/11/11	2022/11/10		
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2021/07/06	2024/07/05		
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-1067	2020/01/05	2023/01/04		
Schwarzbeck	HORN ANTENNA	BBHA9170	9170-359	2020/01/05	2023/01/04		
Radiated Emission T	est Software: e3 19821b	(V9)					
Unknown	RF Coaxial Cable	No.10	N050	2021/12/14	2022/12/13		
Unknown	RF Coaxial Cable	No.11	N1000	2021/12/14	2022/12/13		
Unknown	RF Coaxial Cable	No.12	N040	2021/12/14	2022/12/13		
Unknown	RF Coaxial Cable	No.13	N300	2021/12/14	2022/12/13		
Unknown	RF Coaxial Cable	No.14	N800	2021/12/14	2022/12/13		
Unknown	RF Coaxial Cable	No.15	N600	2021/12/14	2022/12/13		
Unknown	RF Coaxial Cable	No.16	N650	2021/12/14	2022/12/13		
CD	Band Reject Filter	BRM- 5.15/5.35g-45	075	2021/12/14	2022/12/13		
CD Band Reject Filter		BRM- 5.725/5.875G- 45	065	2021/12/14	2022/12/13		
		RF Conducted					
Rohde & Schwarz	Spectrum Analyzer	FSV-40	101495	2021/12/13	2022/12/12		
Tonscend	RF Control Unit	JS0806-2	19G8060182	2021/07/06	2022/07/05		
HP	20dB Attenuator	8491A	53857	2021/12/14	2022/12/13		
Unknown	RF Cable	Unknown	Unknown	Each	time		
Unknown	RF Coaxial Cable No.31 RF-01 Each time						

* **Statement of Traceability:** Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §15.407(f)& §1.1310 & §2.1091 – MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to KDB 447498 D04 Interim General RF Exposure Guidance v01, clause 2.1.4 – MPE-Based Exemption:

An alternative to the SAR-based exemption is provided in § 1.1307(b)(3)(i)(C), for a much wider frequency range, from 300 kHz to 100 GHz, applicable for separation distances greater or equal to $\lambda/2\pi$, where λ is the free-space operating wavelength in meters. The MPE-based test exemption condition is in terms of ERP, defined as the product of the maximum antenna gain and the delivered maximum time-averaged power. For this case, a RF source is an RF exempt device if its ERP (watts) is no more than a frequency-dependent value, as detailed tabular form in Appendix B. These limits have been derived based on the basic specifications on Maximum Permissible Exposure (MPE) considered for the FCC rules in § 1.1310(e)(1).

Table to § 1.1307(b)(3)(i)(C) - Single RF Sources Subject to Routine Environmental Evaluation

RF Source frequency (MHz)	Threshold ERP (watts)				
0.3-1.34	1,920 R ² .				
1.34-30	3,450 R ² /f ² .				
30-300	3.83 R ² .				
300-1,500	0.0128 R ² f.				
1,500-100,000	19.2R ² .				

f = frequency in MHz;

R = minimum separation distance from the body of a nearby person (appropriate units, e.g., m);

Test result

For worst case:

	Frequency	Tune-up Pov	-	-	Antenna Gain ERF		ERP ERP		RP	Evaluation	MPE- Based
Mode	Range (MHz)	(dBm)	(W)	(dBi)	(dBd)	(dBm)	(W)	Distance (cm)	Exemption Threshold (W)		
Wi Fi	5150-5250	18.0	0.063	3.07	0.92	18.92	0.078	20	0.768		
Wi-Fi	5725-5850	20.5	0.112	3.07	0.92	21.42	0.139	20	0.768		

Note: The tune-up power and antenna gain was declared by the applicant.

To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

Result: Compliant.

FCC §15.203 – ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

a. Antenna must be permanently attached to the unit.b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.407 (a), if the transmitting antennas of directional gain greater than 6dBi are used, the transmit power and power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

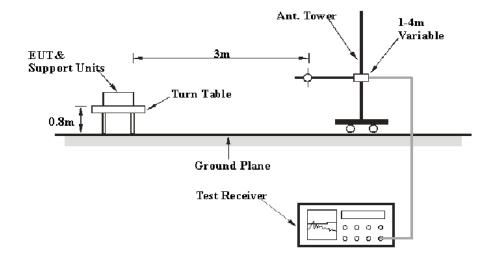
The EUT have two internal Antenna arrangement, which was permanently attached and the antenna gain is 3.07dBi fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliant.

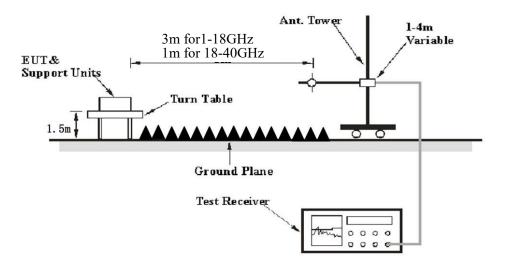
§15.205 & §15.209 & §15.407(B) (1), (4), (7), (8), (9), (10) – UNDESIRABLE EMISSION

Applicable Standard

FCC §15.407 (b); §15.209; §15.205;


FCC §15.407 (b) (1), (4), (7), (8), (9), (10); §15.209; §15.205;

- (b) Undesirable emission limits. Except as shown in paragraph (b) (7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:
- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (4) For transmitters operating in the 5.725-5.85 GHz band:
- (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.


Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209.

EUT Setup

Below 1 GHz:

Above 1 GHz:

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC 15.209 and FCC 15.407 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 40 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
	1 MHz	3 MHz	/	РК
Above 1 GHz	1MHz	10 Hz ^{Note 1}	/	Ave.erage
	1MHz	$> 1/T^{Note 2}$	/	Ave.erage

Note 1: when duty cycle is no less than 98% Note 2: when duty cycle is less than 98%

Test Procedure

Radiated Spurious Emission

During the radiated emission test, the adapter was connected to the AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all the installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1GHz, peak and Ave.erage detection modes for frequencies above 1GHz.

According to ANSI C63.10-2013,9.4: For field strength measurements made at other than the distance at which the applicable limit is specified, extrapolate the measured field strength to the field strength at the distance specified by the limit using an inverse distance correction factor (20 dB/decade of distance). In some cases, a different distance correction factor may be required;

$$E_{\text{SpecLimit}} = E_{\text{Meas}} + 20 \log \left(\frac{d_{\text{Meas}}}{d_{\text{SpecLimit}}} \right)$$

where

$E_{\rm SpecLimit}$	is the field strength of the emission at the distance specified by the limit, in
	dBµV/m
E_{Meas}	is the field strength of the emission at the measurement distance, in $dB\mu V/m$
d_{Meas}	is the measurement distance, in m
$d_{\text{SpecLimit}}$	is the distance specified by the limit, in m

So the extrapolation factor of 1m is $20*\log(1/3) = -9.5$ dB, for 18-40GHz range, the limit of 1m distance was added by 9.5dB from limit of 3m to compared with the result measurement at 1m distance.

Corrected Factor & Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

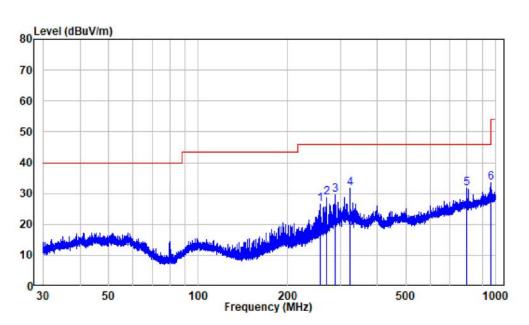
Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "**Over Limit/Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

Over Limit/Margin = Level / Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

Test Data

Environmental Conditions

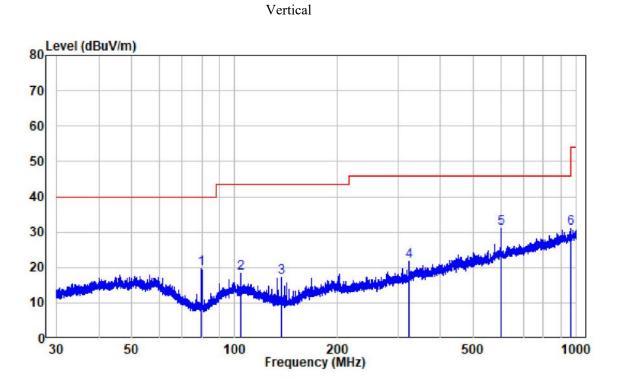

Temperature:	24~26°C
Relative Humidity:	50~61%
ATM Pressure:	101.0 kPa

The testing was performed by Nick Fang from 2022-03-30 to 2022-04-13.

EUT operation mode: Transmitting (Pre-scan in the X, Y and Z axes of orientation, the worst case X-axis of orientation was recorded)

30 MHz – 1 GHz: (worst case is 802.11 n40 mode, 5755MHz)

Note: When the test result of peak was less than limit of QP more than 6dB, just the peak level was recorded.



Horizontal

Site : chamber Condition: 3m HORIZONTAL Job No. : SZNS220224-05823E-RF Test Mode: Transmitting

	Freq	Factor			Limit Line		Remark
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	-
1	256.859	-10.60	37.07	26.47	46.00	-19.53	Peak
2	270.256	-10.21	38.77	28.56	46.00	-17.44	Peak
3	287.990	-9.36	38.83	29.47	46.00	-16.53	Peak
4	324.030	-8.30	39.85	31.55	46.00	-14.45	Peak
5	800.031	-0.35	32.01	31.66	46.00	-14.34	Peak
6	961.741	2.38	31.18	33.56	54.00	-20.44	Peak

Report No.: SZNS220224-05823E-RF-00

Site : chamber Condition: 3m VERTICAL Job No. : SZNS220224-05823E-RF Test Mode: Transmitting

	Freq	Factor		Level		Over Limit	Remark
50 .	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	79.975	-16.79	36.31	19.52	40.00	-20.48	Peak
2	104.307	-11.77	30.24	18.47	43.50	-25.03	Peak
3	137.360	-15.26	32.48	17.22	43.50	-26.28	Peak
4	324.030	-8.30	30.03	21.73	46.00	-24.27	Peak
5	600.110	-2.43	33.50	31.07	46.00	-14.93	Peak
6	960.056	2.36	28.79	31.15	54.00	-22.85	Peak

Report No.: SZNS220224-05823E-RF-00

1GHz-40GHz:

5150-5250 MHz:

Frequency	Re	eceiver	Turn- Table	Rx An	itenna	Corrected	Corrected	FCC Part	t 15.407
(MHz)	Reading (dBµV)	PK/QP/Ave.	Angle Degree	Height (m)	Polar (H / V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
			80	2.11a(Wors	st Case: An	t1)			
				5180	MHz				
4500	63.48	PK	122	1.6	Н	-4.72	58.76	74	-15.24
4500	49.99	Ave.	122	1.6	Н	-4.72	45.27	54	-8.73
4500	62.64	PK	164	1.5	V	-4.72	57.92	74	-16.08
4500	49.97	Ave.	164	1.5	V	-4.72	45.25	54	-8.75
5150	63.59	PK	49	2.4	Н	-2.73	60.86	74	-13.14
5150	50.11	Ave.	49	2.4	Н	-2.73	47.38	54	-6.62
5150	63.60	PK	2	1.8	V	-2.73	60.87	74	-13.13
5150	50.14	Ave.	2	1.8	V	-2.73	47.41	54	-6.59
10360	50.23	PK	90	2.5	Н	8.12	58.35	68.2	-9.85
10360	49.10	PK	239	2.2	V	8.12	57.22	68.2	-10.98
				5200	MHz				
10400	50.15	PK	186	2.3	Н	8.24	58.39	68.2	-9.81
10400	49.06	PK	251	1.2	V	8.24	57.30	68.2	-10.90
				5240	MHz				
5350	63.23	PK	49	1.7	Н	-2.33	60.90	74	-13.10
5350	50.40	Ave.	49	1.7	Н	-2.33	48.07	54	-5.93
5350	63.40	PK	312	2.3	V	-2.33	61.07	74	-12.93
5350	50.38	Ave.	312	2.3	V	-2.33	48.05	54	-5.95
5460	64.49	PK	321	1.7	Н	-2.60	61.89	74	-12.11
5460	50.90	Ave.	321	1.7	Н	-2.60	48.30	54	-5.70
5460	64.79	PK	204	1.2	V	-2.60	62.19	74	-11.81
5460	50.70	Ave.	204	1.2	V	-2.60	48.10	54	-5.90
10480	49.26	РК	231	1.8	Н	8.56	57.82	68.2	-10.38
10480	48.60	РК	351	1.1	V	8.56	57.16	68.2	-11.04

Report No.: SZNS220224-05823E-RF-00

Frequency	Re	ceiver	Turn- Table	Rx An	itenna	Corrected	Corrected	FCC Part 15.407		
(MHz)	Reading (dBµV)	PK/QP/Ave.	Angle Degree	Height (m)	Polar (H / V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)	
	802.11n20(Worst Case: MIMO)									
				5180	MHz					
4500	63.07	PK	241	1.4	Н	-4.72	58.35	74	-15.65	
4500	49.87	Ave.	241	1.4	Н	-4.72	45.15	54	-8.85	
4500	62.79	PK	89	1.8	V	-4.72	58.07	74	-15.93	
4500	50.05	Ave.	89	1.8	V	-4.72	45.33	54	-8.67	
5150	63.16	PK	165	1.6	Н	-2.73	60.43	74	-13.57	
5150	50.22	Ave.	165	1.6	Н	-2.73	47.49	54	-6.51	
5150	63.44	PK	337	2.2	V	-2.73	60.71	74	-13.29	
5150	50.19	Ave.	337	2.2	V	-2.73	47.46	54	-6.54	
10360	50.83	РК	176	2	Н	8.12	58.95	68.2	-9.25	
10360	50.13	PK	277	1.8	V	8.12	58.25	68.2	-9.95	
				5200	MHz					
10400	51.08	PK	95	2.3	Н	8.24	59.32	68.2	-8.88	
10400	49.96	PK	81	1.6	V	8.24	58.20	68.2	-10.00	
				5240	MHz					
5350	63.05	PK	113	2.2	Н	-2.33	60.72	74	-13.28	
5350	50.17	Ave.	113	2.2	Н	-2.33	47.84	54	-6.16	
5350	63.19	PK	53	1	V	-2.33	60.86	74	-13.14	
5350	50.40	Ave.	53	1	V	-2.33	48.07	54	-5.93	
5460	64.73	PK	193	2.4	Н	-2.60	62.13	74	-11.87	
5460	50.70	Ave.	193	2.4	Н	-2.60	48.10	54	-5.90	
5460	64.73	PK	167	1.9	V	-2.60	62.13	74	-11.87	
5460	50.92	Ave.	167	1.9	V	-2.60	48.32	54	-5.68	
10480	50.44	РК	238	1.5	Н	8.56	59.00	68.2	-9.20	
10480	50.39	РК	229	2	V	8.56	58.95	68.2	-9.25	

Report No.: SZNS220224-05823E-RF-00

Frequency	Re	ceiver	Turn- Table	Rx A	ntenna	Corrected	Corrected	FCC Part	t 15.407
(MHz)	Reading (dBµV)	PK/QP/Ave.	Angle Degree	Height (m)	Polar (H / V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
	802.11n40(Worst Case: MIMO)								
				5190	MHz				
4500	62.91	PK	284	1.9	Н	-4.72	58.19	74	-15.81
4500	51.16	Ave.	284	1.9	Н	-4.72	46.44	54	-7.56
4500	63.03	PK	273	1.7	V	-4.72	58.31	74	-15.69
4500	51.36	Ave.	273	1.7	V	-4.72	46.64	54	-7.36
5150	66.29	РК	236	2.5	Н	-2.73	63.56	74	-10.44
5150	54.13	Ave.	236	2.5	Н	-2.73	51.40	54	-2.60
5150	65.77	РК	143	1.3	V	-2.73	63.04	74	-10.96
5150	54.15	Ave.	143	1.3	V	-2.73	51.42	54	-2.58
10380	48.88	РК	180	1.2	Н	8.18	57.06	68.2	-11.14
10380	48.81	РК	292	1.5	V	8.18	56.99	68.2	-11.21
				5230	MHz				
5350	62.93	РК	1	2.4	Н	-2.33	60.60	74	-13.40
5350	50.32	Ave.	1	2.4	Н	-2.33	47.99	54	-6.01
5350	63.02	РК	153	2	V	-2.33	60.69	74	-13.31
5350	50.34	Ave.	153	2	V	-2.33	48.01	54	-5.99
5460	64.74	РК	172	1.1	Н	-2.60	62.14	74	-11.86
5460	51.81	Ave.	172	1.1	Н	-2.60	49.21	54	-4.79
5460	64.49	РК	26	2	V	-2.60	61.89	74	-12.11
5460	51.87	Ave.	26	2	V	-2.60	49.27	54	-4.73
10460	48.58	РК	190	1.2	Н	8.47	57.05	68.2	-11.15
10460	48.33	РК	189	1.1	V	8.47	56.80	68.2	-11.40

Report No.: SZNS220224-05823E-RF-00

5725-5850 MHz:

Frequency	F	Receiver	Turn- Table	Rx Ai	ntenna	Corrected	Corrected	FCC Par	t 15.407
(MHz)	Reading (dBµV)	Detector (PK/QP/Ave.)	Angle Degree	Height (m)	Polar (H / V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
	802.11a(Worst Case: Ant1)								
				5745 N	ЛНz				
5650	65.22	PK	174	1.6	Н	-1.95	63.27	68.2	-4.93
5650	65.42	PK	282	2.3	V	-1.95	63.47	68.2	-4.73
5700	65.11	PK	128	1.9	Н	-2.02	63.09	105.2	-42.11
5700	65.34	PK	191	1.2	V	-2.02	63.32	105.2	-41.88
5720	67.23	PK	43	1.4	Н	-1.97	65.26	110.8	-45.54
5720	66.25	РК	341	2.5	V	-1.97	64.28	110.8	-46.52
5725	71.35	РК	98	2.4	Н	-1.96	69.39	122.2	-52.81
5725	69.98	РК	3	1.6	V	-1.96	68.02	122.2	-54.18
11490	44.87	РК	278	1.1	Н	6.63	51.50	74	-22.50
11490	45.01	РК	345	1.7	V	6.63	51.64	74	-22.36
				5785 N	МНz				
11570	45.07	РК	259	2.1	Н	6.59	51.66	74	-22.34
11570	45.41	РК	18	1.6	V	6.59	52.00	74	-22.00
				5825 N	MHz				
5850	68.56	PK	180	1.9	Н	-1.81	66.75	122.2	-55.45
5850	67.61	РК	25	2.4	V	-1.81	65.80	122.2	-56.40
5855	66.66	РК	274	1.7	Н	-1.82	64.84	110.8	-45.96
5855	66.37	РК	174	2	V	-1.82	64.55	110.8	-46.25
5875	66.00	РК	350	1	Н	-1.84	64.16	105.2	-41.04
5875	66.08	РК	142	1.4	V	-1.84	64.24	105.2	-40.96
5925	65.38	РК	303	2	Н	-1.82	63.56	68.2	-4.64
5925	66.13	РК	274	2.4	V	-1.82	64.31	68.2	-3.89
11650	43.58	РК	344	1.6	Н	6.77	50.35	74	-23.65
11650	43.82	РК	122	1.5	V	6.77	50.59	74	-23.41

Report No.: SZNS220224-05823E-RF-00

Frequency	F	Receiver	Turn- Table	Rx Ai	ntenna	Corrected	Corrected	FCC Part	15.407
(MHz)	Reading (dBµV)	Detector (PK/QP/Ave.)	Angle Degree	Height (m)	Polar (H / V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
	802.11n20(Worst Case: MIMO)								
				5745 N	ЛНz				
5650	65.36	PK	277	2.1	Н	-1.95	63.41	68.2	-4.79
5650	65.09	PK	122	1.3	V	-1.95	63.14	68.2	-5.06
5700	65.38	PK	3	2.5	Н	-2.02	63.36	105.2	-41.84
5700	65.20	PK	36	2.1	V	-2.02	63.18	105.2	-42.02
5720	67.76	PK	47	1.1	Н	-1.97	65.79	110.8	-45.01
5720	67.65	PK	185	1.3	V	-1.97	65.68	110.8	-45.12
5725	72.04	PK	40	2.3	Н	-1.96	70.08	122.2	-52.12
5725	71.41	PK	315	2.1	V	-1.96	69.45	122.2	-52.75
11490	44.99	PK	151	1.4	Н	6.63	51.62	74	-22.38
11490	45.10	PK	223	1.3	V	6.63	51.73	74	-22.27
				5785 N	ИНz				
11570	45.18	PK	101	1	Н	6.59	51.77	74	-22.23
11570	44.96	PK	284	1.5	V	6.59	51.55	74	-22.45
				5825 N	ЛНz				
5850	72.56	РК	219	2.3	Н	-1.81	70.75	122.2	-51.45
5850	70.25	PK	271	1.2	V	-1.81	68.44	122.2	-53.76
5855	67.35	PK	77	2	Н	-1.82	65.53	110.8	-45.27
5855	66.72	PK	106	2.4	V	-1.82	64.90	110.8	-45.90
5875	65.31	PK	123	1.3	Н	-1.84	63.47	105.2	-41.73
5875	65.41	PK	221	1.5	V	-1.84	63.57	105.2	-41.63
5925	65.56	РК	169	1.9	Н	-1.82	63.74	68.2	-4.46
5925	65.40	PK	84	1.3	V	-1.82	63.58	68.2	-4.62
11650	43.60	РК	141	2.2	Н	6.77	50.37	74	-23.63
11650	43.80	PK	274	2.1	V	6.77	50.57	74	-23.43

Report No.: SZNS220224-05823E-RF-00

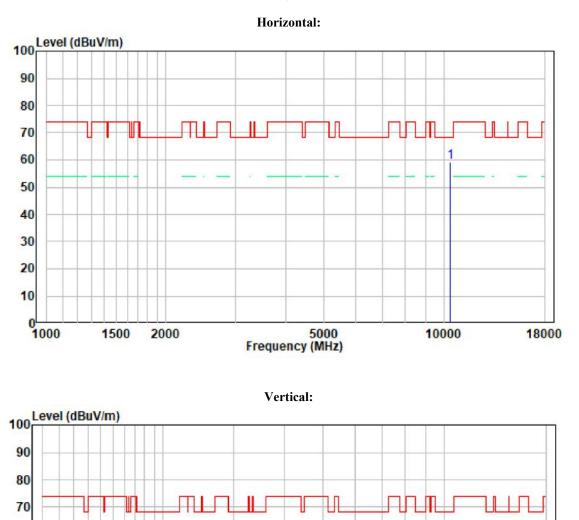
Frequency	Re	ceiver	Turn- Table	Rx Ar	ntenna	Corrected	Corrected	FCC Part 15.407		
(MHz)	Reading (dBµV)	PK/QP/Ave.	Angle Degree	Height (m)	Polar (H / V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)	
	802.11n40 (Worst Case: MIMO)									
	5755 MHz									
5650	65.16	PK	321	1.9	Н	-1.95	63.21	68.2	-4.99	
5650	65.23	PK	142	2	V	-1.95	63.28	68.2	-4.92	
5700	68.48	PK	27	2.3	Н	-2.02	66.46	105.2	-38.74	
5700	67.26	PK	303	1.6	V	-2.02	65.24	105.2	-39.96	
5720	77.26	PK	34	2.3	Н	-1.97	75.29	110.8	-35.51	
5720	75.46	PK	163	1.7	V	-1.97	73.49	110.8	-37.31	
5725	77.97	PK	23	1.6	Н	-1.96	76.01	122.2	-46.19	
5725	76.14	РК	15	1.1	V	-1.96	74.18	122.2	-48.02	
11510	44.32	PK	65	1.3	Н	6.59	50.91	74	-23.09	
11510	44.40	PK	313	1.4	V	6.59	50.99	74	-23.01	
				5795 N	MHz					
5850	69.37	PK	325	1.8	Н	-1.81	67.56	122.2	-54.64	
5850	68.58	PK	47	2.4	V	-1.81	66.77	122.2	-55.43	
5855	66.95	PK	205	1.1	Н	-1.82	65.13	110.8	-45.67	
5855	66.68	PK	91	1.6	V	-1.82	64.86	110.8	-45.94	
5875	65.24	PK	32	2.2	Н	-1.84	63.40	105.2	-41.80	
5875	65.61	PK	135	1.6	V	-1.84	63.77	105.2	-41.43	
5925	65.30	РК	167	2.4	Н	-1.82	63.48	68.2	-4.72	
5925	65.53	PK	101	2.1	V	-1.82	63.71	68.2	-4.49	
11590	44.10	РК	347	1.2	Н	6.57	50.67	74	-23.33	
11590	44.40	PK	337	2.4	V	6.57	50.97	74	-23.03	

Note:

Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor

Absolute Level (Corrected Amplitude) = Factor + Reading

Margin = Absolute Level (Corrected Amplitude) – Limit


The other spurious emission which is in the noise floor level was not recorded.

The test result of peak was 20dB below to the limit of peak, which can be compliant to the average limit, so just peak value was recorded.

1-18GHz

Pre-scan plots:

802.11n20, 5200MHz

60

50

40 30

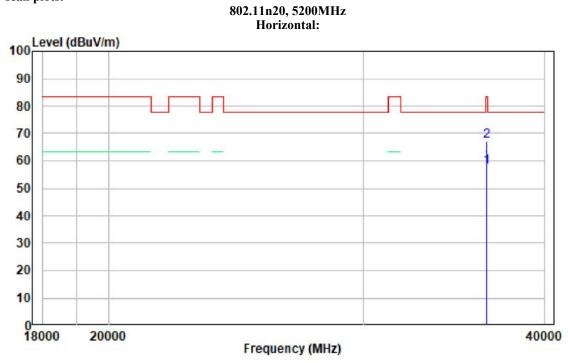
20

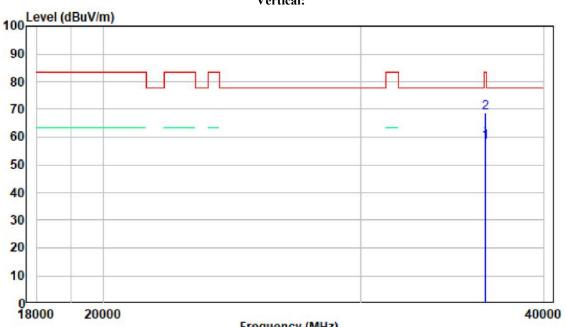
10

1000

1500

2000


5000 Frequency (MHz)


18000

10000

18-40GHz

Pre-scan plots:

Vertical:

Frequency (MHz)

FCC §15.407(a),(e) – 26 dB & 6dB EMISSION BANDWIDTH

Applicable Standard

The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements in the 5.725-5.85 GHz band are made over a reference bandwidth of 500 kHz or the 26 dB emission bandwidth of the device, whichever is less. Measurements in the 5.15-5.25 GHz, 5.25-5.35 GHz, and the 5.47-5.725 GHz bands are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full reference bandwidth.

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

Test Procedure

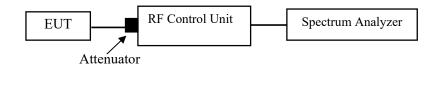
1. Emission Bandwidth (EBW)

a) Set RBW = approximately 1% of the emission bandwidth.

- b) Set the VBW > RBW.
- c) Detector = Peak.

d) Trace mode = max hold.

e) Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.


2. Minimum Emission Bandwidth for the band 5.725-5.85 GHz

Section 15.407(e) specifies the minimum 6 dB emission bandwidth of at least 500 KHz for the band 5.725-5.85 GHz. The following procedure shall be used for measuring this bandwidth:

a) Set RBW = 100 kHz.
b) Set the video bandwidth (VBW) ≥ 3 × RBW.

- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Test Data

Environmental Conditions

Temperature:	24-26°C
Relative Humidity:	52-55%
ATM Pressure:	101.0 kPa

The testing was performed by Key Pei from 2022-04-09 to 2022-05-06.

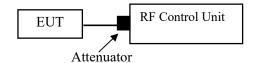
EUT operation mode: Transmitting

Test Result: Pass

Please refer to the Appendix.

FCC §15.407(a) (1) (3) – CONDUCTED TRANSMITTER OUTPUT POWER

Applicable Standard


For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Test Procedure

- c. Place the EUT on a bench and set it in transmitting mode.
- d. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- e. Add a correction factor to the display.

Note: the RF control unit has a built-on power sensor.

Test Data

Environmental Conditions

Temperature:	24-26°C
Relative Humidity:	52-55%
ATM Pressure:	101.0 kPa

The testing was performed by Key Pei from 2022-04-09 to 2022-05-06.

EUT operation mode: Transmitting

Test Result: Pass

Please refer to the Appendix.

FCC §15.407(a) (1) (3) - POWER SPECTRAL DENSITY

Applicable Standard

For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Test Procedure

For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in § 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 kHz bandwidth, the following adjustments to the procedures apply:

a) Set $RBW \ge 1/T$, where T is defined in section II.B.l.a).

b) Set VBW \geq 3 RBW.

- c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10 log (500 kHz/RBW) to the measured result, whereas RBW (< 500 kHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.
- d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add 10 log (1MHz/RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.
- e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

Test Data

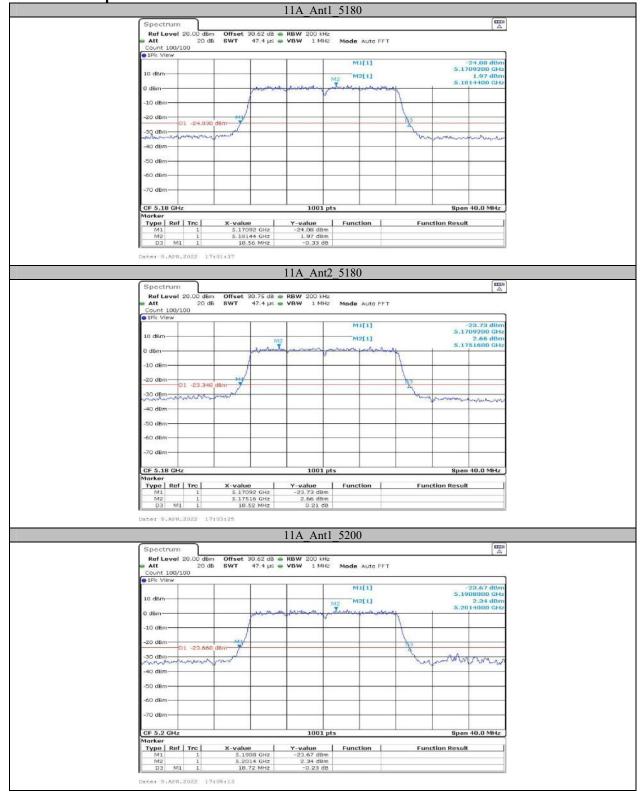
Environmental Conditions

Temperature:	24-26°C
Relative Humidity:	52-55%
ATM Pressure:	101.0 kPa

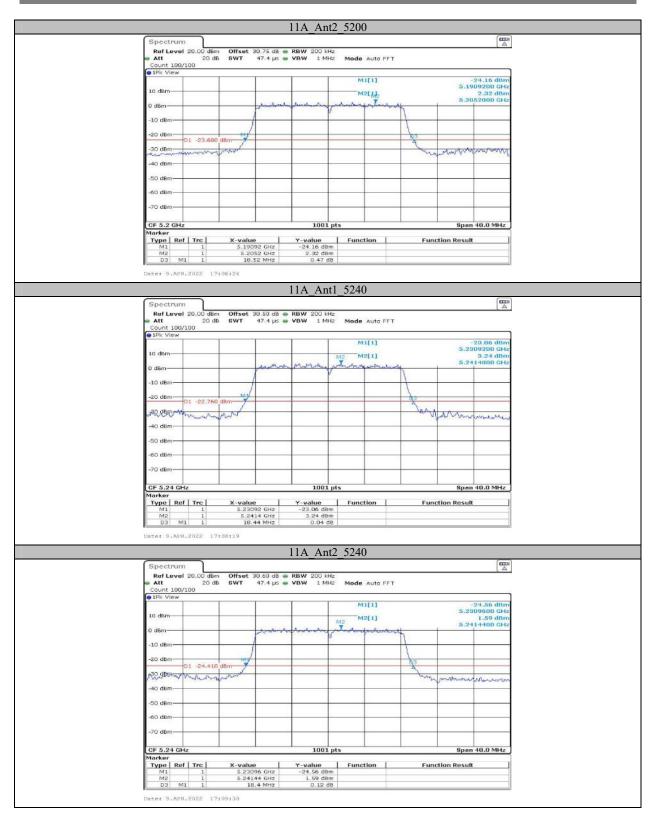
The testing was performed by Key Pei from 2022-04-09 to 2022-05-06.

EUT operation mode: Transmitting

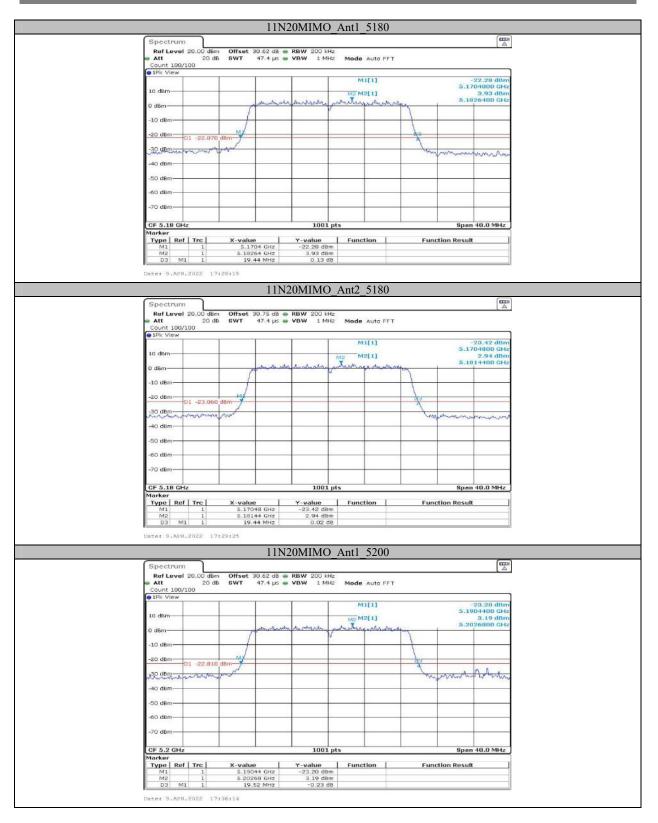
Test Result: Pass


Please refer to the Appendix.

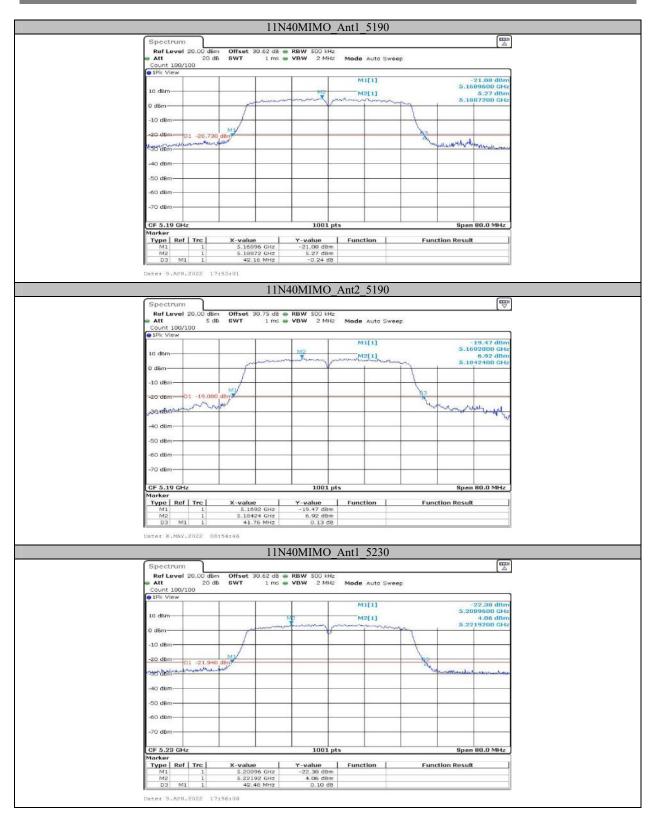
APPENDIX


Appendix A1: Emission Bandwidth

Test Mode	Antenna	Channel	26db EBW [MHz]	Limit[MHz]	Verdict
	Antl	5180	18.56		
	Ant2	5180	18.52		
11A	Antl	5200	18.72		
IIA	Ant2	5200	18.52		
	Antl	5240	18.44		
	Ant2	5240	18.40		
	Ant1	5180	19.44		
	Ant2	5180	19.44		
11N20MIMO	Antl	5200	19.52		
	Ant2	5200	19.52		
	Antl	5240	19.48		
	Ant2	5240	19.52		
11N40MIMO	Antl	5190	42.16		
	Ant2	5190	41.76		
	Ant1	5230	42.48		
	Ant2	5230	42.56		


Test Graphs


Report No.: SZNS220224-05823E-RF-00

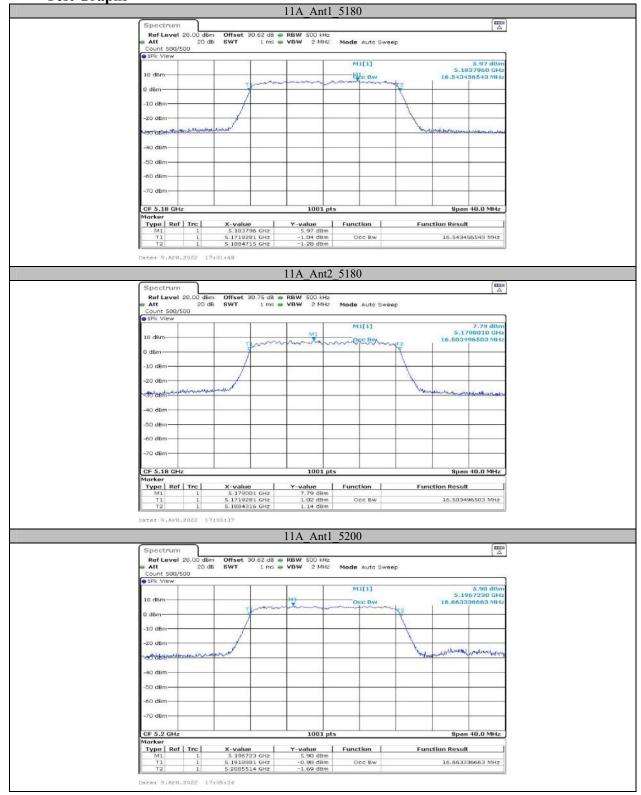

Report No.: SZNS220224-05823E-RF-00

Report No.: SZNS220224-05823E-RF-00

Report No.: SZNS220224-05823E-RF-00

Report No.: SZNS220224-05823E-RF-00

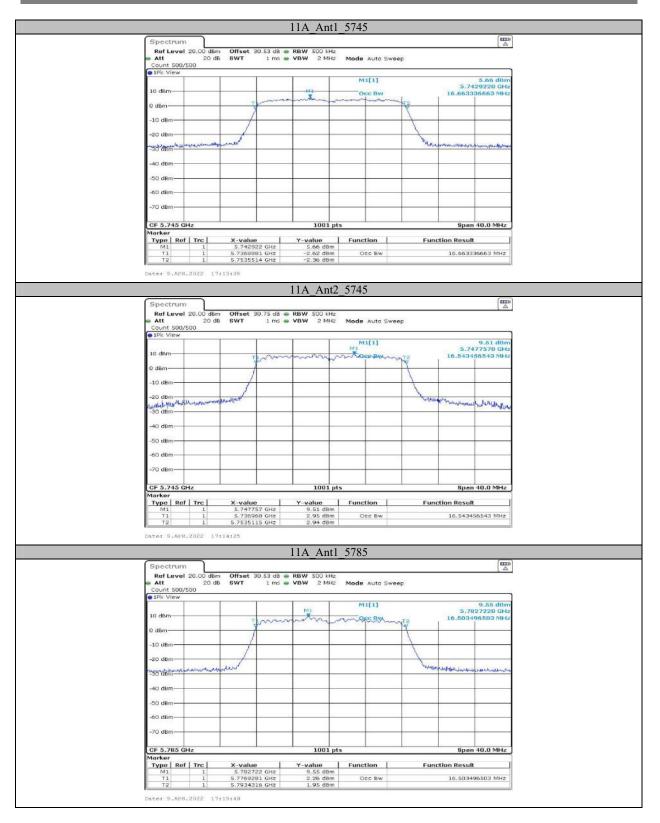
Spectrum								
Ref Level		011 -1 00 3	10 - 0	RBW 500 kHz				
Att	20.00 den 20 de				Mode Auto Sw	1000		
Count 100/1			1 1112 - 1	- Chile	mode state 34	reep		
• 1Pk View								
	1				M1[1]			-21.01 dBm
10 dBm							5.20	189600 GH:
TU UBIN			- manda		MA12[1]		-	5.00 dBn
0 dBm		- m	and	- money for	minun	when	5.23	362400 GH
o doni				P		5		
-10 dBm							2	
						1		
-20 dBm	01 -21.000	dBot	10			23		
	as head at a	How				Ay	weight warmander	menting 201
1.30 deministr	and handless of the		-				a second se	
-40 dBm			-				-	
10000000000								
-50 dBm						19	1	
1221200								
-60 dBm								
-70 dBm								
-70 dBm								
CF 5.23 GH	z			1001 pt:	5	- 190 - C	Spar	80.0 MHz
Marker	y				and the second second second			
					Function	Fun	ction Result	t
orker Fype Ref M1 M2 D3 M1	1	X-value 5.20896 (5.23624 (42.56 N	GH2 GH2	Y-value -21.01 dBm 5.00 dBm -0.70 dB	Function	Fun	ction Resul	t

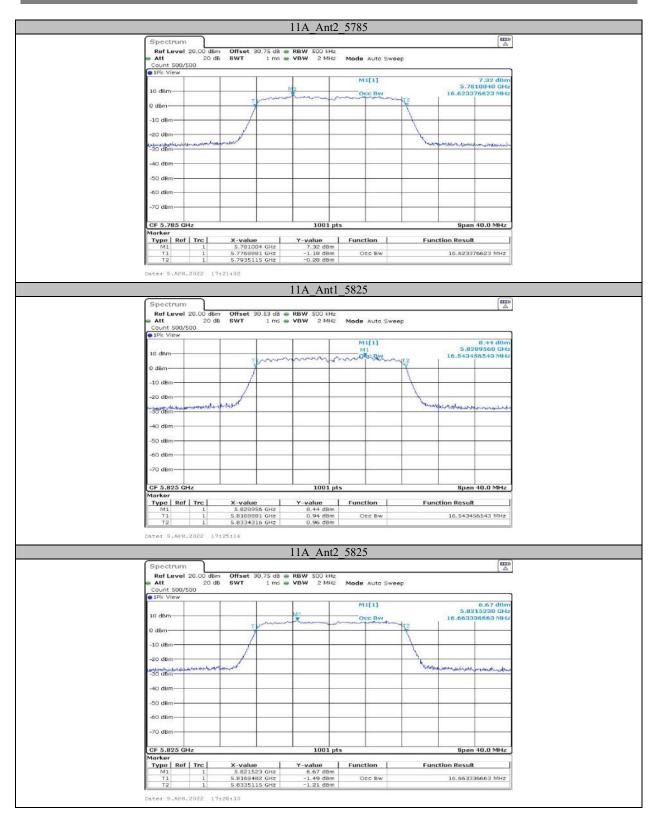

Report No.: SZNS220224-05823E-RF-00

Appendix A2: Occupied channel bandwidth Test Result

Test Mode	Antenna	Channel	OCB [MHz]	Limit[MHz]	Verdict
	Antl	5180	16.543		
	Ant2	5180	16.503		
	Antl	5200	16.663		
	Ant2	5200	16.543		
	Antl	5240	16.583		
11A	Ant2	5240	16.543		
IIA	Antl	5745	16.663		
	Ant2	5745	16.543		
	Antl	5785	16.503		
	Ant2	5785	16.623		
	Antl	5825	16.543		
	Ant2	5825	16.663		
	Antl	5180	17.742		
	Ant2	5180	17.742		
	Antl	5200	17.702		
	Ant2	5200	17.742		
	Antl	5240	17.702		
11N20MIMO	Ant2	5240	17.702		
	Antl	5745	17.742		
	Ant2	5745	17.742		
	Antl	5785	17.702		
	Ant2	5785	17.742		
	Antl	5825	17.702		
	Ant2	5825	17.702		
	Antl	5190	36.763		
	Ant2	5190	36.683		
	Antl	5230	36.683		
11N40MIMO	Ant2	5230	36.763		
	Antl	5755	36.683		
	Ant2	5755	36.523		
	Antl	5795	36.843		
	Ant2	5795	36.763		

Note: EUT not operate with any part of OBW fall within 5250-5350MHz and 5470-5725MHz range.


Test Graphs


Report No.: SZNS220224-05823E-RF-00

Report No.: SZNS220224-05823E-RF-00


Report No.: SZNS220224-05823E-RF-00

Report No.: SZNS220224-05823E-RF-00


Report No.: SZNS220224-05823E-RF-00

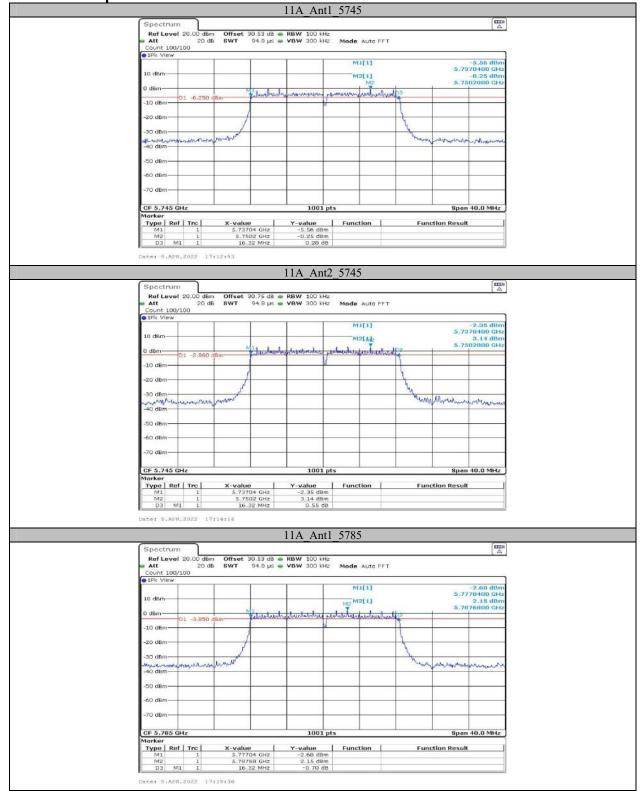
Report No.: SZNS220224-05823E-RF-00

Report No.: SZNS220224-05823E-RF-00

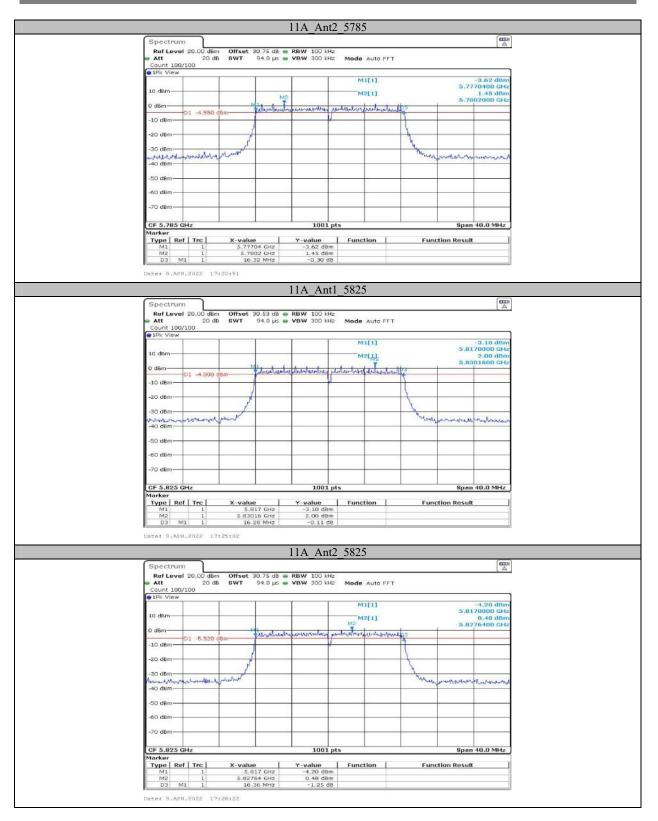
Report No.: SZNS220224-05823E-RF-00

Report No.: SZNS220224-05823E-RF-00

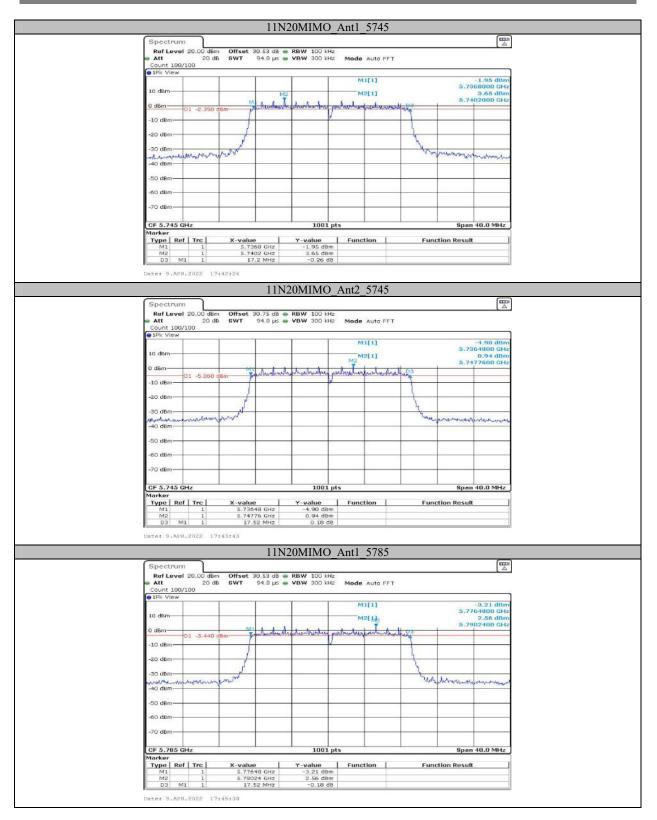
Report No.: SZNS220224-05823E-RF-00

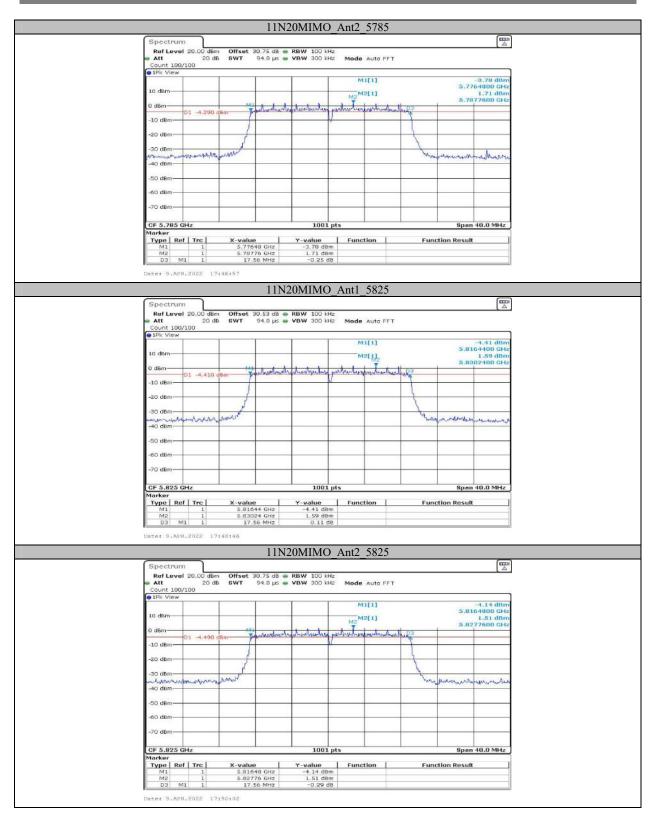


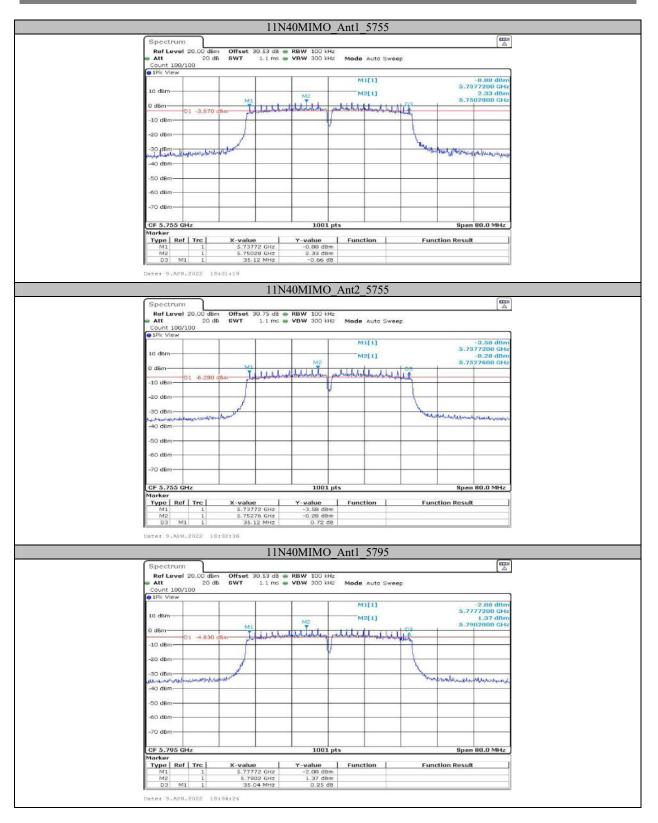
Report No.: SZNS220224-05823E-RF-00

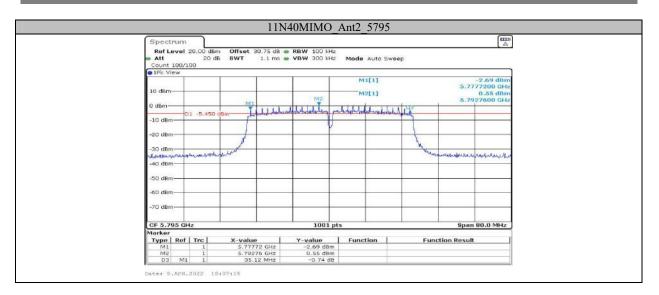

Appendix A3: Min emission bandwidth Test Result

Test Mode	Antenna	Channel	6db EBW [MHz]	Limit[MHz]	Verdict
	Ant1	5745	16.32	0.5	PASS
	Ant2	5745	16.32	0.5	PASS
11A	Ant1	5785	16.32	0.5	PASS
IIA	Ant2	5785	16.32	0.5	PASS
	Ant1	5825	16.28	0.5	PASS
	Ant2	5825	16.36	0.5	PASS
	Ant1	5745	17.20	0.5	PASS
	Ant2	5745	17.52	0.5	PASS
11N20MIMO	Ant1	5785	17.52	0.5	PASS
	Ant2	5785	17.56	0.5	PASS
	Ant1	5825	17.56	0.5	PASS
	Ant2	5825	17.56	0.5	PASS
	Ant1	5755	35.12	0.5	PASS
11N40MIMO	Ant2	5755	35.12	0.5	PASS
	Ant1	5795	35.04	0.5	PASS
	Ant2	5795	35.12	0.5	PASS


Test Graphs


Report No.: SZNS220224-05823E-RF-00


Report No.: SZNS220224-05823E-RF-00


Report No.: SZNS220224-05823E-RF-00

Report No.: SZNS220224-05823E-RF-00

Report No.: SZNS220224-05823E-RF-00

Appendix B: Maximum conducted output power

Test Result

Test Mode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
	Ant1	5180	14.01	≤30.00	PASS
	Ant2	5180	13.51	≤30.00	PASS
	Ant1	5200	14.16	≤30.00	PASS
	Ant2	5200	13.23	≤30.00	PASS
	Antl	5240	14.02	≤30.00	PASS
11.4	Ant2	5240	13.96	≤30.00	PASS
11A	Ant1	5745	14.00	≤30.00	PASS
	Ant2	5745	13.91	≤30.00	PASS
	Ant1	5785	15.13	≤30.00	PASS
	Ant2	5785	14.84	≤30.00	PASS
	Ant1	5825	15.02	≤30.00	PASS
	Ant2	5825	14.57	≤30.00	PASS
	Ant1	5180	15.02	≤30.00	PASS
	Ant2	5180	14.39	≤30.00	PASS
	total	5180	17.73	≤30.00	PASS
	Ant1	5200	14.83	≤30.00	PASS
	Ant2	5200	14.67	≤30.00	PASS
	total	5200	17.76	≤30.00	PASS
	Ant1	5240	14.81	≤30.00	PASS
	Ant2	5240	13.44	≤30.00	PASS
	total	5240	17.19	≤30.00	PASS
11N20MIMO	Ant1	5745	14.07	≤30.00	PASS
	Ant2	5745	13.16	≤30.00	PASS
	total	5745	16.65	≤30.00	PASS
	Ant1	5785	15.38	≤30.00	PASS
	Ant2	5785	14.99	≤30.00	PASS
	total	5785	18.20	≤30.00	PASS
	Ant1	5825	14.21	≤30.00	PASS
	Ant2	5825	13.95	≤30.00	PASS
	total	5825	17.09	≤30.00	PASS
	Ant1	5190	15.29	≤30.00	PASS
	Ant2	5190	14.46	≤30.00	PASS
	total	5190	17.91	≤30.00	PASS
	Ant1	5230	14.44	≤30.00	PASS
	Ant2	5230	14.16	≤30.00	PASS
11N40MIMO	total	5230	17.31	≤30.00	PASS
	Ant1	5755	17.72	≤30.00	PASS
	Ant2	5755	16.37	≤30.00	PASS
	total	5755	20.11	≤30.00	PASS
	Antl	5795	16.21	≤30.00	PASS
	Ant2	5795	15.98	≤30.00	PASS

Version 10: 2021-11-09

FCC-5G Wi-Fi

Shenzhen Accurate T	Fechnology Co., Ltd.		Report	No.: SZNS220224-05	5823E-RF-00
	total	5795	19.11	≤30.00	PASS

Note 1:

EUT belongs to outdoor access point. The maximum antenna gain is 3.07dBi.

For 802.11n20/40 mode, EUT employ cyclic delay diversity (CDD) According to KDB 662911 D01 v02r01, for power measurement on IEEE 802.11 devices: Array Gain =0 dB (i.e., no array gain) for $N_{ANT} \leq 4$; So Directional gain = G_{ANT} + Array Gain=3.07dBi<6dBi

Note 2:

For 5150-5250MHz band, the maximum EIRP=17.91dBm+3.07dBi=20.98dBm<21dBm, so it's can compliance with the requirement of the maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

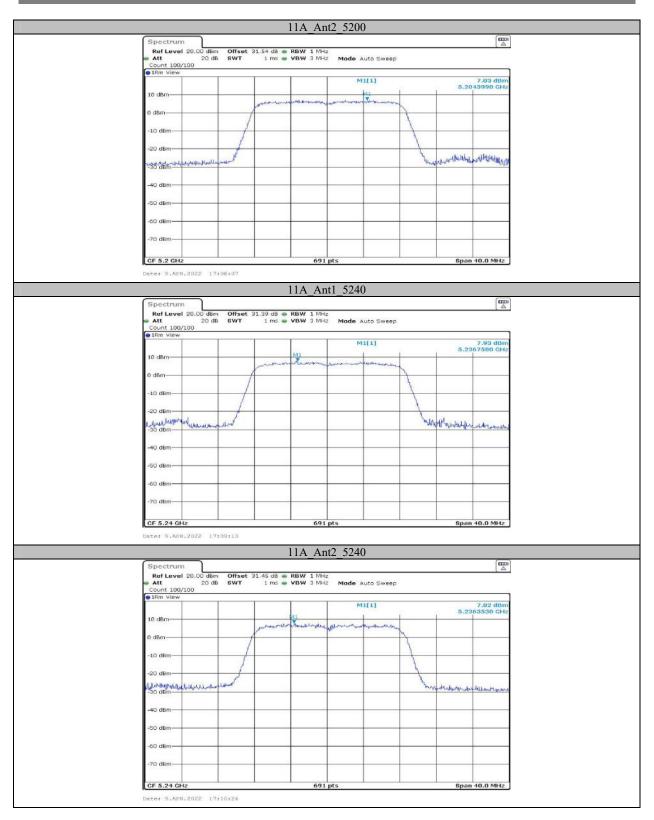
Appendix C: Maximum power spectral density Test Result

Test Mode	Antenna	Channel	Result [dBm/MHz]	Limit[dBm/MHz]	Verdict
	Antl	5180	8.58	≤17	PASS
-	Ant2	5180	7.62	≤17	PASS
-	Antl	5200	8.82	≤17	PASS
	Ant2	5200	7.03	≤17	PASS
	Antl	5240	7.93	≤17	PASS
11.4	Ant2	5240	7.82	≤17	PASS
11A -	Antl	5745	5.38	≤30	PASS
-	Ant2	5745	5.24	≤30	PASS
-	Antl	5785	7.57	≤30	PASS
-	Ant2	5785	6.94	≤30	PASS
-	Ant1	5825	7.34	≤30	PASS
	Ant2	5825	6.10	≤30	PASS
	Ant1	5180	8.05	≤16.93	PASS
-	Ant2	5180	7.12	≤16.93	PASS
	total	5180	10.62	≤16.93	PASS
	Antl	5200	7.82	≤16.93	PASS
	Ant2	5200	7.68	≤16.93	PASS
	total	5200	10.76	≤16.93	PASS
	Ant1	5240	7.52	≤16.93	PASS
	Ant2	5240	6.55	≤16.93	PASS
	total	5240	10.07	≤16.93	PASS
11N20MIMO	Ant1	5745	4.85	≤29.93	PASS
	Ant2	5745	3.97	≤29.93	PASS
	total	5745	7.44	≤29.93	PASS
	Ant1	5785	6.43	≤29.93	PASS
	Ant2	5785	5.93	≤29.93	PASS
	total	5785	9.20	≤29.93	PASS
	Ant1	5825	5.87	≤29.93	PASS
	Ant2	5825	5.55	≤29.93	PASS
	total	5825	8.72	≤29.93	PASS
	Ant1	5190	6.22	≤16.93	PASS
	Ant2	5190	5.77	≤16.93	PASS
	total	5190	9.01	≤16.93	PASS
	Ant1	5230	5.48	≤16.93	PASS
	Ant2	5230	5.04	≤16.93	PASS
	total	5230	8.28	≤16.93	PASS
11N40MIMO	Ant1	5755	5.76	≤29.93	PASS
-	Ant2	5755	4.18		PASS
-	total	5755	8.05	≤29.93	PASS
-	Antl	5795	4.36	≤29.93	PASS
-	Ant2	5795	4.08		PASS
	total	5795	7.23	≤29.93	PASS

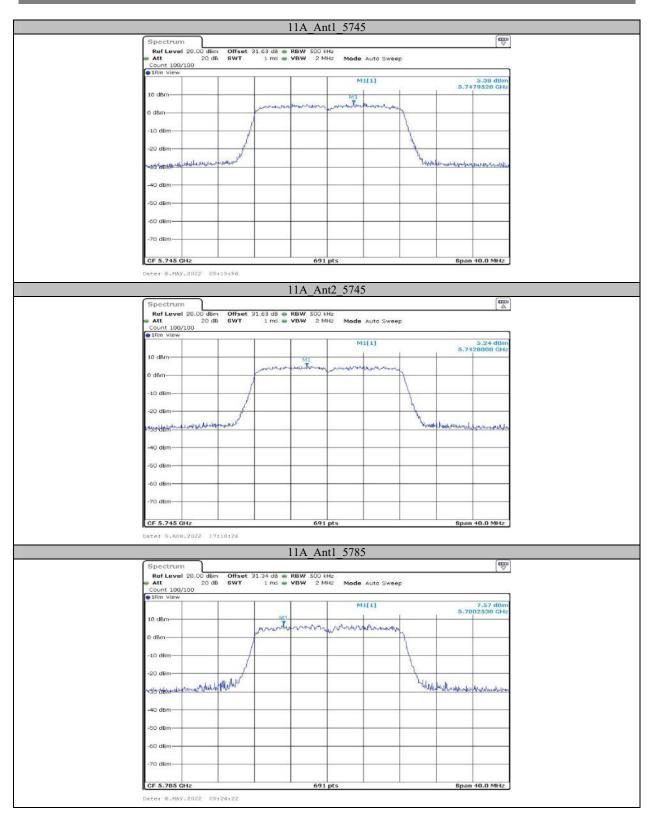
Version 10: 2021-11-09

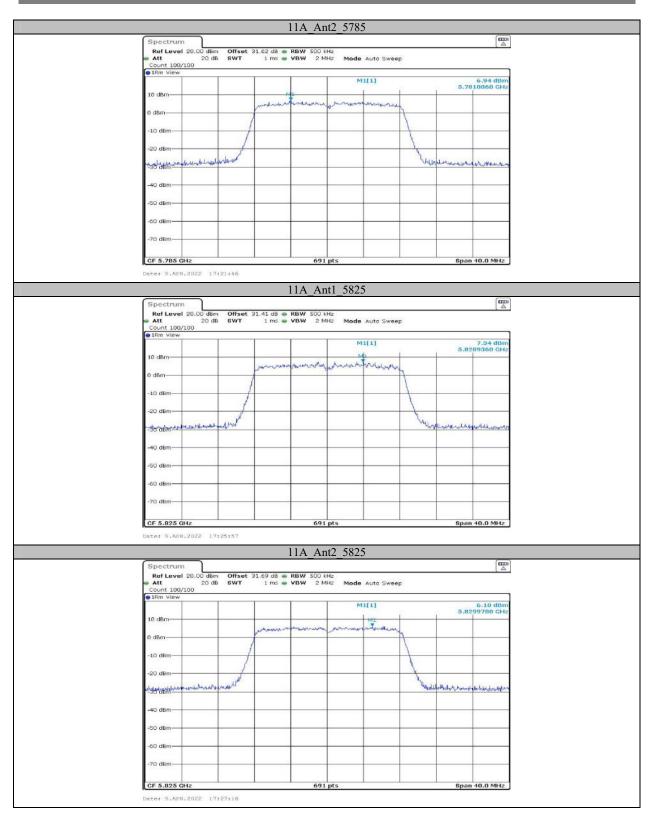
FCC-5G Wi-Fi

Note: 1. The Result and Limit Unit is dBm/500 kHz in the band 5.725–5.85 GHz.
2. The Duty Cycle Factor is compensated in the graph.
3. For 802.11n20/40 mode, EUT employ cyclic delay diversity (CDD)


According to KDB 662911 D01 v02r01, for PSD measurement on IEEE 802.11 devices:

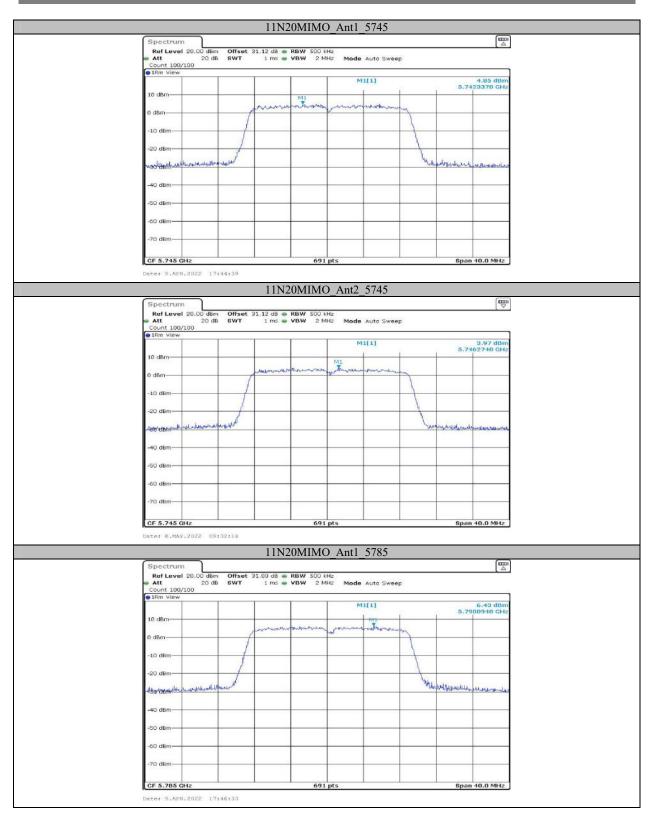
Array Gain = $10*\log(N_{ANT})=10*\log(2)=3dB$ Directional gain = G_{ANT} + Array Gain=3.07dBi+3dB-6.07dBi>6dBiSo the limit should reduce 0.07dB.

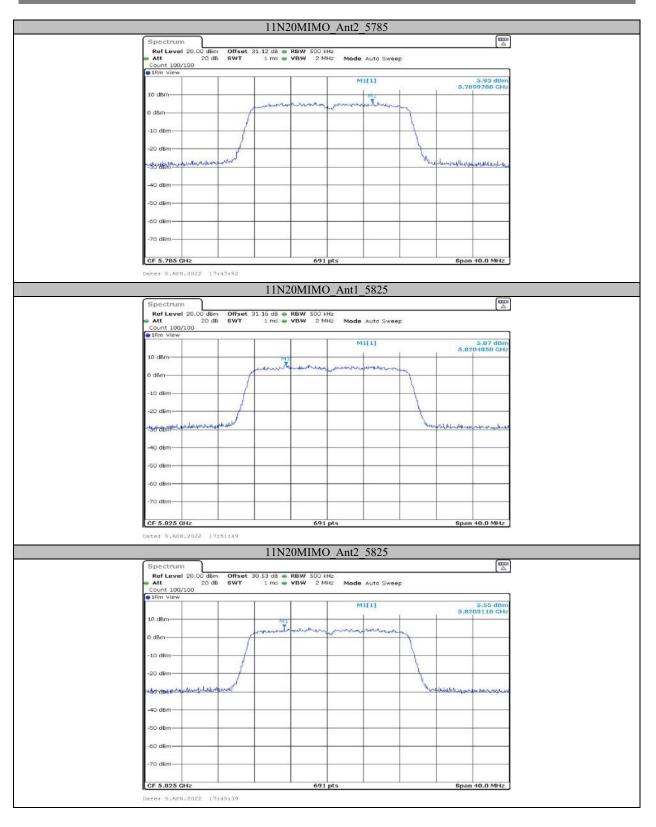

Test Graphs


Report No.: SZNS220224-05823E-RF-00

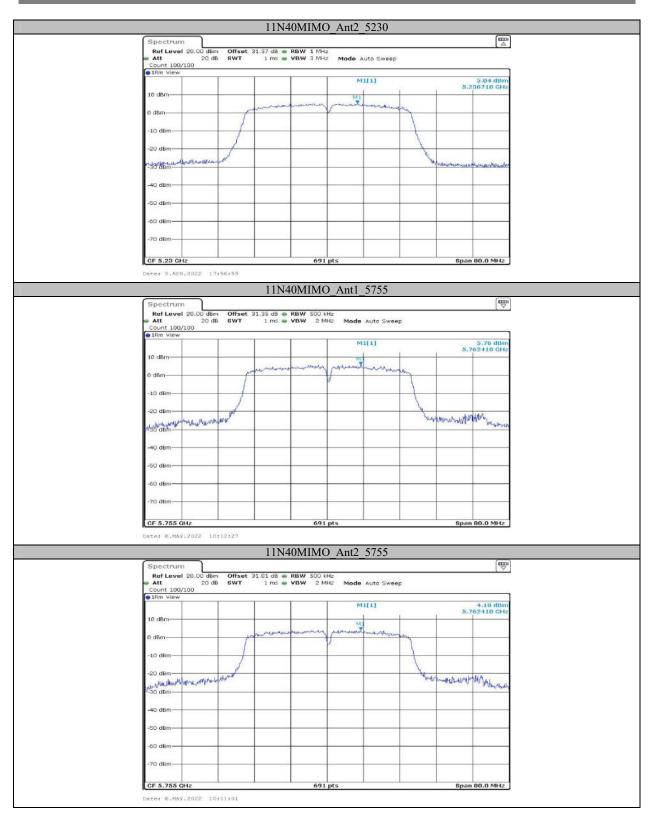
Report No.: SZNS220224-05823E-RF-00

Report No.: SZNS220224-05823E-RF-00


Report No.: SZNS220224-05823E-RF-00


Report No.: SZNS220224-05823E-RF-00


Report No.: SZNS220224-05823E-RF-00

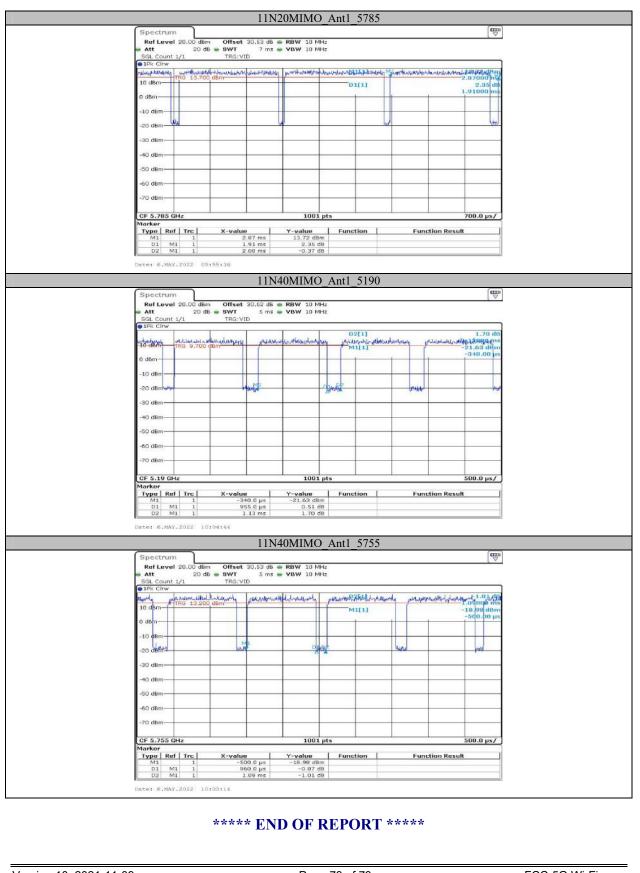

Report No.: SZNS220224-05823E-RF-00

Report No.: SZNS220224-05823E-RF-00

Report No.: SZNS220224-05823E-RF-00

Report No.: SZNS220224-05823E-RF-00

Report No.: SZNS220224-05823E-RF-00


Appendix D: Duty Cycle Test Result

Test Mode	Antenna	Channel	Transmission Duration [ms]	Transmission Period [ms]	Duty Cycle [%]
11A	Antl	5200	2.08	2.53	82.21
IIA	Antl	5785	2.09	2.47	84.62
11N20MIMO	Antl	5200	1.94	2.08	93.27
	Antl	5785	1.91	2.08	91.83
11N40MIMO	Antl	5190	0.96	1.13	84.96
	Antl	5755	0.96	1.09	88.07

Test Graphs

	11A_Ant1	_5200	
Spectrum			
Ref Level 20.00 dBm Att 20 dB	Offset 30.62 dB RBW 10 MHz SWT 8 ms VBW 10 MHz		
SGL Count 1/1 9 1Pk Clrw	TRG: VID		
10 dBm TRG 11.100 d	Brownie potronautronate	patronal patronal	-1.45 dB
0 dBm		M1[1]	-19.95 dBm -1.45000 ms
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			
-10 dBm M1 -3018bb	grund and		No. MIT
	Z V MY	Booker (s	
-30 dBm			
-40 dBm			
-50 dBm-			
-60 dBm			
-70 dBm			
CF 5.2 GHz Marker	1001 pt	s	800.0 µs/
Type Ref Trc M1 1	X-value Y-value -1.45 ms -19.95 dBm	Function Func	tion Result
D1 M1 1 D2 M1 1	2.082 ms -1.35 dB 2.53 ms -1.45 dB		
Date: 6.NAY.2022 10:0			
	11A Antl	5785	
Spectrum	IIA_ANU	_3703	l maine
Ref Level 20.00 dBm	Offset 30.53 dB 👄 RBW 10 MHz		[\$]
SGL Count 1/1	SWT 8 ms SWT 10 MHz TRG:VID		
Pipe Cinw patron Lun Man Lun TRG 13.600 d	whether performance	Utagenta 16. 18 Anno 10	2.46600 mg
10 dBm TRG 13,600 d	Bm	M1[1]	-18.06 dBm
Ø dBm			-1,48200 ms
-10 dBm			
-28vbert	guase	al of the second	ligne inset
-30 dBm			
-40 dBm			
-50 dBm			
-60 dBm			· · · · · · · · · · · · · · · · · · ·
-70 dBm			
CF 5.785 GHz	1001 pt	5	800.0 µs/
Marker Type Ref Trc	X-value Y-value		tion Result
M1 1 D1 M1 1	-1.482 ms -18.06 dBm 2.09 ms -1.53 dB		
D2 M1 1	2.466 ms -0.80 dB]
Date: 6.MAY.2022 10:0			
	11N20MIMO_	Ant1_5200	
Spectrum Ref Level 20.00 dBm	Offset 30.62 dB @ RBW 10 MHz		
Att 20 dB SGL Count 1/1			
		potet	2.42.40
• 1Pk Clnw	Bring Hard Martin Bring part that make mit	additural tradition prostation and the	-2.47 dB Muzikimutajalakan naa -17.83 dem
• 1Pk Cirw			a company products
• 19k Cirw titilities - p156, 14.800 d 10 dBm		M1[1]	-1,38800 ms
o dem			-1.38800 ms
IPk Cinw Ind Br O dBm -10 dBm N1	- Jac	milt]	-1.38800 ms
19k Cfrw 10 dBm 0 dBm -10 dBm -20 dBm			
19k Chw 10 dBm			
19k CIN 10k CIN 10 dBm -10 dBm -20 dBm -40 dBm			
19k CIN 10 dBm -10 dBm -20 dBm -40 dBm -50 dBm			
IPk Cinw Ith Cinw			
IPk Citw Ind Ear Ind			
Pik Crw ruitit			-1,38800 ms
If if is a second		s	

Report No.: SZNS220224-05823E-RF-00

Version 10: 2021-11-09

FCC-5G Wi-Fi