

FCC PART 15.407

TEST REPORT

For

Shenzhen VanTop Technology & Innovation Co., Ltd.

502, 5th Flr. BLDG 4, MinQi Technology Park, No. 65 Lishan Road, Taoyuan Street, Nanshan District, Shenzhen, China

FCC ID: 2AQ3A-SP500Q0520

Report Type: Original Report		Product Type: R/C QUADCOPTER	
Report Number:	RSZ200630001-00	0B	
Report Date:	2020-11-30		
	Jacob Kong	Jacob Gong	
Reviewed By:	RF Engineer		
Prepared By:	: Bay Area Compliance Laboratories Corp. (Shenzhen) 6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone, Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn		

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "*".

BACL is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
OBJECTIVE	4
I EST METHODOLOGY Measurement Uncertainty	4
TEST FACILITY	
SYSTEM TEST CONFIGURATION	6
DESCRIPTION OF TEST CONFIGURATION	6
EQUIPMENT MODIFICATIONS	
EUT Exercise Software	
DUTY CYCLE	
SUPPORT EQUIPMENT LIST AND DETAILS	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
TEST EQUIPMENT LIST	9
1 1307 (b) (1) & 82 1091- MAXIMUM PERMISSIBLE EXPOSURE (MPF)	10
Applicable Standard	10
RESULT	
FCC §15.203 – ANTENNA REQUIREMENT	11
APPLICABLE STANDARD	11
ANTENNA CONNECTOR CONSTRUCTION	
§15.205 & §15.209 & §15.407(B) (1) – UNDESIRABLE EMISSION	
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP Test Procedure	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST DATA	14
FCC §15.407(a) (5) – 26 dB EMISSION BANDWIDTH	22
APPLICABLE STANDARD	
Test Procedure	
IEST DATA	
FCC §15.407(a) (1) – CONDUCTED TRANSMITTER OUTPUT POWER	23
APPLICABLE STANDARD	
TEST PROCEDURE	
ECC 915 407(-) (1) DOWED ODECTDAL DENGLTY	
FUU §13.407(a) (1) - FUWEK SFEUTKAL DENSITY	
Applicable Standard	
TEST DATA	

FCC Part 15.407

APPENDIX	25
Appendix A1: EmissionBandwidth	
APPENDIX A2: OCCUPIED CHANNEL BANDWIDTH	
APPENDIX B: MAXIMUM CONDUCTED OUTPUT POWER	
APPENDIX C: MAXIMUM POWER SPECTRAL DENSITY	
APPENDIX D: DUTYCYCLE	41

GENERAL INFORMATION

Product Description	for Equipment under	Test (EUT)
----------------------------	---------------------	------------

Product	R/C QUADCOPTER
Tested Model	SP500
Multiple Models	SP500 Plus, SP500N, SP500 Pro, SP560, SP570, SP580, SP650 Pro, SP680, SP700, SP700 Pro
Model Difference	Refer to the DoS letter
Frequency Range	5G Wi-Fi: 5150-5250 MHz
Maximum Conducted Average Ouput Power	17.11dBm (802.11a), 17.17dBm(802.11n20)
Modulation Technique	OFDM
Antenna Specification*	External Antenna: 3 dBi(It is provided by the applicant)
Voltage Range	DC 7.4V from battery
Date of Test	2020-07-07 to 2020-11-30
Sample serial number	RSZ200630001-RF-S1(Assigned by BACL, Shenzhen)
Received date	2020-06-23
Sample/EUT Status	Good condition

Objective

This type approval report is in accordance with Part 2-Subpart J, Part 15-Subparts A and E of the Federal Communication Commissions rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart E, section 15.203, 15.205, 15.209 and 15.407 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices. And KDB789033 D02 General U-NII Test Procedures New Rules v02r01.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Parameter		Uncertainty
Occupied Channel Bandwidth		±5%
RF Output Power	with Power meter	±0.73dB
RF conducted test with spectrum		±1.6dB
AC Power Lines Conducted Emissions		±1.95dB
Emissions,	Below 1GHz	±4.75dB
Radiated	Above 1GHz	±4.88dB
Temperature		±1°C
Humidity		±6%
Supply	voltages	±0.4%

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone, Shenzhen, Guangdong, China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 342867, the FCC Designation No.: CN1221.

The test site has been registered with ISED Canada under ISED Canada Registration Number 3062B.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode, which was provided by manufacturer.

The EUT has two antennas but only support the SISO mode. It can operate in 802.11a/n20 modes.

For 5150-5250MHz Band, 4 channels are provided:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	44	5220
40	5200	48	5240

Channel 36, 40, 48 was select to test.

Equipment Modifications

No modification was made to the EUT tested.

EUT Exercise Software

"sureCRT"* software was used, the power level is 20*. The software and power level was provided by the applicant.

Duty cycle

Please see the Appendix.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
\	\	\	\

External I/O Cable

Cable Description	Length (m)	From Port	То
\setminus	\	\	\

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§1.1307 (b) (1) & §2.1091	MaximuM Permissible exposure (MPE)	Compliance
§15.203	Antenna Requirement	Compliance
§15.407(b)(6)& §15.207(a)	Conducted Emissions	Not Applicable
§15.205& §15.209 &§15.407(b) (1), (7)	Undesirable Emission& Restricted Bands	Compliance
§15.407(a)(5)	26 dB Emission Bandwidth	Compliance
§15.407(a)(1)	Conducted Transmitter Output Power	Compliance
§15.407 (a)(1)	Power Spectral Density	Compliance

Not Applicable: the EUT is powered by battery when normal operation.

FCC Part 15.407

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
Radiated Emission Test						
R&S	EMI Test Receiver	ESR3	102455	2019/7/9	2020/7/8	
Sonoma instrument	Pre-amplifier	310 N	186238	2020/4/20	2021/4/21	
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2017/12/22	2020/12/21	
Unknown	Cable	Chamber Cable 1	F-03-EM236	2019/11/29	2020/11/28	
Unknown	Cable 2	RF Cable 2	F-03-EM197	2019/11/29	2020/11/28	
Rohde & Schwarz	Auto test software	EMC 32	V9.10	NCR	NCR	
Rohde & Schwarz	Spectrum Analyzer	FSV40-N	102259	2019/7/22	2020/7/21	
COM-POWER	Pre-amplifier	PA-122	181919	2019/11/29	2020/11/28	
Quinstar	Amplifier	QLW-18405536-J0	15964001002	2019/11/29	2020/11/28	
Sunol Sciences	Horn Antenna	DRH-118	A052604	2017/12/22	2020/12/21	
Insulted Wire Inc.	RF Cable	SPS-2503-3150	02222010	2019/11/29	2020/11/28	
Unknown	RF Cable	W1101-EQ1 OUT	F-19-EM005	2019/11/29	2020/11/28	
SNSD	Band Reject filter	BSF5150-5850MN- 0899-004	5G filter	2020/4/20	2021/4/19	
Ducommun Technolagies	Horn antenna	ARH-4223-02	1007726-02 1304	2017/12/6	2020/12/5	
Ducommun Technolagies	Horn antenna	ARH-2823-02	1007726-02 1302	2017/12/6	2020/12/5	
		RF Conducted Tes	t			
Tonscend Corporation	RF control Unit	JS0806-2	19D8060154	2019/7/10	2020/7/9	
Tonscend Corporation	RF control Unit	JS0806-2	19D8060154	2020/7/10	2021/7/9	
Rohde & Schwarz	Signal and Spectrum Analyzer	FSV40	101473	2019/7/22	2020/7/21	
Rohde & Schwarz	Signal and Spectrum Analyzer	FSV40	101473	2020/7/22	2021/7/21	
Unknown	RF Cable	Unknown	2301 276	2019/11/29	2020/11/28	
Unknown	RF Cable	Unknown	2301 276	2020/11/29	2021/11/28	

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC Part 15.407

Page 9 of 43

1.1307 (b) (1) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247 (i) and subpart 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

Limits for General Population/Uncontrolled Exposure					
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (Minutes)	
0.3-1.34	614	1.63	*(100)	30	
1.34-30	824/f	2.19/f	$*(180/f^2)$	30	
30-300	27.5	0.073	0.2	30	
300-1500	/	/	f/1500	30	
1500-100,000	/	/	1.0	30	

Limits for General Population/Uncontrolled Exposure

f = frequency in MHz

* = Plane-wave equivalent power density

Result

Calculated Formulary:

Predication of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

S = power density (in appropriate units, e.g. mW/cm2)

P = power input to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Frequency (MHz)	Antenna Gain		Tune up conducted power		Evaluation Distance	Power Density	MPE Limit
	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm^2)	(mW/cm ²)
5150-5250	3	2.0	18.0	63.10	20	0.025	1.0

To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

Result: compliance.

FCC §15.203 – ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria: a. Antenna must be permanently attached to the unit.

b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.407 (a), if the transmitting antennas of directional gain greater than 6dBi are used, the transmit power and power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has two external antennas arrangement for 5G Wi-Fi which was permanently attached and the antenna gain is 3dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliance.

§15.205 & §15.209 & §15.407(B) (1) – UNDESIRABLE EMISSION

Applicable Standard

FCC §15.407 (b) (1); §15.209; §15.205;

- (b) Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:
- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209.

EUT Setup

Below 1 GHz:

FCC Part 15.407

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC 15.209 and FCC 15.407 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 40 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1 MHz	3 MHz	/	PK
	1MHz	$10 \text{ Hz}^{\text{Note 1}}$	/	Average
	1MHz	> 1/T ^{Note 2}	/	Average

Note 1: when duty cycle is no less than 98% Note 2: when duty cycle is less than 98%

Test Procedure

Radiated Spurious Emission

During the radiated emission test, the adapter was connected to the AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all the installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1GHz, peak and Average detection modes for frequencies above 1GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Data

Environmental Conditions

Temperature:	29 °C		
Relative Humidity:	60 %		
ATM Pressure:	101.0 kPa		

The testing was performed by Holland Yang for below 1GHz and by Leven Gan for above 1GHz on 2020-07-07.

EUT operation mode: Transmitting

30 MHz – 1 GHz: (worst case is 802.11n20 mode 5200 MHz antenna 2)

Frequency (MHz)	Corrected Amplitude (dBµV/m)	Antenna height (cm)	Antenna Polarity	Turntable position (degree)	Correction Factor (dB/m)	Limit (dBµV/m)	Margin (dB)
299.996625	43.82	108.0	Н	72.0	-10.6	46.00	2.18
399.988500	29.80	400.0	V	82.0	-10.3	46.00	16.20
500.005250	39.73	142.0	V	71.0	-5.2	46.00	6.27
600.012500	37.75	141.0	V	196.0	-1.6	46.00	8.25
749.990000	33.87	101.0	Н	130.0	-0.4	46.00	12.13
931.525375	26.42	150.0	V	53.0	4.8	46.00	19.58

FCC Part 15.407

Page 14 of 43

1 ~ 40 GHz:

Note: The test distance is 1m, so the correct factor from 3m to 1m is $20\log(3/1)=9.5$ dB which was added into the final limit.

5150-5250 MHz:

Antenna1

	Receiver		Turntable	Rx Antenna		Corrected	Corrected	FCC Part 15.407/205/209	
Frequency (MHz) R (Reading (dBµV)	PK/QP/Ave.	Degree	Height (m)	Polar (H / V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
				802	2.11a				
				5180	MHz				
5148.73	40.32	PK	296	2.4	Н	38.36	78.68	83.5	4.82
5148.73	20.38	Ave.	296	2.4	Н	38.36	58.74	63.5	4.76
5357.31	31.33	PK	196	1.6	Н	39.09	70.42	83.5	13.08
5357.31	16.43	Ave.	196	1.6	Н	39.09	55.52	63.5	7.98
10360.00	56.37	PK	261	1.5	Н	17.42	73.79	77.7	3.91
				5200	MHz				
10400.00	57.45	PK	311	2.0	Н	17.52	74.97	77.7	2.73
				5240	MHz				
5147.82	31.01	PK	85	1.1	Н	38.36	69.37	83.5	14.13
5147.82	16.40	Ave.	85	1.1	Н	38.36	54.76	63.5	8.74
5357.28	30.63	PK	349	1.5	Н	39.09	69.72	83.5	13.78
5357.28	16.35	Ave.	349	1.5	Н	39.09	55.44	63.5	8.06
10480.00	58.10	PK	348	1.2	Н	17.25	75.35	77.7	2.35
				802.	11n20				
				5180	MHz				
5149.57	38.56	PK	125	1.8	Н	38.36	76.92	83.5	6.58
5149.57	19.17	Ave.	125	1.8	Н	38.36	57.53	63.5	5.97
5355.47	31.21	PK	111	1.5	Н	39.09	70.30	83.5	13.20
5355.47	16.40	Ave.	111	1.5	Н	39.09	55.49	63.5	8.01
10360.00	57.96	PK	317	2.4	Н	17.42	75.38	77.7	2.32
				5200	MHz				
10400.00	57.58	PK	82	1.1	Н	17.52	75.10	77.7	2.60
				5240	MHz				
5148.74	30.89	PK	228	1.5	Н	38.36	69.25	83.5	14.25
5148.74	16.37	Ave.	228	1.5	Н	38.36	54.73	63.5	8.77
5354.45	31.30	PK	352	2.4	Η	39.09	70.39	83.5	13.11
5354.45	16.44	Ave.	352	2.4	Н	39.09	55.53	63.5	7.97
10480.00	57.88	PK	259	2.4	Η	17.25	75.13	77.7	2.57

Report No.: RSZ200630001-00B

Antenna2

	Re	eceiver	Turntable	Rx Ante	enna	Corrected	Corrected Amplitude (dBµV/m)	FCC 1 15.407/2	Part 05/209
Frequency (MHz)	Reading (dBµV)	PK/QP/Ave.	Degree	Height (m)	Polar (H / V)	Factor (dB/m)		Limit (dBµV/m)	Margin (dB)
				802	2.11a				
				5180	MHz				
5148.74	40.12	PK	168	1.4	Н	38.36	78.48	83.5	5.02
5148.74	20.30	Ave.	168	1.4	Н	38.36	58.66	63.5	4.84
5354.27	31.27	PK	331	1.6	Н	39.09	70.36	83.5	13.14
5354.27	16.33	Ave.	331	1.6	Н	39.09	55.42	63.5	8.08
10360.00	57.27	РК	280	1.6	Н	17.42	74.69	77.7	3.01
				5200	MHz				
10400.00	57.74	PK	325	2.3	Н	17.52	75.26	77.7	2.44
				5240	MHz				
5149.24	30.89	PK	16	1.2	Н	38.36	69.25	83.5	14.25
5149.24	16.35	Ave.	16	1.2	Н	38.36	54.71	63.5	8.79
5353.55	30.47	PK	32	2.2	Н	39.09	69.56	83.5	13.94
5353.55	16.37	Ave.	32	2.2	Н	39.09	55.46	63.5	8.04
10480.00	58.03	РК	177	2.2	Н	17.25	75.28	77.7	2.42
				802.	11n20				
				5180	MHz				
5148.35	38.52	PK	245	1.9	Н	38.36	76.88	83.5	6.62
5148.35	19.20	Ave.	245	1.9	Н	38.36	57.56	63.5	5.94
5352.37	31.09	PK	154	2.2	Н	39.09	70.18	83.5	13.32
5352.37	16.32	Ave.	154	2.2	Н	39.09	55.41	63.5	8.09
10360.00	57.39	РК	11	1.3	Н	17.42	74.81	77.7	2.89
				5200	MHz				
10400.00	57.46	РК	239	2.4	Н	17.52	74.98	77.7	2.72
				5240) MHz				
5148.84	30.82	PK	71	2.0	Н	38.36	69.18	83.5	14.32
5148.84	16.34	Ave.	71	2.0	Н	38.36	54.70	63.5	8.80
5355.59	31.22	РК	284	1.9	Н	39.09	70.31	83.5	13.19
5355.59	16.39	Ave.	284	1.9	Н	39.09	55.48	63.5	8.02
10480.00	57.78	PK	134	1.3	Н	17.25	75.03	77.7	2.67

Note:

Corrected Amplitude = Corrected Factor + Reading

Corrected Factor=Antenna factor (RX) + Cable Loss – Amplifier Factor Margin = Limit- Corr. Amplitude

All other spurious emissions are 20 dB below the limit or are on the system noise floor level.

Peak

Pre-scan with 802.11n20 5180 MHz ant 1

Horizontal

FCC Part 15.407

Page 17 of 43

691 pts

Start 1.0 GHz

FCC Part 15.407

Page 18 of 43

Stop 18.0 GHz

Date: 7.JUL.2020 20:38:53

Date: 7.JUL.2020 21:20:15

FCC Part 15.407

Page 19 of 43

Date: 7.JUL.2020 21:16:26

FCC Part 15.407

Page 20 of 43

Report No.: RSZ200630001-00B

Vertical

Date: 7.JUL.2020 20:42:43

Date: 7.JUL.2020 21:23:02

FCC Part 15.407

FCC §15.407(a) (5) – 26 dB EMISSION BANDWIDTH

Applicable Standard

The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements in the 5.725-5.85 GHz band are made over a reference bandwidth of 500 kHz or the 26 dB emission bandwidth of the device, whichever is less. Measurements in the 5.15-5.25 GHz, 5.25-5.35 GHz, and the 5.47-5.725 GHz bands are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full reference bandwidth.

Test Procedure

1. Emission Bandwidth (EBW)

a) Set RBW = approximately 1% of the emission bandwidth.

- b) Set the VBW > RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.

e) Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	54 %
ATM Pressure:	101.0 kPa

The testing was performed by James Fu from 2020-07-07 to 2020-11-30.

EUT operation mode: Transmitting

Test Result Compliant. Please refer to the Appendix.

FCC §15.407(a) (1) – CONDUCTED TRANSMITTER OUTPUT POWER

Applicable Standard

For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Test Procedure

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data

Environmental Conditions

Temperature:	25 °C	
Relative Humidity:	54 %	
ATM Pressure:	101.0 kPa	

The testing was performed by James Fu on 2020-07-07.

EUT operation mode: Transmitting

Test Result Compliant. Please refer to the Appendix.

FCC §15.407(a) (1) - POWER SPECTRAL DENSITY

Applicable Standard

For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Test Procedure

For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in § 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 kHz bandwidth, the following adjustments to the procedures apply:

- a) Set $\overrightarrow{RBW} \ge 1/T$, where T is defined in section II.B.l.a).
- b) Set VBW \geq 3 RBW.
- c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10 log (500 kHz/RBW) to the measured result, whereas RBW (< 500 kHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.
- d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add 10 log (1MHz/RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.
- e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	54 %
ATM Pressure:	101.0 kPa

The testing was performed by James Fu from 2020-07-07 to 2020-08-04.

EUT operation mode: Transmitting

Test Result Compliant. Please refer to the Appendix.

APPENDIX

Appendix A1: EmissionBandwidth

Test Result

TestMode	Antenna	Channel	26db EBW [MHz]	Limit[MHz]	Verdict
	Ant1	5180	38.880		PASS
	Ant2	5180	38.040		PASS
11.0	Ant1	5200	37.140		PASS
ПА	Ant2	5200	40.260		PASS
	Ant1	5240	26.200		PASS
	Ant2	5240	30.000		PASS
	Ant1	5180	33.360		PASS
	Ant2	5180	41.280		PASS
1111208180	Ant1	5200	36.720		PASS
1111203130	Ant2	5200	40.920		PASS
	Ant1	5240	27.040		PASS
	Ant2	5240	29.280		PASS

Report No.: RSZ200630001-00B

Test Graphs

Appendix A2: Occupied channel bandwidth

Test Result

TestMode	Antenna	Channel	OCB [MHz]	Limit[MHz]	Verdict
	Ant1	5180	24.096		PASS
	Ant2	5180	28.252		PASS
110	Ant1	5200	24.895		PASS
ПА	Ant2	5200	29.011		PASS
	Ant1	5240	19.740		PASS
	Ant2	5240	18.382		PASS
	Ant1	5180	21.978		PASS
	Ant2	5180	25.974		PASS
1111205150	Ant1	5200	23.137		PASS
111205150	Ant2	5200	26.374		PASS
	Ant1	5240	18.741		PASS
	Ant2	5240	18.062		PASS

Test Graphs

FCC Part 15.407

Page 34 of 43

Appendix B: Maximum conducted output power

Test Result

TestMode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
	Ant1	5180	16.36	<=30	PASS
	Ant2	5180	17.01	<=30	PASS
110	Ant1	5200	16.38	<=30	PASS
TIA	Ant2	5200	17.11	<=30	PASS
	Ant1	5240	11.65	<=30	PASS
	Ant2	5240	12.28	<=30	PASS
	Ant1	5180	15.78	<=30	PASS
	Ant2	5180	17.12	<=30	PASS
1111205150	Ant1	5200	16.21	<=30	PASS
1111205150	Ant2	5200	17.17	<=30	PASS
	Ant1	5240	11.88	<=30	PASS
	Ant2	5240	12.53	<=30	PASS

Note: EUT work in master mode.

Appendix C: Maximum power spectral density

Test Result

TestMode	Antenna	Channel	Result [dBm/MHz]	Limit[dBm/MHz]	Verdict
11A	Ant1	5180	9.14	<=17	PASS
	Ant2	5180	9.33	<=17	PASS
	Ant1	5200	8.55	<=17	PASS
	Ant2	5200	9.41	<=17	PASS
	Ant1	5240	4.8	<=17	PASS
	Ant2	5240	5.37	<=17	PASS
11N20SISO	Ant1	5180	8.92	<=17	PASS
	Ant2	5180	10.03	<=17	PASS
	Ant1	5200	9.14	<=17	PASS
	Ant2	5200	9.99	<=17	PASS
	Ant1	5240	5.82	<=17	PASS
	Ant2	5240	6.69	<=17	PASS

Note: 1.TheResult and LimitUnit is dBm/500 kHz in the band 5.725-5.85 GHz.

2. The Duty Cycle Factorand RBW Factoriscompensated in the graph.

3. EUT work in master mode.

Test Graphs

Appendix D: DutyCycle

Test Result

TestMode	Antenna	Channel	TransmissionDuration [ms]	Transmission Period [ms]	Duty Cycle [%]
11A	Ant1	5200	1.90	1.96	96.94
	Ant2	5200	1.90	1.95	97.44
11N20SISO	Ant1	5200	1.36	1.42	95.77
	Ant2	5200	1.37	1.42	96.48

Test Graphs

FCC Part 15.407

Report No.: RSZ200630001-00B

***** END OF REPORT *****

FCC Part 15.407

Page 43 of 43