

Page 1 of 60

TEST REPORT

Product Name	:	Translator earbuds
Brand Mark	:	Timekettle
Model No.	:	WT2 Edge
FCC ID	:	2AQ2G-WT2EDGE
Report Number	:	BLA-EMC-202109-A5102
Date of Sample Receipt	:	2021/9/13
Date of Test	:	2021/9/14 to 2021/9/22
Date of Issue	:	2021/9/22
Test Standard	:	47 CFR Part 15, Subpart C 15.247
Test Result	:	Pass

Prepared for:

Shenzhen Timekettle Technologies Co., Ltd Room 402, Building 3B, Mingi Science Park, Nanshan District, Shenzhen, Guangdong, China

Prepared by:

BlueAsia of Technical Services(Shenzhen) Co.,Ltd. Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China TEL: +86-755-23059481

Compiled by: Jozu Approved by: Bhe Thong

Date:

REPORT REVISE RECORD

Version No.	No. Date Description	
00	2021/9/18	Original

TABLE OF CONTENTS

1	٦	TEST SUMMARY	5
2	C	GENERAL INFORMATION	6
3	C	GENERAL DESCRIPTION OF E.U.T	6
4	٦	TEST ENVIRONMENT	7
_			
5			
6		MEASUREMENT UNCERTAINTY	
7		DESCRIPTION OF SUPPORT UNIT	
8	L	_ABORATORY LOCATION	8
9	٦	TEST INSTRUMENTS LIST	9
10	C	CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)	12
	10.1		
	10.1		
	10.3		
	10.4	4 TEST Data	14
11	C	CONDUCTED BAND EDGES MEASUREMENT	16
	11.1	1 LIMITS	
	11.2		
	11.3	3 TEST DATA	17
12	F	RADIATED SPURIOUS EMISSIONS	18
	12.1	1 LIMITS	18
	12.2		
	12.3		
	12.4	4 TEST DATA	21
13	F	RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	29
	13.1	1 LIMITS	
	13.2	2 BLOCK DIAGRAM OF TEST SETUP	
	13.3	3 PROCEDURE	
	13.4	4 TEST DATA	32
14	C	CONDUCTED SPURIOUS EMISSIONS	36
	14.1	1 LIMITS	

14.2	BLOCK DIAGRAM OF TEST SETUP	
14.3	ТЕЅТ DATA	
15 PO\	NER SPECTRUM DENSITY	
15.1	LIMITS	
15.2	BLOCK DIAGRAM OF TEST SETUP	
15.3	ТЕЅТ DATA	
16 COI	NDUCTED PEAK OUTPUT POWER	
16.1	LIMITS	
16.2	BLOCK DIAGRAM OF TEST SETUP	
16.3	TEST DATA	40
17 MIN	IMUM 6DB BANDWIDTH	41
17.1	LIMITS	
17.2	BLOCK DIAGRAM OF TEST SETUP	
17.3	TEST DATA	41
18 AN1		
18.1	Conclusion	
19 APF	PENDIX	43
19.1	MAXIMUM CONDUCTED OUTPUT POWER	
19.2	-6DB BANDWIDTH	
19.3	Occupied Channel Bandwidth	
19.4	MAXIMUM POWER SPECTRAL DENSITY LEVEL	
19.5	BAND EDGE	51
19.6	CONDUCTED RF SPURIOUS EMISSION	54
APPEND	IX A: PHOTOGRAPHS OF TEST SETUP	
APPEND	IX B: PHOTOGRAPHS OF EUT	60

1 TEST SUMMARY

Test item	Test Requirement	Test Method	Class/Severity	Result
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207	Pass
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2	47 CFR Part 15, Subpart C 15.247(d)	Pass
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11	47 CFR Part 15, Subpart C 15.247(d)	Pass
Power Spectrum Density	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.10.2	47 CFR Part 15, Subpart C 15.247(e)	Pass
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.5	47 CFR Part 15, Subpart C 15.247(b)(3)	Pass
Minimum 6dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.8.1	47 CFR Part 15, Subpart C 15.247a(2)	Pass
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	Pass

2 GENERAL INFORMATION

Applicant	Shenzhen Timekettle Technologies Co., Ltd	
Address	Room 402, Building 3B, Minqi Science Park, Nanshan District, Shenzhen,Guangdong, China	
Manufacturer	Guangdong Mingyang Smart Technology Co.,Ltd	
Address	111,Nanjiang Road,Humen Town,Dongguan,Guangdong,China	
Factory	Guangdong Mingyang Smart Technology Co.,Ltd	
Address	111,Nanjiang Road,Humen Town,Dongguan,Guangdong,China	
Product Name	Translator earbuds	
Test Model No.	WT2 Edge	

3 GENERAL DESCRIPTION OF E.U.T.

Hardware Version	TMK004MB_V1.4
Software Version	00.04.26
Operation Frequency:	2402MHz-2480MHz
Modulation Type:	GFSK
Channel Spacing:	2MHz
Number of Channels:	40
Antenna Type:	Chip Antenna
Antenna Gain:	0dBi

4 TEST ENVIRONMENT

Environment	Temperature	Voltage	
Normal	25°C	DC3.7v	

5 TEST MODE

TEST MODE	TEST MODE DESCRIPTION		
Transmitting mode	Keep the EUT in continuously transmitting mode with modulation.		
Remark: Full battery is used during all test except ac conducted emission, during the test, GFSK			
modulation were all pre-scanned only worse case is reported.			

6 MEASUREMENT UNCERTAINTY

Parameter	Expanded Uncertainty (Confidence of 95%)	
Radiated Emission(9kHz-30MHz)	±4.34dB	
Radiated Emission(30Mz-1000MHz)	±4.24dB	
Radiated Emission(1GHz-18GHz)	±4.68dB	
AC Power Line Conducted Emission(150kHz-30MHz)	±3.45dB	

Parameter	Expanded Uncertainty (Confidence of 95%)	
Occupied Channel Bandwidth	±5 %	
RF output power, conducted	±1.5 dB	
Power Spectral Density, conducted	±3.0 dB	
Unwanted Emissions, conducted	±3.0 dB	
Temperature	±3 °C	
Supply voltages	±3 %	
Time	±5 %	
Radiated Emission (30MHz ~ 1000MHz)	±4.35 dB	
Radiated Emission (1GHz ~ 18GHz)	±4.44 dB	

7 DESCRIPTION OF SUPPORT UNIT

Device Type	Manufacturer	Model Name	Serial No.	Remark
AC Adapter (UGREEN)	UGREEN	CD112	N/A	N/A

8 LABORATORY LOCATION

All tests were performed at:

BlueAsia of Technical Services(Shenzhen) Co., Ltd.

Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China

Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673 No tests were sub-contracted.

9 TEST INSTRUMENTS LIST

Test Equipment Of	Test Equipment Of Conducted Emissions at AC Power Line (150kHz-30MHz)					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due	
Shield room	SKET	833	N/A	2020/11/25	2023/11/24	
Receiver	R&S	ESPI3	101082	2020/10/12	2021/10/11	
LISN	R&S	ENV216	3560.6550.15	2020/10/12	2021/10/11	
LISN	AT	AT166-2	AKK1806000003	2020/10/12	2021/10/11	
EMI software	EZ	EZ-EMC	EEMC-3A1	N/A	N/A	

Test Equipment Of Conducted Band Edges Measurement					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11
Spectrum	Agilent	N9020A	MY49100060	2020/10/12	2021/10/11
Signal Generator	Agilent	N5182A	MY49060650	2020/10/12	2021/10/11
Signal Generator	Agilent	E8257D	MY44320250	2020/10/12	2021/10/11
			·		

Test Equipment Of Radiated Spurious Emissions					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Chamber	SKET	966	N/A	2020/11/10	2023/11/9
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11
Receiver	R&S	ESR7	101199	2020/10/12	2021/10/11
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	2020/9/26	2022/9/25
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	2020/9/26	2022/9/25

Amplifier	SKET	PA-000318G-45	N/A	2020/10/16	2021/10/15
EMI software	EZ	EZ-EMC	EEMC-3A1	N/A	N/A
Loop antenna	SCHNARZBECK	FMZB1519B	00102	2020/9/26	2022/9/25
Controller	SKET	N/A	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-02	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-03	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-01	N/A	N/A	N/A

Test Equipment Of Radiated Emissions which fall in the restricted bands					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Chamber	SKET	966	N/A	2020/11/10	2023/11/9
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11
Receiver	R&S	ESR7	101199	2020/10/12	2021/10/11
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	2020/9/26	2022/9/25
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	2020/9/26	2022/9/25
Amplifier	SKET	PA-000318G-45	N/A	2020/10/16	2021/10/15
EMI software	EZ	EZ-EMC	EEMC-3A1	N/A	N/A
Loop antenna	SCHNARZBECK	FMZB1519B	00102	2020/9/26	2022/9/25
Controller	SKET	N/A	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-02	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-03	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-01	N/A	N/A	N/A

Test Equipment Of Conducted Spurious Emissions					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11

Report No.: BLA-EMC-202109-A5102 Page 11 of60

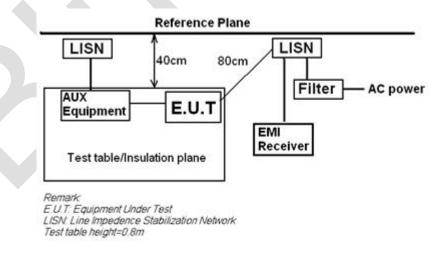
Spectrum	Agilent	N9020A	MY49100060	2020/10/12	2021/10/11
Signal Generator	Agilent	N5182A	MY49060650	2020/10/12	2021/10/11
Signal Generator	Agilent	E8257D	MY44320250	2020/10/12	2021/10/11

Test Equipment Of Power Spectrum Density					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11
Spectrum	Agilent	N9020A	MY49100060	2020/10/12	2021/10/11
Signal Generator	Agilent	N5182A	MY49060650	2020/10/12	2021/10/11
Signal Generator	Agilent	E8257D	MY44320250	2020/10/12	2021/10/11

Test Equipment Of Conducted Peak Output Power					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11
Spectrum	Agilent	N9020A	MY49100060	2020/10/12	2021/10/11
Signal Generator	Agilent	N5182A	MY49060650	2020/10/12	2021/10/11
Signal Generator	Agilent	E8257D	MY44320250	2020/10/12	2021/10/11

Test Equipment Of Minimum 6dB Bandwidth					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11
Spectrum	Agilent	N9020A	MY49100060	2020/10/12	2021/10/11
Signal Generator	Agilent	N5182A	MY49060650	2020/10/12	2021/10/11
Signal Generator	Agilent	E8257D	MY44320250	2020/10/12	2021/10/11

10 CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)


Test Standard	47 CFR Part 15, Subpart C 15.247		
Test Method	ANSI C63.10 (2013) Section 6.2		
Test Mode (Pre-Scan)	Transmitting mode		
Test Mode (Final Test)	Transmitting mode		
Tester	Jozu		
Temperature	25 ℃		
Humidity	60%		

10.1 LIMITS

Frequency of	Conducted	limit(dBµV)			
emission(MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			
*Decreases with the least the of the framework					

*Decreases with the logarithm of the frequency.

10.2 BLOCK DIAGRAM OF TEST SETUP

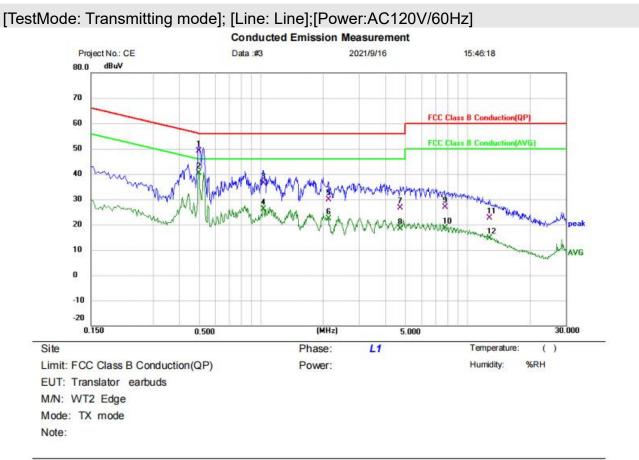
10.3 PROCEDURE

1) The mains terminal disturbance voltage test was conducted in a shielded room.

2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 500hm/50H + 50hm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as

the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.

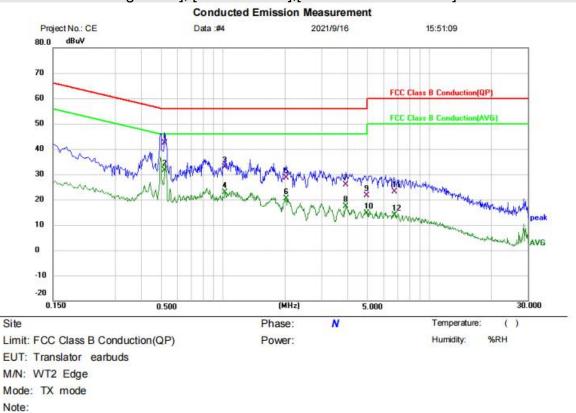
3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,


4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.

5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Remark: LISN=Read Level+ Cable Loss+ LISN Factor

10.4 TEST DATA



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1		0.4980	39.27	9.87	49.14	56.03	-6.89	QP		
2	*	0.4980	30.44	9.87	40.31	46.03	-5.72	AVG		
3	<u>-</u>	1.0300	26.34	9.92	36.26	56.00	-19.74	QP		
4	Ċ	1.0300	16.33	9.92	26.25	46.00	-19.75	AVG		
5		2.1220	19.92	9.94	29.86	56.00	-26.14	QP		
6		2.1220	12.50	9.94	22.44	46.00	-23.56	AVG		
7	ē.	4.7380	16.67	10.01	26.68	56.00	-29.32	QP		
8		4.7380	8.45	10.01	18.46	46.00	-27.54	AVG		
9	£.,	7.7780	16.70	10.11	26.81	60.00	-33.19	QP		
10		7.7780	8.51	10.11	18.62	50.00	-31.38	AVG		
11		12.7940	12.26	10.28	22.54	60.00	-37.46	QP		
12	6	12.7940	4.45	10.28	14.73	50.00	-35.27	AVG		

*:Maximum data x:Over limit !:over margin

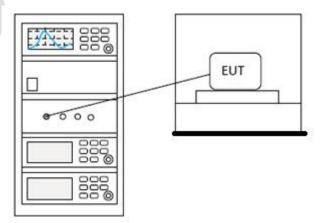
(Reference Only

TestMode:	Transmitting	n model: [Line: Neutral	;[Power:AC120V/60Hz]
		, <u>]</u> , [,,

No.	Mk.	Freq.	Level	Factor	ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.5220	32.56	9.79	42.35	56.00	-13.65	QP	
2		0.5220	21.91	9.79	31.70	46.00	-14.30	AVG	
3	8	1.0260	23.05	9.84	32.89	56.00	-23.11	QP	
4		1.0260	13.04	9.84	22.88	46.00	-23.12	AVG	
5		2.0300	18.67	9.86	28.53	56.00	-27.47	QP	
6		2.0300	10.45	9.86	20.31	46.00	-25.69	AVG	
7		3.9580	15.95	9.91	25.86	56.00	-30.14	QP	
8		3.9580	7.55	9.91	17.46	46.00	-28.54	AVG	
9		4.9899	11.56	9.95	21.51	56.00	-34.49	QP	
10		4.9899	4.60	9.95	14.55	46.00	-31.45	AVG	
11		6.7620	13.06	10.01	23.07	60.00	-36.93	QP	
12	(6.7620	3.84	10.01	13.85	50.00	-36.15	AVG	
_									

Booding Correct Macour

(Reference Only


Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Jozu
Temperature	25 ℃
Humidity	60%

11 CONDUCTED BAND EDGES MEASUREMENT

11.1 LIMITS

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)).

11.2 BLOCK DIAGRAM OF TEST SETUP

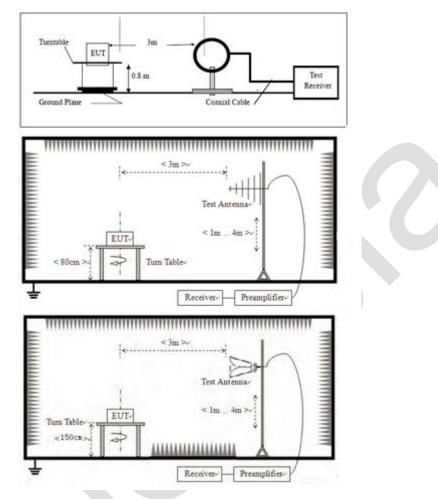
Report No.: BLA-EMC-202109-A5102 Page 17 of60

11.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

12 RADIATED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.4,6.5,6.6
Test Mode (Pre-Scan)	TX mode (SE) below 1G;TX mode (SE) Above 1G
Test Mode (Final Test)	TX mode (SE) below 1G;TX mode (SE) Above 1G
Tester	Jozu
Temperature	25 ℃
Humidity	60%


12.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

12.2 BLOCK DIAGRAM OF TEST SETUP

12.3 PROCEDURE

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

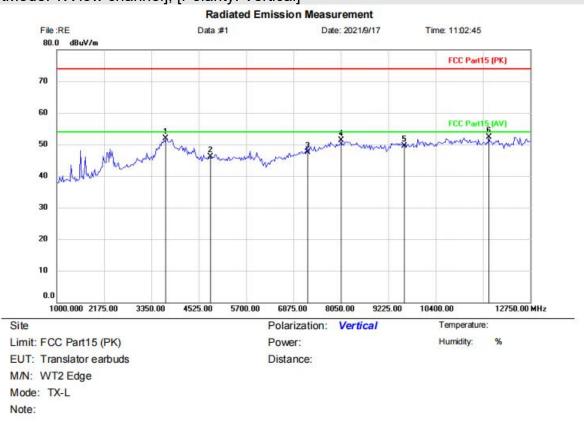
i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

Remark:

1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.

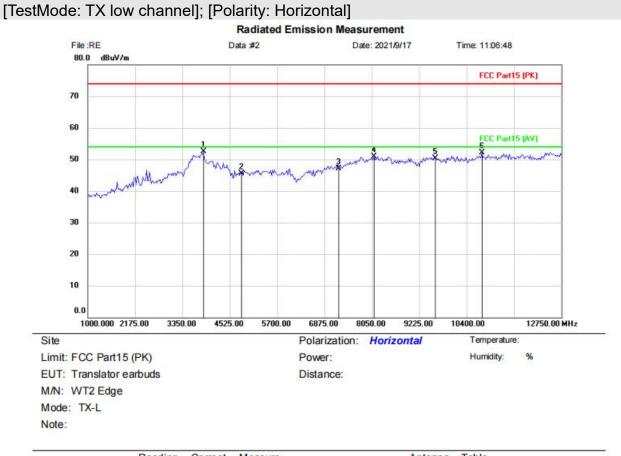
2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:


Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. fundamental frequency is blocked by filter, and only spurious emission is shown.

4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

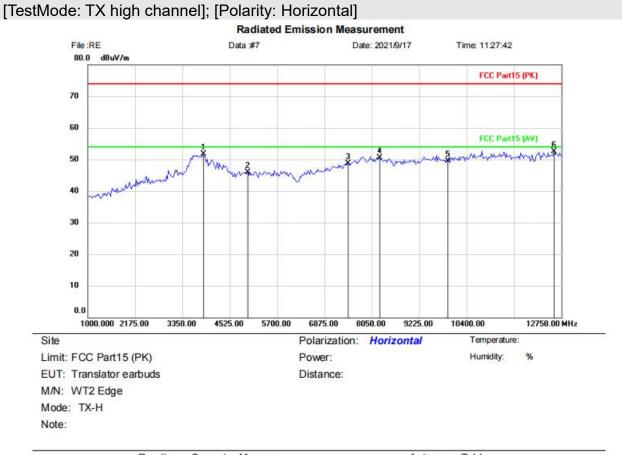
12.4 TEST DATA


[TestMode: TX low channel]; [Polarity: Vertical]
--

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		3702.500	44.13	7.72	51.85	74.00	-22.15	peak			
2		4804.000	42.38	3.71	46.09	74.00	-27.91	peak			
3		7206.000	41.46	5.96	47.42	74.00	-26.58	peak			
4		8050.000	43.36	8.01	51.37	74.00	-22.63	peak			
5		9608.000	40.20	9.29	49.49	74.00	-24.51	peak			
6	* 1	1716.000	40.52	11.76	52.28	74.00	-21.72	peak			

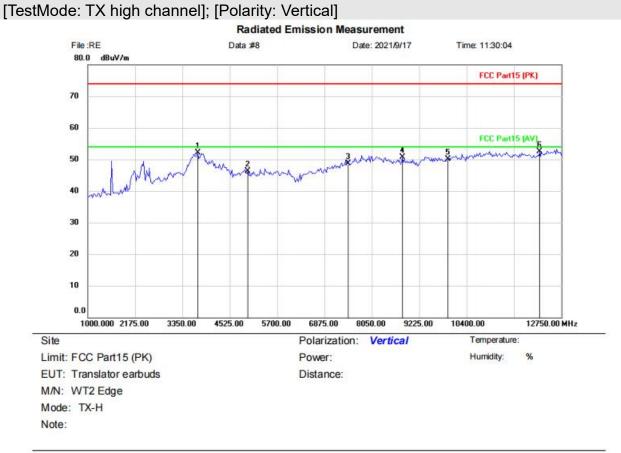
*:Maximum data x:Over limit !:over margin

(Reference Only



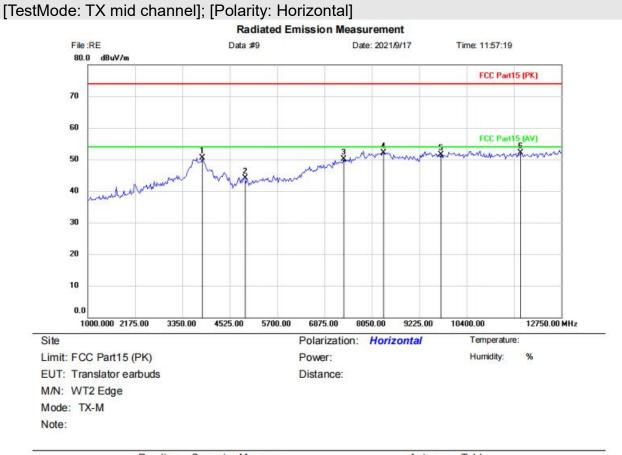
Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
_	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
*	3867.000	45.78	6.82	52.60	74.00	-21.40	peak			
	4804.000	41.71	3.71	45.42	74.00	-28.58	peak			
	7206.000	41.20	5.96	47.16	74.00	-26.84	peak			
	8097.000	42.84	8.07	50.91	74.00	-23.09	peak			
	9608.000	41.01	9.29	50.30	74.00	-23.70	peak			
1	0776.000	40.38	11.70	52.08	74.00	-21.92	peak			
	*	MHz * 3867.000 4804.000 7206.000 8097.000	Mk. Freq. Level MHz dBuV * 3867.000 45.78 4804.000 41.71 7206.000 41.20 8097.000 42.84 9608.000 41.01	Mk. Freq. Level Factor MHz dBuV dB * 3867.000 45.78 6.82 4804.000 41.71 3.71 7206.000 41.20 5.96 8097.000 42.84 8.07 9608.000 41.01 9.29	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m * 3867.000 45.78 6.82 52.60 4804.000 41.71 3.71 45.42 7206.000 41.20 5.96 47.16 8097.000 42.84 8.07 50.91 9608.000 41.01 9.29 50.30	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m * 3867.000 45.78 6.82 52.60 74.00 4804.000 41.71 3.71 45.42 74.00 7206.000 41.20 5.96 47.16 74.00 8097.000 42.84 8.07 50.91 74.00 9608.000 41.01 9.29 50.30 74.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB dBuV/m dB * 3867.000 45.78 6.82 52.60 74.00 -21.40 4804.000 41.71 3.71 45.42 74.00 -28.58 7206.000 41.20 5.96 47.16 74.00 -26.84 8097.000 42.84 8.07 50.91 74.00 -23.09 9608.000 41.01 9.29 50.30 74.00 -23.70	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dB dBuV/m dB Detector * 3867.000 45.78 6.82 52.60 74.00 -21.40 peak 4804.000 41.71 3.71 45.42 74.00 -28.58 peak 7206.000 41.20 5.96 47.16 74.00 -26.84 peak 8097.000 42.84 8.07 50.91 74.00 -23.70 peak 9608.000 41.01 9.29 50.30 74.00 -23.70 peak	Mk. Freq. Level Factor ment Limit Over Height MHz dBuV dB dBuV/m dBuV/m dB Detector cm * 3867.000 45.78 6.82 52.60 74.00 -21.40 peak 4804.000 41.71 3.71 45.42 74.00 -28.58 peak 7206.000 41.20 5.96 47.16 74.00 -26.84 peak 8097.000 42.84 8.07 50.91 74.00 -23.09 peak 9608.000 41.01 9.29 50.30 74.00 -23.70 peak	Mk. Freq. Level Factor ment Limit Over Height Degree MHz dBu/ dB dBu//m dBu//m dB Detector cm degree * 3867.000 45.78 6.82 52.60 74.00 -21.40 peak - 4804.000 41.71 3.71 45.42 74.00 -28.58 peak - - 7206.000 41.20 5.96 47.16 74.00 -26.84 peak - - 8097.000 42.84 8.07 50.91 74.00 -23.09 peak - 9608.000 41.01 9.29 50.30 74.00 -23.70 peak -

(Reference Only



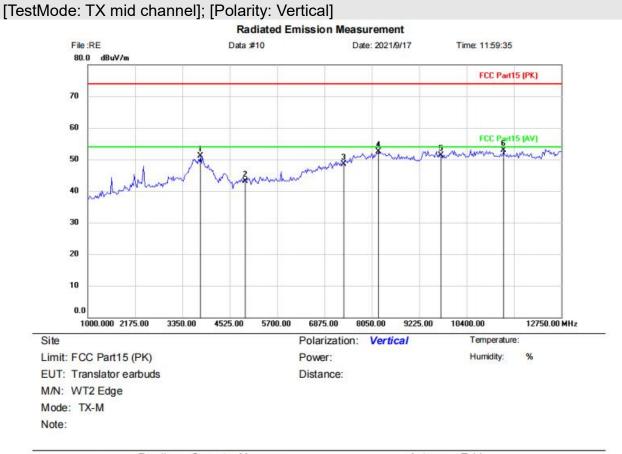
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		3867.000	44.93	6.82	51.75	74.00	-22.25	peak	1		
2		4960.000	42.18	3.75	45.93	74.00	-28.07	peak			
3		7440.000	41.93	6.86	48.79	74.00	-25.21	peak			
4		8238.000	42.26	8.22	50.48	74.00	-23.52	peak			
5		9920.000	39.31	10.16	49.47	74.00	-24.53	peak			
6	*	12562.000	40.68	11.80	52.48	74.00	-21.52	peak			

(Reference Only



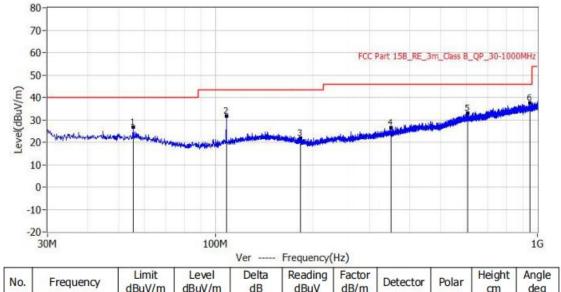
1		MHz	dBuV	10					Height	Degree	
1				dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
2		3726.000	44.33	7.70	52.03	74.00	-21.97	peak			
-		4960.000	42.64	3.75	46.39	74.00	-27.61	peak			
3		7440.000	41.85	6.86	48.71	74.00	-25.29	peak			
4		8802.000	42.97	7.72	50.69	74.00	-23.31	peak			
5	1	9920.000	39.97	10.16	50.13	74.00	-23.87	peak			
6	* 1	2209.500	41.22	11.33	52.55	74.00	-21.45	peak			

(Reference Only



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		3843.500	45.95	4.60	50.55	74.00	-23.45	peak	-		
2		4882.000	43.65	0.51	44.16	74.00	-29.84	peak			
3		7323.000	43.63	6.43	50.06	74.00	-23.94	peak			
4	*	8332.000	43.87	8.26	52.13	74.00	-21.87	peak			
5		9764.000	41.91	9.63	51.54	74.00	-22.46	peak			
6	1	1739.500	40.31	11.70	52.01	74.00	-21.99	peak			

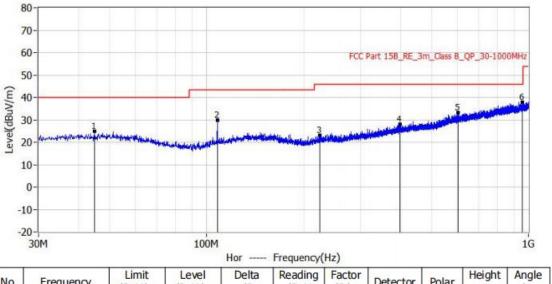
(Reference Only


No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		3796.500	45.88	5.22	51.10	74.00	-22.90	peak	-		
2		4884.000	42.52	0.50	43.02	74.00	-30.98	peak			
3		7323.000	42.12	6.43	48.55	74.00	-25.45	peak			
4		8214.500	44.32	8.21	52.53	74.00	-21.47	peak			
5		9764.000	41.64	9.63	51.27	74.00	-22.73	peak			
6	*	11316.500	41.01	11.88	52.89	74.00	-21.11	peak			

(Reference Only

[TestMode: TX mode (SE) below 1G]; [Polarity: Vertical]

Test Lab: BlueAsia EMC Lab (RE #1)	Project: BLE-EMC-202109-A51	
EUT: Translator earbuds	Test Engineer: Leo	
M/N: WT2 Edge	Temperature:	
S/N:	Humidity:	
Test Mode: BT mode	Test Voltage:	
Note:	Test Data: 2021-09-18 09:37:42	



No.	Frequency	dBuV/m	dBuV/m	dB	dBuV	dB/m	Detector	Polar	cm	deg
1*	55.341MHz	40.0	26.8	-13.2	3.2	23.6	QP	Ver	100.0	249.0
2*	107.964MHz	43.5	31.8	-11.7	10.3	21.5	QP	Ver	100.0	236.0
3*	183.381MHz	43.5	22.0	-21.5	0.6	21.4	QP	Ver	100.0	0.0
4*	349.858MHz	46.0	26.5	-19.5	0.8	25.7	QP	Ver	100.0	167.0
5*	607.756MHz	46.0	32.8	-13.2	1.5	31.3	QP	Ver	100.0	74.0
6*	945.801MHz	46.0	37.5	-8.5	2.0	35.5	QP	Ver	100.0	40.0

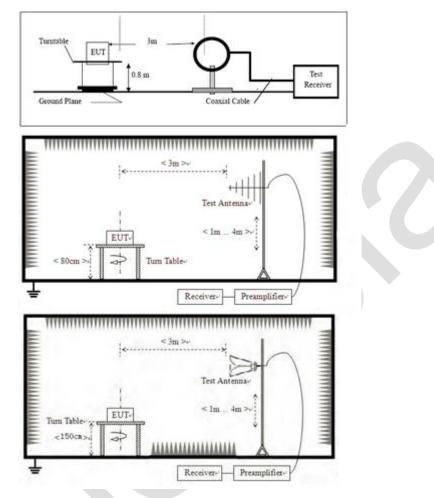
[TestMode: TX mode (SE) below 1G]; [Polarity: Horizontal]

Test Lab: BlueAsia EMC Lab (RE #1)	Project: BLE-EMC-202109-A51	
EUT: Translator earbuds	Test Engineer: Leo	
M/N: WT2 Edge	Temperature:	
S/N:	Humidity:	
Test Mode: BT mode	Test Voltage:	
Note:	Test Data: 2021-09-18 09:39:57	

No.	Frequency	dBuV/m	dBuV/m	dB	dBuV	dB/m	Detector	Polar	cm	deg
1*	44.793MHz	40.0	24.9	-15.1	0.9	24.0	QP	Hor	100.0	227.0
2*	107.964MHz	43.5	29.8	-13.7	8.3	21.5	QP	Hor	100.0	126.0
3*	224.849MHz	46.0	23.2	-22.8	1.2	22.0	QP	Hor	100.0	182.0
4*	399.085MHz	46.0	27.9	-18.1	0.6	27.3	QP	Hor	100.0	45.0
5*	603.755MHz	46.0	33.1	-12.9	1.8	31.3	QP	Hor	100.0	148.0
6*	957.684MHz	46.0	38.0	-8.0	2.3	35.7	QP	Hor	100.0	64.0

13 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS

Test Standard	47 CFR Part 15, Subpart C 15.247						
Test Method	ANSI C63.10 (2013) Section 6.10.5						
Test Mode (Pre-Scan)	ТХ						
Test Mode (Final Test)	ТХ						
Tester	Jozu						
Temperature	25°C						
Humidity	60%						


13.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

13.2 BLOCK DIAGRAM OF TEST SETUP

13.3 PROCEDURE

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

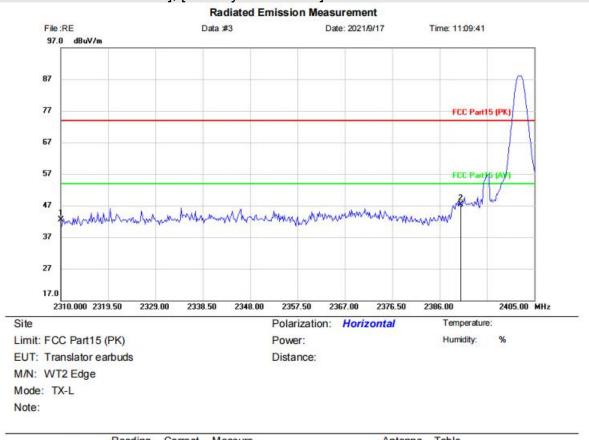
e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

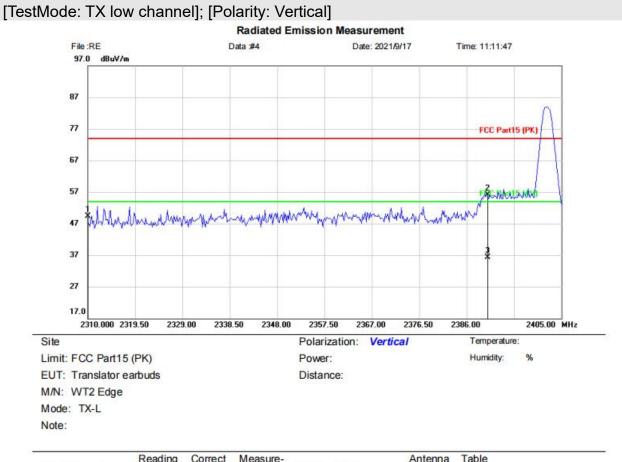
i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.


j. Repeat above procedures until all frequencies measured was complete.

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

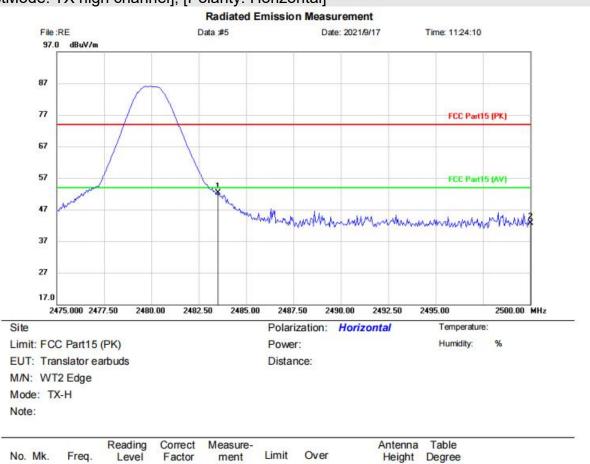
13.4 TEST DATA


[TestMode: TX low channel]; [Polarity: Horizontal]

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2310.000	47.20	-4.61	42.59	74.00	-31.41	peak			
2	*	2390.000	51.49	-4.27	47.22	74.00	-26.78	peak	-		

*:Maximum data x:Over limit !:over margin

(Reference Only



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2310.000	53.95	-4.61	49.34	74.00	-24.66	peak			
2		2390.000	60.36	-4.27	56.09	74.00	-17.91	peak			
3	*	2390.000	40.62	-4.27	36.35	54.00	-17.65	AVG			

(Reference Only

[TestMode: TX high channel]; [Polarity: Horizontal]

*:Maximum data x:Over limit !:over margin

(Reference Only

Test Result: Pass

MHz

2483.500

2500.000

1 *

2

dBuV

56.07

46.41

dB

-3.84

-3.78

dBuV/m

52.23

42.63

dBuV/m

74.00

74.00

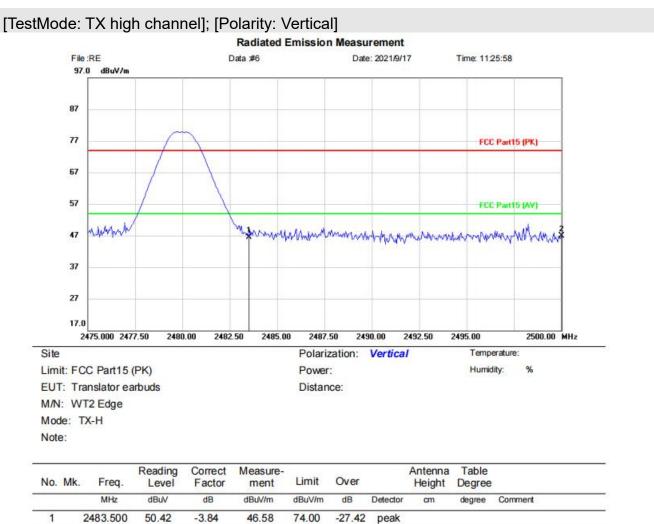
dB

-21.77

-31.37

Detector

peak


peak

cm

degree

Comment

50.67

-3.78

46.89

74.00

-27.11

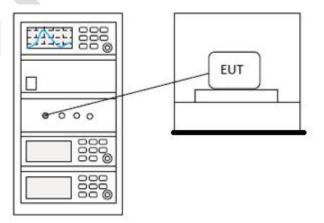
peak

(Reference Only

Test Result: Pass

2

2500.000


14 CONDUCTED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11					
Test Mode (Pre-Scan)	ТХ					
Test Mode (Final Test)	ТХ					
Tester	Jozu					
Temperature	25°C					
Humidity	60%					

14.1 LIMITS

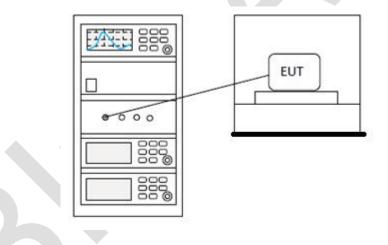
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

14.2 BLOCK DIAGRAM OF TEST SETUP

Report No.: BLA-EMC-202109-A5102 Page 37 of60

14.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details


15 POWER SPECTRUM DENSITY

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 11.10.2
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Jozu
Temperature	25 ℃
Humidity	60%

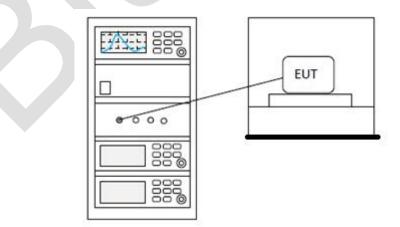
15.1 LIMITS

Limit: ≤ 8 dBm in any 3 kHz band during any time interval of continuous transmission

15.2 BLOCK DIAGRAM OF TEST SETUP

15.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details


16 CONDUCTED PEAK OUTPUT POWER

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.5
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Jozu
Temperature	25 ℃
Humidity	60%

16.1 LIMITS

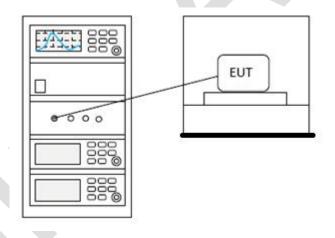
Frequency range(MHz)	Output power of the intentional radiator(watt)			
	1 for \geq 50 hopping channels			
902-928	0.25 for $25 \le$ hopping channels $<$ 50			
	1 for digital modulation			
	1 for ≥75 non-overlapping hopping channels			
2400-2483.5	0.125 for all other frequency hopping systems			
	1 for digital modulation			
5705 5050	1 for frequency hopping systems and digital			
5725-5850	modulation			

16.2 BLOCK DIAGRAM OF TEST SETUP

Report No.: BLA-EMC-202109-A5102 Page 40 of60

16.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details


17 MINIMUM 6DB BANDWIDTH

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 11.8.1
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Jozu
Temperature	25 ℃
Humidity	60%

17.1 LIMITS

Limit: $\geq 500 \text{ kHz}$

17.2 BLOCK DIAGRAM OF TEST SETUP

17.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

18 ANTENNA REQUIREMENT

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	N/A

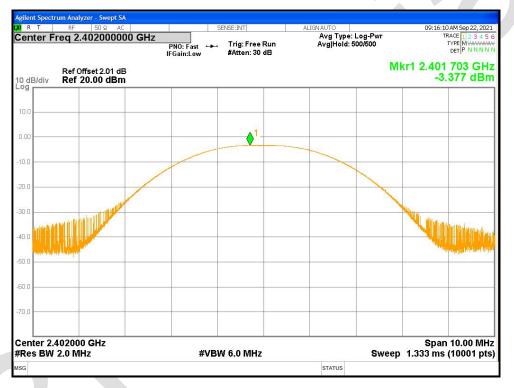

18.1 CONCLUSION

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.



19 APPENDIX

19.1 MAXIMUM CONDUCTED OUTPUT POWER


Condition	Mode	Frequency	Antenna	Conducted	Duty	Total	Limit	Verdict
		(MHz)		Power (dBm)	Factor	Power	(dBm)	
					(dB)	(dBm)		
NVNT	BLE	2402	Antl	-3.377	0	-3.377	30	Pass
NVNT	BLE	2442	Ant1	-3.547	0	-3.547	30	Pass
NVNT	BLE	2480	Ant1	-4.69	0	-4.69	30	Pass

Power NVNT BLE 2402MHz Ant1

Power NVNT BLE 2442MHz Ant1

Power NVNT BLE 2480MHz Ant1

19.2 -6DB BANDWIDTH

Condition	Mode	Frequency	Antenna	-6 dB Bandwidth	Limit -6 dB	Verdict
		(MHz)		(MHz)	Bandwidth (MHz)	
NVNT	BLE	2402	Ant1	0.682	0.5	Pass
NVNT	BLE	2442	Ant1	0.683	0.5	Pass
NVNT	BLE	2480	Ant1	0.681	0.5	Pass

-6dB Bandwidth NVNT BLE 2402MHz Ant1

-6dB Bandwidth NVNT BLE 2442MHz Ant1

R T	Im Analyzer - Occupied B RF 50 Q AC	w	SENSE:INT	ALIGN AUTO		04:42:51 PM Sep 14. 2	0001
	eq 2.442000000	GHz	Center Freq: 2.4420000	000 GHz	Ra	dio Std: None	:021
]	#IFGain:Low	. Trig: Free Run #Atten: 30 dB	Trig: Free Run Avg Hold: 500/500			
dB/div	Ref Offset 2.03 d Ref 22.03 dBn				Mkr3	2.442313 G -11.384 dB	
9							_
03			A1				
17		$alpha^2$	- V	A ³			
0							
0					man		
0 mm	- Andrew March				~	margan margan	~~~~
o							_
o							_
0							_
mtor 2	442 GHz					Span 2 M	
	100 kHz		#VBW 300 k	Hz		Sweep 1.333	
Occup	ied Bandwidt	h	Total Power	2.65 dBm			
	1.	0616 MHz					
Transm	nit Freq Error	-28.930 kHz	OBW Power	99.00 %			
x dB Ba	andwidth	683.4 kHz	x dB	-6.00 dB			
2.				STATUS			_

-6dB Bandwidth NVNT BLE 2480MHz Ant1

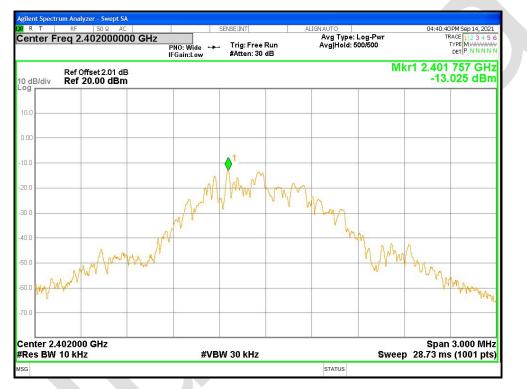
19.3 OCCUPIED CHANNEL BANDWIDTH


Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE	2402	Ant1	1.036264917
NVNT	BLE	2442	Ant1	1.03830944
NVNT	BLE	2480	Ant1	1.037978275

OBW NVNT BLE 2402MHz Ant1

OBW NVNT BLE 2442MHz Ant1

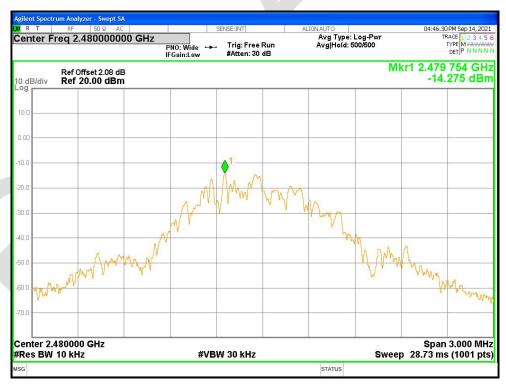
OBW NVNT BLE 2480MHz Ant1



Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant1	-13.025	8	Pass
NVNT	BLE	2442	Antl	-13.046	8	Pass
NVNT	BLE	2480	Ant1	-14.275	8	Pass

19.4 MAXIMUM POWER SPECTRAL DENSITY LEVEL

PSD NVNT BLE 2402MHz Ant1



PSD NVNT BLE 2442MHz Ant1

PSD NVNT BLE 2480MHz Ant1

19.5 BAND EDGE

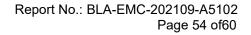
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant1	-52.79	-30	Pass
NVNT	BLE	2480	Ant1	-50.97	-30	Pass

ectrum Analyze 04:40:47 PM Sep 14, 2021 TRACE 1 2 3 4 5 6 TYPE M WWWW DET P N N N N N Center Freq 2.402000000 GHz Avg Type: Log-Pwr Avg|Hold: 500/500 PNO: Wide ↔→ IFGain:Low Trig: Free Run #Atten: 30 dB Mkr1 2.401 976 GHz -3.543 dBm Ref Offset 2.01 dB Ref 20.00 dBm 10 dB/div Log 10. 10.0 20.0 -30.0 40.0 man NN m 70.0 Center 2.402000 GHz #Res BW 100 kHz Span 8.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz STATUS

Band Edge NVNT BLE 2402MHz Ant1 Ref

Band Edge NVNT BLE 2402MHz Ant1 Emission

T RF 50	IQ AC	SENSE	EINT	ALIGN AUTO		04:40:50 F	M Sep 14, 20
ter Freq 2.356	PNO) East ++ T	rig: Free Run Atten: 30 dB	Avg Type: Avg Hold: '		TRA T	ACE 1 2 3 4 YPE M WWW DET P N N N
Ref Offset					N	1kr1 2.40 -3.4	2 0 GH 77 dBi
		5					
							\ '
							<u> </u>
							-33.54 00
2	0				· · · · · · · · · · · · · · · · · · ·		2
ust Marchelow Markeda		allada		and photos at h leaster allers	mensionen	\bigcirc	N
Last Oldon tube and All all along	Also clovesting the Cale Manaline also	14 Martin Artiker Saddieshi	enitageniert, shtelere	and the main of the second	(Igen-littlessplith.(Passily)	where a state of the second	nor i
		2					
rt 2.30600 GHz s BW 100 kHz		#VBW 3	00 kHz		Sweep	Stop 2.4 9.600 ms	
MODE TRC SCL N 1 f N 1 f N 1 f N 1 f	× 2.402 0 GHz 2.400 0 GHz 2.390 0 GHz 2.358 6 GHz	-3.477 dBn -52.094 dBn -58.038 dBn -56.335 dBn	n n	FUNCTION WIDTH	FUN	CTION VALUE	
							>
				STATUS			


Band Edge NVNT BLE 2480MHz Ant1 Ref

Band Edge NVNT BLE 2480MHz Ant1 Emission

T RF	50 Ω AC		SE	NSE:INT	ALIGN AUTO		04:46:4	0 PM Sep 14, 2
ter Freq 3	2.526000000	PNO	l: Fast ↔ in:Low	Trig: Free Run #Atten: 30 dB	Avg Typ Avg Hold	e: Log-Pwr : 100/100	ा	RACE 1234 TYPE MWMM DET PNNN
	Offset 2.08 dB f 20.00 dBm						Mkr1 2.4 -5.	79 7 GI 547 dB
	-							
								-34.72
1 12	,	∆ <mark>4,</mark> 3						
1 2	manufactor star	Coloradore	mellomantipus	minimumphissister	while barrow peril	mohamlywar	norman	providence.
а. 	2		- 2			.0	2	10
t 2.47600 s BW 100			#VBW	300 kHz		Swee	Stop 2 p 9.600 m	.57600 GI s (1001 pi
Mode TRC SCL		479 7 GHz	Y -5.547 d	FUNCTION	FUNCTION WIDTH		UNCTION VALUE	
N 1 f N 1 f N 1 f	2. 2.	483 5 GHz 500 0 GHz 498 2 GHz	-57.750 d -59.152 d -55.697 d	Bm Bm				
								>

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant1	-40.75	-30	Pass
NVNT	BLE	2442	Ant1	-41.86	-30	Pass
NVNT	BLE	2480	Ant1	-40.1	-30	Pass

19.6 CONDUCTED RF SPURIOUS EMISSION

Tx. Spurious NVNT BLE 2402MHz Ant1 Ref

Tx. Spurious NVNT BLE 2402MHz Ant1 Emission

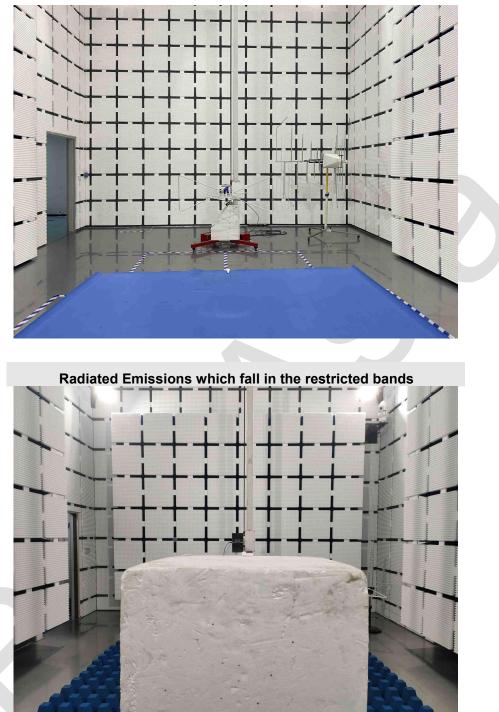
				rzer - Swept SA								
R	T	Erc	RF	50 Ω AC 3.2650000		SI	ENSE:INT	Al	IGN AUTO Avg Type:	Log-Pwr		7 PM Sep 14, 2021 RACE 1 2 3 4 5 6
201	itei	FIG	iy is	5.2050000	PN	0: Fast ↔→ ain:Low	Trig: Free Ru #Atten: 30 dE		Avg Hold:	10/10	2	DET P N N N N
10 d	B/div			ffset 2.01 dE 2 0.00 dB m								.412 GHz 630 dBm
_og		<i>v</i> .		20.00 0011								
10.0					-							
0.00												
-10.0	-		-		-						-	
-20.0	-											
-30.0	-											-33.65 dBm
-40.0				A3	2					7	3	$\langle \rangle^2$
-50.0	-		_	\sim		5			1 manun	mannagh	war a with	Any han more more
-60.0	-	abranda	marte	manapante	and see allowing	respect a strand	Merthempsendowede	rememberships	. O ANDUNIA			
-70.0												
	rt 30 es Bi		Hz 00 kl	Hz		#VBV	V 300 kHz			Sw	Stop eep 2.530	26.50 GHz s (1001 pts)
MKR	MODE	TRC		×		Y	FUNCT	ON FUNC	TION WIDTH		FUNCTION VALUE	~
1	N	1	f		2.412 GHz 24.621 GHz	-6.630 c -44.406 c						
23	N		f		4.795 GHz	-51.089 c	lBm					
4	N		f		7.150 GHz 9.506 GHz	-55.689 c -56.567 c						
6					0.000 01.12							
456789												
9 10												
11												~
<												>
ISG									STATUS			

Tx. Spurious NVNT BLE 2442MHz Ant1 Emission

		ectru		yzer - Swept										
R		E er a	RF		AC			SENSE:IN	Г	AL		e: Log-Pwr		35 PM Sep 14, 2021 TRACE 1 2 3 4 5 6
Jer	ter	Fre	eq 1.	3.26500	0000 G	PI	NO: Fast + Gain:Low		Free Run en: 30 dB		Avg Hold:			TYPE MWWWWWW DET P N N N N N
10 4	B/div			offset 2.03 20.00 dB									Mkr1	2.439 GHz 1.869 dBm
Log	Bruin	v	RCI	20.00 ub	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
10.0				1										
0.00														
10.0	-		-		-			-				-	0	-
20.0	⊢				-									
-30.0	_							_						-33.67 dBm
-40.0	_													2
-50.0	<u> </u>		_	(3		^	5			and the second second	Partin July	-	malalan mound
-60.0	have	an day	aponto	want superior	have	mering	mound	nerranne	virgen gen get un	malesald				
-70.0														
	t 30 s B		Hz 00 k	Hz			#V	BW 300	kHz			Sv		p 26.50 GHz s (1001 pts)
MKR	MODE	TRC			×		Y		FUNCTION	FUNC	TION WIDTH		FUNCTION VALUE	^
1	NN	1	f			9 GHz 0 GHz		59 dBm 31 dBm						
3	N		f		4.87	4 GHz	-55.8	01 dBm						
4 5	N		f			6 GHz		33 dBm 52 dBm						
5 6														
7 8 9														
9 10														
11														~
<														>
ISG											STATUS			

Tx. Spurious NVNT BLE 2480MHz Ant1 Emission

T RF	50 Ω AC		SENSE:INT	ALIGN AUTO		04:47:18 PM Sep 14, 202:
ter Freq 13.	265000000 GHz	PNO: Fast +++ IFGain:Low	Trig: Free Run #Atten: 30 dB	Avg Type: Avg Hold: 1		TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N
	set 2.08 dB .00 dBm				MI	r1 2.492 GH: -6.480 dBn
<u>\1</u>						
						-34.83 dB
		y <mark>4 ∧5</mark>		20		manuman
muneretter	manuteronald	monormand	an and the second	an a		2
	2					
rt 30 MHz s BW 100 kHz	1	#VB	W 300 kHz		Sweep 2	Stop 26.50 GH: 530 s (1001 pts
MODE TRC SCL	× 2.492 G			FUNCTION WIDTH	FUNCTION	VALUE
N 1 f	25.362 G 4.953 G					
N 1 f	7.283 G	Hz -55.143	dBm			
N 1 f	9.903 G	Hz -56.799	авт			



APPENDIX A: PHOTOGRAPHS OF TEST SETUP

Report No.: BLA-EMC-202109-A5102 Page 59 of60

APPENDIX B: PHOTOGRAPHS OF EUT

Reference to the test report No. BLA-EMC-202109-A5101

----END OF REPORT----

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of BlueAsia, this report can't be reproduced except in full.