

RADIO TEST REPORT

S

Report No.:STS2207331W11

Issued for

Shenzhen Timekettle Technologies Co.,Ltd

Room 612, Building 4, Minqi Science Park, No. 65 Lishan Road, Pingshan Community, Taoyuan Street, Nanshan District, Shenzhen, Guangdong, China.

Product Name:	Portable Translator
Brand Name:	Timekettle, fluentalk
Model Name:	T1
Series Model:	N/A
FCC ID:	2AQ2G-T1
Test Standard:	FCC Part 15.247

Any reproduction of this document must be done in full. No single part of this document may be reproduced withou permission from STS, all test data presented in this report is only applicable to presented test sample.

APPROVA

Shenzhen STS Test Services Co., Ltd. A 1/F, Building B, Zhuoke Science Park, No.190 Chongqing Road, HepingShequ, Fuyong Sub-District, Bao'an District, Shenzhen, Guang Dong, China TEL: +86-755 3688 6288 FAX: +86-755 3688 6277 E-mail:sts@stsapp.com

TEST RESULT CERTIFICATION

Applicant's Name	Shenzhen Timekettle Technologies Co.,Ltd
Address	Room 612, Building 4, Minqi Science Park, No. 65 Lishan Road, Pingshan Community, Taoyuan Street, Nanshan District, Shenzhen, Guangdong, China.
Manufacturer's Name	Shenzhen Timekettle Technologies Co.,Ltd
Address	Room 612, Building 4, Minqi Science Park, No. 65 Lishan Road, Pingshan Community, Taoyuan Street, Nanshan District, Shenzhen, Guangdong, China.
Product Description	
Product Name	Portable Translator
Product Name: Brand Name	
	Timekettle, fluentalk
Brand Name:	Timekettle, fluentalk T1
Brand Name: Model Name	Timekettle, fluentalk T1 N/A

This device described above has been tested by STS, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of STS, this document may be altered or revised by STS, personal only, and shall be noted in the revision of the document.

Date of Test

Test Result	Pass
Date of Issue	08 Sept. 2022
Date (s) of performance of tests	29 July 2022 ~ 08 Sept. 2022
Date of receipt of test item:	29 July 2022

Testing Engineer

(Chris Chen)

Technical Manager

Authorized Signatory :

Jean Sh

hover

(Sean she)

ROV

(Bovey Yang)

Table of Contents

1. SUMMARY OF TEST RESULTS	6
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF THE EUT	8
2.2 DESCRIPTION OF THE TEST MODES	10
2.3 TEST SOFTWARE AND POWER LEVEL	10
2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	11
2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	12
2.6 EQUIPMENTS LIST	13
3. EMC EMISSION TEST	15
3.1 CONDUCTED EMISSION MEASUREMENT	15
3.2 TEST PROCEDURE	16
3.3 TEST SETUP	16
3.4 EUT OPERATING CONDITIONS	16
3.5 TEST RESULTS	17
4. RADIATED EMISSION MEASUREMENT	19
4.1 RADIATED EMISSION LIMITS	19
4.2 TEST PROCEDURE	21
4.3 TEST SETUP	22
4.4 EUT OPERATING CONDITIONS	22
4.5 FIELD STRENGTH CALCULATION	23
4.6 TEST RESULTS	24
5. CONDUCTED SPURIOUS & BAND EDGE EMISSION	37
5.1 LIMIT	37
5.2 TEST PROCEDURE	37
5.3 TEST SETUP	37
5.4 EUT OPERATION CONDITIONS	37
5.5 TEST RESULTS	37
6. POWER SPECTRAL DENSITY TEST	38
6.1 LIMIT	38
6.2 TEST PROCEDURE	38
6.3 TEST SETUP	38

Page 4 of 75 Report No.: STS2207331W11

Table of Contents

6.4 EUT OPERATION CONDITIONS	38
6.5 TEST RESULTS	38
7. BANDWIDTH TEST	39
7.1 LIMIT	39
7.2 TEST PROCEDURE	39
7.3 TEST SETUP	39
7.4 EUT OPERATION CONDITIONS	39
7.5 TEST RESULTS	39
8. PEAK OUTPUT POWER TEST	40
8.1 LIMIT	40
8.2 TEST PROCEDURE	40
8.3 TEST SETUP	41
8.4 EUT OPERATION CONDITIONS	41
8.5 TEST RESULTS	41
9. ANTENNA REQUIREMENT	42
9.1 STANDARD REQUIREMENT	42
9.2 EUT ANTENNA	42
APPENDIX 1-TEST DATA	43
1. DUTY CYCLE	43
2. MAXIMUM AVERAGE CONDUCTED OUTPUT POWER	47
3. MAXIMUM PEAK CONDUCTED OUTPUT POWER	51
46DB BANDWIDTH	55
5. MAXIMUM POWER SPECTRAL DENSITY LEVEL	59
6. BAND EDGE	63
7. CONDUCTED RF SPURIOUS EMISSION	68
APPENDIX 2- EUT TEST PHOTO	75

Page 5 of 75 Report No.: STS2207331W11

Revision History

Rev.	Issue Date	Report NO.	Effect Page	Contents
00	08 Sept. 2022	STS2207331W11	ALL	Initial Issue

Shenzhen STS Test Services Co., Ltd.

Т

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02.

FCC Part 15.247,Subpart C						
Standard Section	Test Item	Judgment	Remark			
15.207	Conducted Emission	PASS				
15.247 (a)(2)	6dB Bandwidth	PASS				
15.247 (b)(3)	Output Power	PASS				
15.209	Radiated Spurious Emission	PASS				
15.247 (d)	Conducted Spurious & Band Edge Emission	PASS				
15.247 (e)	Power Spectral Density	PASS				
15.205	Restricted bands of operation	PASS				
Part 15.247(d)/ Part 15.209(a)	Band Edge Emission	PASS				
15.203	Antenna Requirement	PASS				

NOTE:

(1) 'N/A' denotes test is not applicable in this Test Report.

(2) All tests are according to ANSI C63.10-2013.

Shenzhen STS Test Services Co., Ltd.

1.1 TEST FACTORY

SHENZHEN STS TEST SERVICES CO., LTD Add. : A 1/F, Building B, Zhuoke Science Park, No.190 Chongqing Road, HepingShequ, Fuyong Sub-District, Bao'an District, Shenzhen, Guang Dong, China FCC test Firm Registration Number: 625569 IC test Firm Registration Number: 12108A A2LA Certificate No.: 4338.01

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of **k=2**, providing a level of confidence of approximately **95** %.

No.	Item	Uncertainty
1	RF output power, conducted	±0.87dB
2	Unwanted Emissions, conducted	±2.895dB
3	All emissions, radiated 9K-30MHz	±3.80dB
4	All emissions, radiated 30M-1GHz	±4.09dB
5	All emissions, radiated 1G-6GHz	±4.92dB
6	All emissions, radiated>6G	±5.49dB
7	Conducted Emission (9KHz-30MHz)	±2.73dB

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name	Portable Translator		
Trade Name	Timekettle, fluentalk		
Model Name	T1		
Series Model	N/A		
Model Difference	N/A		
	The EUT is a Portat	ble Translator	
	Operation Frequency:	2402~2480 MHz	
	Modulation Type:	GFSK	
	Radio Technology:	BLE	
Product Description	Bluetooth	LE(Current 1M DUV 2M DUV)	
Product Description	Configuration:	LE(Support 1M PHY, 2M PHY)	
	Number Of Channel:	40	
	Antenna Designation:	PIFA	
	Antenna Gain (dBi)	1.27dBi	
Channel List	Please refer to the N	Note 3.	
Rating	Input: DC 5V 1A		
Battery	Rated Voltage:3.8V Charge Limit Voltage:4.35V Capacity: 1500mAh		
Hardware version number	G221_MB_V02		
Software version number	G221_SW_V01		
Connecting I/O Port(s)	Please refer to the Note 1.		

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.

2. The antenna information refer the manufacturer provide report, applicable only to the tested sample identified in the report. Due to the incorrect antenna information, a series of problems such as the accuracy of the test results will be borne by the customer.

Ð

3

Page 9 of 75 Report No.: STS2207331W11

Channel List							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequenc y (MHz)
00	2402	10	2422	20	2442	30	2462
01	2404	11	2424	21	2444	31	2464
02	2406	12	2426	22	2446	32	2466
03	2408	13	2428	23	2448	33	2468
04	2410	14	2430	24	2450	34	2470
05	2412	15	2432	25	2452	35	2472
06	2414	16	2434	26	2454	36	2474
07	2416	17	2436	27	2456	37	2476
08	2418	18	2438	28	2458	38	2478
09	2420	19	2440	29	2460	39	2480

Shenzhen STS Test Services Co., Ltd.

Т

2.2 DESCRIPTION OF THE TEST MODES

For conducted test items and radiated spurious emissions

Each of these EUT operation mode(s) or test configuration mode(s) mentioned below was evaluated respectively.

Worst Mode	Description	Data/Modulation
Mode 1	TX CH00(2402MHz)	1 MHz/GFSK
Mode 2	TX CH19(2440MHz)	1 MHz/GFSK
Mode 3	TX CH39(2480MHz)	1 MHz/GFSK

Worst Mode	Description	Data/Modulation
Mode 4	TX CH00(2402MHz)	2M PHY /GFSK
Mode 5	TX CH19(2440MHz)	2M PHY /GFSK
Mode 6	TX CH39(2480MHz)	2M PHY /GFSK

Note:

(1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported.

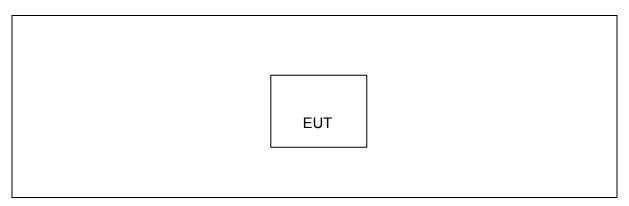
(2) We have be tested for all avaiable U.S. voltage and frequencies(For 120V,50/60Hz and 240V, 50/60Hz) for which the device is capable of operation, and the worst case of 120V/60Hz is shown in the report.

(3) The battery is fully-charged during the radited and RF conducted test.

For AC Conducted Emission

	Test Case
AC Conducted Emission	Mode 7 : Keeping BT TX

2.3 TEST SOFTWARE AND POWER LEVEL


During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level.

RF Function	Туре	Mode Or Modulation type	ANT Gain(dBi)	Power Class	Software For Testing
BLE(With 2M PHY)	BLE_1M PHY	GFSK	1.27	Default	Engineering
	BLE_2M PHY	GFSK	1.27	Default	mode

2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Spurious Emission Test

Conducted Emission Test

AC Plug	E-1 Adapter	C-1	EUT	
	<		1	

Shenzhen STS Test Services Co., Ltd.

2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Length	Note
N/A	N/A	N/A	N/A	N/A	N/A

Support units

Item	Equipment	Mfr/Brand	Model/Type No.	Length	Note
E-1	Adapter	N/A	YMK-12W050150	N/A	N/A
C-1	USB Cable	N/A	N/A	100cm	NO

Note:

- (1) For detachable type I/O cable should be specified the length in cm in $\[$ ^{Γ}Length $\]$ column.
- (2) "YES" is means "with core"; "NO" is means "without core".

2.6 EQUIPMENTS LIST

Radiation Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until		
Test Receiver	R&S	ESCI	101427	2021.09.30	2022.09.29		
Signal Analyzer	R&S	FSV 40-N	101823	2021.09.30	2022.09.29		
Active loop Antenna	ZHINAN	ZN30900C	16035	2021.04.11	2023.04.10		
Bilog Antenna	TESEQ	CBL6111D	34678	2020.10.12	2022.10.11		
Horn Antenna	SCHWARZBECK	BBHA 9120D	02014	2021.10.11	2023.10.10		
SHF-EHF Horn Antenna (18G-40GHz)	A-INFO	LB-180400-KF	J211020657	2020.10.12	2022.10.11		
Pre-Amplifier (0.1M-3GHz)	EM	EM330	060665	2021.10.08	2022.10.07		
Pre-Amplifier (1G-18GHz)	SKET	LNPA-01018G-45	SK2018080901	2021.09.30	2022.09.29		
Pre-Amplifier (18G-40GHz)	SKET	LNPA-1840-50	SK2018101801	2021.09.28	2022.09.27		
Temperature & Humidity	HH660	Mieo	N/A	2021.10.09	2022.10.08		
Turn table	EM	SC100_1	60531	N/A	N/A		
Antenna mast	EM	SC100	N/A	N/A	N/A		
Test SW	FARAD	EZ-EMC(Ver.STSLAB-03A1 RE)					

Conduction Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	
Test Receiver	R&S	ESCI	101427	2021.09.30	2022.09.29	
LISN	R&S	ENV216	101242	2021.09.30	2022.09.29	
LISN	EMCO	3810/2NM	23625	2021.09.30	2022.09.29	
Temperature & Humidity	HH660	Mieo N/A 2021.10.09 2022.10.08				
Test SW	FARAD	EZ-EMC(Ver.STSLAB-03A1 CE)				

Т

Page 14 of 75 Report No.: STS2207331W11

RF Connected Test

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	
Power Sensor			MY55520005	2021.09.30	2022.09.29	
	Keysight	U2021XA	MY55520006	2021.09.30	2022.09.29	
			MY56120038	2021.09.30	2022.09.29	
			MY56280002	2021.09.30	2022.09.29	
Signal Analyzer	Agilent	N9020A	MY51110105	2022.03.01	2023.02.28	
Temperature & Humidity	HH660	Mieo	N/A	2021.10.09	2022.10.08	
Test SW	FARAD	EZ-EMC(Ver.STSLAB-03A1 RE)				

Shenzhen STS Test Services Co., Ltd.

1

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

The radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table.

	Conducted Emission limit (dBuV)		
FREQUENCY (MHz)	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

Note:

(1) The tighter limit applies at the band edges.

(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.2 TEST PROCEDURE

- a. The EUT is 0.8 m from the horizontal ground plane and 0.4 m from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments are powered from additional LISN(s). The LISN provides 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN is at least 80 cm from the nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Vertical Reference Ground Plane EUT 40cm EUT 80cm N Horizontal Reference Ground Plane

3.3 TEST SETUP

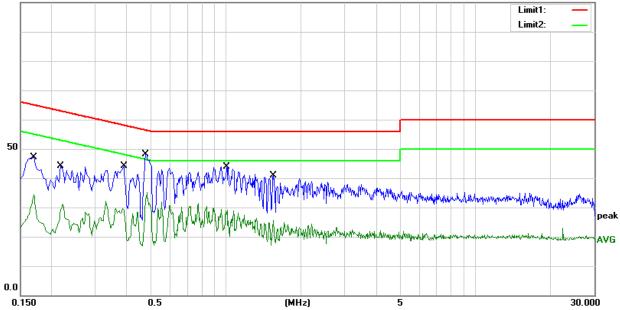
Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes support units.

3.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.5 TEST RESULTS


Temperature:	26.8(C)	Relative Humidity:	59%RH
Test Voltage:	AC 120V/60Hz	Phase:	L
Test Mode:	Mode 7		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(d B)	(dBuV)	(dBuV)	(dB)	
1	0.1700	26.83	20.33	47.16	64.96	-17.80	QP
2	0.1700	13.97	20.33	34.30	54.96	-20.66	AVG
3	0.2180	23.69	20.39	44.08	62.89	-18.81	QP
4	0.2180	10.79	20.39	31.18	52.89	-21.71	AVG
5	0.3900	23.47	20.56	44.03	58.06	-14.03	QP
6	0.3900	9.06	20.56	29.62	48.06	-18.44	AVG
7	0.4780	27.50	20.54	48.04	56.37	-8.33	QP
8	0.4780	14.67	20.54	35.21	46.37	-11.16	AVG
9	1.0140	23.47	20.30	43.77	56.00	-12.23	QP
10	1.0140	8.80	20.30	29.10	46.00	-16.90	AVG
11	1.5500	20.55	20.30	40.85	56.00	-15.15	QP
12	1.5500	5.30	20.30	25.60	46.00	-20.40	AVG

Remark:

- 1. All readings are Quasi-Peak and Average values
- 2. Margin = Result (Result = Reading + Factor)–Limit
- 3. Factor=LISN factor+Cable loss+Limiter (10dB)

100.0 dBuV

Shenzhen STS Test Services Co., Ltd.

Page 18 of 75 Report No.: STS2207331W11

Temperature:	26.8(C)	Relative Humidity:	59%RH
Test Voltage:	AC 120V/60Hz	Phase:	Ν
Test Mode:	Mode 7		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(d B)	(dBuV)	(dBuV)	(dB)	
1	0.1660	27.18	20.33	47.51	65.16	-17.65	QP
2	0.1660	12.53	20.33	32.86	55.16	-22.30	AVG
3	0.2260	22.72	20.50	43.22	62.60	-19.38	QP
4	0.2260	8.63	20.50	29.13	52.60	-23.47	AVG
5	0.2780	21.29	20.70	41.99	60.88	-18.89	QP
6	0.2780	9.68	20.70	30.38	50.88	-20.50	AVG
7	0.4780	22.09	20.51	42.60	56.37	-13.77	QP
8	0.4780	10.11	20.51	30.62	46.37	-15.75	AVG
9	0.9620	21.70	20.31	42.01	56.00	-13.99	QP
10	0.9620	9.16	20.31	29.47	46.00	-16.53	AVG
11	1.9820	17.50	20.39	37.89	56.00	-18.11	QP
12	1.9820	3.23	20.39	23.62	46.00	-22.38	AVG

Remark:

1. All readings are Quasi-Peak and Average values

- 2. Margin = Result (Result = Reading + Factor)-Limit
- 3. Factor=LISN factor+Cable loss+Limiter (10dB)

100.0 dBuV

Shenzhen STS Test Services Co., Ltd.

Page 19 of 75 Report

4. RADIATED EMISSION MEASUREMENT

4.1 RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (Frequency Range 9kHz-1000MHz)

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	(dBuV/m) (at 3M)		
FREQUENCY (MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

LIMITS OF RESTRICTED FREQUENCY BANDS

FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (GHz)
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

Shenzhen STS Test Services Co., Ltd.

For Radiated Emission

Spectrum Parameter	Setting		
Attenuation	Auto		
Detector	Peak/QP/AV		
Start Frequency	9 KHz/150KHz(Peak/QP/AV)		
Stop Frequency	150KHz/30MHz(Peak/QP/AV)		
	200Hz (From 9kHz to 0.15MHz)/		
RB / VB (emission in restricted	9KHz (From 0.15MHz to 30MHz);		
band)	200Hz (From 9kHz to 0.15MHz)/		
	9KHz (From 0.15MHz to 30MHz)		

Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak/QP
Start Frequency	30 MHz(Peak/QP)
Stop Frequency	1000 MHz (Peak/QP)
RB / VB (emission in restricted	120 KHz / 300 KHz
band)	120 KHZ / 300 KHZ

Spectrum Parameter	Setting		
Attenuation	Auto		
Detector	Peak/AV		
Start Frequency	1000 MHz(Peak/AV)		
Stop Frequency	10th carrier hamonic(Peak/AV)		
RB / VB (emission in restricted	1 MHz / 3 MHz(Peak)		
band)	1 MHz/1/T MHz(AVG)		

For Restricted band

Spectrum Parameter	Setting		
Detector	Peak/AV		
Start/Stan Fraguanay	Lower Band Edge: 2310 to 2410 MHz		
Start/Stop Frequency	Upper Band Edge: 2475 to 2500 MHz		
	1 MHz / 3 MHz(Peak)		
RB / VB	1 MHz/1/T MHz(AVG)		

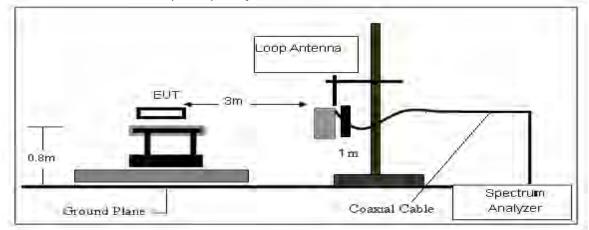
Shenzhen STS Test Services Co., Ltd.

Т

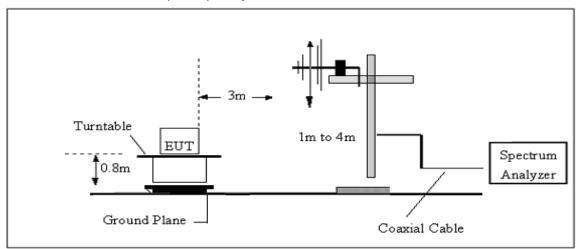
Page 21 of 75 Report No.: STS2207331W11

Receiver Parameter	Setting
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

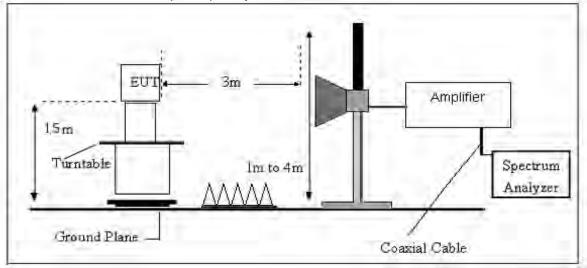
4.2 TEST PROCEDURE

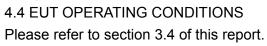

- a. The measuring distance at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 m (above 1GHz is 1.5 m) above the ground at a 3 m anechoic chamber test site. The table was rotated 360 degree to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m (above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarization of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and QuasiPeak detector mode will be re-measured.
- e. If the Peak Mode measured value is compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and no additional QP Mode measurement was performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.



4.3 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz



(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

4.5 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG Where FS = Field Strength CL = Cable Attenuation Factor (Cable Loss) RA = Reading Amplitude AG = Amplifier Gain AF = Antenna Factor

For example

Frequency	FS	RA	AF	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300	40	58.1	12.2	1.6	31.9	-18.1

Factor=AF+CL-AG

4.6 TEST RESULTS

(Between 9KHz - 30 MHz)

Temperature:	23.1(C)	Relative Humidtity:	60%RH
Test Voltage:	DC 3.8V	Polarization:	
Test Mode:	TX Mode		

Freq.	Reading Limit		Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

Note:

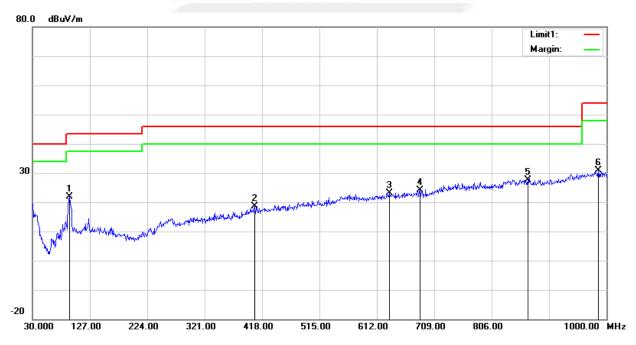
The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

(30MHz -1000MHz)

Temperature:	23.1(C)	Relative Humidity:	60%RH					
Test Voltage:	DC 3.8V Phase: Horizontal							
Test Mode:	Mode 1/2/3 (Mode 1 worst mode)							


1M PHY

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/ m)	(dBuV/m)	(dBuV/m)	(dB)	
1	92.0800	43.06	-21.20	21.86	43.50	-21.64	peak
2	405.3900	29.36	-10.83	18.53	46.00	-27.47	peak
3	633.3400	28.11	-4.98	23.13	46.00	-22.87	peak
4	684.7500	28.43	-4.31	24.12	46.00	-21.88	peak
5	867.1100	28.21	-0.50	27.71	46.00	-18.29	peak
6	986.4200	28.56	2.27	30.83	54.00	-23.17	peak

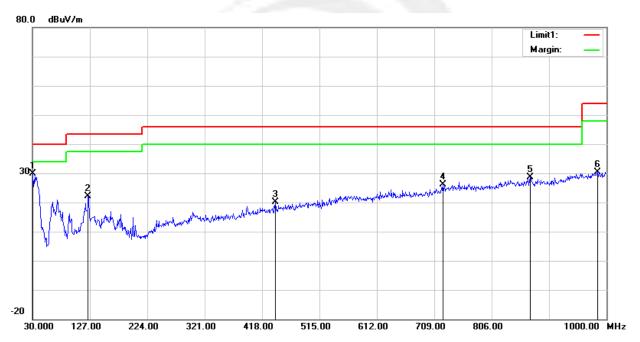
Remark:

1. Margin = Result (Result = Reading + Factor)-Limit

2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain

Shenzhen STS Test Services Co., Ltd.

Page 26 of 75 Report No.: STS2207331W11

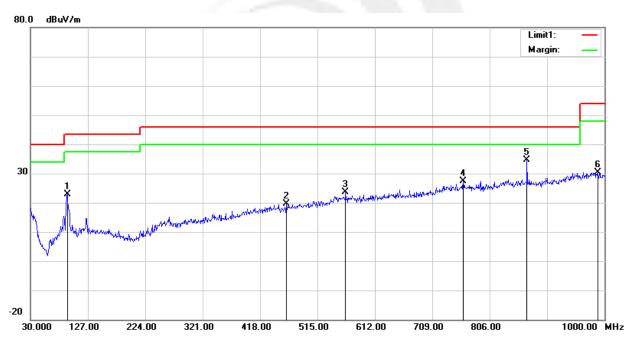

Temperature:	23.1(C)	Relative Humidity:	60%RH				
Test Voltage:	DC 3.8V Phase: Vertical						
Test Mode:	Mode 1/2/3 (Mode 1 worst mode)						

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/ m)	(dBuV/m)	(dBuV/m)	(dB)	
1	30.9700	43.22	-13.35	29.87	40.00	-10.13	peak
2	124.0900	40.39	-18.24	22.15	43.50	-21.35	peak
3	440.3100	30.21	-10.08	20.13	46.00	-25.87	peak
4	723.5500	29.06	-2.97	26.09	46.00	-19.91	peak
5	870.9900	29.14	-0.55	28.59	46.00	-17.41	peak
6	985.4500	28.10	2.33	30.43	54.00	-23.57	peak

Remark:

1. Margin = Result (Result = Reading + Factor)-Limit

2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain

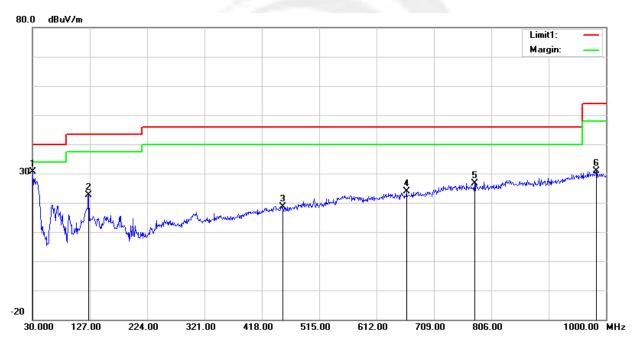

2M PHY

Temperature:	23.1(C)	Relative Humidity:	60%RH					
Test Voltage:	DC 3.8V	Phase:	Horizontal					
Test Mode:	Mode 4/5/6 (Mode 4 worst mode)							

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/ m)	(dBuV/m)	(dBuV/m)	(dB)	
1	92.0800	44.12	-21.20	22.92	43.50	-20.58	peak
2	462.6200	28.98	-9.34	19.64	46.00	-26.36	peak
3	562.5300	29.03	-5.52	23.51	46.00	-22.49	peak
4	761.3800	29.57	-2.19	27.38	46.00	-18.62	peak
5	869.0500	35.25	-0.52	34.73	46.00	-11.27	peak
6	988.3600	28.25	2.15	30.40	54.00	-23.60	peak

Remark:

- Margin = Result (Result =Reading + Factor)–Limit
 Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain


Page 28 of 75 Report No.: STS2207331W11

Temperature:	23.1(C)	Relative Humidity:	60%RH					
Test Voltage:	DC 3.8V	Vertical						
Test Mode:	Mode 4/5/6 (Mode 4 worst mode)							

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/ m)	(dBuV/m)	(dBuV/m)	(dB)	
1	30.9700	44.04	-13.35	30.69	40.00	-9.31	peak
2	125.0600	40.76	-18.22	22.54	43.50	-20.96	peak
3	452.9200	28.28	-9.61	18.67	46.00	-27.33	peak
4	662.4400	28.56	-4.76	23.80	46.00	-22.20	peak
5	777.8700	28.93	-2.24	26.69	46.00	-19.31	peak
6	983.5100	28.34	2.46	30.80	54.00	-23.20	peak

Remark:

- 1. Margin = Result (Result = Reading + Factor)-Limit
- 2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain

Report No.: STS2207331W11

(1GHz-25GHz) Spurious emission Requirements

1M PHY GFSK

Frequency	Meter Reading	Amplifier	Loss	Antenna Factor	Corrected Factor	Emission Level	Limits	Margin	Detector	Comment	
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре		
	•	•		Low Ch	nannel (GFSK/2	2402 MHz)	•				
3264.90	61.67	44.70	6.70	28.20	-9.80	51.87	74.00	-22.13	PK	Vertical	
3264.90	50.55	44.70	6.70	28.20	-9.80	40.75	54.00	-13.25	AV	Vertical	
3264.65	61.01	44.70	6.70	28.20	-9.80	51.21	74.00	-22.79	PK	Horizontal	
3264.65	50.19	44.70	6.70	28.20	-9.80	40.39	54.00	-13.61	AV	Horizontal	
4804.57	58.23	44.20	9.04	31.60	-3.56	54.67	74.00	-19.33	PK	Vertical	
4804.57	50.38	44.20	9.04	31.60	-3.56	46.82	54.00	-7.18	AV	Vertical	
4804.42	59.60	44.20	9.04	31.60	-3.56	56.04	74.00	-17.96	PK	Horizontal	
4804.42	50.24	44.20	9.04	31.60	-3.56	46.68	54.00	-7.32	AV	Horizontal	
5359.88	49.15	44.20	9.86	32.00	-2.34	46.81	74.00	-27.19	PK	Vertical	
5359.88	39.82	44.20	9.86	32.00	-2.34	37.48	54.00	-16.52	AV	Vertical	
5359.65	48.08	44.20	9.86	32.00	-2.34	45.73	74.00	-28.27	PK	Horizontal	
5359.65	39.52	44.20	9.86	32.00	-2.34	37.18	54.00	-16.82	AV	Horizontal	
7205.89	53.59	43.50	11.40	35.50	3.40	56.99	74.00	-17.01	PK	Vertical	
7205.89	44.04	43.50	11.40	35.50	3.40	47.44	54.00	-6.56	AV	Vertical	
7205.72	54.84	43.50	11.40	35.50	3.40	58.24	74.00	-15.76	PK	Horizontal	
7205.72	44.83	43.50	11.40	35.50	3.40	48.23	54.00	-5.77	AV	Horizontal	
	•	•		Middle 0	Channel (GFSK	/2440 MHz)		•			
3263.03	61.63	44.70	6.70	28.20	-9.80	51.83	74.00	-22.17	PK	Vertical	
3263.03	50.47	44.70	6.70	28.20	-9.80	40.67	54.00	-13.33	AV	Vertical	
3263.17	61.48	44.70	6.70	28.20	-9.80	51.68	74.00	-22.32	PK	Horizontal	
3263.17	50.30	44.70	6.70	28.20	-9.80	40.50	54.00	-13.50	AV	Horizontal	
4879.88	59.38	44.20	9.04	31.60	-3.56	55.82	74.00	-18.18	PK	Vertical	
4879.88	49.49	44.20	9.04	31.60	-3.56	45.93	54.00	-8.07	AV	Vertical	
4880.12	59.30	44.20	9.04	31.60	-3.56	55.74	74.00	-18.26	PK	Horizontal	
4880.12	49.31	44.20	9.04	31.60	-3.56	45.75	54.00	-8.25	AV	Horizontal	
5357.19	49.14	44.20	9.86	32.00	-2.34	46.79	74.00	-27.21	PK	Vertical	
5357.19	39.12	44.20	9.86	32.00	-2.34	36.78	54.00	-17.22	AV	Vertical	
5357.39	48.05	44.20	9.86	32.00	-2.34	45.71	74.00	-28.29	PK	Horizontal	
5357.03	39.51	44.20	9.86	32.00	-2.34	37.17	54.00	-16.83	AV	Horizontal	
7320.85	53.89	43.50	11.40	35.50	3.40	57.29	74.00	-16.71	PK	Vertical	
7320.85	43.55	43.50	11.40	35.50	3.40	46.95	54.00	-7.05	AV	Vertical	
7320.55	54.13	43.50	11.40	35.50	3.40	57.53	74.00	-16.47	PK	Horizontal	
7320.55	44.00	43.50	11.40	35.50	3.40	47.40	54.00	-6.60	AV	Horizontal	

Т

Page 30 of 75 Report No.: STS2207331W11

				High Char	nel (GFSK/	2480 MHz)				
3264.70	60.86	44.70	6.70	28.20	-9.80	51.06	74.00	-22.94	PK	Vertical
3264.70	50.14	44.70	6.70	28.20	-9.80	40.34	54.00	-13.66	AV	Vertical
3264.84	62.15	44.70	6.70	28.20	-9.80	52.35	74.00	-21.65	PK	Horizontal
3264.84	49.92	44.70	6.70	28.20	-9.80	40.12	54.00	-13.88	AV	Horizontal
4960.43	59.31	44.20	9.04	31.60	-3.56	55.75	74.00	-18.25	PK	Vertical
4960.43	49.57	44.20	9.04	31.60	-3.56	46.01	54.00	-7.99	AV	Vertical
4960.56	59.60	44.20	9.04	31.60	-3.56	56.04	74.00	-17.96	PK	Horizontal
4960.56	50.53	44.20	9.04	31.60	-3.56	46.97	54.00	-7.03	AV	Horizontal
5359.68	49.00	44.20	9.86	32.00	-2.34	46.66	74.00	-27.34	PK	Vertical
5359.68	39.02	44.20	9.86	32.00	-2.34	36.68	54.00	-17.32	AV	Vertical
5359.64	47.86	44.20	9.86	32.00	-2.34	45.51	74.00	-28.49	PK	Horizontal
5359.64	39.37	44.20	9.86	32.00	-2.34	37.03	54.00	-16.97	AV	Horizontal
7439.80	53.88	43.50	11.40	35.50	3.40	57.28	74.00	-16.72	PK	Vertical
7439.80	43.66	43.50	11.40	35.50	3.40	47.06	54.00	-6.94	AV	Vertical
7439.93	53.89	43.50	11.40	35.50	3.40	57.29	74.00	-16.71	PK	Horizontal
7439.93	44.61	43.50	11.40	35.50	3.40	48.01	54.00	-5.99	AV	Horizontal

Note:

1) Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Emission Level = Reading + Factor.

2) The frequency emission of peak points that did not show above the forms are at least 20dB below the limit, the frequency emission is mainly from the environment noise.

Page 31 of 75

Report No.: STS2207331W11

2M PHY GFSK

Frequency (MHz) Mergin (dBµ/ (dBµ/) Loss Antenna (dB) Corrected (dBµ/) Emission (dBµ//m) Limits Margin (dBµ//m) Detector (dBµ//m) (MHz) (dBµ/) (dB) (dB) (dB) (dBµ//m) (dBµ//m) (dB) Type 2 44.70 6.70 28.20 -9.80 40.24 54.00 -13.76 AV Vertical 3264.74 50.04 44.70 6.70 28.20 -9.80 40.24 54.00 -13.66 AV Vertical 3264.63 50.15 44.70 6.70 28.20 -9.80 40.35 54.00 -13.66 AV Vertical 480.42 59.14 44.20 9.04 31.60 -3.56 64.16 54.00 -7.84 AV Vertical 480.42 49.72 44.20 9.04 31.60 -3.56 46.12 54.00 -7.84 AV Horizontal 539.50 48.09 44.20 9.66 32.00 -2.34 47.10							-				
(MHz) (dB)/(dB) (dB/m) (dB)/(dB) (dB/V/m) (dB)/(m) (dB)/(m) <t< td=""><td>Frequency</td><td>Meter Reading</td><td>Amplifier</td><td>Loss</td><td></td><td></td><td></td><td>Limits</td><td>Margin</td><td>Detector</td><td>Comment</td></t<>	Frequency	Meter Reading	Amplifier	Loss				Limits	Margin	Detector	Comment
3264.74 62.32 44.70 6.70 28.20 -9.80 52.52 74.00 -21.48 PK Vertical 3264.63 60.16 44.70 6.70 28.20 -9.80 40.24 54.00 -13.76 AV Vertical 3264.63 50.15 44.70 6.70 28.20 -9.80 40.35 54.00 -13.65 AV Horizontal 4804.42 59.14 44.20 9.04 31.60 -3.56 55.58 74.00 -18.42 PK Vertical 4804.42 49.72 44.20 9.04 31.60 -3.56 54.79 74.00 -19.21 PK Horizontal 4804.52 58.35 44.20 9.04 31.60 -3.56 54.79 74.00 -19.21 PK Horizontal 5359.60 48.09 44.20 9.86 32.00 -2.34 45.74 74.00 -28.6 PK Vertical 5359.60 39.86 44.20 9.86 32.00 </td <td>(MHz)</td> <td>(dBµV)</td> <td>(dB)</td> <td>(dB)</td> <td>(dB/m)</td> <td>(dB)</td> <td>(dBµV/m)</td> <td>(dBµV/m)</td> <td>(dB)</td> <td>Туре</td> <td></td>	(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
3264.74 50.04 44.70 6.70 28.20 -9.80 40.24 54.00 -13.76 AV Vertical 3264.63 61.16 44.70 6.70 28.20 -9.80 51.36 74.00 -22.64 PK Horizontal 3264.63 50.15 44.70 6.70 28.20 -9.80 40.35 54.00 -13.76 AV Horizontal 4804.42 49.72 44.20 9.04 31.60 -3.56 55.58 74.00 -18.42 PK Vertical 4804.52 58.35 44.20 9.04 31.60 -3.56 54.79 74.00 -19.21 PK Horizontal 5359.60 48.09 44.20 9.86 32.00 -2.34 45.74 74.00 -28.26 PK Horizontal 5359.76 39.52 44.20 9.86 32.00 -2.34 37.18 54.00 -16.82 AV Horizontal 7205.89 54.85 43.50 11.40 3					Low Ch	nannel (GFSK/2	2402 MHz)				
3264.63 61.16 44.70 6.70 28.20 -9.80 51.36 74.00 -22.64 PK Horizontal 3264.63 50.15 44.70 6.70 28.20 -9.80 40.35 54.00 -13.65 AV Horizontal 4804.42 59.14 44.20 9.04 31.60 -3.56 55.58 74.00 -18.42 PK Vertical 4804.52 58.35 44.20 9.04 31.60 -3.56 54.79 74.00 -19.21 PK Horizontal 5359.60 48.09 44.20 9.04 31.60 -3.56 54.79 74.00 -2.826 PK Vertical 5359.60 48.09 44.20 9.86 32.00 -2.34 37.51 54.00 -16.82 AV Vertical 5359.76 39.52 44.20 9.86 32.00 -2.34 37.18 54.00 -16.82 AV Horizontal 7205.73 44.24 43.50 11.40 35.	3264.74	62.32	44.70	6.70	28.20	-9.80	52.52	74.00	-21.48	PK	Vertical
3264.63 50.15 44.70 6.70 28.20 -9.80 40.35 54.00 -13.65 AV Horizontal 4804.42 59.14 44.20 9.04 31.60 -3.56 55.58 74.00 -18.42 PK Vertical 4804.52 58.35 44.20 9.04 31.60 -3.56 54.79 74.00 -19.21 PK Horizontal 4804.52 49.68 44.20 9.04 31.60 -3.56 46.12 54.00 -7.84 AV Horizontal 5359.60 49.08 44.20 9.86 32.00 -2.34 37.51 54.00 -16.49 AV Vertical 5359.60 39.86 43.50 11.40 35.50 3.40 58.25 74.00 -16.82 AV Horizontal 7205.89 54.85 43.50 11.40 35.50 3.40 57.66 74.00 -16.34 PK Horizontal 7205.73 54.26 43.50 11.40 35	3264.74	50.04	44.70	6.70	28.20	-9.80	40.24	54.00	-13.76	AV	Vertical
4804.42 59.14 44.20 9.04 31.60 -3.56 55.58 74.00 -18.42 PK Vertical 4804.42 49.72 44.20 9.04 31.60 -3.56 46.16 54.00 -7.84 AV Vertical 4804.52 58.35 44.20 9.04 31.60 -3.56 54.79 74.00 -18.42 AV Horizontal 5359.60 48.09 44.20 9.86 32.00 -2.34 45.74 74.00 -28.26 PK Vertical 5359.60 39.86 44.20 9.86 32.00 -2.34 45.74 74.00 -28.26 PK Vertical 5359.76 39.52 44.20 9.86 32.00 -2.34 45.18 74.00 -16.82 AV Horizontal 7205.89 54.85 43.50 11.40 35.50 3.40 57.66 74.00 -16.34 PK Horizontal 7205.73 54.26 43.50 11.40 35.50<	3264.63	61.16	44.70	6.70	28.20	-9.80	51.36	74.00	-22.64	PK	Horizontal
4804.42 49.72 44.20 9.04 31.60 -3.56 46.16 54.00 -7.84 AV Vertical 4804.52 58.35 44.20 9.04 31.60 -3.56 54.79 74.00 -19.21 PK Horizontal 4804.52 49.68 44.20 9.04 31.60 -3.56 46.12 54.00 -7.88 AV Horizontal 5359.60 48.09 44.20 9.86 32.00 -2.34 45.74 74.00 -28.26 PK Vertical 5359.60 47.42 44.20 9.86 32.00 -2.34 45.08 74.00 -28.92 PK Horizontal 5359.76 47.42 44.20 9.86 32.00 -2.34 37.18 54.00 -16.82 AV Horizontal 7205.89 54.85 43.50 11.40 35.50 3.40 47.64 54.00 -6.64 AV Vertical 7205.73 54.26 43.50 11.40 35.50<	3264.63	50.15	44.70	6.70	28.20	-9.80	40.35	54.00	-13.65	AV	Horizontal
4804.52 58.35 44.20 9.04 31.60 -3.56 54.79 74.00 -19.21 PK Horizontal 4804.52 49.68 44.20 9.04 31.60 -3.56 46.12 54.00 -7.88 AV Horizontal 5359.60 38.06 44.20 9.86 32.00 -2.34 45.74 74.00 -28.26 PK Vertical 5359.60 39.82 44.20 9.86 32.00 -2.34 45.08 74.00 -28.92 PK Horizontal 5359.76 39.52 44.20 9.86 32.00 -2.34 37.18 54.00 -16.82 AV Horizontal 7205.89 54.85 43.50 11.40 35.50 3.40 57.66 74.00 -16.34 PK Horizontal 7205.89 43.86 11.40 35.50 3.40 47.64 54.00 -6.64 AV Horizontal 7205.73 54.26 43.50 11.40 35.50 3	4804.42	59.14	44.20	9.04	31.60	-3.56	55.58	74.00	-18.42	PK	Vertical
4804.52 49.68 44.20 9.04 31.60 -3.56 46.12 54.00 -7.88 AV Horizontal 5359.60 48.09 44.20 9.86 32.00 -2.34 45.74 74.00 -28.26 PK Vertical 5359.60 39.86 44.20 9.86 32.00 -2.34 37.51 54.00 -16.49 AV Vertical 5359.76 39.52 44.20 9.86 32.00 -2.34 37.18 54.00 -16.82 AV Horizontal 7205.89 54.85 43.50 11.40 35.50 3.40 47.36 54.00 -6.64 AV Vertical 7205.73 54.26 43.50 11.40 35.50 3.40 47.64 54.00 -6.64 AV Horizontal 7205.73 54.26 43.50 11.40 35.50 3.40 47.64 54.00 -6.36 AV Horizontal 3263.16 62.01 44.70 6.70 28.20 <td>4804.42</td> <td>49.72</td> <td>44.20</td> <td>9.04</td> <td>31.60</td> <td>-3.56</td> <td>46.16</td> <td>54.00</td> <td>-7.84</td> <td>AV</td> <td>Vertical</td>	4804.42	49.72	44.20	9.04	31.60	-3.56	46.16	54.00	-7.84	AV	Vertical
5359.60 48.09 44.20 9.86 32.00 -2.34 45.74 74.00 -28.26 PK Vertical 5359.60 39.86 44.20 9.86 32.00 -2.34 37.51 54.00 -16.49 AV Vertical 5359.76 47.42 44.20 9.86 32.00 -2.34 45.08 74.00 -16.49 AV Horizontal 5359.76 39.52 44.20 9.86 32.00 -2.34 37.18 54.00 -16.82 AV Horizontal 7205.89 54.85 43.50 11.40 35.50 3.40 57.66 74.00 -16.34 PK Horizontal 7205.73 54.26 43.50 11.40 35.50 3.40 57.66 74.00 -16.34 PK Horizontal 7205.73 44.24 43.50 11.40 35.50 3.40 47.64 54.00 -6.34 AV Horizontal 7205.73 44.24 43.50 11.40 35	4804.52	58.35	44.20	9.04	31.60	-3.56	54.79	74.00	-19.21	PK	Horizontal
5359.60 39.86 44.20 9.86 32.00 -2.34 37.51 54.00 -16.49 AV Vertical 5359.76 47.42 44.20 9.86 32.00 -2.34 45.08 74.00 -28.92 PK Horizontal 5359.76 39.52 44.20 9.86 32.00 -2.34 37.18 54.00 -16.82 AV Horizontal 7205.89 54.85 43.50 11.40 35.50 3.40 47.36 54.00 -6.64 AV Vertical 7205.73 54.26 43.50 11.40 35.50 3.40 57.66 74.00 -16.34 PK Horizontal 7205.73 54.26 43.50 11.40 35.50 3.40 57.66 74.00 -6.64 AV Horizontal 7205.73 54.26 43.50 11.40 35.50 3.40 57.66 74.00 -6.74 Q Vertical 3263.16 62.01 44.70 6.70 28.20 <td>4804.52</td> <td>49.68</td> <td>44.20</td> <td>9.04</td> <td>31.60</td> <td>-3.56</td> <td>46.12</td> <td>54.00</td> <td>-7.88</td> <td>AV</td> <td>Horizontal</td>	4804.52	49.68	44.20	9.04	31.60	-3.56	46.12	54.00	-7.88	AV	Horizontal
5359.76 47.42 44.20 9.86 32.00 -2.34 45.08 74.00 -28.92 PK Horizontal 5359.76 39.52 44.20 9.86 32.00 -2.34 37.18 54.00 -16.82 AV Horizontal 7205.89 54.85 43.50 11.40 35.50 3.40 58.25 74.00 -15.75 PK Vertical 7205.89 43.96 43.50 11.40 35.50 3.40 47.36 54.00 -6.64 AV Vertical 7205.73 54.26 43.50 11.40 35.50 3.40 47.64 54.00 -6.36 AV Horizontal 7205.73 44.24 43.50 11.40 35.50 3.40 47.64 54.00 -6.36 AV Horizontal 7205.73 44.24 43.50 11.40 35.50 3.40 47.64 54.00 -6.36 AV Horizontal 3263.00 61.79 44.70 6.70 28.20<	5359.60	48.09	44.20	9.86	32.00	-2.34	45.74	74.00	-28.26	PK	Vertical
5359.76 39.52 44.20 9.86 32.00 -2.34 37.18 54.00 -16.82 AV Horizontal 7205.89 54.85 43.50 11.40 35.50 3.40 58.25 74.00 -15.75 PK Vertical 7205.89 43.96 43.50 11.40 35.50 3.40 47.36 54.00 -6.64 AV Vertical 7205.73 54.26 43.50 11.40 35.50 3.40 57.66 74.00 -16.34 PK Horizontal 7205.73 44.24 43.50 11.40 35.50 3.40 47.64 54.00 -6.64 AV Horizontal 7205.73 44.24 43.50 11.40 35.50 3.40 47.64 54.00 -6.66 AV Horizontal 7205.73 44.20 6.70 28.20 -9.80 52.21 74.00 -21.79 PK Vertical 3263.16 62.01 44.70 6.70 28.20 -9.80 </td <td>5359.60</td> <td>39.86</td> <td>44.20</td> <td>9.86</td> <td>32.00</td> <td>-2.34</td> <td>37.51</td> <td>54.00</td> <td>-16.49</td> <td>AV</td> <td>Vertical</td>	5359.60	39.86	44.20	9.86	32.00	-2.34	37.51	54.00	-16.49	AV	Vertical
7205.89 54.85 43.50 11.40 35.50 3.40 58.25 74.00 -15.75 PK Vertical 7205.89 43.96 43.50 11.40 35.50 3.40 47.36 54.00 -6.64 AV Vertical 7205.73 54.26 43.50 11.40 35.50 3.40 47.66 54.00 -6.64 AV Vertical 7205.73 44.24 43.50 11.40 35.50 3.40 47.64 54.00 -6.64 AV Horizontal 7205.73 44.24 43.50 11.40 35.50 3.40 47.64 54.00 -6.64 AV Horizontal 7205.73 44.24 43.50 11.40 35.50 3.40 47.64 54.00 -6.34 AV Horizontal 7205.73 44.24 43.50 6.70 28.20 -9.80 51.99 74.00 -21.79 PK Vertical 3263.00 61.79 44.70 6.70 28.20	5359.76	47.42	44.20	9.86	32.00	-2.34	45.08	74.00	-28.92	PK	Horizontal
7205.89 43.96 43.50 11.40 35.50 3.40 47.36 54.00 -6.64 AV Vertical 7205.73 54.26 43.50 11.40 35.50 3.40 57.66 74.00 -16.34 PK Horizontal 7205.73 44.24 43.50 11.40 35.50 3.40 47.64 54.00 -6.66 AV Horizontal Middle Chersk/2440 MHz; Wertical 3263.16 62.01 44.70 6.70 28.20 -9.80 51.99 74.00 -21.79 PK Vertical 3263.00 61.79 44.70 6.70 28.20 -9.80 51.99 74.00 -22.01 PK Horizontal 3263.00 61.79 44.70 6.70 28.20 -9.80 40.15 54.00 -13.85 AV Horizontal 3263.00 61.79 44.70 6.70 28.20 -9.80 40.15 54.00 -13.85 AV Horizontal	5359.76	39.52	44.20	9.86	32.00	-2.34	37.18	54.00	-16.82	AV	Horizontal
7205.73 54.26 43.50 11.40 35.50 3.40 57.66 74.00 -16.34 PK Horizontal 7205.73 44.24 43.50 11.40 35.50 3.40 47.64 54.00 -6.36 AV Horizontal Middle Channel (GFSK/2440 MHz) 3263.16 62.01 44.70 6.70 28.20 -9.80 52.21 74.00 -21.79 PK Vertical 3263.16 50.93 44.70 6.70 28.20 -9.80 51.99 74.00 -22.01 PK Horizontal 3263.00 61.79 44.70 6.70 28.20 -9.80 51.99 74.00 -22.01 PK Horizontal 3263.00 49.95 44.70 6.70 28.20 -9.80 40.15 54.00 -13.85 AV Horizontal 3263.00 49.95 44.20 9.04 31.60 -3.56 55.83 74.00 -18.17 PK Vertical 4879.	7205.89	54.85	43.50	11.40	35.50	3.40	58.25	74.00	-15.75	PK	Vertical
7205.73 44.24 43.50 11.40 35.50 3.40 47.64 54.00 -6.36 AV Horizontal 3263.16 62.01 44.70 6.70 28.20 -9.80 52.21 74.00 -21.79 PK Vertical 3263.16 50.93 44.70 6.70 28.20 -9.80 51.99 74.00 -21.79 PK Vertical 3263.00 61.79 44.70 6.70 28.20 -9.80 51.99 74.00 -22.01 PK Horizontal 3263.00 61.79 44.70 6.70 28.20 -9.80 51.99 74.00 -22.01 PK Horizontal 3263.00 49.95 44.70 6.70 28.20 -9.80 40.15 54.00 -13.85 AV Horizontal 3263.00 49.95 44.20 9.04 31.60 -3.56 55.83 74.00 -18.17 PK Vertical 4879.93 59.54 44.20 9.04 31.60	7205.89	43.96	43.50	11.40	35.50	3.40	47.36	54.00	-6.64	AV	Vertical
Middle Channel (GFSK/2440 MHz) 3263.16 62.01 44.70 6.70 28.20 -9.80 52.21 74.00 -21.79 PK Vertical 3263.16 50.93 44.70 6.70 28.20 -9.80 41.13 54.00 -12.87 AV Vertical 3263.00 61.79 44.70 6.70 28.20 -9.80 51.99 74.00 -22.01 PK Horizontal 3263.00 49.95 44.70 6.70 28.20 -9.80 51.99 74.00 -22.01 PK Horizontal 3263.00 49.95 44.70 6.70 28.20 -9.80 40.15 54.00 -13.85 AV Horizontal 3263.00 49.95 44.20 9.04 31.60 -3.56 55.83 74.00 -18.17 PK Vertical 4879.87 49.95 44.20 9.04 31.60 -3.56 55.98 74.00 -18.02 PK Horizontal 4879.93 49.36	7205.73	54.26	43.50	11.40	35.50	3.40	57.66	74.00	-16.34	PK	Horizontal
3263.16 62.01 44.70 6.70 28.20 -9.80 52.21 74.00 -21.79 PK Vertical 3263.16 50.93 44.70 6.70 28.20 -9.80 41.13 54.00 -12.87 AV Vertical 3263.00 61.79 44.70 6.70 28.20 -9.80 51.99 74.00 -22.01 PK Horizontal 3263.00 49.95 44.70 6.70 28.20 -9.80 51.99 74.00 -22.01 PK Horizontal 3263.00 49.95 44.70 6.70 28.20 -9.80 40.15 54.00 -13.85 AV Horizontal 3263.00 49.95 44.20 9.04 31.60 -3.56 55.83 74.00 -18.17 PK Vertical 4879.87 49.95 44.20 9.04 31.60 -3.56 55.98 74.00 -18.02 PK Horizontal 4879.93 49.36 44.20 9.46 32.0	7205.73	44.24	43.50	11.40	35.50	3.40	47.64	54.00	-6.36	AV	Horizontal
3263.1650.9344.706.7028.20-9.8041.1354.00-12.87AVVertical3263.0061.7944.706.7028.20-9.8051.9974.00-22.01PKHorizontal3263.0049.9544.706.7028.20-9.8040.1554.00-13.85AVHorizontal4879.8759.3944.209.0431.60-3.5655.8374.00-18.17PKVertical4879.8749.9544.209.0431.60-3.5646.3954.00-7.61AVVertical4879.8749.9544.209.0431.60-3.5646.3954.00-7.61AVVertical4879.8749.9544.209.0431.60-3.5645.8054.00-7.61AVVertical4879.9359.5444.209.0431.60-3.5645.8054.00-8.20AVHorizontal5357.2748.1644.209.8632.00-2.3445.8274.00-28.18PKVertical5357.2739.1144.209.8632.00-2.3436.7754.00-17.23AVVertical5357.1539.3344.209.8632.00-2.3436.9854.00-17.02AVHorizontal5357.1539.3344.209.8632.00-2.3436.9854.00-17.02AVHorizontal7320.8554.4043.50					Middle C	Channel (GFSK	/2440 MHz)				
3263.0061.7944.706.7028.20-9.8051.9974.00-22.01PKHorizontal3263.0049.9544.706.7028.20-9.8040.1554.00-13.85AVHorizontal4879.8759.3944.209.0431.60-3.5655.8374.00-18.17PKVertical4879.8749.9544.209.0431.60-3.5646.3954.00-7.61AVVertical4879.9359.5444.209.0431.60-3.5645.8055.9874.00-18.02PKHorizontal4879.9359.5444.209.0431.60-3.5645.8054.00-7.61AVVertical4879.9349.3644.209.0431.60-3.5645.8054.00-8.20AVHorizontal5357.2748.1644.209.8632.00-2.3445.8274.00-28.18PKVertical5357.2739.1144.209.8632.00-2.3436.7754.00-17.23AVVertical5357.3947.5644.209.8632.00-2.3436.9854.00-17.02AVHorizontal5357.1539.3344.209.8632.00-2.3436.9854.00-17.02AVHorizontal7320.8554.4043.5011.4035.503.4057.8074.00-16.00PKVertical7320.2854.60<	3263.16	62.01	44.70	6.70	28.20	-9.80	52.21	74.00	-21.79	PK	Vertical
3263.0049.9544.706.7028.20-9.8040.1554.00-13.85AVHorizontal4879.8759.3944.209.0431.60-3.5655.8374.00-18.17PKVertical4879.8749.9544.209.0431.60-3.5646.3954.00-7.61AVVertical4879.9359.5444.209.0431.60-3.5655.9874.00-18.02PKHorizontal4879.9359.5444.209.0431.60-3.5655.9874.00-18.02PKHorizontal4879.9349.3644.209.0431.60-3.5645.8054.00-8.20AVHorizontal5357.2748.1644.209.8632.00-2.3445.8274.00-28.18PKVertical5357.3947.5644.209.8632.00-2.3436.7754.00-17.23AVVertical5357.1539.3344.209.8632.00-2.3436.9854.00-17.02AVHorizontal5357.1539.3344.209.8632.00-2.3436.9854.00-17.02AVHorizontal7320.8554.4043.5011.4035.503.4057.8074.00-16.20PKVertical7320.2854.6043.5011.4035.503.4058.0074.00-16.00PKHorizontal7320.2854.6043.50 <td>3263.16</td> <td>50.93</td> <td>44.70</td> <td>6.70</td> <td>28.20</td> <td>-9.80</td> <td>41.13</td> <td>54.00</td> <td>-12.87</td> <td>AV</td> <td>Vertical</td>	3263.16	50.93	44.70	6.70	28.20	-9.80	41.13	54.00	-12.87	AV	Vertical
4879.8759.3944.209.0431.60-3.5655.8374.00-18.17PKVertical4879.8749.9544.209.0431.60-3.5646.3954.00-7.61AVVertical4879.9359.5444.209.0431.60-3.5655.9874.00-18.02PKHorizontal4879.9349.3644.209.0431.60-3.5655.9874.00-8.20AVHorizontal5357.2748.1644.209.8632.00-2.3445.8274.00-28.18PKVertical5357.2739.1144.209.8632.00-2.3436.7754.00-17.23AVVertical5357.3947.5644.209.8632.00-2.3445.2174.00-28.79PKHorizontal5357.1539.3344.209.8632.00-2.3436.9854.00-17.02AVHorizontal5357.1539.3344.209.8632.00-2.3436.9854.00-17.02AVHorizontal7320.8554.4043.5011.4035.503.4057.8074.00-16.20PKVertical7320.2854.6043.5011.4035.503.4058.0074.00-16.00PKHorizontal7320.2854.6043.5011.4035.503.4058.0074.00-16.00PKHorizontal	3263.00	61.79	44.70	6.70	28.20	-9.80	51.99	74.00	-22.01	PK	Horizontal
4879.8749.9544.209.0431.60-3.5646.3954.00-7.61AVVertical4879.9359.5444.209.0431.60-3.5655.9874.00-18.02PKHorizontal4879.9349.3644.209.0431.60-3.5645.8054.00-8.20AVHorizontal5357.2748.1644.209.8632.00-2.3445.8274.00-28.18PKVertical5357.2739.1144.209.8632.00-2.3436.7754.00-17.23AVVertical5357.3947.5644.209.8632.00-2.3445.2174.00-28.79PKHorizontal5357.1539.3344.209.8632.00-2.3436.9854.00-17.02AVHorizontal7320.8554.4043.5011.4035.503.4057.8074.00-16.20PKVertical7320.2854.6043.5011.4035.503.4058.0074.00-6.57AVVertical	3263.00	49.95	44.70	6.70	28.20	-9.80	40.15	54.00	-13.85	AV	Horizontal
4879.9359.5444.209.0431.60-3.5655.9874.00-18.02PKHorizontal4879.9349.3644.209.0431.60-3.5645.8054.00-8.20AVHorizontal5357.2748.1644.209.8632.00-2.3445.8274.00-28.18PKVertical5357.2739.1144.209.8632.00-2.3436.7754.00-17.23AVVertical5357.3947.5644.209.8632.00-2.3445.2174.00-28.79PKHorizontal5357.1539.3344.209.8632.00-2.3436.9854.00-17.02AVHorizontal7320.8554.4043.5011.4035.503.4057.8074.00-16.20PKVertical7320.2854.6043.5011.4035.503.4058.0074.00-6.57AVVertical7320.2854.6043.5011.4035.503.4058.0074.00-16.00PKHorizontal	4879.87	59.39	44.20	9.04	31.60	-3.56	55.83	74.00	-18.17	PK	Vertical
4879.9349.3644.209.0431.60-3.5645.8054.00-8.20AVHorizontal5357.2748.1644.209.8632.00-2.3445.8274.00-28.18PKVertical5357.2739.1144.209.8632.00-2.3436.7754.00-17.23AVVertical5357.3947.5644.209.8632.00-2.3445.2174.00-28.79PKHorizontal5357.1539.3344.209.8632.00-2.3436.9854.00-17.02AVHorizontal7320.8554.4043.5011.4035.503.4057.8074.00-16.20PKVertical7320.2854.6043.5011.4035.503.4058.0074.00-6.57AVVertical7320.2854.6043.5011.4035.503.4058.0074.00-16.00PKHorizontal	4879.87	49.95	44.20	9.04	31.60	-3.56	46.39	54.00	-7.61	AV	Vertical
5357.2748.1644.209.8632.00-2.3445.8274.00-28.18PKVertical5357.2739.1144.209.8632.00-2.3436.7754.00-17.23AVVertical5357.3947.5644.209.8632.00-2.3445.2174.00-28.79PKHorizontal5357.1539.3344.209.8632.00-2.3436.9854.00-17.02AVHorizontal7320.8554.4043.5011.4035.503.4057.8074.00-16.20PKVertical7320.2854.6043.5011.4035.503.4058.0074.00-6.57AVVertical7320.2854.6043.5011.4035.503.4058.0074.00-16.00PKHorizontal	4879.93	59.54	44.20	9.04	31.60	-3.56	55.98	74.00	-18.02	PK	Horizontal
5357.2739.1144.209.8632.00-2.3436.7754.00-17.23AVVertical5357.3947.5644.209.8632.00-2.3445.2174.00-28.79PKHorizontal5357.1539.3344.209.8632.00-2.3436.9854.00-17.02AVHorizontal7320.8554.4043.5011.4035.503.4057.8074.00-16.20PKVertical7320.8544.0343.5011.4035.503.4047.4354.00-6.57AVVertical7320.2854.6043.5011.4035.503.4058.0074.00-16.00PKHorizontal	4879.93	49.36	44.20	9.04	31.60	-3.56	45.80	54.00	-8.20	AV	Horizontal
5357.3947.5644.209.8632.00-2.3445.2174.00-28.79PKHorizontal5357.1539.3344.209.8632.00-2.3436.9854.00-17.02AVHorizontal7320.8554.4043.5011.4035.503.4057.8074.00-16.20PKVertical7320.8544.0343.5011.4035.503.4047.4354.00-6.57AVVertical7320.2854.6043.5011.4035.503.4058.0074.00-16.00PKHorizontal	5357.27	48.16	44.20	9.86	32.00	-2.34	45.82	74.00	-28.18	PK	Vertical
5357.15 39.33 44.20 9.86 32.00 -2.34 36.98 54.00 -17.02 AV Horizontal 7320.85 54.40 43.50 11.40 35.50 3.40 57.80 74.00 -16.20 PK Vertical 7320.85 44.03 43.50 11.40 35.50 3.40 47.43 54.00 -6.57 AV Vertical 7320.28 54.60 43.50 11.40 35.50 3.40 58.00 74.00 -16.00 PK Horizontal	5357.27	39.11	44.20	9.86	32.00	-2.34	36.77	54.00	-17.23	AV	Vertical
7320.85 54.40 43.50 11.40 35.50 3.40 57.80 74.00 -16.20 PK Vertical 7320.85 44.03 43.50 11.40 35.50 3.40 47.43 54.00 -6.57 AV Vertical 7320.28 54.60 43.50 11.40 35.50 3.40 58.00 74.00 -16.00 PK Horizontal	5357.39	47.56	44.20	9.86	32.00	-2.34		74.00	-28.79	PK	Horizontal
7320.85 44.03 43.50 11.40 35.50 3.40 47.43 54.00 -6.57 AV Vertical 7320.28 54.60 43.50 11.40 35.50 3.40 58.00 74.00 -16.00 PK Horizontal	5357.15	39.33	44.20	9.86	32.00	-2.34	36.98	54.00	-17.02	AV	Horizontal
7320.28 54.60 43.50 11.40 35.50 3.40 58.00 74.00 -16.00 PK Horizontal	7320.85	54.40	43.50	11.40	35.50	3.40	57.80	74.00	-16.20	PK	Vertical
	7320.85	44.03	43.50	11.40	35.50	3.40	47.43	54.00	-6.57	AV	Vertical
7320.28 44.03 43.50 11.40 35.50 3.40 47.43 54.00 -6.57 AV Horizontal	7320.28	54.60	43.50	11.40	35.50	3.40	58.00	74.00	-16.00	PK	Horizontal
	7320.28	44.03	43.50	11.40	35.50	3.40	47.43	54.00	-6.57	AV	Horizontal

Shenzhen STS Test Services Co., Ltd.

Page 32 of 75 Report No.: STS2207331W11

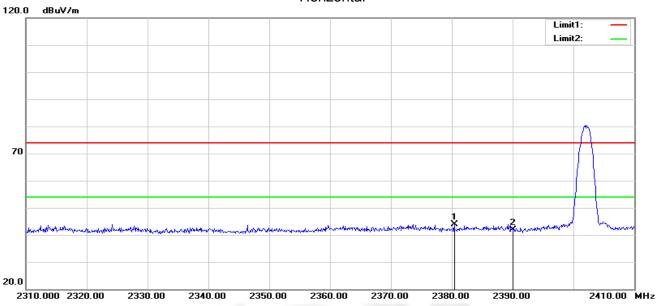
				High Char	nnel (GFSK/	2480 MHz)				
3264.71	62.31	44.70	6.70	28.20	-9.80	52.51	74.00	-21.49	PK	Vertical
3264.71	50.54	44.70	6.70	28.20	-9.80	40.74	54.00	-13.26	AV	Vertical
3264.69	60.84	44.70	6.70	28.20	-9.80	51.04	74.00	-22.96	PK	Horizontal
3264.69	50.68	44.70	6.70	28.20	-9.80	40.88	54.00	-13.12	AV	Horizontal
4960.53	59.09	44.20	9.04	31.60	-3.56	55.53	74.00	-18.47	PK	Vertical
4960.53	49.42	44.20	9.04	31.60	-3.56	45.86	54.00	-8.14	AV	Vertical
4960.45	59.38	44.20	9.04	31.60	-3.56	55.82	74.00	-18.18	PK	Horizontal
4960.45	49.60	44.20	9.04	31.60	-3.56	46.04	54.00	-7.96	AV	Horizontal
5359.61	47.99	44.20	9.86	32.00	-2.34	45.64	74.00	-28.36	PK	Vertical
5359.61	40.35	44.20	9.86	32.00	-2.34	38.01	54.00	-15.99	AV	Vertical
5359.64	47.24	44.20	9.86	32.00	-2.34	44.90	74.00	-29.10	PK	Horizontal
5359.64	39.01	44.20	9.86	32.00	-2.34	36.66	54.00	-17.34	AV	Horizontal
7439.81	53.75	43.50	11.40	35.50	3.40	57.15	74.00	-16.85	PK	Vertical
7439.81	44.22	43.50	11.40	35.50	3.40	47.62	54.00	-6.38	AV	Vertical
7439.74	53.95	43.50	11.40	35.50	3.40	57.35	74.00	-16.65	PK	Horizontal
7439.74	43.56	43.50	11.40	35.50	3.40	46.96	54.00	-7.04	AV	Horizontal

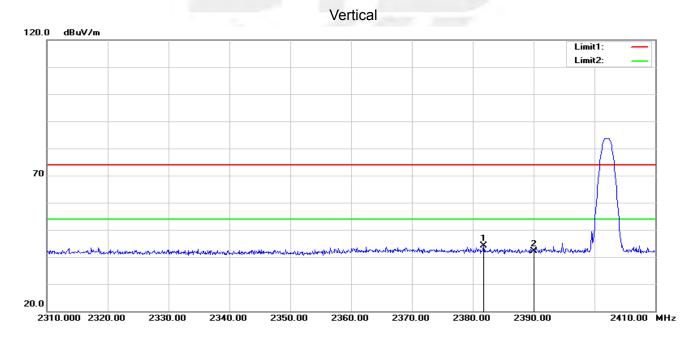
Note:

1) Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Emission Level = Reading + Factor.

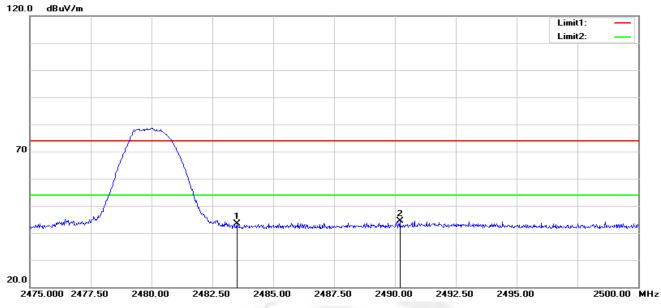
2) The frequency emission of peak points that did not show above the forms are at least 20dB below the limit, the frequency emission is mainly from the environment noise.

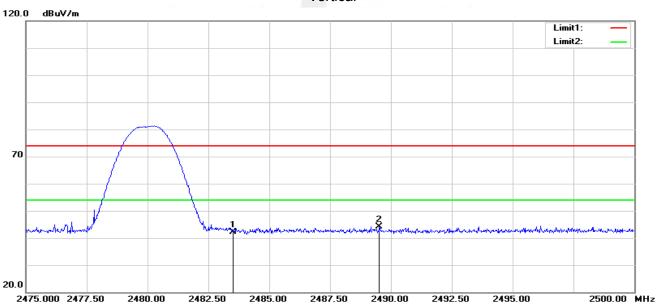



Report No.: STS2207331W11

4.6 TEST RESULTS (Restricted Bands Requirements)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2380.400	39.72	4.19	43.91	74.00	-30.09	peak
2	2390.000	37.59	4.34	41.93	74.00	-32.07	peak


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2381.800	39.93	4.22	44.15	74.00	-29.85	peak
2	2390.000	37.79	4.34	42.13	74.00	-31.87	peak

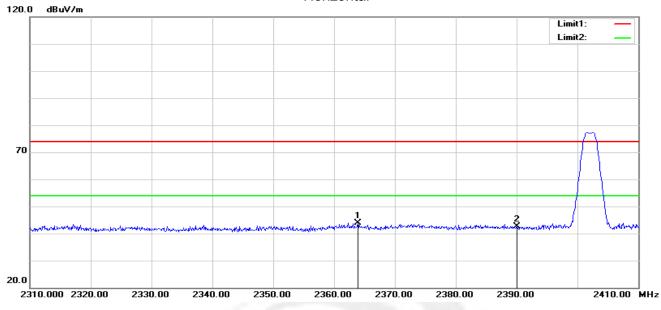

Page 34 of 75

Report No.: STS2207331W11

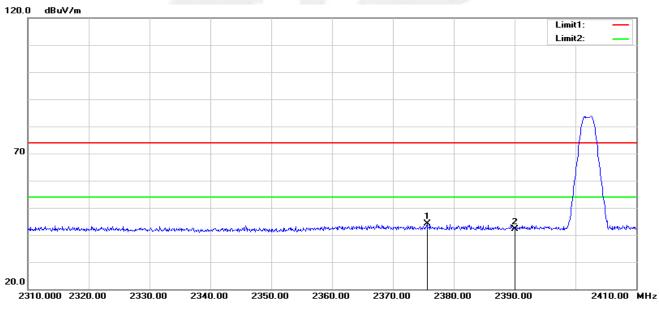
GFSK-High Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	38.72	4.60	43.32	74.00	-30.68	peak
2	2490.200	39.76	4.63	44.39	74.00	-29.61	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	37.50	4.60	42.10	74.00	-31.90	peak
2	2489.525	39.53	4.62	44.15	74.00	-29.85	peak


Vertical

Shenzhen STS Test Services Co., Ltd.



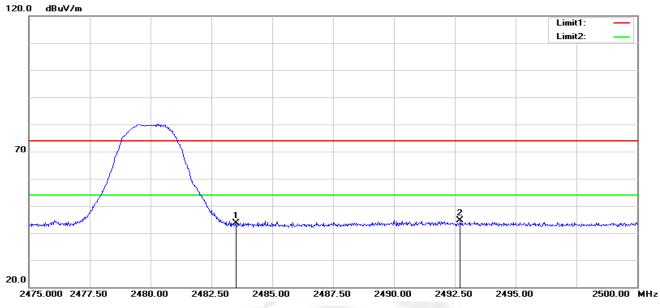
Report No.: STS2207331W11

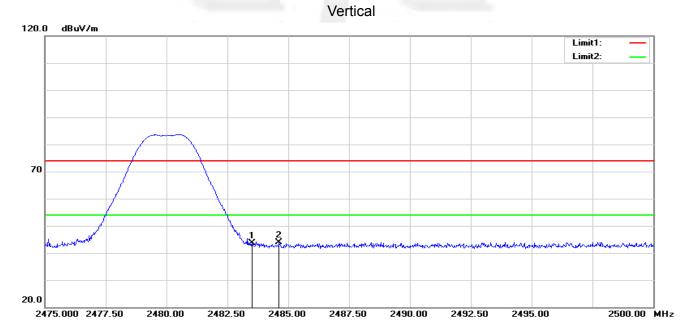
2M PHY GFSK-Low Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2363.900	40.03	3.95	43.98	74.00	-30.02	peak
2	2390.000	38.24	4.34	42.58	74.00	-31.42	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2375.600	39.89	4.13	44.02	74.00	-29.98	peak
2	2390.000	37.75	4.34	42.09	74.00	-31.91	peak

Vertical


Shenzhen STS Test Services Co., Ltd.


Page 36 of 75

Report No.: STS2207331W11

GFSK-High Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	38.95	4.60	43.55	74.00	-30.45	peak
2	2492.725	40.01	4.64	44.65	74.00	-29.35	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	39.13	4.60	43.73	74.00	-30.27	peak
2	2484.625	39.37	4.61	43.98	74.00	-30.02	peak

Shenzhen STS Test Services Co., Ltd.

5.1 LIMIT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

5.2 TEST PROCEDURE

Spectrum Parameter	Setting
Detector	Peak
Start/Stop Frequency	30 MHz to 10th carrier harmonic
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold
For Band edge	

Spectrum Parameter	Setting	
Detector	Peak	
	Lower Band Edge: 2300 – 2407 MHz	
Start/Stop Frequency	Upper Band Edge: 2475 – 2500 MHz	
RB / VB (emission in restricted band)	100 KHz/300 KHz	
Trace-Mode:	Max hold	

5.3 TEST SETUP

The EUT is connected to the Spectrum Analyzer; the RF load attached to the EUT antenna termina is 50 Ohm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth(RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

5.4 EUT OPERATION CONDITIONS Please refer to section 3.4 of this report.

5.5 TEST RESULTS

Note: The test data please refer to APPENDIX 1.

6. POWER SPECTRAL DENSITY TEST

6.1 LIMIT

FCC Part 15.247,Subpart C						
Section	Test Item	Limit	Frequency Range (MHz)	Result		
15.247(e)	Power Spectral Density	≤8 dBm (RBW≥3KHz)	2400-2483.5	PASS		

6.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW to: 100 kHz \ge RBW \ge 3 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 TEST SETUP

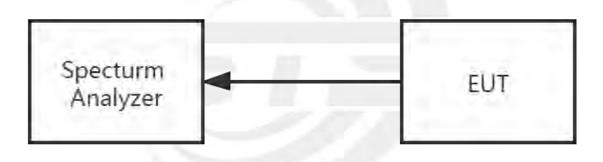
Specturm Analyzer	EUT
Analyzer	

6.4 EUT OPERATION CONDITIONS Please refer to section 3.4 of this report.

6.5 TEST RESULTS

Note: The test data please refer to APPENDIX 1.

7. BANDWIDTH TEST


7.1 LIMIT

FCC Part 15.247,Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result	
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS	

7.2 TEST PROCEDURE

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \geq 3RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

7.3 TEST SETUP

7.4 EUT OPERATION CONDITIONS Please refer to section 3.4 of this report.

7.5 TEST RESULTS

Note: The test data please refer to APPENDIX 1.

8. PEAK OUTPUT POWER TEST

8.1 LIMIT

FCC Part 15.247,Subpart C						
Section	Test Item	Frequency Range (MHz)	Result			
15.247(b)(3)	Output Power	1 watt or 30dBm	2400-2483.5	PASS		

8.2 TEST PROCEDURE

One of the following procedures may be used to determine the maximum peak conducted output power of a DTS EUT.

 $RBW \ge DTS$ bandwidth

The following procedure shall be used when an instrument with a resolution bandwidth that is greater than the DTS bandwidth is available to perform the measurement:

a) Set the RBW \geq DTS bandwidth.

b) Set VBW \geq [3 × RBW].

c) Set span \geq [3 \times RBW].

d) Sweep time = auto couple.

e) Detector = peak.

f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use peak marker function to determine the peak amplitude level.

Integrated band power method:

The following procedure can be used when the maximum available RBW of the instrument is less than the

DTS bandwidth:

a) Set the RBW = 1 MHz.

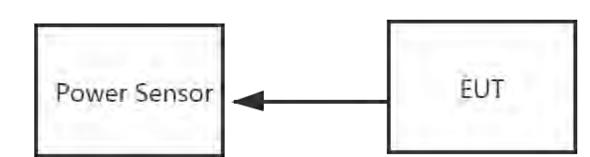
b) Set the VBW \geq [3 \times RBW].

c) Set the span \geq [1.5 × DTS bandwidth].

d) Detector = peak.

e) Sweep time = auto couple.

f) Trace mode = max hold.


g) Allow trace to fully stabilize.

h) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges (for some instruments, this may require a manual override to select the peak detector). If the instrument does not have a band power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the DTS channel bandwidth.

PKPM1 Peak power meter method:

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

8.4 EUT OPERATION CONDITIONS Please refer to section 3.4 of this report.

8.5 TEST RESULTS

Note: The test data please refer to APPENDIX 1.

9. ANTENNA REQUIREMENT

9.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

9.2 EUT ANTENNA

The EUT antenna is PIFA Antenna. It comply with the standard requirement.

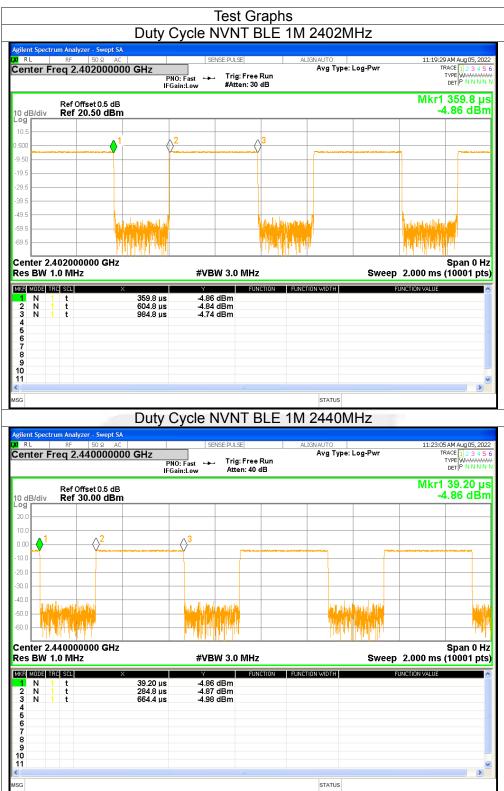
Shenzhen STS Test Services Co., Ltd.

Page 43 of 75 Report No.: STS2207331W11

APPENDIX 1-TEST DATA

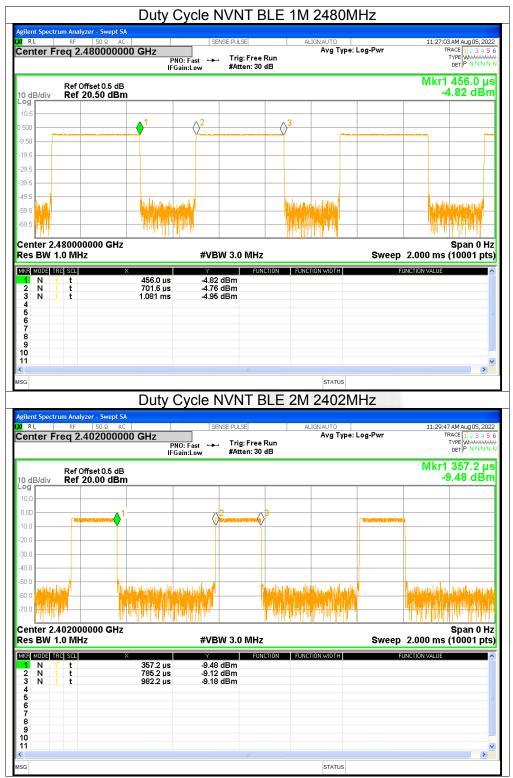
1. Duty Cycle

Condition	Mode	Frequency (MHz)	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	BLE 1M	2402	72.8	1.38	2.63
NVNT	BLE 1M	2440	72.72	1.38	2.63
NVNT	BLE 1M	2480	72.72	1.38	2.63
NVNT	BLE 2M	2402	42.52	3.71	5.08
NVNT	BLE 2M	2440	42.52	3.71	5.08
NVNT	BLE 2M	2480	42.52	3.71	5.08

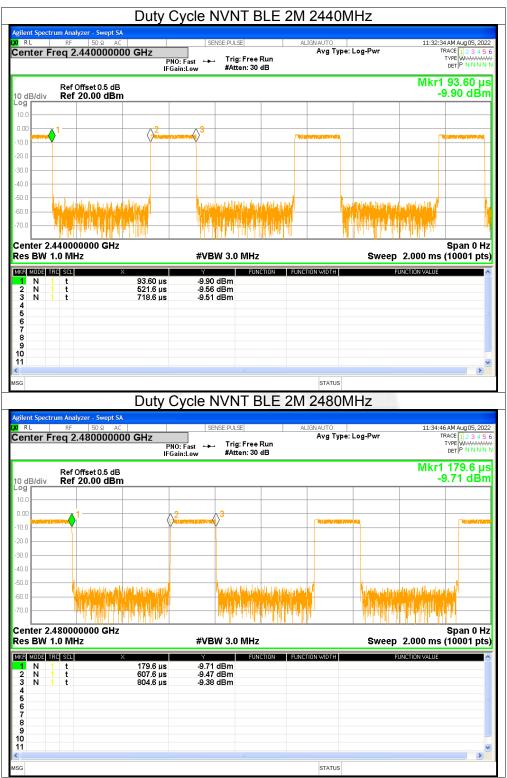


Shenzhen STS Test Services Co., Ltd.

Page 44 of 75


Report No.: STS2207331W11

Page 45 of 75


Report No.: STS2207331W11

Page 46 of 75

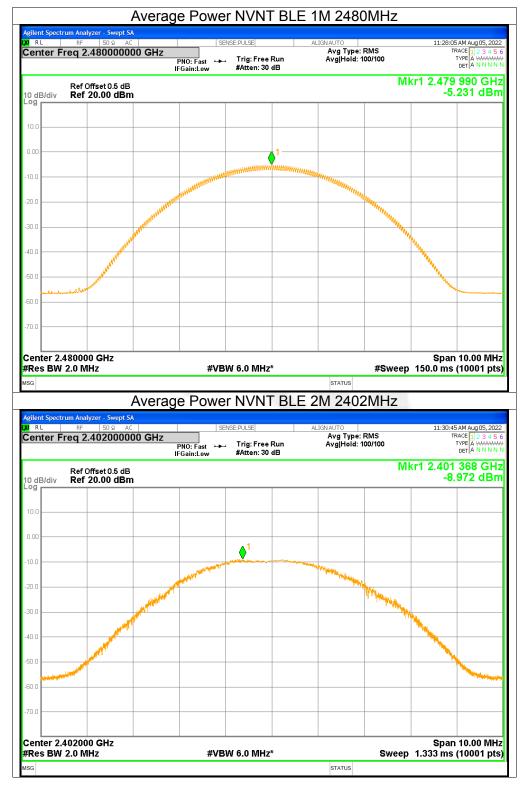
Report No.: STS2207331W11

Page 47 of 75 Report No.: STS2207331W11

2. Maximum Average Conducted Output Power

Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	-5.19	1.38	-3.81	<=30	Pass
NVNT	BLE 1M	2440	-5.84	1.38	-4.46	<=30	Pass
NVNT	BLE 1M	2480	-5.23	1.38	-3.85	<=30	Pass
NVNT	BLE 2M	2402	-8.97	3.71	-5.26	<=30	Pass
NVNT	BLE 2M	2440	-8.55	3.71	-4.84	<=30	Pass
NVNT	BLE 2M	2480	-8.3	3.71	-4.59	<=30	Pass

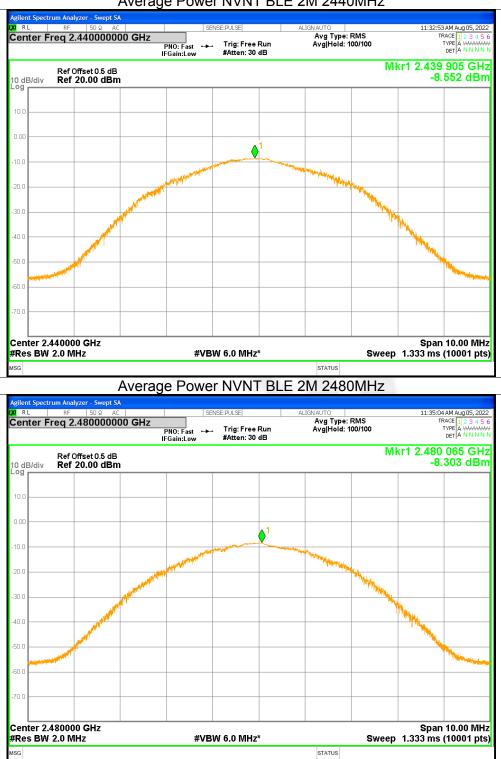
Shenzhen STS Test Services Co., Ltd.


Page 48 of 75 Report No.: STS2207331W11

T

Page 49 of 75 Report No.: STS2207331W11

Contraction and the second second second


T

A 1/F, Building B, Zhuoke Science Park, No.190 Chongqing Road, HepingShequ, Fuyong Sub-District, Bao'an District, Shenzhen, Guang Dong, China Tel: +86-755 3688 6288 Fax:+86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com

Shenzhen STS Test Services Co., Ltd.

Page 50 of 75 Report No.: STS2207331W11

Average Power NVNT BLE 2M 2440MHz

П

Page 51 of 75 Report No.: STS2207331W11

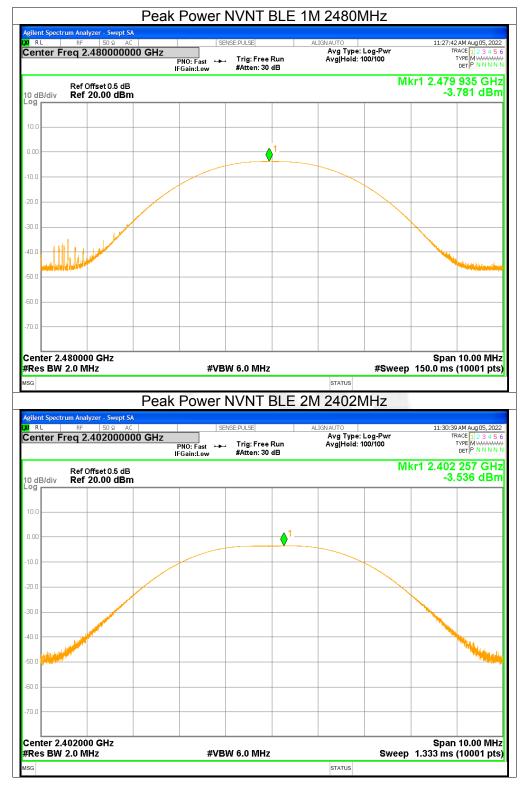
3. Maximum Peak Conducted Output Power

Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	-3.38	<=30	Pass
NVNT	BLE 1M	2440	-3.78	<=30	Pass
NVNT	BLE 1M	2480	-3.78	<=30	Pass
NVNT	BLE 2M	2402	-3.54	<=30	Pass
NVNT	BLE 2M	2440	-3.93	<=30	Pass
NVNT	BLE 2M	2480	-3.85	<=30	Pass

Shenzhen STS Test Services Co., Ltd.

Page 52 of 75 Report No.

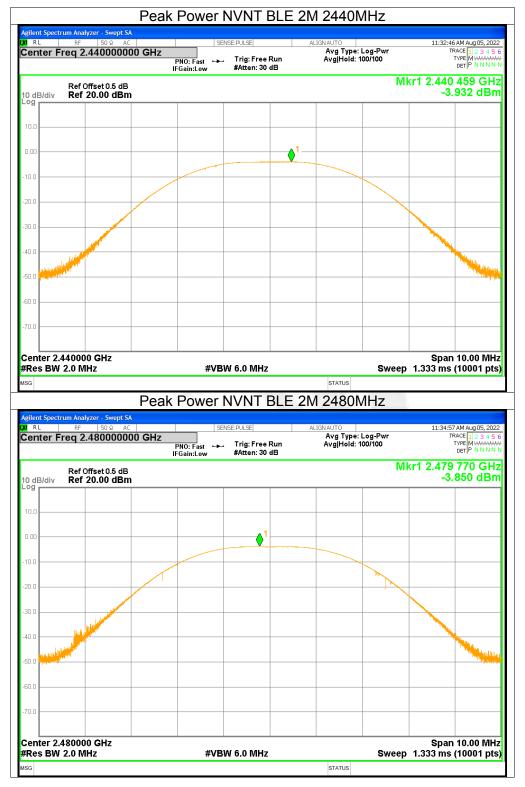
Report No.: STS2207331W11



Shenzhen STS Test Services Co., Ltd.

T

Report No.: STS2207331W11


Page 53 of 75

Shenzhen STS Test Services Co., Ltd.

T

Page 54 of 75 Report No.: STS2207331W11

Shenzhen STS Test Services Co., Ltd.

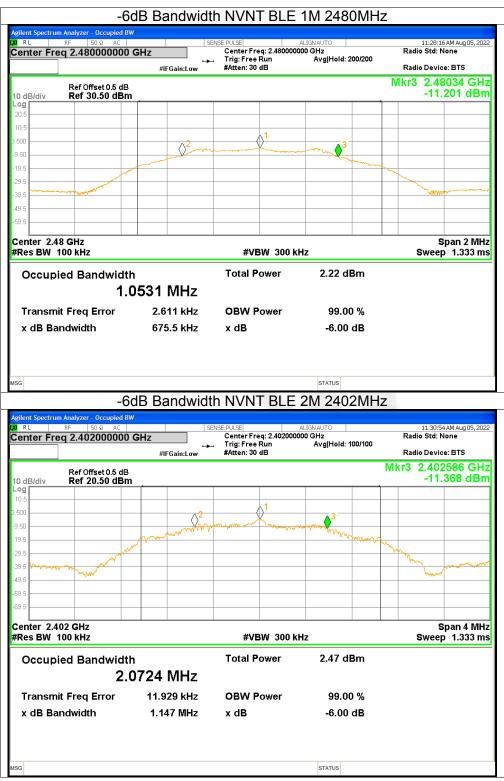
T

4. -6dB Bandwidth

Condition	Mode	Frequency (MHz)	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE 1M	2402	0.68	>=0.5	Pass
NVNT	BLE 1M	2440	0.68	>=0.5	Pass
NVNT	BLE 1M	2480	0.68	>=0.5	Pass
NVNT	BLE 2M	2402	1.15	>=0.5	Pass
NVNT	BLE 2M	2440	1.15	>=0.5	Pass
NVNT	BLE 2M	2480	1.15	>=0.5	Pass

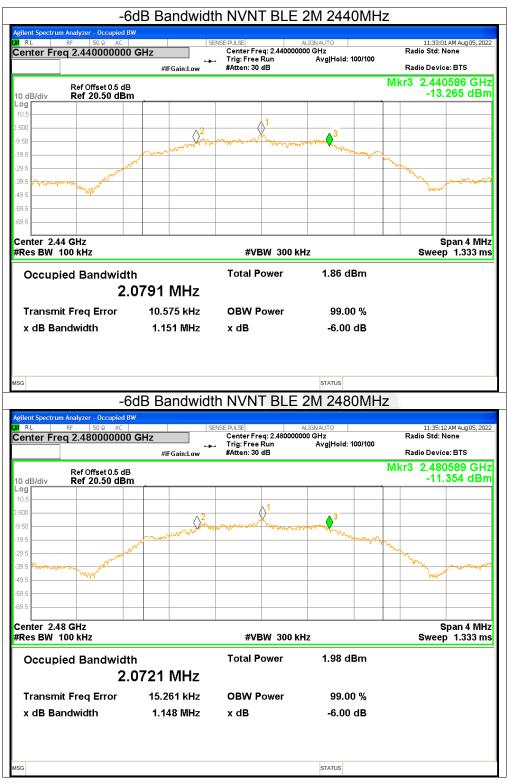
Shenzhen STS Test Services Co., Ltd.

11



Page 57 of 75

Report No.: STS2207331W11



Shenzhen STS Test Services Co., Ltd.

Page 58 of 75

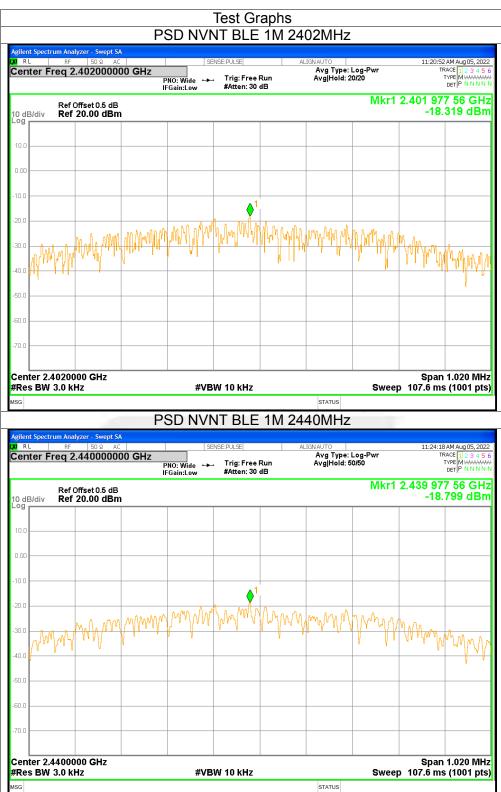
Report No.: STS2207331W11

Shenzhen STS Test Services Co., Ltd.

Page 59 of 75 Report No.: STS2207331W11

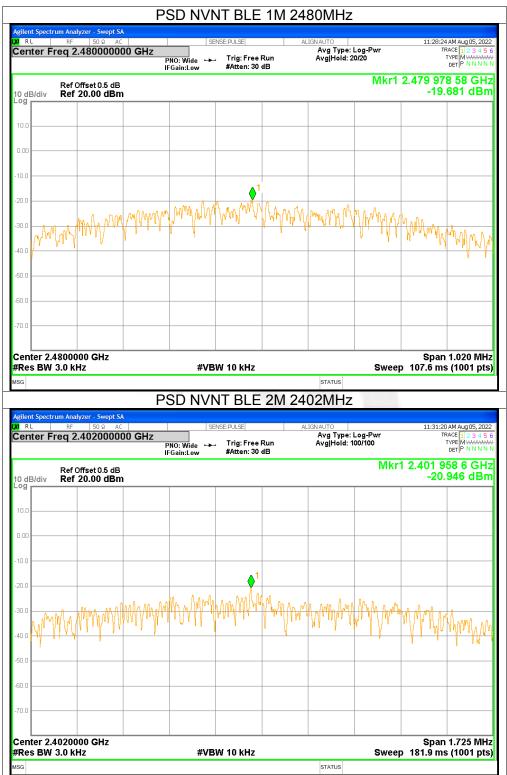
5. Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
NVNT	BLE 1M	2402	-18.32	<=8	Pass
NVNT	BLE 1M	2440	-18.8	<=8	Pass
NVNT	BLE 1M	2480	-19.68	<=8	Pass
NVNT	BLE 2M	2402	-20.95	<=8	Pass
NVNT	BLE 2M	2440	-21.34	<=8	Pass
NVNT	BLE 2M	2480	-21.25	<=8	Pass



Shenzhen STS Test Services Co., Ltd.

Page 60 of 75


Report No.: STS2207331W11

Shenzhen STS Test Services Co., Ltd.

Report No.: STS2207331W11

Page 61 of 75

Report No.: STS2207331W11

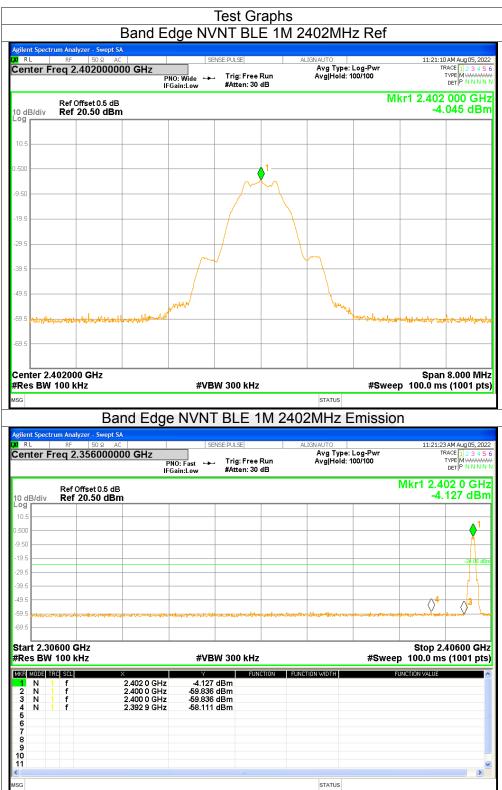
PSD NVNT BLE 2M 2440MHz ectrum Analyzer - Swept SA lent Sp R I 27 AM Aug 05, 2022 RACE 1 2 3 4 5 TYPE MWWWW DET P N N N Center Freq 2.440000000 GHz Avg Type: Log-Pw Avg|Hold: 100/100 Trig: Free Run #Atten: 30 dB PNO: Wide IFGain:Low ⇔ Mkr1 2.439 958 6 GHz Ref Offset 0.5 dB Ref 20.00 dBm -21.341 dBm 10 dB/div 30. 111 VIII \mathcal{W} 40 r 60. Center 2.4400000 GHz Span 1.725 MHz #Res BW 3.0 kHz #VBW 10 kHz Sweep 181.9 ms (1001 pts) SG STATUS PSD NVNT BLE 2M 2480MHz 11:35:38 AM Aug 05, 2022 TRACE 1 2 3 4 5 6 TYPE M WWWW DET P N N N N Center Freq 2.480000000 GHz Avg Type: Log-Pwr Avg|Hold: 100/100 Trig: Free Run #Atten: 30 dB PNO: Wide +++ IFGain:Low Mkr1 2.479 958 6 GHz Ref Offset 0.5 dB Ref 20.00 dBm -21.253 dBm 10 dB/div n nr 10.0 20. RD. 40.0 50. Center 2.4800000 GHz Span 1.725 MHz Sweep 181.9 ms (1001 pts) #Res BW 3.0 kHz #VBW 10 kHz STATUS SG

Page 62 of 75

Page 63 of 75 Report No.: STS2207331W11

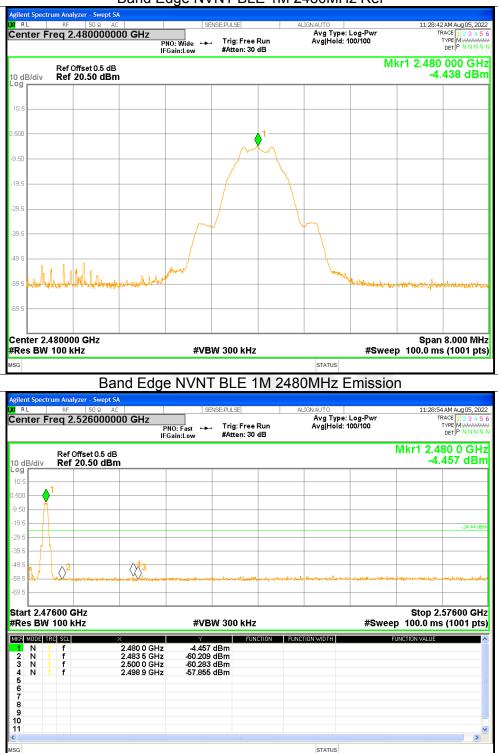
6. Band Edge

Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	-54.07	<=-20	Pass
NVNT	BLE 1M	2480	-53.41	<=-20	Pass
NVNT	BLE 2M	2402	-31.07	<=-20	Pass
NVNT	BLE 2M	2480	-52.79	<=-20	Pass

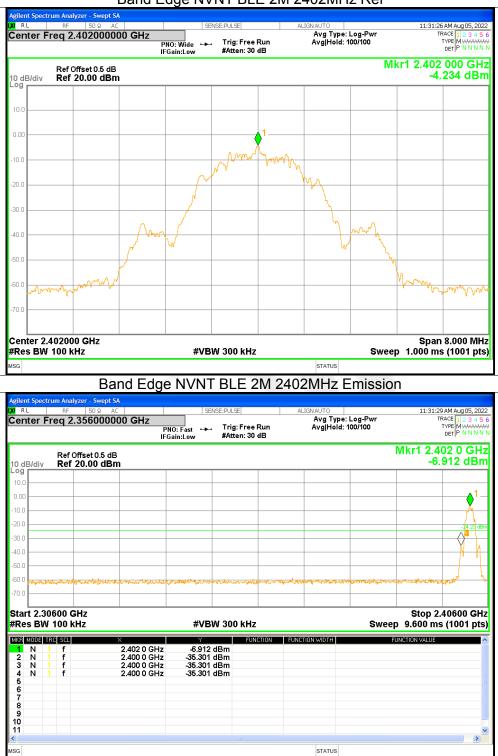


Shenzhen STS Test Services Co., Ltd.

11



Page 64 of 75 Report No.: STS2207331W11


Page 65 of 75 Report No.: STS2207331W11

Band Edge NVNT BLE 1M 2480MHz Ref

Page 66 of 75 Report No.: STS2207331W11

Band Edge NVNT BLE 2M 2402MHz Ref

Page 67 of 75 Report No.: STS2207331W11

Page 68 of 75 Report No.: STS2207331W11

7. Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	-32.63	<=-20	Pass
NVNT	BLE 1M	2440	-41.32	<=-20	Pass
NVNT	BLE 1M	2480	-30.89	<=-20	Pass
NVNT	BLE 2M	2402	-51.95	<=-20	Pass
NVNT	BLE 2M	2440	-52.26	<=-20	Pass
NVNT	BLE 2M	2480	-51.67	<=-20	Pass

Shenzhen STS Test Services Co., Ltd.

Page 69 of 75

Report No.: STS2207331W11

ilent Spectrum Analyzer - RL RF 5	-	SENSE:P		A 2402MHz Ref	11:21:41 AM Aug 05, 2
enter Freq 2.402	000000 GHz	NO:Wide 🛶 T	rig: Free Run Atten: 40 dB	Avg Type: Log-Pwr Avg Hold: 100/100	TRACE 1 2 3 4 TYPE MWWW DET P N N N
Ref Offset dB/div Ref 30.0				Mk	r1 2.401 997 0 GI -4.035 dB
pg					
0.0					
0.0					
			1		
0.0					
0.0					
0.0					
0.0					
0.0					
0.0					
	Hz	#\/B\// 3	00 647	# S wo	Span 1.500 M
Res BW 100 kHz	θHz	#VBW 3	00 kHz	#Swe	Span 1.500 M ep 100.0 ms (1001 p
Res BW 100 kHz					ep 100.0 ms (1001 p
Res BW 100 kHz	Tx. Spuriou	IS NVNT E	BLE 1M 2	status 402MHz Emissi	ep 100.0 ms (1001 p ON
Res BW 100 kHz	Tx. Spuriou Swept SA C AC 5000000 GHz		BLE 1M 2	STATUS	ep 100.0 ms (1001 p
Res BW 100 kHz RL RF S enter Freq 13.26 Ref Offset	Tx. Spuriou Swept SA 0 Q AC 55000000 GHz P Fr 1505 dB		BLE 1M 2	status 402MHz Emissi Alignauto Avg Type: Log-Pwr	ep 100.0 ms (1001 p ON 11:21:51AM Aug05,21 TRACE 112.34 TYPEE MWWW
Res BW 100 kHz G RL RF S enter Freq 13.26 0 dB/div Ref 0ffset 0 dB/div Ref 30.0	Tx. Spuriou Swept SA 0 Q AC 55000000 GHz P Fr 1505 dB		BLE 1M 2	status 402MHz Emissi Alignauto Avg Type: Log-Pwr	ep 100.0 ms (1001 p ON 11:21:51AM Aug05,21 TRACE 112.3 4 TYPEE WWW DET P. N.N. Mkr1 2.402 6 GH
Res BW 100 kHz G ilent Spectrum Analyzer RL RF S enter Freq 13.26 OdB/div Ref 30.0 Og 0.0 0.0	Tx. Spuriou Swept SA 0 Q AC 55000000 GHz P Fr 1505 dB		BLE 1M 2	status 402MHz Emissi Alignauto Avg Type: Log-Pwr	ep 100.0 ms (1001 p ON 11:21:51AM Aug05,21 TRACE 112.3 4 TYPEE WWW DET P. N.N. Mkr1 2.402 6 GH
Res BW 100 kHz s ilent Spectrum Analyzer RL RF S enter Freq 13.26 Ref Offset Ref 30.0 0 0 0 0 0 0 0 0 0 0 0 0 0	Tx. Spuriou Swept SA 0 Q AC 55000000 GHz P Fr 1505 dB		BLE 1M 2	status 402MHz Emissi Alignauto Avg Type: Log-Pwr	ep 100.0 ms (1001 p ON 11:21:51AM Aug05,21 TRACE 112.3 4 TYPEE WWW DET P. N.N. Mkr1 2.402 6 GH
Res BW 100 kHz s ilent Spectrum Analyzer R Ref 0ffset Ref 0ffset Ref 30.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Tx. Spuriou Swept SA 0 Q AC 55000000 GHz P Fr 1505 dB		BLE 1M 2	status 402MHz Emissi Alignauto Avg Type: Log-Pwr	ep 100.0 ms (1001 p ON 11:21:51AM Aug05,21 TRACE 112.3 4 TYPEE WWW DET P. N.N. Mkr1 2.402 6 GH
Res BW 100 kHz G ilent Spectrum Analyzer RL RF Benter Freq 13.26 OdB/div Ref Offset 0 dB/div Ref 30.0 0 dB/div 1 0.0 1 0.0 1 0.0 0	Tx. Spuriou Swept SA 0 Q AC 55000000 GHz P Fr 1505 dB		BLE 1M 2 ULSE rig: Free Run ktten: 40 dB	STATUS 402MHz Emissi AUGNAUTO Avg Type: Log-Pwr Avg Hold: 10/10	ep 100.0 ms (1001 p ON 11:21:51AM Aug05,2 TRACE 12:3 4 TYPEE MKr1 2.402 6 GH -8.648 dB
Res BW 100 kHz	Tx. Spuriou Swept SA 0 Q AC 50000000 GHz P IFI 0.5 dB 0 dBm	IS NVNT I	BLE 1M 2	STATUS 402MHz Emissi AUGNAUTO Avg Type: Log-Pwr Avg Hold: 10/10	ep 100.0 ms (1001 p ON 11:21:51AM Aug05,2 TRACE 12:3 4 TYPEE MKr1 2.402 6 GH -8.648 dB
Res BW 100 kHz a ilent Spectrum Analyzer - RL RF S enter Freq 13.26 Ref Offset Ref 30.0 D dB/div Ref 30.0 D dB/div and analyzer -	Tx. Spuriou Swept SA 0 Q AC 50000000 GHz P IFI 0.5 dB 0 dBm	IS NVNT I	BLE 1M 2 ULSE rig: Free Run ktten: 40 dB	STATUS 402MHz Emissi AUGNAUTO Avg Type: Log-Pwr Avg Hold: 10/10	ep 100.0 ms (1001 p ON 11:21:51AM Aug05,21 TRACE 112.3 4 TVPE MANY DET P NNN Mkr1 2.402 6 GH -8.648 dB
Res BW 100 kHz s s s s s s s s s s s s s s s s s s s	Tx. Spuriou Swept SA 0 Q AC 50000000 GHz P IFI 0.5 dB 0 dBm	IS NVNT I	BLE 1M 2	ALIGNAUTO AVG Type: Log-Pwr Avg Type: Log-Pwr Avg Hold: 10/10	ep 100.0 ms (1001 p ON 11:21:51AM Aug05,2 TRACE 12:3 4 TYPEE MKr1 2.402 6 GH -8.648 dB
Res BW 100 kHz s s s s s s s s s s s s s s s s s s s	Tx. Spuriou Swept SA 0 0 A C 55000000 GHz P FF 10.5 dB 0 dBm 0 dBm 0 dBm	IS NVNT E	BLE 1M 2	ALIGNAUTO Avg Type: Log-Pwr Avg Type: Log-Pwr AvglHold: 10/10	ep 100.0 ms (1001 p ON 11:21:51AM Aug05,2 TRACE 12:3 4 TYPEE MKR1 2.402 6 GH -8.648 dB
Res BW 100 kHz s ilent Spectrum Analyzer - RL RE Ref Offset odB/div Ref Offset odB/div Ref Offset odB/div Ref Offset odB/div Ref Offset od od <td>Tx. Spuriou Swept SA 0 Q AC 50000000 GHz P IFI 0.5 dB 0 dBm</td> <td>IS NVNT I</td> <td>BLE 1M 2</td> <td>ALIGNAUTO Avg Type: Log-Pwr Avg Type: Log-Pwr AvglHold: 10/10</td> <td>ep 100.0 ms (1001 p ON 11:21:51AM Aug05,2 TRACE 12.3 4 TVPE MURE DET P NNN Mkr1 2.402 6 GH -8.648 dB</td>	Tx. Spuriou Swept SA 0 Q AC 50000000 GHz P IFI 0.5 dB 0 dBm	IS NVNT I	BLE 1M 2	ALIGNAUTO Avg Type: Log-Pwr Avg Type: Log-Pwr AvglHold: 10/10	ep 100.0 ms (1001 p ON 11:21:51AM Aug05,2 TRACE 12.3 4 TVPE MURE DET P NNN Mkr1 2.402 6 GH -8.648 dB
Res BW 100 kHz Ilent Spectrum Analyzer Ilent Spectrum Analyzer Spectrum Analyzer RL RF Spectrum Analyzer Spectrum Analyzer enter Freq 13.26 Spectrum Analyzer Spectrum Analyzer 0 dB/div Ref Offset Spectrum Analyzer 0 dB/div Ref 30.0 Spectrum Ana	Tx. Spuriou Swept SA 0 @ AC 5000000 GHz P IFI :0.5 dB 0 dBm 2.402 6 GHz 25.869 1 GHz	IS NVNT E	BLE 1M 2	ALIGNAUTO Avg Type: Log-Pwr Avg Type: Log-Pwr AvglHold: 10/10	ep 100.0 ms (1001 p ON 11:21:51AM Aug05,2 TRACE 12.3 4 TVPE MURE DET P NNN Mkr1 2.402 6 GH -8.648 dB
dB/div Ref 30.0 Pg	X Spuriou Swept SA 0 S000000 GHz P F F S0.5 dB 0 dBm 0 dBm C 2.402 6 GHz C 2.407 8 GHz C	IS NVNT I	BLE 1M 2	ALIGNAUTO Avg Type: Log-Pwr Avg Type: Log-Pwr AvglHold: 10/10	ep 100.0 ms (1001 p ON 11:21:51AM Aug05,2 TRACE 12.3 4 TVPE MURE DET P NNN Mkr1 2.402 6 GH -8.648 dB

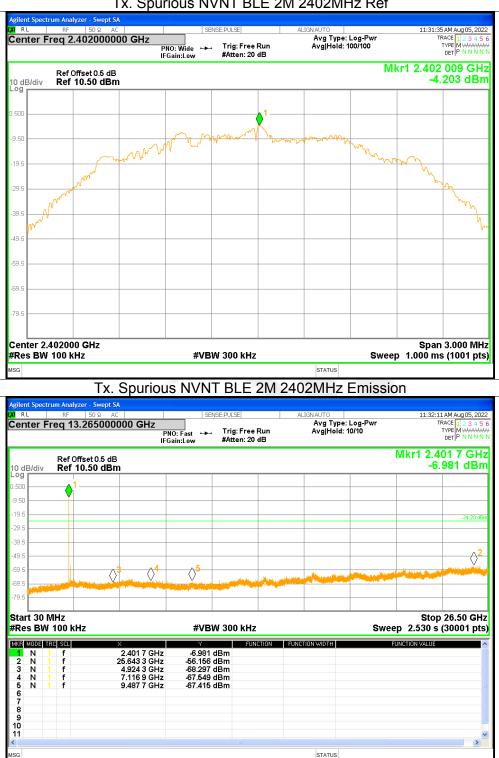
Page 70 of 75 Report No.: STS2207331W11

Agilent Spectrum Analyzer - Swept				M 2440MHz Ret	
₩ RL RF 50Ω Center Freq 2.440000	000 GHz	NO: Wide ↔ FGain:Low	SE:PULSE Trig: Free Run #Atten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 100/100	11:24:37 AM Aug 05, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N N
Ref Offset 0.5 d		Guinizon		MI	(r1 2.439 997 0 GHz
10 dB/div Ref 20.50 dE					-4.441 dBm
10.5					
0.500			1		
-9.50					
-9.30					
-19.5					
-29.5					
-39.5					
-49.5					
-59.5					
-33.3					
-69.5					
Center 2.4400000 GHz #Res BW 100 kHz		#VBV	V 300 kHz	#Swe	Span 1.500 MHz ep 100.0 ms (1001 pts)
MSG				STATUS	,
Tx	. Spurioi	JS NVN⁻	BLE 1M	2440MHz Emiss	ion
Agilent Spectrum Analyzer - Swept					
RL RF 50 Ω Center Freq 13.26500		SEN	SE:PULSE	ALIGNAUTO Avg Type: Log-Pwr	11:24:48 AM Aug 05, 2022 TRACE 1 2 3 4 5 6
•		PNO: Fast 🗰 FGain:Low	Trig: Free Run #Atten: 30 dB	Avg Hold: 10/10	
Ref Offset 0.5 c					
Ref Offset 0.5 c 10 dB/div Ref 20.50 dE					
10 dB/div Ref 20.50 dE					
10 dB/div Ref 20.50 dE					
10 dB/div Ref 20.50 dE					
10 dB/div Ref 20.50 dE 10.5					-11.476 dBm
10 dB/div Ref 20.50 dE 10.5					-11.476 dBm
10 dB/div Ref 20.50 dE 10.5		5 			-11.476 dBm
10 dB/div Ref 20.50 dE 10.5				the second second statement of the second	-11.476 dBm
10 dB/div Ref 20.50 dE 10.5		a ferdinan yang di Katalan di Kat Di ferenera di Katalan d	in a star star star star star star star st		-11.476 dBm
10 dB/div Ref 20.50 dE 050		a ferdinan yang di Katalan di Kat Di ferenera di Katalan d	V 300 kHz	#Swee	-11.476 dBm -24.44 dbm
10 dB/div Ref 20.50 dE 9	3 3 4 2.440 5 GHz	#VBV	V 300 kHz		-11.476 dBm
10 dB/div Ref 20.50 dE 10.5 1 10.5 1 .9.50 1 .9.50 1 .9.50 1 .9.50 1 .9.50 1 .9.50 1 .9.50 1 .9.50 1 .9.50 1 .9.51 1 .9.52 1 .9.53 1 Start 30 MHz #Res BW 100 kHz Max 1 N 2 N 3 N 5 1	3 4 2.440 5 GHz 26.410 9 GHz 5.039 0 GHz	#VBV	V 300 kHz Function IBm IBm	#Swee	-11.476 dBm -24.44 dbm
10 dB/div Ref 20.50 dE 10.5 1 0.600 1 .9.50 1 .19.5 1 .29.5 1 .39.5 1 .69.5 1 .69.5 1 .69.5 1 .69.5 1 .69.5 1 .69.5 1 .69.5 1 .69.5 1 .69.5 1 .69.5 1 .69.5 1 .69.5 1 .69.5 1 .69.5 1 .69.5 1 .69.5 1 .69.5 1 .69.5 1	3 2.440 5 GHz 2.440 5 GHz	#VBV -11.476 c -45.765 c -56.839 c	V 300 kHz Function IBm IBm IBm	#Swee	-11.476 dBm -24.44 dBm
10 dB/div Ref 20.50 dE 0 g	3 3 4 4 4 4 4 4 4 4 4 4 4 4 4	#VBV -11.476 c -45.765 c -56.519 c -56.839 c	V 300 kHz Function IBm IBm IBm	#Swee	-11.476 dBm -24.44 dbm
10 dB/div Ref 20.50 dE 0 g 1 0 50 1 -9.50 1 -19.5 1 -29.5 1 -39.5 1 -49.5 1 -59.5 1 -40.5 1 -40.5 1	3 3 4 4 4 4 4 4 4 4 4 4 4 4 4	#VBV -11.476 c -45.765 c -56.519 c -56.839 c	V 300 kHz Function IBm IBm IBm	#Swee	-11.476 dBm -24.44 dBm
10 dB/div Ref 20.50 dE 0.50	3 3 4 4 4 4 4 4 4 4 4 4 4 4 4	#VBV -11.476 c -45.765 c -56.519 c -56.839 c	V 300 kHz Function IBm IBm IBm	#Swee	-24.44 dBm 2 2 3 3 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4

Tx. Spurious NVNT BLE 1M 2440MHz Ref

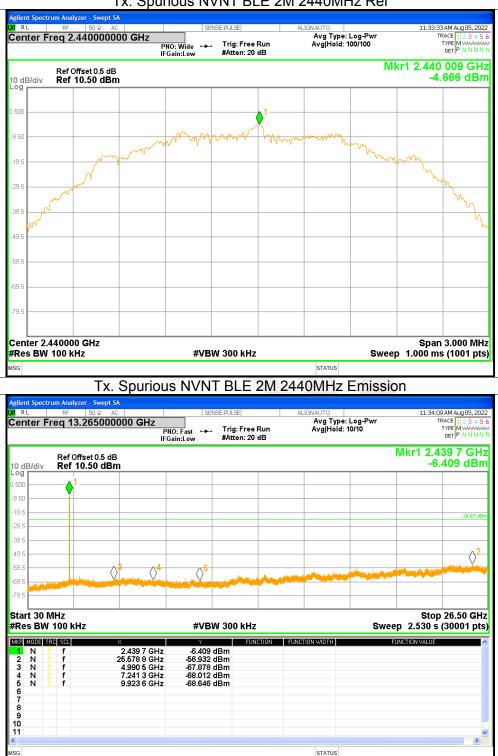
-

Page 71 of 75 Report No.: STS2207331W11

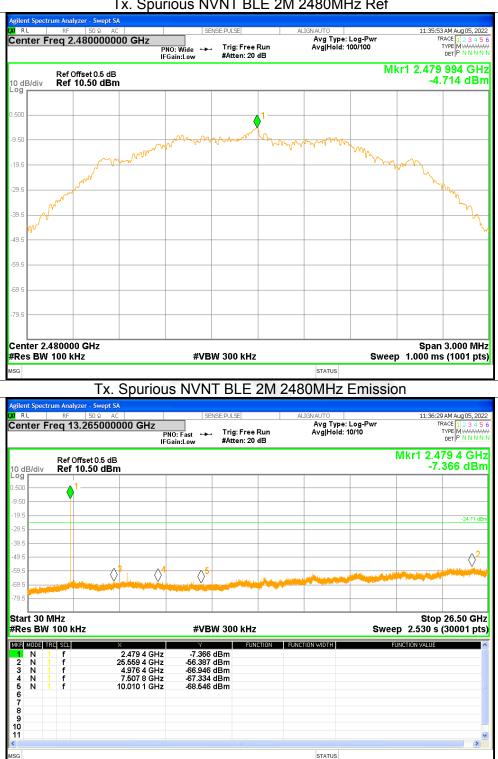

			rious N\	/NT BLE	1M 248	BOMH	z Ref		
KI RL	n Analyzer - Swept S RF 50 Ω A R C 2.4800000	c 100 GHz P	NO: Wide ↔	NSE:PULSE Trig: Free Run Atten: 40 dB		UTO vg Type: Lo vg Hold: 100		TF	AM Aug 05, 202 ACE 1 2 3 4 5 TYPE M WWWW DET P N N N N
	Ref Offset 0.5 dE Ref 30.00 dBr						Mkr	1 2.479 9 -4.	95 5 GH: 481 dBn
20.0									
10.0									
0.00				1-					
10.0			\sim			\frown			
20.0									
30.0 	· · ·								and a second
40.0									
50.0									
60.0									
enter 2.49	00000 GHz							Snan	1.500 MH
Res BW 1			#VBI	N 300 kHz			#Swee	p 100.0 ms	
SG		<u> </u>							
Agilent Spectrum	IX. n Analyzer - Swept S		IS INVIN	T BLE 1N	/1 24801		missic	pri	
enter Fre	RF 50 Ω A eq 13.265000	000 GHz		ISE:PULSE		UTO vg Type: Lo vg Hold: 10/		11:29:23 TF	AM Aug 05, 202 ACE 1 2 3 4 5 TYPE M WWWW
			PNO: Fast +++ Gain:Low	Atten: 40 dB		ginera. Ioi		Mkr1 2.4	DET P N N N N
	Ref Offset 0.5 dE Ref 30.00 dB								946 dBr
20.0									
0.00	1								
20.0	1								
-20.0									-24,48 dB
40.0			\sim ⁵	and the second		la papa ¹⁴ Daha ¹⁴⁷	alahapat perdapasah Kung perjakan perdapasah	al al le composition de la composition administration politica de la composition	
60.0 A shike mi	and Alford and partice	na <mark>Milita</mark> h Kalanan	hiddina a in filiaiteach)	ale to the second s					
Start 30 MH #Res BW 1			#\/BI	N 300 kHz			#Sween	Stop 100.0 ms (26.50 GH
MKR MODE TRC	SCL	×	L Y	FUNCTION	FUNCTION V	/IDTH		UNCTION VALUE	
1 N 1 2 N 1 3 N 1	f f f	2.480 2 GHz 25.144 7 GHz 4.765 5 GHz	-35.376	dBm					
4 N 1 5 N 1	f f	7.266 0 GHz 9.796 5 GHz	-46.756	dBm					
6 7 8									
9 10 11									
sg						status 🔥 M	eas []ncal		>
							cas oncal		

Tx. Spurious NVNT BLE 1M 2480MHz Ref

-


Page 72 of 75 Report No.: STS2207331W11

Tx. Spurious NVNT BLE 2M 2402MHz Ref



Page 73 of 75 Report No.: STS2207331W11

Page 74 of 75 Report No.: STS2207331W11

Tx. Spurious NVNT BLE 2M 2480MHz Ref

APPENDIX 2- EUT TEST PHOTO

Note: See test photos in setup photo document for the actual connections between Product and support equipment.

* * * * * END OF THE REPORT * * * *

Shenzhen STS Test Services Co., Ltd.