



# FCC PART 15.407 TEST REPORT

For

# Shenzhen VanTop Technology & Innovation Co., Ltd.

502, 5th Flr. BLDG 4, MinQi Technology Park, No. 65 Lishan Road, Taoyuan Street, Nanshan District, Shenzhen, China

FCC ID: 2AQ3A-SP600NQ0520

Report Type: Product Type: R/C QUADCOPTER Original Report **Report Number:** RSZ200416816-00 **Report Date:** 2020-05-18 Jacob Kong Jacob Gong **Reviewed By:** RF Engineer Bay Area Compliance Laboratories Corp. (Shenzhen) 6/F., West Wing, Third Phase of Wanli Industrial Prepared By: Building, Shihua Road, Futian Free Trade Zone, Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

**Note:** This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA\* or any agency of the Federal Government. This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "★".

BACL is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '\*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

# **TABLE OF CONTENTS**

| GENERAL INFORMATION                                                 | 4  |
|---------------------------------------------------------------------|----|
| PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)                  |    |
| OBJECTIVE                                                           | 4  |
| RELATED SUBMITTAL(S)/GRANT(S)                                       |    |
| TEST METHODOLOGY                                                    |    |
| TEST FACILITY                                                       |    |
| SYSTEM TEST CONFIGURATION                                           |    |
|                                                                     |    |
| DESCRIPTION OF TEST CONFIGURATIONEUT EXERCISE SOFTWARE              |    |
| DUTY CYCLE                                                          |    |
| EQUIPMENT MODIFICATIONS                                             |    |
| SUPPORT EQUIPMENT LIST AND DETAILS                                  |    |
| External I/O Cable                                                  |    |
| BLOCK DIAGRAM OF TEST SETUP                                         | 7  |
| SUMMARY OF TEST RESULTS                                             | 8  |
| TEST EQUIPMENT LIST                                                 | 9  |
| FCC §1.1307(b) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)        | 10 |
| APPLICABLE STANDARD                                                 |    |
| Result                                                              | 10 |
| FCC §15.203 – ANTENNA REQUIREMENT                                   |    |
| APPLICABLE STANDARD                                                 |    |
| Antenna Connector Construction                                      |    |
| §15.205 & §15.209 & §15.407(B) (1), (6), (7) – UNDESIRABLE EMISSION | 13 |
| APPLICABLE STANDARD                                                 | 13 |
| EUT SETUP                                                           | 13 |
| EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP                         |    |
| TEST PROCEDURE                                                      |    |
| TEST RESULTS SUMMARY                                                |    |
| TEST DATA                                                           |    |
| FCC §15.407(a) (1) – 26 dB EMISSION BANDWIDTH                       | 26 |
| APPLICABLE STANDARD                                                 |    |
| TEST PROCEDURE                                                      |    |
| TEST DATA                                                           | 26 |
| FCC §15.407(a) (1) – CONDUCTED TRANSMITTER OUTPUT POWER             | 27 |
| APPLICABLE STANDARD                                                 |    |
| TEST PROCEDURE                                                      |    |
| TEST DATA                                                           |    |
| FCC §15.407(a) (1) - POWER SPECTRAL DENSITY                         |    |
| Applicable Standard<br>Test Procedure                               |    |
| TEST DATA                                                           |    |
|                                                                     |    |

# Bay Area Compliance Laboratories Corp. (Shenzhen)

| APPENDIX                                   | 29 |
|--------------------------------------------|----|
| APPENDIX A: EMISSION BANDWIDTH             |    |
| APPENDIX B: OCCUPIED CHANNEL BANDWIDTH     |    |
| APPENDIX C: MAXIMUM CONDUCTED OUTPUT POWER |    |
| APPENDIX D: MAXIMUM POWER SPECTRAL DENSITY | 38 |
| APPENDIX E: DUTY CYCLE                     | 4  |

Report No.: RSZ200416816-00

FCC Part 15.407 Page 3 of 51

# **GENERAL INFORMATION**

# **Product Description for Equipment under Test (EUT)**

| Product                       | R/C QUADCOPTER                                                                                                        |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Model                         | SP600N                                                                                                                |
| Multiple Models               | SP520, SP530, SP550, SP610, SP620, SP700, SP7100, SP7300, SP7500, A10, A16, A18, A20, Hummer 3S, Hummer 6S, Hummer 9S |
| Model Differences             | Refer to the DOS letter                                                                                               |
| Frequency Range               | 5G Wi-Fi: 5150-5250 MHz                                                                                               |
| Conducted Average Ouput Power | 5150-5250 MHz:<br>11.51dBm (802.11a), 11.28dBm(802.11n20), 10.26 dBm(802.11n40)                                       |
| Modulation Technique          | OFDM                                                                                                                  |
| Antenna Specification         | 2*2MIMO 1.7dBi                                                                                                        |
| Voltage Range                 | DC 7.6V from battery                                                                                                  |
| Date of Test                  | 2020-04-27 to 2020-05-16                                                                                              |
| Sample serial number          | RSZ200416816-RF-S1(Assigned by BACL, Shenzhen)                                                                        |
| Received date                 | 2020-04-16                                                                                                            |
| Sample/EUT Status             | Good condition                                                                                                        |

Report No.: RSZ200416816-00

# **Objective**

This type approval report is prepared on behalf of Shenzhen VanTop Technology & Innovation Co., Ltd. in accordance with Part 2-Subpart J, Part 15-Subparts A and E of the Federal Communication Commissions rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart E, section 15.203, 15.205, 15.209 and 15.407 rules.

## Related Submittal(s)/Grant(s)

Part of system submission with FCC ID: 2AQ3A-SP600NR2420

### **Test Methodology**

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices. And KDB789033 D02 General U-NII Test Procedures New Rules v02r01.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

FCC Part 15.407 Page 4 of 51

## **Measurement Uncertainty**

| Parameter                          |                  | Uncertainty |
|------------------------------------|------------------|-------------|
| Occupied Char                      | nnel Bandwidth   | ±5%         |
| RF Output Power                    | with Power meter | ±0.73dB     |
| RF conducted test with spectrum    |                  | ±1.6dB      |
| AC Power Lines Conducted Emissions |                  | ±1.95dB     |
| Emissions,                         | Below 1GHz       | ±4.75dB     |
| Radiated                           | Above 1GHz       | ±4.88dB     |
| Temperature                        |                  | ±1℃         |
| Humidity                           |                  | ±6%         |
| Supply                             | voltages         | ±0.4%       |

Report No.: RSZ200416816-00

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

# **Test Facility**

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone, Shenzhen, Guangdong, China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 342867, the FCC Designation No.: CN1221.

The test site has been registered with ISED Canada under ISED Canada Registration Number 3062B.

FCC Part 15.407 Page 5 of 51

# **SYSTEM TEST CONFIGURATION**

# **Description of Test Configuration**

The system was configured for testing in an engineering mode, which was provided by manufacturer.

Report No.: RSZ200416816-00

The device support 802.11a/n20/n40 modes.

For 5150-5250MHz Band, 6 channels are provided to testing:

| Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |
|---------|--------------------|---------|--------------------|
| 36      | 5180               | 44      | 5220               |
| 38      | 5190               | 46      | 5230               |
| 40      | 5200               | 48      | 5240               |

# **EUT Exercise Software**

"secure CRT" exercise software was used.

Test frequencies and power level were configured as below:

| U-NII   | Mode       | Frequency<br>(MHz) | Rate<br>(Mbps) | Power Level |
|---------|------------|--------------------|----------------|-------------|
|         |            | 5180               | 6              | 12          |
|         | 802.11 a   | 5200               | 6              | 12          |
|         |            | 5240               | 6              | 12          |
| 5150 -  | 802.11 n20 | 5180               | MCS0           | 12          |
| 5250MHz |            | 5200               | MCS0           | 12          |
|         |            | 5240               | MCS0           | 12          |
|         | 902 11 40  | 5190               | MCS0           | 12          |
|         | 802.11 n40 | 5230               | MCS0           | 12          |

# **Duty cycle**

**Test Result:** Compliant. Please refer to the APPENDIX.

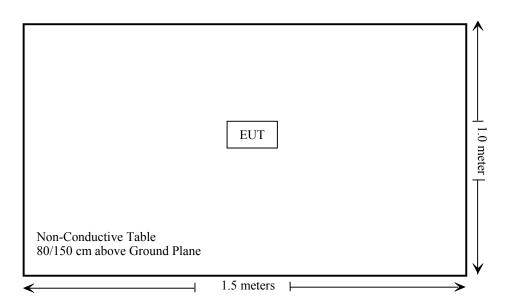
# **Equipment Modifications**

No modification was made to the EUT tested.

# **Support Equipment List and Details**

| Manufacturer | Description | Model | Serial Number |
|--------------|-------------|-------|---------------|
| /            | /           | /     | /             |

FCC Part 15.407 Page 6 of 51


# **External I/O Cable**

| Cable Description | Length (m) | From/Port | То |
|-------------------|------------|-----------|----|
| /                 | /          | /         | /  |

Report No.: RSZ200416816-00

# **Block Diagram of Test Setup**

For conducted emission:



FCC Part 15.407 Page 7 of 51

# SUMMARY OF TEST RESULTS

| FCC Rules                                    | Description of Test                    | Result         |
|----------------------------------------------|----------------------------------------|----------------|
| §1.1307 , §2.1091                            | MaximuM Permissible exposure (MPE)     | Compliance     |
| §15.203                                      | Antenna Requirement                    | Compliance     |
| §15.407(b)(6)& §15.207(a)                    | Conducted Emissions                    | Not Applicable |
| §15.205& §15.209<br>&§15.407(b) (1), (6),(7) | Undesirable Emission& Restricted Bands | Compliance     |
| §15.407(a) (1)                               | 26 dB Emission Bandwidth               | Compliance     |
| §15.407(a)(1)                                | Conducted Transmitter Output Power     | Compliance     |
| §15.407 (a)(1)                               | Power Spectral Density                 | Compliance     |

Report No.: RSZ200416816-00

Not Applicable: The EUT will not connected to the public utility (AC) power line on normal operation.

FCC Part 15.407 Page 8 of 51

# TEST EQUIPMENT LIST

| Manufacturer             | Description                  | Model                       | Serial Number   | Calibration<br>Date | Calibration<br>Due Date |  |  |
|--------------------------|------------------------------|-----------------------------|-----------------|---------------------|-------------------------|--|--|
|                          | Radiated Emission Test       |                             |                 |                     |                         |  |  |
| R&S                      | EMI Test Receiver            | ESR3                        | 102455          | 2019/7/9            | 2020/7/8                |  |  |
| Sonoma instrument        | Pre-amplifier                | 310 N                       | 186238          | 2020/4/20           | 2021/4/20               |  |  |
| Sunol Sciences           | Broadband Antenna            | ЈВ1                         | A040904-1       | 2017/12/22          | 2020/12/21              |  |  |
| Unknown                  | Cable                        | Chamber Cable 1             | F-03-EM236      | 2019/11/29          | 2020/11/28              |  |  |
| Rohde & Schwarz          | Auto test software           | EMC 32                      | V9.10           | NCR                 | NCR                     |  |  |
| Rohde & Schwarz          | Spectrum Analyzer            | FSV40-N                     | 102259          | 2019/7/22           | 2020/07/21              |  |  |
| COM-POWER                | Pre-amplifier                | PA-122                      | 181919          | 2019/11/29          | 2020/11/28              |  |  |
| Quinstar                 | Amplifier                    | QLW-18405536-J0             | 15964001002     | 2019/11/29          | 2020/11/28              |  |  |
| Sunol Sciences           | Horn Antenna                 | DRH-118                     | A052604         | 2017/12/22          | 2020/12/21              |  |  |
| Insulted Wire Inc.       | RF Cable                     | SPS-2503-3150               | 02222010        | 2019/11/29          | 2020/11/28              |  |  |
| SNSD                     | Band Reject filter           | BSF5150-5850MN-<br>0899-004 | 5G filter       | 2020/4/20           | 2021/4/20               |  |  |
| Ducommun<br>Technolagies | Horn antenna                 | ARH-4223-02                 | 1007726-02 1304 | 2017/12/6           | 2020/12/5               |  |  |
| Ducommun<br>Technolagies | Horn antenna                 | ARH-2823-02                 | 1007726-02 1302 | 2017/12/6           | 2020/12/5               |  |  |
|                          | RF Conducted Test            |                             |                 |                     |                         |  |  |
| Tonscend<br>Corporation  | RF control Unit              | JS0806-2                    | 19D8060154      | 2019/7/10           | 2020/7/9                |  |  |
| Rohde & Schwarz          | Signal and Spectrum Analyzer | FSV40                       | 101473          | 2019/7/22           | 2020/7/21               |  |  |
| Unknown                  | RF Cable                     | Unknown                     | 2301 276        | 2019/11/29          | 2020/11/28              |  |  |
| Ducommun<br>technologies | RF Cable                     | RG-214                      | 3               | Each                | Time                    |  |  |

Report No.: RSZ200416816-00

FCC Part 15.407 Page 9 of 51

<sup>\*</sup> Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

# FCC §1.1307(b) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Report No.: RSZ200416816-00

# **Applicable Standard**

According to subpart 15.247 (i) and subpart 1.1307 (b), 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

Limits for General Population/Uncontrolled Exposure

| Limits for General Population/Uncontrolled Exposure |                                     |                                     |                                     |                                |
|-----------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------|
| Frequency<br>Range<br>(MHz)                         | Electric Field<br>Strength<br>(V/m) | Magnetic Field<br>Strength<br>(A/m) | Power Density (mW/cm <sup>2</sup> ) | Averaging<br>Time<br>(Minutes) |
| 0.3-1.34                                            | 614                                 | 1.63                                | *(100)                              | 30                             |
| 1.34-30                                             | 824/f                               | 2.19/f                              | $*(180/f^2)$                        | 30                             |
| 30-300                                              | 27.5                                | 0.073                               | 0.2                                 | 30                             |
| 300-1500                                            | /                                   | /                                   | f/1500                              | 30                             |
| 1500-100,000                                        | /                                   | /                                   | 1.0                                 | 30                             |

f = frequency in MHz

\* = Plane-wave equivalent power density

#### Result

### **Calculated Formulary:**

Predication of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

S = power density (in appropriate units, e.g. mW/cm2)

P = power input to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

For simultaneously transmit system, the calculated power density should comply with:

$$\sum_{i} \frac{S_{i}}{S_{Limit,i}} \le 1$$

FCC Part 15.407 Page 10 of 51

Report No.: RSZ200416816-00

Note: 1. the tune up conducted power was declared by the applicant

To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

**Result: Compliance** 

FCC Part 15.407 Page 11 of 51

# FCC §15.203 – ANTENNA REQUIREMENT

### **Applicable Standard**

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

Report No.: RSZ200416816-00

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.407 (a), if the transmitting antennas of directional gain greater than 6dBi are used, the transmit power and power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

#### **Antenna Connector Construction**

The EUT has two intergral antenna arrangement for 5G Wi-Fi, which was permanently attached and the antenna gain is 1.7 dBi, fulfill the requirement of this section. Please refer to the EUT photos.

**Result:** Compliance.

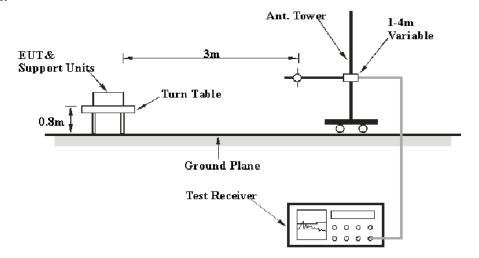
FCC Part 15.407 Page 12 of 51

# §15.205 & §15.209 & §15.407(B) (1), (6), (7) – UNDESIRABLE EMISSION

Report No.: RSZ200416816-00

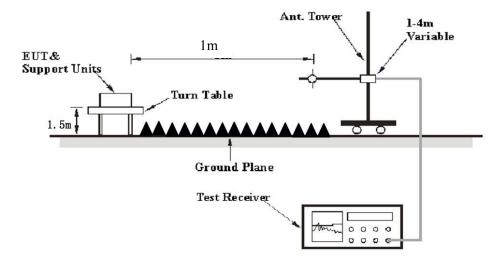
# **Applicable Standard**

FCC §15.407 (b) (1), (6), (7); §15.209; §15.205;


- (b) Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:
- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in §15.207.

The provisions of §15.205 apply to intentional radiators operating under this section.


## **EUT Setup**

#### **Below 1 GHz:**



FCC Part 15.407 Page 13 of 51

### **Above 1 GHz:**



Report No.: RSZ200416816-00

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC 15.209 and FCC 15.407 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

# **EMI Test Receiver & Spectrum Analyzer Setup**

The system was investigated from 30 MHz to 40 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

| Frequency Range   | RBW     | Video B/W    | IF B/W  | Measurement |
|-------------------|---------|--------------|---------|-------------|
| 30 MHz – 1000 MHz | 100 kHz | 300 kHz      | 120 kHz | QP          |
|                   | 1 MHz   | 3 MHz        | /       | PK          |
| Above 1 GHz       | 1MHz    | 10 Hz Note 1 | /       | Average     |
|                   | 1MHz    | >1/T Note 2  | /       | Average     |

Note 1: when duty cycle is no less than 98% Note 2: when duty cycle is less than 98%

#### **Test Procedure**

# **Radiated Spurious Emission**

During the radiated emission test, the adapter was connected to the AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all the installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1GHz, peak and Average detection modes for frequencies above 1GHz.

FCC Part 15.407 Page 14 of 51

# **Corrected Amplitude & Margin Calculation**

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Report No.: RSZ200416816-00

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

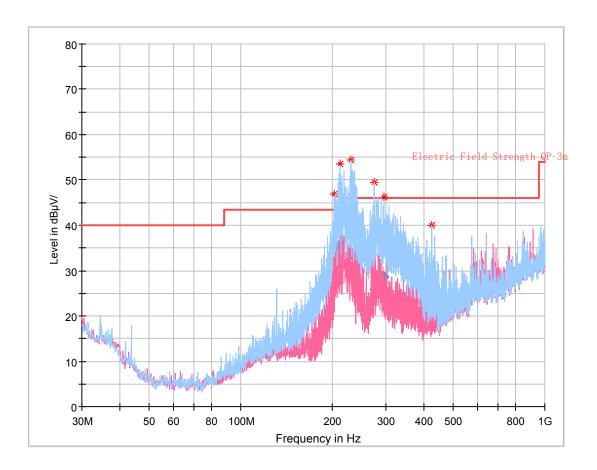
Margin = Limit – Corrected Amplitude

## **Test Results Summary**

According to the recorded data in following table, the EUT complied with the <u>FCC Title 47, Part 15, Subpart E, section 15.205, 15.209 and 15.407 rules.</u>

### **Test Data**

#### **Environmental Conditions**


| Temperature:       | 23 °C     |  |
|--------------------|-----------|--|
| Relative Humidity: | 50 %      |  |
| ATM Pressure:      | 101.0 kPa |  |

The testing was performed by Holland Yang on 2020-04-27 for below 1G and Leo Huang from 2020-05-04 to 2020-05-16 for above 1G.

EUT operation mode: Transmitting

FCC Part 15.407 Page 15 of 51

**30 MHz – 1 GHz:** (worst case is 802.11a mode 5240 MHz)



Report No.: RSZ200416816-00

| Frequency<br>(MHz) | Corrected<br>Amplitude<br>(dBµV/m) | Antenna<br>height<br>(cm) | Antenna<br>Polarity | Turntable position (degree) | Correction<br>Factor<br>(dB/m) | Limit<br>(dBµV/m) | Margin<br>(dB) |
|--------------------|------------------------------------|---------------------------|---------------------|-----------------------------|--------------------------------|-------------------|----------------|
| 203.023750         | 34.95                              | 192.0                     | Н                   | 174.0                       | -13.9                          | 43.50             | 8.55           |
| 211.753750         | 35.83                              | 109.0                     | Н                   | 146.0                       | -13.9                          | 43.50             | 7.67           |
| 229.536375         | 33.50                              | 111.0                     | Н                   | 217.0                       | -14.0                          | 46.00             | 12.50          |
| 274.251500         | 25.89                              | 142.0                     | Н                   | 303.0                       | -12.4                          | 46.00             | 20.11          |
| 295.199875         | 28.70                              | 154.0                     | Н                   | 173.0                       | -10.9                          | 46.00             | 17.30          |
| 425.126250         | 18.42                              | 114.0                     | Н                   | 305.0                       | -9.3                           | 46.00             | 27.58          |

FCC Part 15.407 Page 16 of 51

# **30 MHz ~ 40 GHz:**

Note: The test distance is 1m, so the correct factor from 3m to 1m is  $20\log(3/1)=9.5$ dB which was added into the final limit.

Report No.: RSZ200416816-00

## 5150-5250 MHz:

| -                                                |            |                     | Turntable     | Rx Antenna         |                | Corrected   | Corrected | FCC Part<br>15.407/205/209 |       |
|--------------------------------------------------|------------|---------------------|---------------|--------------------|----------------|-------------|-----------|----------------------------|-------|
| Frequency (MHz) Reading (dBμV) PK/QP/Ave. Degree | Height (m) | Polar<br>(H /<br>V) | Factor (dB/m) | Amplitude (dBμV/m) | Limit (dBµV/m) | Margin (dB) |           |                            |       |
|                                                  |            |                     |               | 802                | .11a           |             |           |                            |       |
|                                                  |            |                     |               | 5180               | MHz            |             |           |                            |       |
| 5148.81                                          | 31.70      | PK                  | 274           | 2.2                | Н              | 38.36       | 70.06     | 83.5                       | 13.44 |
| 5148.81                                          | 16.93      | Ave.                | 274           | 2.2                | Н              | 38.36       | 55.29     | 63.5                       | 8.21  |
| 5351.26                                          | 29.87      | PK                  | 173           | 2.4                | Н              | 39.09       | 68.96     | 83.5                       | 14.54 |
| 5351.26                                          | 16.21      | Ave.                | 173           | 2.4                | Н              | 39.09       | 55.30     | 63.5                       | 8.20  |
| 10360.00                                         | 56.81      | PK                  | 187           | 2.3                | Н              | 17.42       | 74.23     | 77.7                       | 3.47  |
|                                                  |            |                     |               | 5200               | MHz            |             |           |                            |       |
| 10400.00                                         | 58.33      | PK                  | 106           | 1.7                | Н              | 17.52       | 75.85     | 77.7                       | 1.85  |
|                                                  |            |                     |               | 5240               | MHz            |             |           |                            |       |
| 5148.61                                          | 30.42      | PK                  | 146           | 2.2                | Н              | 38.36       | 68.78     | 83.5                       | 14.72 |
| 5148.61                                          | 16.37      | Ave.                | 146           | 2.2                | Н              | 38.36       | 54.73     | 63.5                       | 8.77  |
| 5350.83                                          | 30.22      | PK                  | 212           | 1.4                | Н              | 39.09       | 69.31     | 83.5                       | 14.19 |
| 5350.83                                          | 16.41      | Ave.                | 212           | 1.4                | Н              | 39.09       | 55.50     | 63.5                       | 8.00  |
| 10480.00                                         | 59.01      | PK                  | 36            | 1.6                | Н              | 17.25       | 76.26     | 77.7                       | 1.44  |

FCC Part 15.407 Page 17 of 51

|                    | Receiver |            | Turntable | Rx Antenna |                     | Corrected | Corrected          | FCC Part<br>15.407/205/209 |                |
|--------------------|----------|------------|-----------|------------|---------------------|-----------|--------------------|----------------------------|----------------|
| Frequency<br>(MHz) |          | PK/QP/Ave. | Degree    | Height (m) | Polar<br>(H /<br>V) |           | Amplitude (dBμV/m) | Limit (dBµV/m)             | Margin<br>(dB) |
|                    |          |            |           | 802.       | 11n20               |           |                    | •                          |                |
|                    |          |            |           | 5180       | MHz                 |           |                    |                            |                |
| 5149.36            | 30.90    | PK         | 85        | 1.7        | Н                   | 38.36     | 69.26              | 83.5                       | 14.24          |
| 5149.36            | 16.62    | Ave.       | 85        | 1.7        | Н                   | 38.36     | 54.98              | 63.5                       | 8.52           |
| 5351.43            | 30.13    | PK         | 201       | 1.7        | Н                   | 39.09     | 69.22              | 83.5                       | 14.28          |
| 5351.43            | 16.31    | Ave.       | 201       | 1.7        | Н                   | 39.09     | 55.40              | 63.5                       | 8.10           |
| 10360.00           | 56.82    | PK         | 127       | 2.3        | Н                   | 17.42     | 74.24              | 77.7                       | 3.46           |
|                    |          |            |           | 5200       | MHz                 |           |                    |                            |                |
| 10400.00           | 56.93    | PK         | 219       | 1.6        | Н                   | 17.52     | 74.45              | 77.7                       | 3.25           |
|                    |          |            |           | 5240       | MHz                 |           |                    |                            |                |
| 5148.37            | 30.22    | PK         | 169       | 1.1        | Н                   | 38.36     | 68.58              | 83.5                       | 14.92          |
| 5148.37            | 16.35    | Ave.       | 169       | 1.1        | Н                   | 38.36     | 54.71              | 63.5                       | 8.79           |
| 5350.60            | 30.31    | PK         | 123       | 1.9        | Н                   | 39.09     | 69.40              | 83.5                       | 14.10          |
| 5350.60            | 16.29    | Ave.       | 123       | 1.9        | Н                   | 39.09     | 55.38              | 63.5                       | 8.12           |
| 10480.00           | 58.94    | PK         | 184       | 1.2        | Н                   | 17.25     | 76.19              | 77.7                       | 1.51           |

FCC Part 15.407 Page 18 of 51

Report No.: RSZ200416816-00

#### Note

Corrected Amplitude = Corrected Factor + Reading

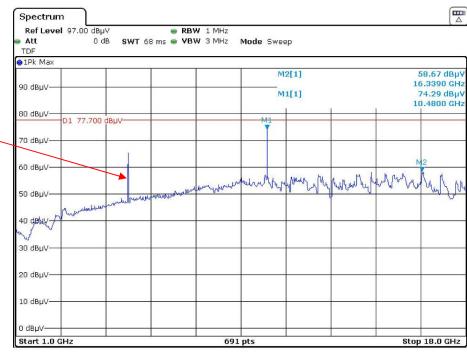
Corrected Factor=Antenna factor (RX) + Cable Loss – Amplifier Factor

Margin = Limit- Corr. Amplitude

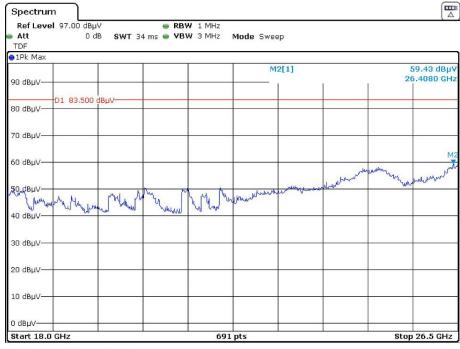
All other spurious emissions are 20 dB below the limit or are on the system noise floor level.

FCC Part 15.407 Page 19 of 51

Fundamental


with notch filter

### Peak


Report No.: RSZ200416816-00

# Pre-scan with 802.11a high channel

### Horizontal



Date: 16.MAY.2020 15:04:09



Date: 16.MAY.2020 15:52:21

FCC Part 15.407 Page 20 of 51

Ref Level 97.00 dBµV

D1 83.500 dBµV

Spectrum

Att

TDF 1Pk Max

90 dBµV-

70 dBµV

50 dBµV

40 dBµV-

20 dBμV 10 dBμV

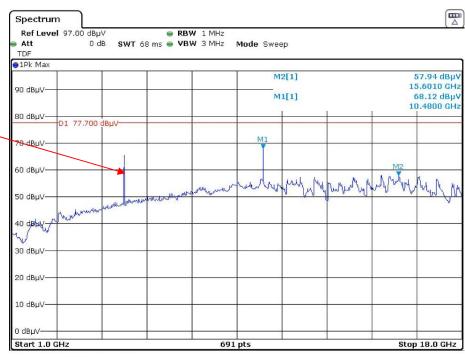
0 dBµV Start 26.5 GHz

Fundamental

with notch filter

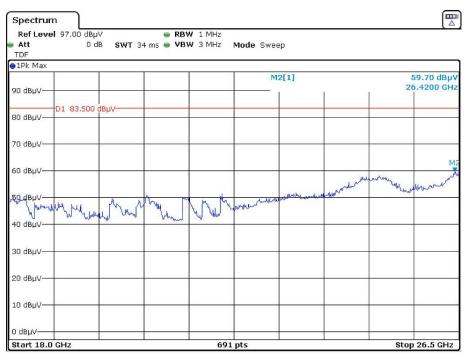


Stop 40.0 GHz

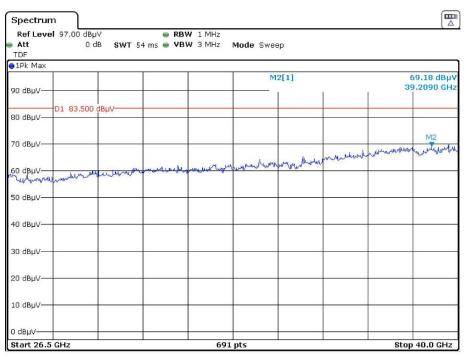

Date: 16.MAY.2020 16:26:37

## Vertical

691 pts


RBW 1 MHz

0 dB **SWT** 54 ms • **VBW** 3 MHz

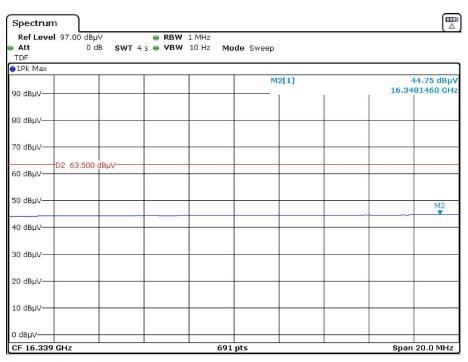



Date: 16.MAY.2020 15:11:00

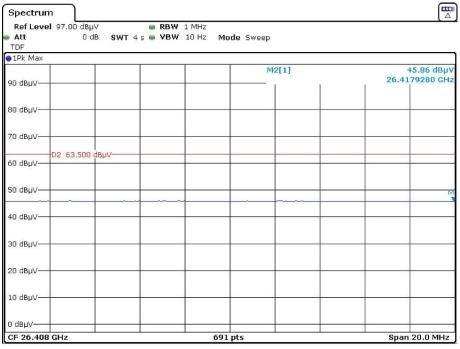
FCC Part 15.407 Page 21 of 51



Date: 16.MAY.2020 15:45:14

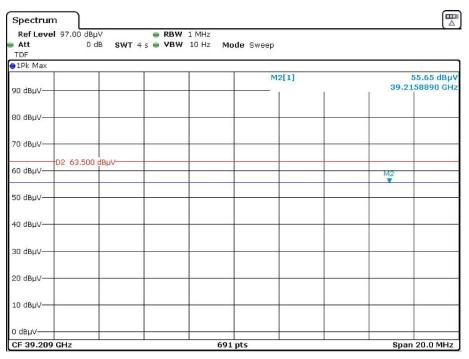



Date: 16.MAY.2020 16:36:09


FCC Part 15.407 Page 22 of 51

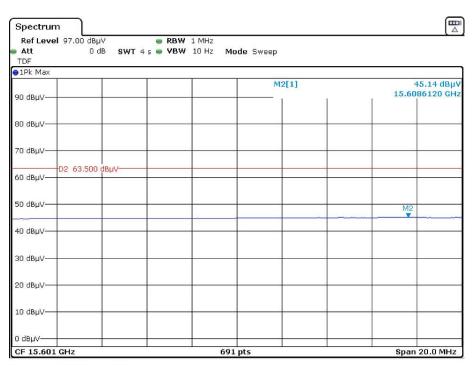
## Average Horizontal

Report No.: RSZ200416816-00



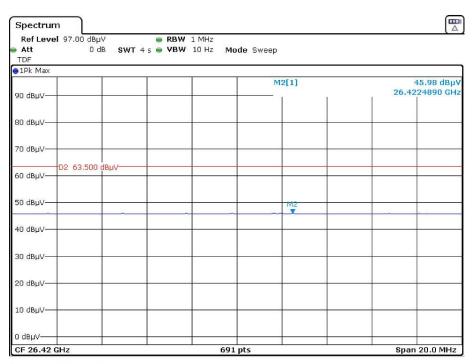

Date: 16.MAY.2020 15:07:31



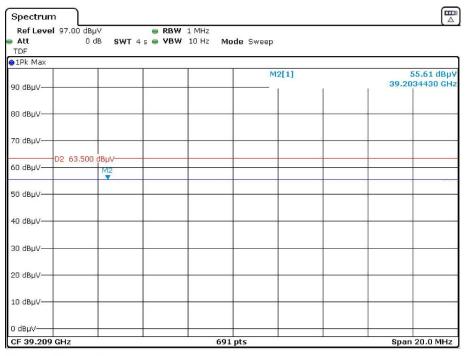

Date: 16.MAY.2020 15:55:57

FCC Part 15.407 Page 23 of 51




Date: 16.MAY.2020 16:32:09

### Vertical




Date: 16.MAY.2020 15:13:55

FCC Part 15.407 Page 24 of 51



Date: 16.MAY.2020 15:48:40



Date: 16.MAY.2020 16:38:38

FCC Part 15.407 Page 25 of 51

# FCC $\S15.407(a)$ (1) – 26 dB EMISSION BANDWIDTH

### **Applicable Standard**


The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements in the 5.725-5.85 GHz band are made over a reference bandwidth of 500 kHz or the 26 dB emission bandwidth of the device, whichever is less. Measurements in the 5.15-5.25 GHz, 5.25-5.35 GHz, and the 5.47-5.725 GHz bands are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full reference bandwidth.

Report No.: RSZ200416816-00

#### **Test Procedure**

#### 1. Emission Bandwidth (EBW)

- a) Set RBW = approximately 1% of the emission bandwidth.
- b) Set the VBW > RBW.
- c) Detector = Peak.
- d) Trace mode =  $\max$  hold.
- e) Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.



#### **Test Data**

### **Environmental Conditions**

| Temperature:       | 25~26 ℃         |
|--------------------|-----------------|
| Relative Humidity: | 50~56 %         |
| ATM Pressure:      | 100.0~101.0 kPa |

The testing was performed by Cary Guan on 2020-05-13.

EUT operation mode: Transmitting

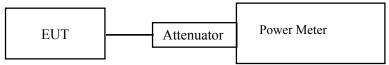
**Test Result:** Compliant. Please refer to the APPENDIX.

FCC Part 15.407 Page 26 of 51

# FCC §15.407(a) (1) – CONDUCTED TRANSMITTER OUTPUT POWER

Report No.: RSZ200416816-00

### **Applicable Standard**


For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

#### **Test Procedure**

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.



### **Test Data**

# **Environmental Conditions**

| Temperature:       | 25 ℃      |  |
|--------------------|-----------|--|
| Relative Humidity: | 52 %      |  |
| ATM Pressure:      | 101.0 kPa |  |

The testing was performed by Cary Guan on 2020-05-13.

EUT operation mode: Transmitting

**Test Result:** Compliant. Please refer to the APPENDIX.

FCC Part 15.407 Page 27 of 51

# FCC §15.407(a) (1) - POWER SPECTRAL DENSITY

### **Applicable Standard**

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Report No.: RSZ200416816-00

#### **Test Procedure**

For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in § 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 kHz bandwidth, the following adjustments to the procedures apply:

- a) Set  $RBW \ge 1/T$ , where T is defined in section II.B.l.a).
- b) Set VBW  $\geq$  3 RBW.
- c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10 log (500 kHz/RBW) to the measured result, whereas RBW (< 500 kHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.
- d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add 10 log (1MHz/RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.
- e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

#### **Test Data**

#### **Environmental Conditions**

| Temperature:       | 25 ℃    |  |  |
|--------------------|---------|--|--|
| Relative Humidity: | 52 %    |  |  |
| ATM Pressure:      | 101 kPa |  |  |

The testing was performed by Cary Guan on 2020-05-13.

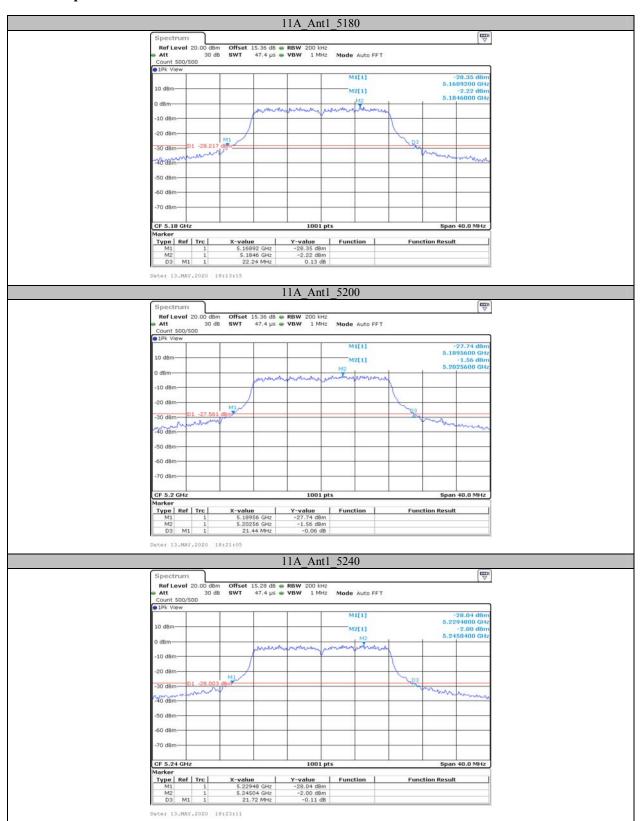
EUT operation mode: Transmitting

**Test Result:** Compliant. Please refer to the APPENDIX.

FCC Part 15.407 Page 28 of 51

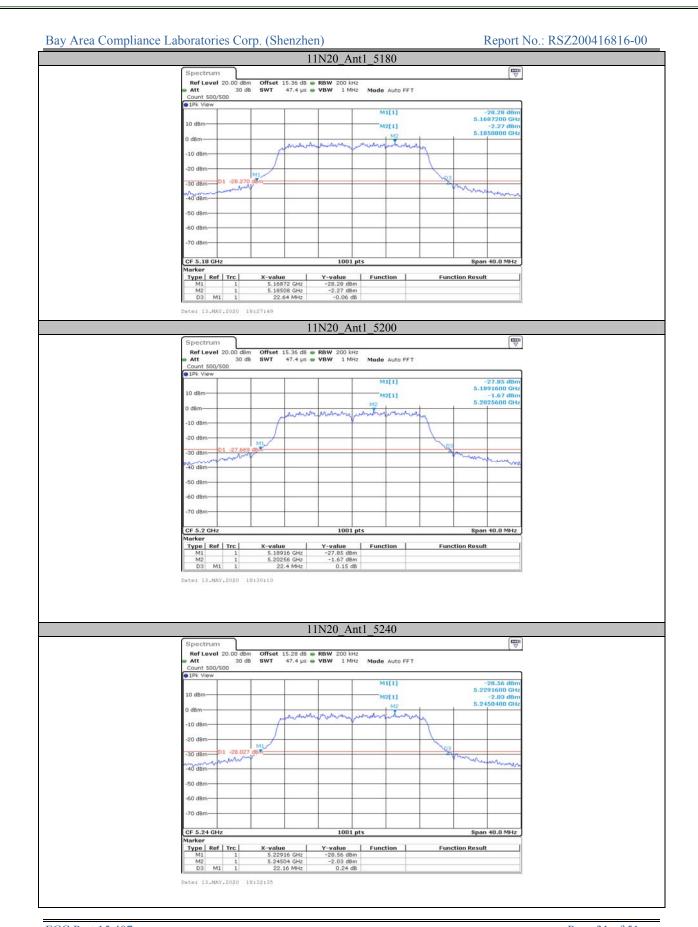
# **APPENDIX**

# **Appendix A: Emission Bandwidth**

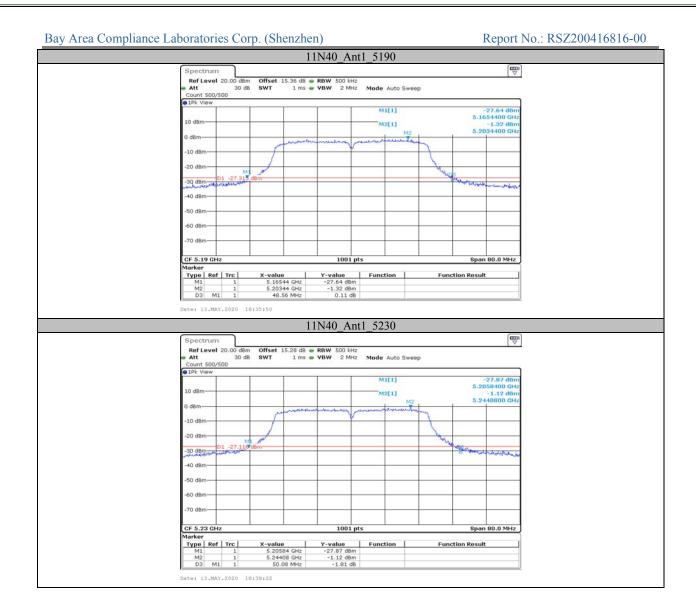

# **Test Result**

| TestMode | Antenna | Channel | 26db EBW [MHz] | Limit[MHz] | Verdict |
|----------|---------|---------|----------------|------------|---------|
|          | Ant1    | 5180    | 22.240         |            | PASS    |
| 11A      | Ant1    | 5200    | 21.440         |            | PASS    |
|          | Ant1    | 5240    | 21.720         |            | PASS    |
|          | Ant1    | 5180    | 22.640         |            | PASS    |
| 11N20    | Ant1    | 5200    | 22.400         |            | PASS    |
|          | Ant1    | 5240    | 22.160         |            | PASS    |
| 11N40    | Ant1    | 5190    | 48.560         |            | PASS    |
|          | Ant1    | 5230    | 50.080         |            | PASS    |

Report No.: RSZ200416816-00


FCC Part 15.407 Page 29 of 51

# **Test Graphs**




Report No.: RSZ200416816-00

FCC Part 15.407 Page 30 of 51



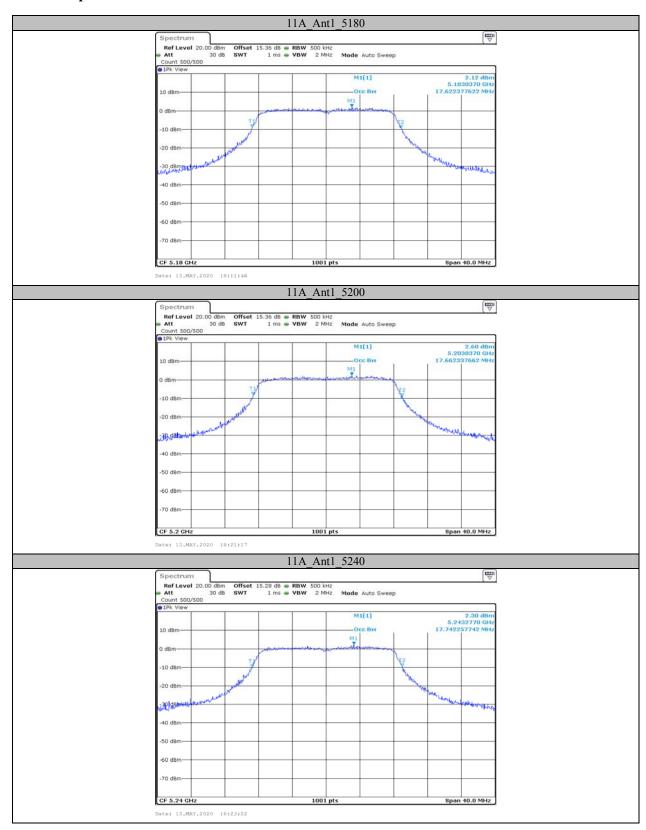
FCC Part 15.407 Page 31 of 51



FCC Part 15.407 Page 32 of 51

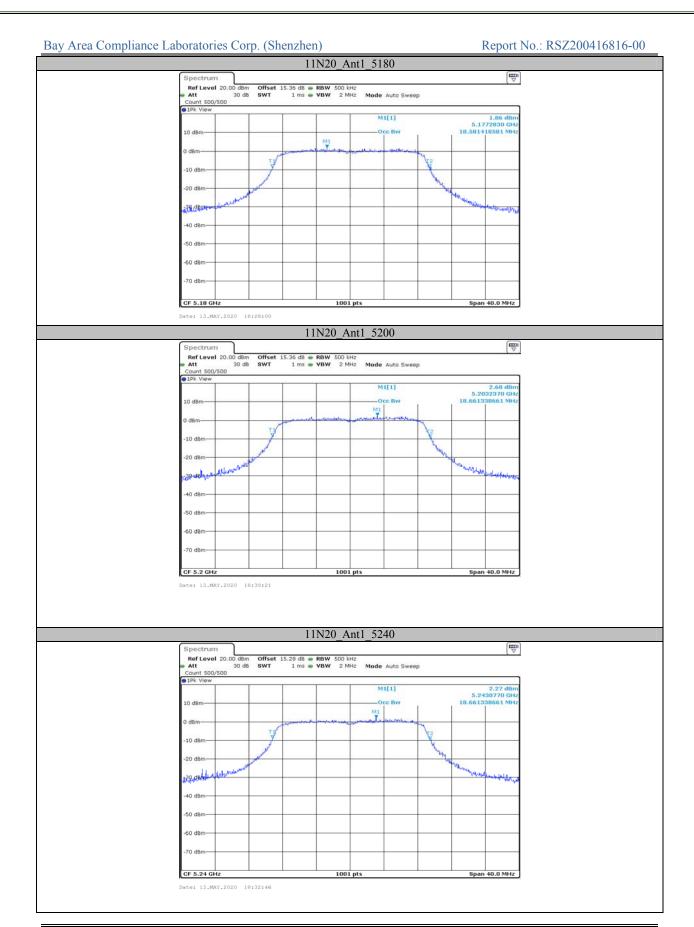
# Appendix B: Occupied channel bandwidth

# **Test Result**

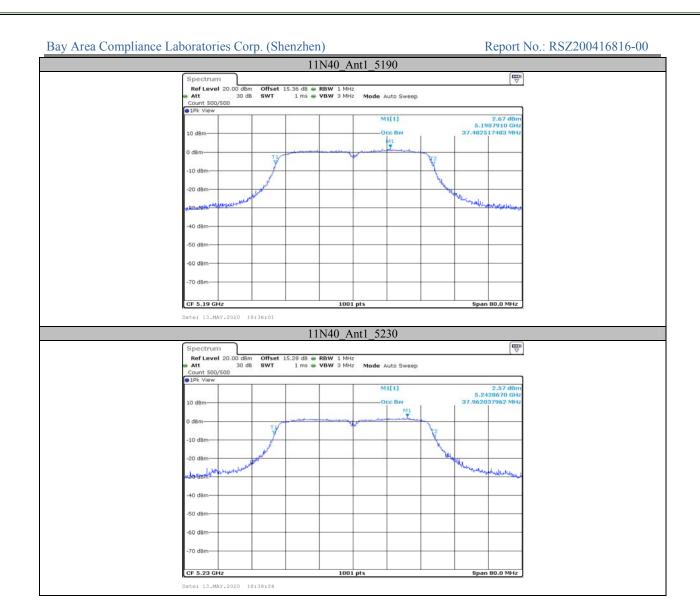

| TestMode | Antenna | Channel | OCB [MHz] | Limit[MHz] | Verdict |
|----------|---------|---------|-----------|------------|---------|
|          | Ant1    | 5180    | 17.622    |            | PASS    |
| 11A      | Ant1    | 5200    | 17.662    |            | PASS    |
|          | Ant1    | 5240    | 17.742    |            | PASS    |
|          | Ant1    | 5180    | 18.581    |            | PASS    |
| 11N20    | Ant1    | 5200    | 18.661    |            | PASS    |
|          | Ant1    | 5240    | 18.661    |            | PASS    |
| 113140   | Ant1    | 5190    | 37.483    |            | PASS    |
| 11N40    | Ant1    | 5230    | 37.962    |            | PASS    |

Report No.: RSZ200416816-00

Note: No transmitted signal in the 99% bandwidth extends into the U-NII-2A and U-NII-2C band.


FCC Part 15.407 Page 33 of 51

# **Test Graphs**




Report No.: RSZ200416816-00

FCC Part 15.407 Page 34 of 51



FCC Part 15.407 Page 35 of 51



FCC Part 15.407 Page 36 of 51

## Appendix C: Maximum conducted output power

#### **Test Result**

| TestMode | Antenna | Channel | Result[dBm] | Limit[dBm] | Verdict |
|----------|---------|---------|-------------|------------|---------|
| 11A      | Antl    | 5180    | 7.51        | <=30       | PASS    |
|          | Ant2    | 5180    | 6.78        | <=30       | PASS    |
|          | total   | 5180    | 10.17       | <=30       | PASS    |
|          | Ant1    | 5200    | 7.94        | <=30       | PASS    |
|          | Ant2    | 5200    | 7.55        | <=30       | PASS    |
|          | total   | 5200    | 10.76       | <=30       | PASS    |
|          | Ant1    | 5240    | 7.57        | <=30       | PASS    |
|          | Ant2    | 5240    | 9.26        | <=30       | PASS    |
|          | total   | 5240    | 11.51       | <=30       | PASS    |
|          | Ant1    | 5180    | 7.4         | <=30       | PASS    |
|          | Ant2    | 5180    | 8.99        | <=30       | PASS    |
|          | total   | 5180    | 11.28       | <=30       | PASS    |
|          | Ant1    | 5200    | 7.88        | <=30       | PASS    |
| 11N20    | Ant2    | 5200    | 7.42        | <=30       | PASS    |
|          | total   | 5200    | 10.67       | <=30       | PASS    |
|          | Ant1    | 5240    | 7.62        | <=30       | PASS    |
|          | Ant2    | 5240    | 7.15        | <=30       | PASS    |
|          | total   | 5240    | 10.4        | <=30       | PASS    |
| 11N40    | Ant1    | 5190    | 7.08        | <=30       | PASS    |
|          | Ant2    | 5190    | 7.14        | <=30       | PASS    |
|          | total   | 5190    | 10.12       | <=30       | PASS    |
|          | Ant1    | 5230    | 7.3         | <=30       | PASS    |
|          | Ant2    | 5230    | 7.2         | <=30       | PASS    |
|          | total   | 5230    | 10.26       | <=30       | PASS    |

Report No.: RSZ200416816-00

#### Note:

The product is a outdoor access point device.

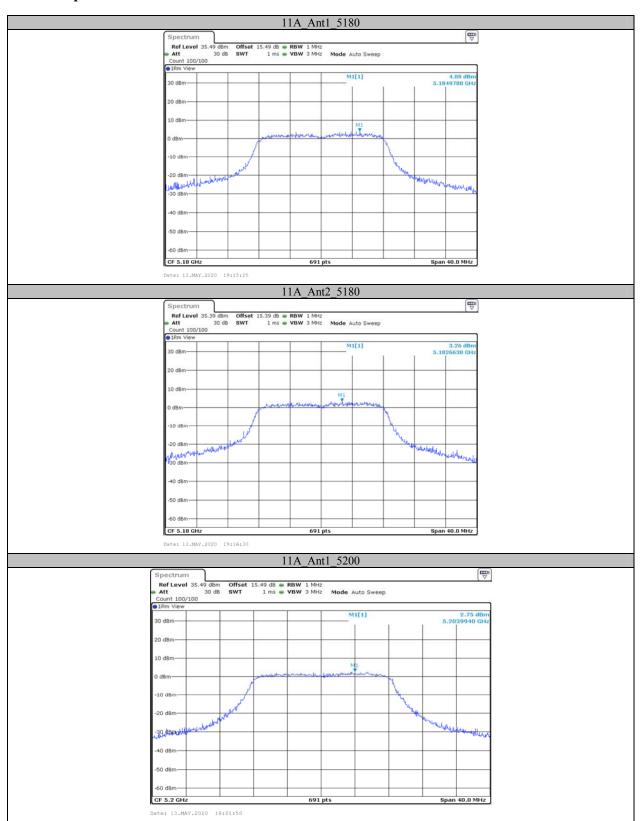
The maximum antenna gain is 1.7dBi.

Directional gain = array gain + antenna gain
Array gain=0 for N<sub>ANT</sub>≤4, so directional gain=1.7dBi<6dBi
The maximum conducted output power is 11.51dBm, the maximum e.i.r.p. is
11.51dBm+1.7dBi=13.21dBm<21dBm, so it's compliance with the requirement of FCC part 15.407
a (1)(i): The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm)

FCC Part 15.407 Page 37 of 51

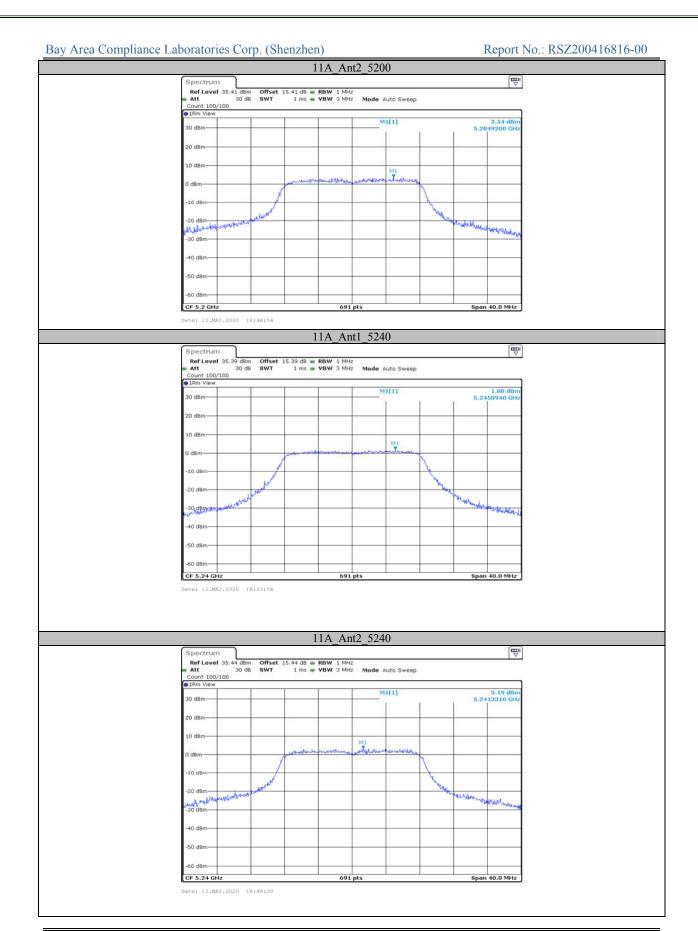
## Appendix D: Maximum power spectral density

#### **Test Result**

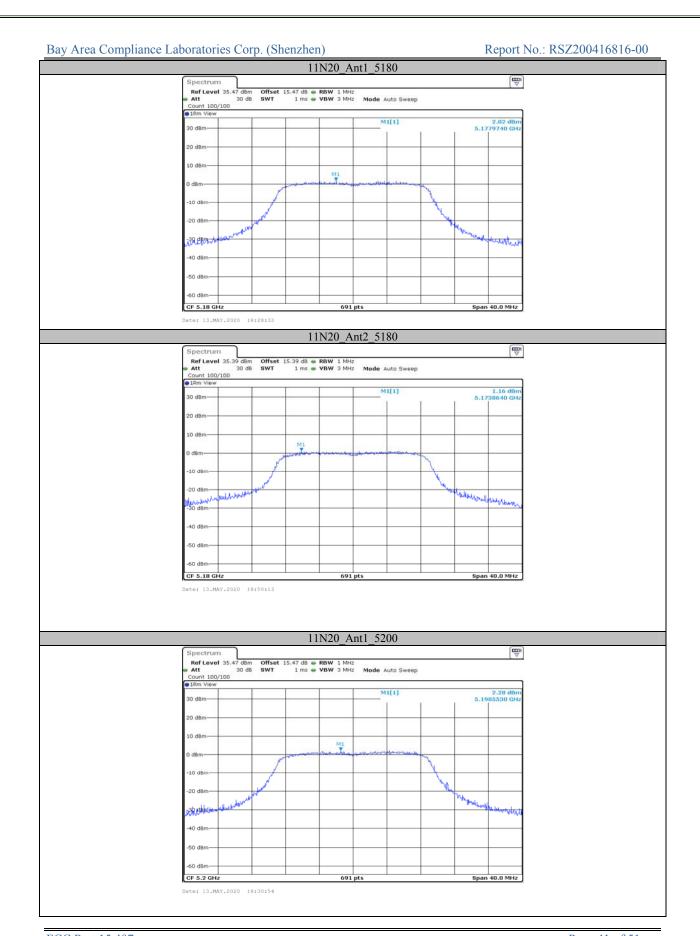

| TestMode | Antenna | Channel | Result [dBm/MHz] | Limit[dBm/MHz] | Verdict |
|----------|---------|---------|------------------|----------------|---------|
| 11A      | Ant1    | 5180    | 4.08             | <=17           | PASS    |
|          | Ant2    | 5180    | 3.26             | <=17           | PASS    |
|          | total   | 5180    | 6.7              | <=17           | PASS    |
|          | Antl    | 5200    | 2.75             | <=17           | PASS    |
|          | Ant2    | 5200    | 3.54             | <=17           | PASS    |
|          | total   | 5200    | 6.17             | <=17           | PASS    |
|          | Ant1    | 5240    | 1.88             | <=17           | PASS    |
|          | Ant2    | 5240    | 3.19             | <=17           | PASS    |
|          | total   | 5240    | 5.59             | <=17           | PASS    |
|          | Ant1    | 5180    | 2.02             | <=17           | PASS    |
| 11N20    | Ant2    | 5180    | 1.16             | <=17           | PASS    |
|          | total   | 5180    | 4.62             | <=17           | PASS    |
|          | Ant1    | 5200    | 2.28             | <=17           | PASS    |
|          | Ant2    | 5200    | 2.08             | <=17           | PASS    |
|          | total   | 5200    | 5.19             | <=17           | PASS    |
|          | Ant1    | 5240    | 2.59             | <=17           | PASS    |
|          | Ant2    | 5240    | 0.32             | <=17           | PASS    |
|          | total   | 5240    | 4.61             | <=17           | PASS    |
| 11N40    | Ant1    | 5190    | -1.27            | <=17           | PASS    |
|          | Ant2    | 5190    | -3.19            | <=17           | PASS    |
|          | total   | 5190    | 0.89             | <=17           | PASS    |
|          | Ant1    | 5230    | -1.23            | <=17           | PASS    |
|          | Ant2    | 5230    | -2.67            | <=17           | PASS    |
|          | total   | 5230    | 1.12             | <=17           | PASS    |

Report No.: RSZ200416816-00

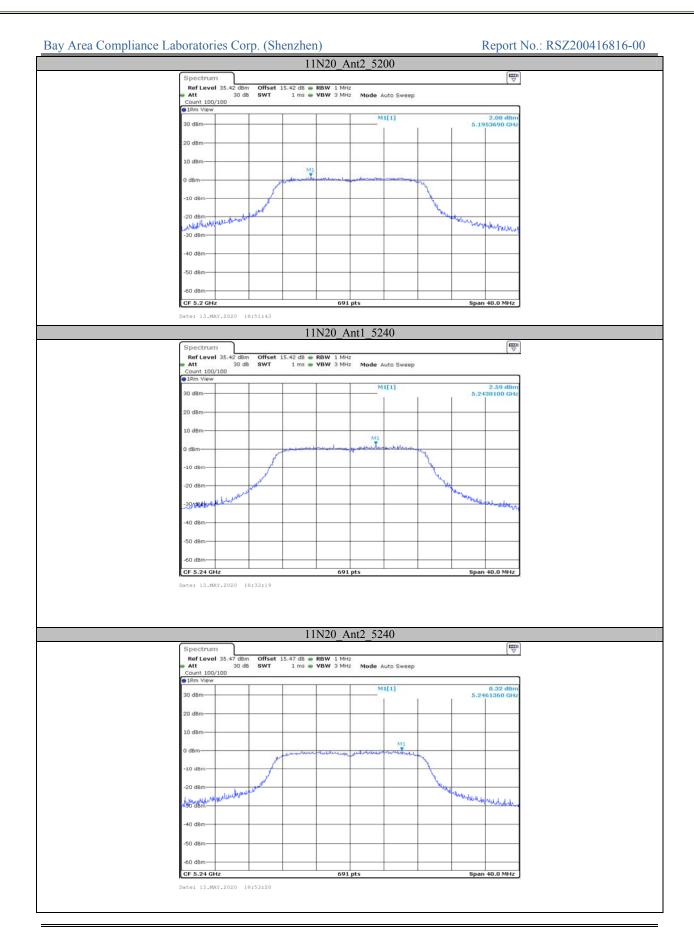
Note: The Duty Cycle Factor is compensated in the graph. The product is a outdoor access point device. The maximum antenna gain is 1.7dBi. Directional gain = array gain + antenna gain= $10*log(N_{ANT}/N_{SS})$ +1.7dBi=4.7dBi<6dBi


FCC Part 15.407 Page 38 of 51

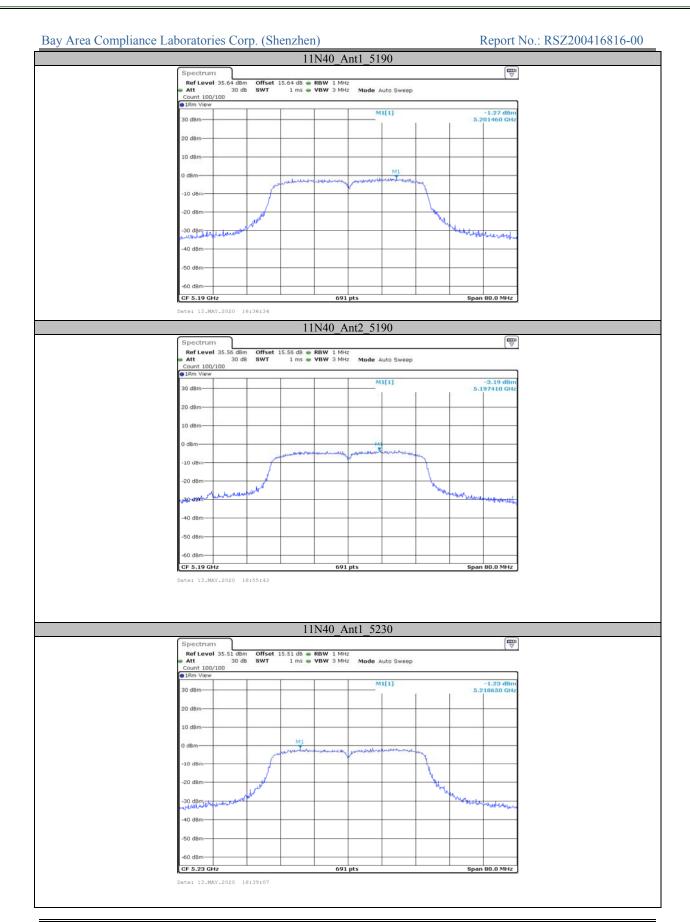
## **Test Graphs**




Report No.: RSZ200416816-00


FCC Part 15.407 Page 39 of 51

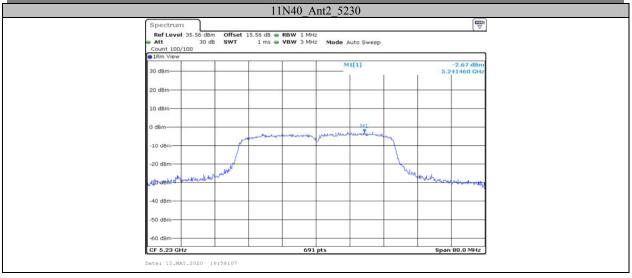



FCC Part 15.407 Page 40 of 51



FCC Part 15.407 Page 41 of 51




FCC Part 15.407 Page 42 of 51



FCC Part 15.407 Page 43 of 51

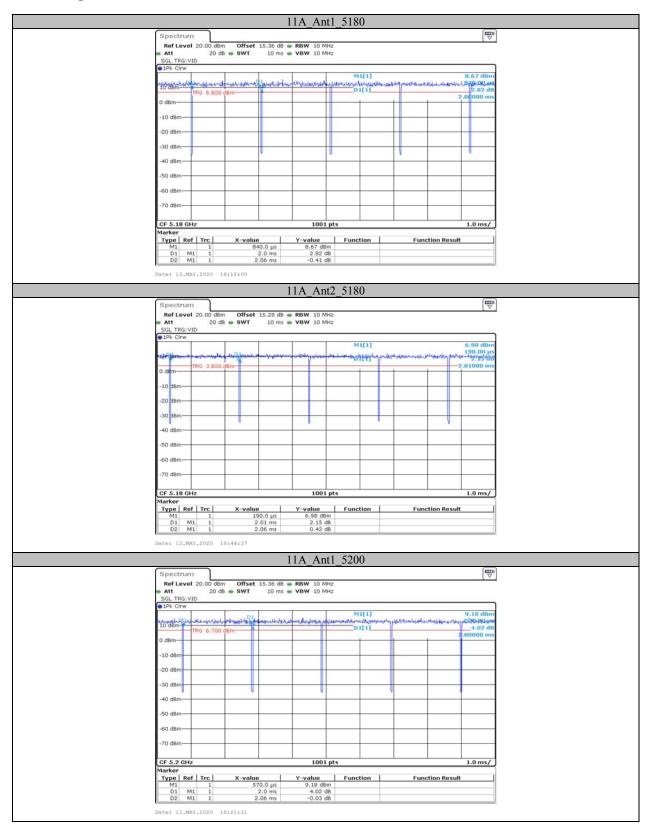
Bay Area Compliance Laboratories Corp. (Shenzhen)





FCC Part 15.407 Page 44 of 51

# **Appendix E: Duty Cycle**

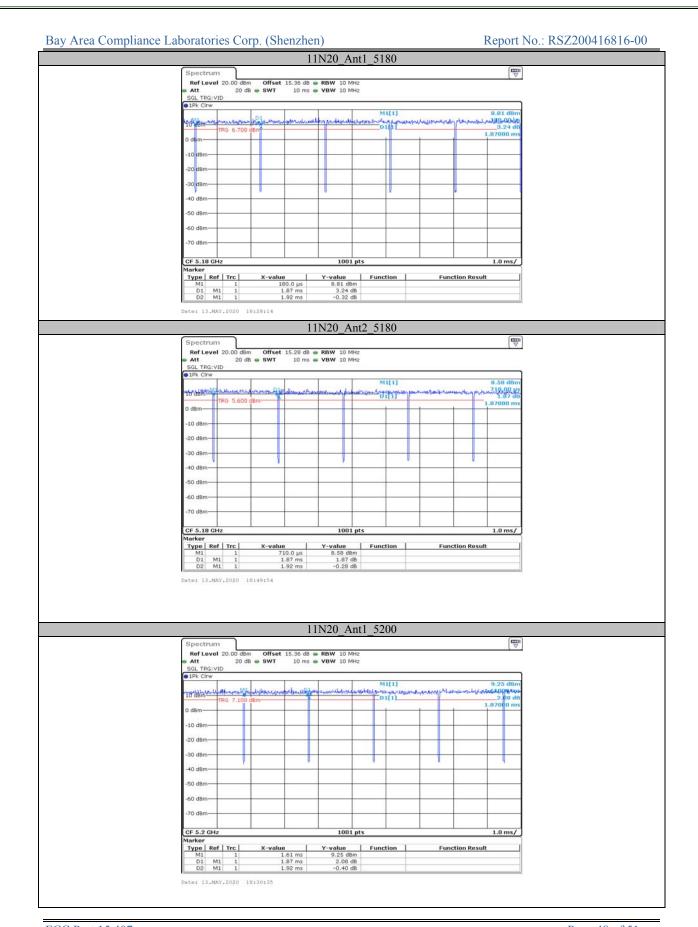

# **Test Result**

| TestMode | Antenna | Channel | TransmissionDuration [ms] | Transmission Period [ms] | Duty Cycle [%] |
|----------|---------|---------|---------------------------|--------------------------|----------------|
| 11A      | Ant1    | 5180    | 2.00                      | 2.06                     | 97.09          |
|          | Ant2    | 5180    | 2.01                      | 2.06                     | 97.57          |
|          | Ant1    | 5200    | 2.00                      | 2.06                     | 97.09          |
|          | Ant2    | 5200    | 2.00                      | 2.06                     | 97.09          |
|          | Ant1    | 5240    | 2.01                      | 2.06                     | 97.57          |
|          | Ant2    | 5240    | 2.01                      | 2.06                     | 97.57          |
| 11N20    | Ant1    | 5180    | 1.87                      | 1.92                     | 97.40          |
|          | Ant2    | 5180    | 1.87                      | 1.92                     | 97.40          |
|          | Ant1    | 5200    | 1.87                      | 1.92                     | 97.40          |
|          | Ant2    | 5200    | 1.87                      | 1.93                     | 96.89          |
|          | Ant1    | 5240    | 1.86                      | 1.92                     | 96.87          |
|          | Ant2    | 5240    | 1.87                      | 1.93                     | 96.89          |
| 11N40    | Ant1    | 5190    | 0.90                      | 0.96                     | 93.75          |
|          | Ant2    | 5190    | 0.91                      | 0.97                     | 93.81          |
|          | Ant1    | 5230    | 0.91                      | 0.96                     | 94.79          |
|          | Ant2    | 5230    | 0.91                      | 0.96                     | 94.79          |

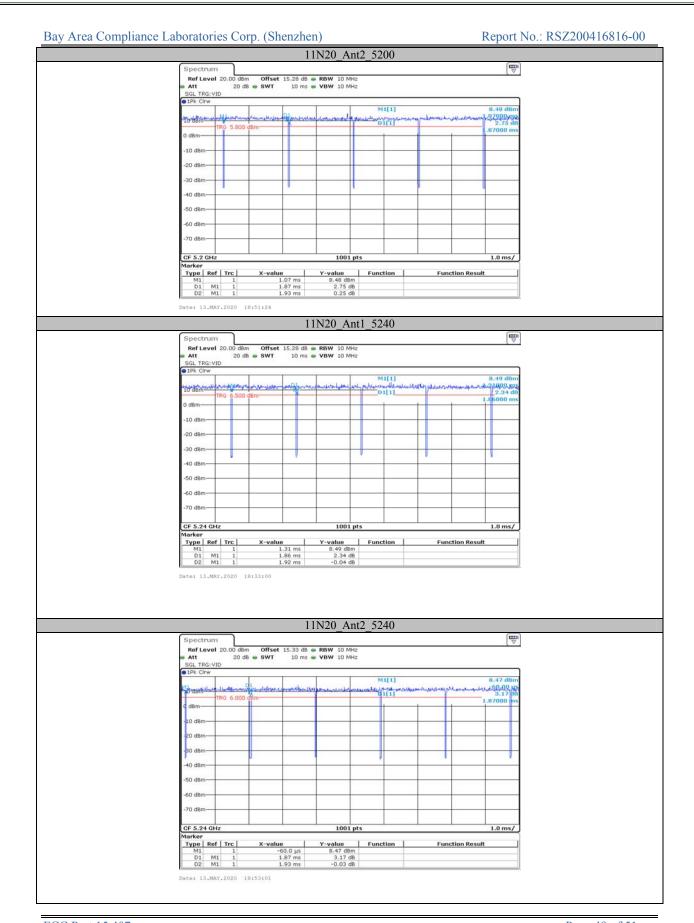
Report No.: RSZ200416816-00

FCC Part 15.407 Page 45 of 51

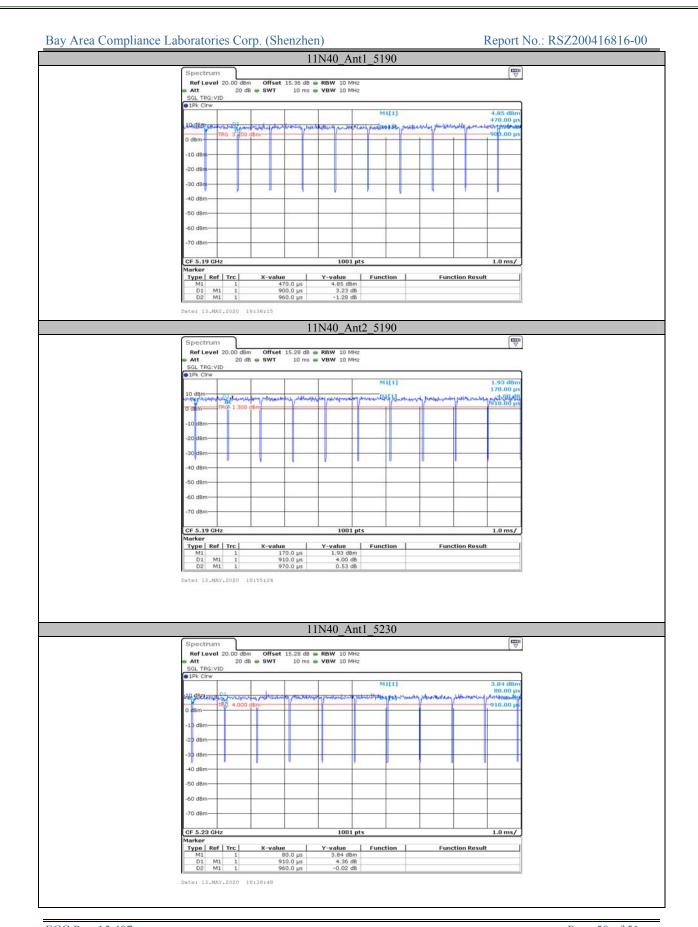
## **Test Graphs**




Report No.: RSZ200416816-00

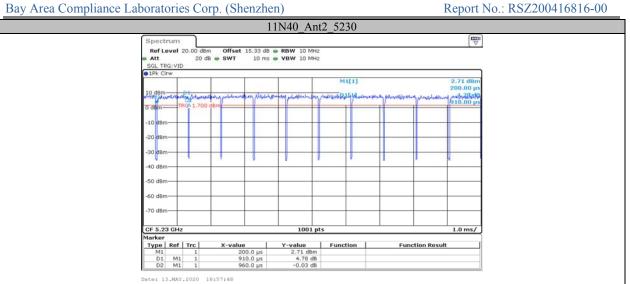

FCC Part 15.407 Page 46 of 51




FCC Part 15.407 Page 47 of 51



FCC Part 15.407 Page 48 of 51




FCC Part 15.407 Page 49 of 51



FCC Part 15.407 Page 50 of 51





# \*\*\*\*\* END OF REPORT \*\*\*\*\*

FCC Part 15.407 Page 51 of 51