

Global United Technology Services Co., Ltd.

Report No.: GTS201809000131F01

FCC Report (WIFI)

Applicant: Shenzhen Bright Lighting Technology Co., Ltd

Address of Applicant: Bldg 18 Shancheng Industrial Park Shiyan Town Baoan Distri

ct, Shenzhen, Guangdong 518108

Manufacturer: Shenzhen Bright Lighting Technology Co.,Ltd

Address of Bldg 18 Shancheng Industrial Park Shiyan Town Baoan Distri

Manufacturer: ct, Shenzhen, Guangdong 518108

Equipment Under Test (EUT)

Product Name: Smart led strip

Model No.: S50123010-IP65RGBW, S50126010-IP65RGBW,

S50124810-IP65RGBW, S28125610-IP65RGBW,

S50123010-IP65RGB, S50126010-IP65RGB, S50124810-

IP65RGB

FCC ID: 2AQ22-BRTIP65RGBW

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: Aug 23, 2018

Date of Test: Aug 26-Sep 20, 2018

Date of report issued: Sep 30, 2018

Test Result: PASS *

Authorized Signature:

Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	Sep 30, 2018	Original

Prepared By:	Joseph Du	Date:	Sep 30, 2018	
	Project Engineer			
Check By:	Andy wa	Date:	Sep 30, 2018	
	Poviower	_		

3 Contents

			Page
1	COV	'ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4	TES	T SUMMARY	4
5	GEN	IERAL INFORMATION	5
	5.1	GENERAL DESCRIPTION OF EUT	
	5.2	TEST MODE	7
	5.3	DESCRIPTION OF SUPPORT UNITS	7
	5.4	TEST FACILITY	7
	5.5	TEST LOCATION	7
6	TES	T INSTRUMENTS LIST	8
7	TES	T RESULTS AND MEASUREMENT DATA	10
	7.1	ANTENNA REQUIREMENT	10
	7.2	CONDUCTED EMISSIONS	
	7.3	CONDUCTED PEAK OUTPUT POWER	14
	7.4	CHANNEL BANDWIDTH	15
	7.5	POWER SPECTRAL DENSITY	
	7.6	BAND EDGES	26
	7.6.1	1 Radiated Emission Method	26
	7.6.2	Radiated Emission Method	29
8	TES	T SETUP PHOTO	35
9	EUT	CONSTRUCTIONAL DETAILS	37

Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Remark: Test according to ANSI C63.10:2013.

Pass: The EUT complies with the essential requirements in the standard.

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes			
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)			
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)			
Radiated Emission	1GHz ~ 26.5GHz	± 4.68dB	(1)			
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)			
Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.						

5 General Information

5.1 General Description of EUT

Smart led strip
S50123010-IP65RGBW, S50126010-IP65RGBW,
S50124810-IP65RGBW, S28125610-IP65RGBW,
S50123010-IP65RGB, S50126010-IP65RGB, S50124810-IP65RGB
(The just appearance different, the PCB boards inside are identical.)
180872802
GTS201809000131-1
Engineer sample
802.11b/802.11g /802.11n(HT20): 13
5MHz
802.11b: Direct Sequence Spread Spectrum (DSSS)
802.11g/802.11n(H20)
Orthogonal Frequency Division Multiplexing (OFDM)
Integrated PCB antenna
3.23dBi
DC 12V From Adapter Input AC 120V/60Hz

Operation	Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency					
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz	
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz	
3	2422MHz	12	2467MHz					
							2472MHz	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Toot channel	Frequency (MHz)
Test channel	802.11b/802.11g/802.11n(HT20)
Lowest channel	2412MHz
Middle channel	2442MHz
Highest channel	2472MHz

Page 7 of 41

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the dutycycle >98%, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Pre-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode 802.11b		802.11g	802.11n(HT20)	
Data rate	1Mbps	6Mbps	6.5Mbps	

5.3 Description of Support Units

N/A

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383, January 08, 2018.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016.

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6 Test Instruments list

Radi	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 27 2018	June. 26 2019		
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 27 2018	June. 26 2019		
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 27 2018	June. 26 2019		
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 27 2018	June. 26 2019		
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
8	Coaxial Cable	GTS	N/A	GTS213	June. 27 2018	June. 26 2019		
9	Coaxial Cable	GTS	N/A	GTS211	June. 27 2018	June. 26 2019		
10	Coaxial cable	GTS	N/A	GTS210	June. 27 2018	June. 26 2019		
11	Coaxial Cable	GTS	N/A	GTS212	June. 27 2018	June. 26 2019		
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 27 2018	June. 26 2019		
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 27 2018	June. 26 2019		
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 27 2018	June. 26 2019		
15	Band filter	Amindeon	82346	GTS219	June. 27 2018	June. 26 2019		
16	Power Meter	Anritsu	ML2495A	GTS540	June. 27 2018	June. 26 2019		
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 27 2018	June. 26 2019		
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 27 2018	June. 26 2019		
19	Splitter	Agilent	11636B	GTS237	June. 27 2018	June. 26 2019		
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 27 2018	June. 26 2019		

Conduc	Conducted Emission							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.16 2014	May.15 2019		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 27 2018	June. 26 2019		
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 27 2018	June. 26 2019		
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June. 27 2018	June. 26 2019		
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A		
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
7	Thermo meter	KTJ	TA328	GTS233	June. 27 2018	June. 26 2019		
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 27 2018	June. 26 2019		

Cond	Conducted:						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 27 2018	June. 26 2019	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 27 2018	June. 26 2019	
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 27 2018	June. 26 2019	
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 27 2018	June. 26 2019	
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 27 2018	June. 26 2019	
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 27 2018	June. 26 2019	
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 27 2018	June. 26 2019	
8	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 27 2018	June. 26 2019	
9	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 27 2018	June. 26 2019	

Gene	General used equipment:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 27 2018	June. 26 2019	
2	Barometer	ChangChun	DYM3	GTS255	June. 27 2018	June. 26 2019	

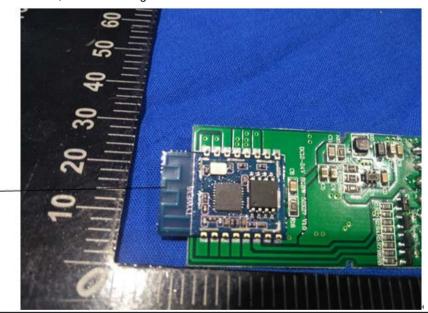
7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

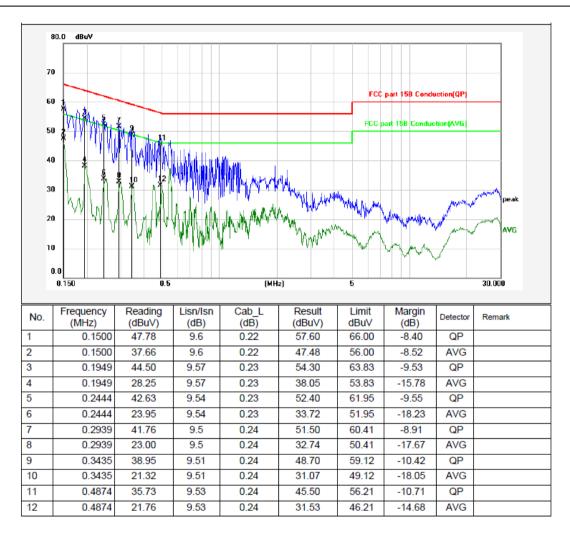
EUT Antenna:

Wifi antenna

The antenna is integral antenna, the best case gain of the antenna is 3.23dBi

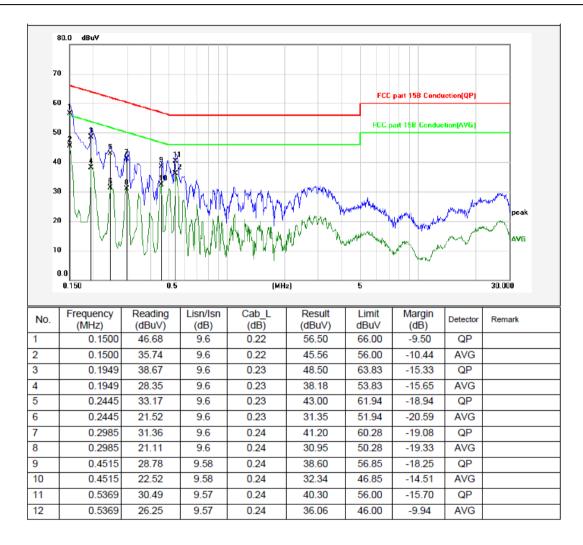
Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

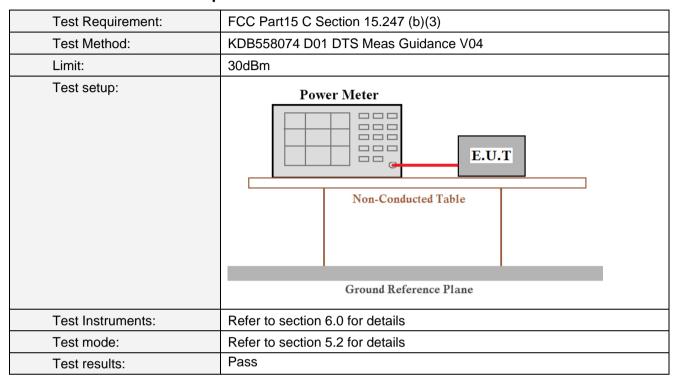


7.2 Conducted Emissions

Test Method: ANSI C63.10:2013 Test Frequency Range: Receiver setup: RBW=9KHz, VBW=30KHz, Sweep time=auto Limit: Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56° 56 to 46° 0.5-5 56 46° 5-30 * Decreases with the logarithm of the frequency. Test setup: Reference Plane LISN Lam impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. Test Instruments: Refer to section 6.0 for details	Took Dogwinement	FCC Double C Spatian 45 207					
Test Frequency Range: Receiver setup: RBW=9KHz, VBW=30KHz, Sweep time=auto Limit: Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56*56 to 46* 0.5-5 56 46 0.5-5 0.60 50 * Decreases with the logarithm of the frequency. Test setup: Reference Plane LISN Aux Equipment Linder Test LISN Filter Ac power LISN Filter Ac power LISN Filter Ac power LISN In impendence Stabilization Network Feet label Application Stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. Refer to section 6.0 for details	·						
Receiver setup: RBW=9KHz, VBW=30KHz, Sweep time=auto Limit: Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 do 46 5-30 * Decreases with the logarithm of the frequency. Reference Plane LISN Aux power Filter Ac power LUSN Limit (dBuV) Quasi-peak Average 0.15-0.5 60 to 56* 56 to 46* 5-30 * Decreases with the logarithm of the frequency. Reference Plane LISN Filter Ac power LUSN Limit (abuv) Alian (abuv) Alian (abuv) Cuasi-peak Average 0.15-0.5 60 to 50* * Decreases with the logarithm of the frequency. Reference Plane LISN Filter Ac power LUSN Limit (abuv) Quasi-peak Average 0.15-0.5 60 to 50* * Decreases with the logarithm of the frequency. Reference Plane LISN Filter Ac power LUSN Limit (abuv) Quasi-peak Average 0.15-0.5 60 to 50* * Decreases with the logarithm of the frequency. Reference Plane LUSN LISN Limit (abuv) Quasi-peak Average Actes Ac	Test Method:	ANSI C63.10:2013					
Limit: Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 5-30 60 50 * Decreases with the logarithm of the frequency. Reference Plane LISN AUX E.U.T. Equipment Under Test LISN Line impedence Stabilization Network Test table **Receiver** Test procedure: 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. Test Instruments: Refer to section 6.0 for details	Test Frequency Range:	150KHz to 30MHz	150KHz to 30MHz				
Test procedure: 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.	Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto				
Test procedure: 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a line impedance of the measuring equipment. 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. Refer to section 6.0 for details	Limit:	Fragues ou range (MHZ)	Limit (c	dBuV)			
Test setup: Test setup: Reference Plane		, , ,					
*Decreases with the logarithm of the frequency. **Test setup: **Reference Plane **LISN **LISN **LISN **LISN **Equipment E.U.T Emil Receiver **LISN LISN Equipment E.U.T Emil Receiver **Test table/Insulation plane **Test procedure: 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. Test Instruments: Refer to section 6.0 for details							
*Decreases with the logarithm of the frequency. Reference Plane LISN AUX Equipment Under Test LISN Line Impedence Stabilization Network Test table leight=0 3m 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. Test Instruments: Refer to section 6.0 for details							
Test setup: Reference Plane LISN 40cm 80cm Filter Ac power Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height-20th Test procedure: 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. Test Instruments: Refer to section 6.0 for details				50			
Test procedure: 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. Test Instruments: Refer to section 6.0 for details			n of the frequency.				
line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. Test Instruments: Refer to section 6.0 for details		LISN 40cm 80cm Filter AC power Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN Line impedence Stabilization Network					
Test Instruments: Refer to section 6.0 for details	Test procedure:	 line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed 					
Test mode: Refer to section 5.2 for details	Test Instruments:	Refer to section 6.0 for details					
	Test mode:						
Test voltage: AC120V 60Hz	Test voltage:	AC120V 60Hz					


Mode:Transmitting modeTest by:JasonTemp./Hum.(%H):26°C/56%RHPhase:L

Remarks: 1. Result=Reading+Lisn+Cab_L
2. If the average limit is met when using a quasi-peak detector.
the EUT shall be deemed to meet both limits and measurement with average detector is unnecessary.


Mode:Transmitting modeTest by:JasonTemp./Hum.(%H):26℃/56%RHPhase:N

Remarks: 1. Result=Reading+Lisn+Cab_L
2. If the average limit is met when using a quasi-peak detector.
the EUT shall be deemed to meet both limits and measurement with average detector is unnecessary.

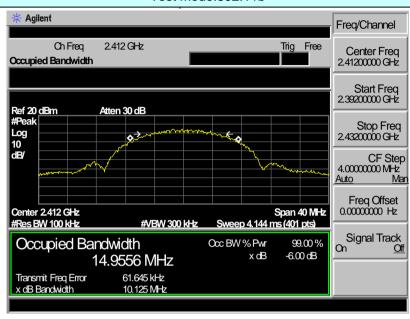
7.3 Conducted Peak Output Power

Measurement Data

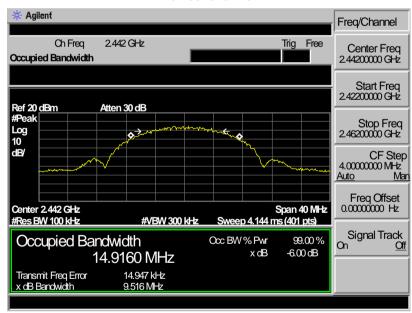
Test CH		Limit(dBm)	Result		
Test Off	802.11b 802.11g 802.11n(HT20)		Limit(abin)	INGSUIL	
Lowest	9.57	8.59	10.21		
Middle	11.19	8.04	11.30	30.00	Pass
Highest 9.26		8.62	9.85		

7.4 Channel Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)			
Test Method:	KDB558074 D01 DTS Meas Guidance V04			
Limit:	>500KHz			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

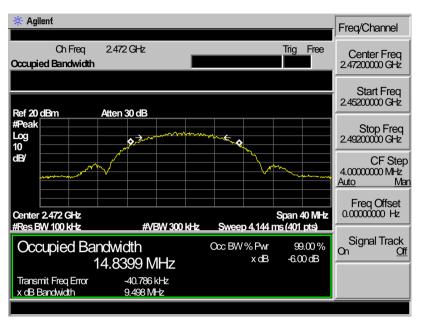

Measurement Data

Test CH	6dB Ei	mission Bandwid	dth (MHz)	Limit(kHz)	Result	
1001 011	802.11b	802.11g	802.11n(H20)	Liiiii(Ki i2)	resur	
Lowest	10.13	16.61	1788			
Middle	Middle 9.52		17.89	>500	Pass	
Highest	9.50	16.60	17.88			
Test CH	99%C	occupy Bandwid	Limit(kHz)	Result		
1001 011	802.11b	802.11g	802.11n(H20)		rtoodit	
Lowest	14.96	16.50	17.69			
Middle	14.92	16.50	17.69	N/A	N/A	
Highest	14.84	16.49	17.67			



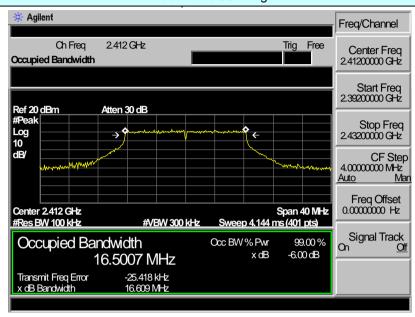
Test plot as follows:

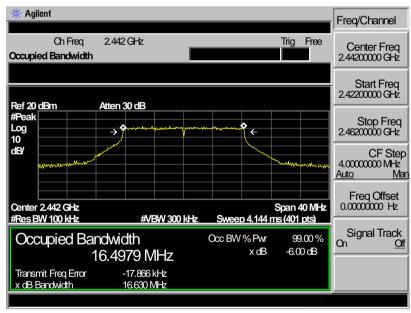
Test mode:802.11b



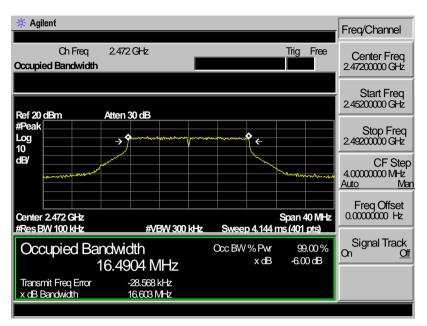
Lowest channel

Middle channel



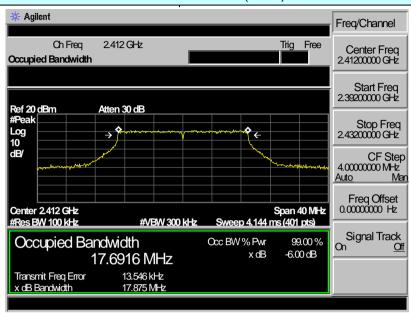

Highest channel

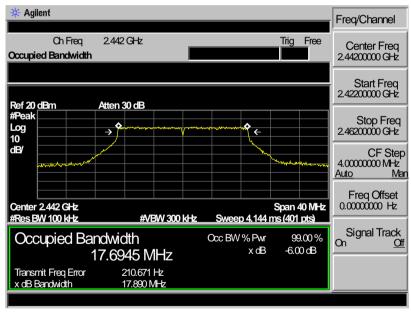
Test mode:802.11g



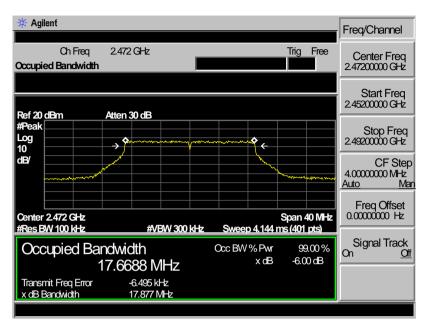
Lowest channel

Middle channel




Highest channel

Test mode:802.11n(HT20)



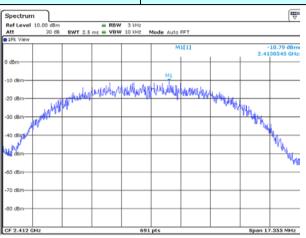
Lowest channel

Middle channel

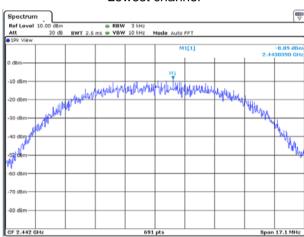
Highest channel

7.5 Power Spectral Density

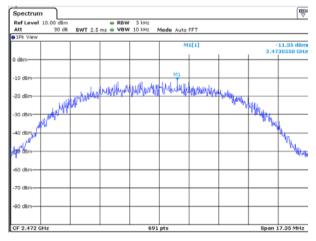
Test Requirement:	FCC Part15 C Section 15.247 (e)			
Test Method:	KDB558074 D01 DTS Meas Guidance V04			
Limit:	8dBm/3kHz			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			


Measurement Data

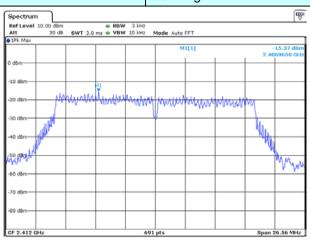
Test CH	Powe	r Spectral Dens	sity (dBm)	Limit	Result
1631 011	802.11b	802.11b 802.11g 802.11n(HT20)		(dBm/3kHz)	Nesuit
Lowest	-10.79	-15.37	-13.89		
Middle	-8.89	-14.26	-12.84	8.00	Pass
Highest	-11.35	-16.41	-15.16		

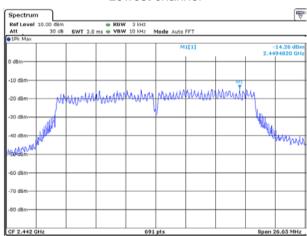


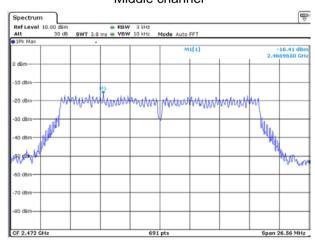
Test plot as follows:


Test mode: 802.11b

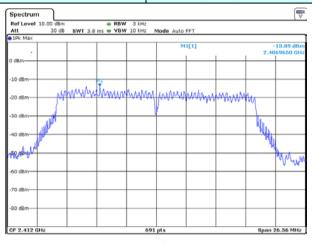
Lowest channel

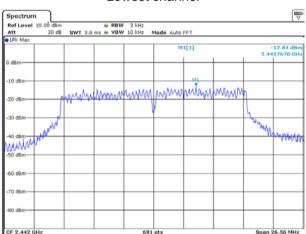

Middle channel

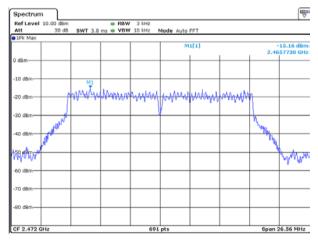

Highest channel


Test mode: 802.11g

Lowest channel


Middle channel


Highest channel


Test mode: 802.11n(HT20)

Lowest channel

Middle channel

Highest channel

7.6 Band edges

7.6.1 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	All of the restrict 2500MHz) data		tested, only	the worst ba	and's (2310MHz to			
Test site:	Measurement D							
Receiver setup:	Frequency	Detector	RBW	VBW	Value			
·	Above 4CU-	Peak	1MHz	3MHz	Peak			
	Above 1GHz	Average	1MHz	3MHz	Average			
Limit:	Freque	ency	Limit (dBuV		Value			
	Above 1	GHz	54.0 74.0		Average Peak			
Total Daniel divine	Tum Table- <150cm>	- ₹ -	< 1m	A.F	and the same of th			
Test Procedure:	the ground a determine th 2. The EUT wa antenna, whi tower. 3. The antenna ground to de horizontal an measuremer 4. For each sus and then the and the rota the maximum 5. The test-rece Specified Ba 6. If the emission the limit specified ba 6. If the emission the EUT whave 10dB meak or aver sheet. 7. The radiation	t a 3 meter can be position of the set 3 meters on the set 3 meters on the set 3 meters on the set 4 metermine the manual districts antenna was to table was turned and reading. Selver system was not selver system was not selved of the Edified, then testing ould be reported age method as a measurement.	nber. The talle highest race away from the don the toped from one naximum value izations of the toped from 0 department to height as set to Pearaximum HoleuT in peaking could be ed. Otherwise re-tested or specified ar sare performs	ole was rotated diation. The interference of a variable meter to four error of the field me antenna and was arrange has from 1 m grees to 360 at Detect Fund Mode. The mode was 1 stopped and error error was different by one used then reportmed in X, Y,	meters above the strength. Both are set to make the d to its worst case meter to 4 meters degrees to find anction and ddB lower than d the peak values ons that did not sing peak, quasi-			

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

	worst case mode is recorded in the report.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

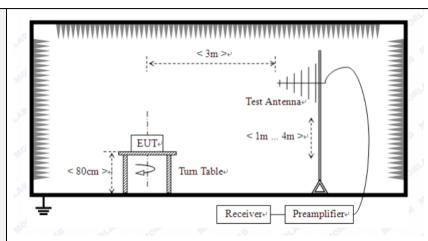
Measurement data:

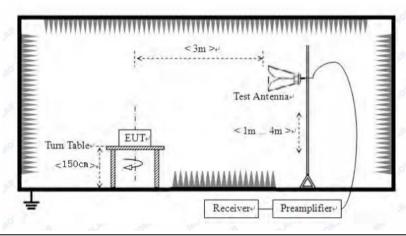
Remark: The pre-test were performed on 802.11b, 802.11g, 802.11n HT20 lowest, middle and highest frequencies, only the802.11n HT20 worst case's data was showed.

Test mode: 802.11n(HT20) Test channel: Lowest								
Peak value:	:		(
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	48.65	27.26	5.85	38.42	43.34	74.00	-30.66	Vertical
2390.00	50.23	27.31	5.66	38.26	44.94	74.00	-29.06	Vertical
2310.00	56.33	27.32	5.85	38.42	51.08	74.00	-22.92	Horizontal
2390.00	58.67	27.31	5.66	38.26	53.38	74.00	-20.62	Horizontal
Average va	lue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	42.44	27.26	5.85	38.42	37.13	54.00	-16.87	Vertical
2390.00	45.65	27.31	5.66	38.26	40.36	54.00	-13.64	Vertical
2310.00	41.45	27.32	5.85	38.42	36.20	54.00	-17.80	Horizontal
2390.00	43.47	27.31	5.66	38.26	38.18	54.00	-15.82	Horizontal
Test mode:		802.1	1n(HT20)	Te	st channel:	ŀ	Highest	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	68.69	27.37	5.89	38.47	63.48	74.00	-10.52	Horizontal
2500.00	65.72	27.38	5.69	38.27	60.52	74.00	-13.48	Horizontal
2483.50	57.22	27.37	5.89	38.47	52.01	74.00	-21.99	Vertical
2500.00	59.73	27.38	5.69	38.28	54.52	74.00	-19.48	Vertical
Average va	lue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	54.54	27.37	5.89	38.47	49.33	54.00	-4.67	Horizontal
2500.00	56.18	27.38	5.69	38.27	50.98	54.00	-3.01	Horizontal
2483.50	47.00	27.37	5.89	38.47	41.79	54.00	-12.21	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.


Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960


7.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209						
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	9kHz to 25GHz						
Test site:	Measurement Distance: 3m						
Receiver setup:	Frequency		Detector	RB	W	VBW	Value
	9KHz-150KHz	Qı	uasi-peak	200	Hz	600Hz	z Quasi-peak
	150KHz-30MHz	Qı	uasi-peak	9KI	Ηz	30KHz	z Quasi-peak
	30MHz-1GHz	Qı	uasi-peak	100k	(Hz	300KH	Iz Quasi-peak
	Above 4011=		Peak	1MI	Hz	3MHz	z Peak
	Above 1GHz		Peak	1MI	Hz	10Hz	Average
Limit:	Frequency		Limit (u\	//m)	V	'alue	Measurement Distance
	0.009MHz-0.490M	1Hz	2400/F(h	(Hz)		QP	300m
	0.490MHz-1.705M	1Hz	24000/F(KHz)		QP	300m
	1.705MHz-30MH	łz	30			QP	30m
	30MHz-88MHz	-	100			QP	
	88MHz-216MHz	Z	150			QP	
	216MHz-960MH	lz	200			QP	3m
	960MHz-1GHz		500			QP	Jiii
	Above 1GHz		500		Av	erage	
	7.0000 10112		5000	0 Peak		Peak	
Test setup:	For radiated emissions from 9kHz to 30MHz Compared to 30MHz						
	For radiated emissions from 30MHz to1GHz						

For radiated emissions above 1GHz

Test Procedure:

- 1. The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10dB lower than the

	limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass
Test voltage:	AC120V 60Hz

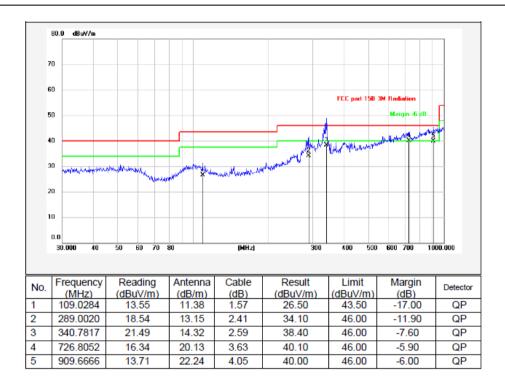
Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement data:

■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.


■ Below 1GHz

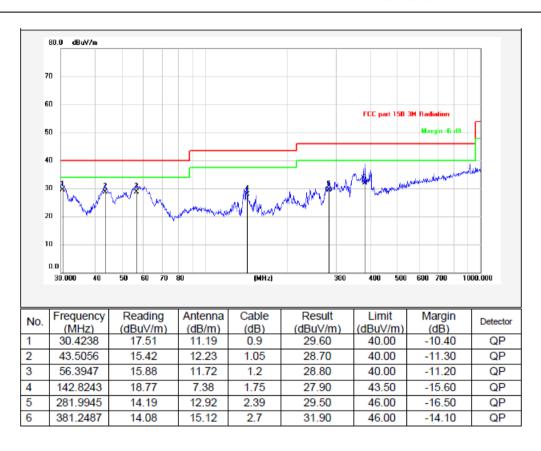
Remark: The pre-test were performed on lowest, middle and highest frequencies, only the worst case's data was showed.

Mode: Transmitting mode:802.11b TX Test by: Jason

2412MHz

Temp./Hum.(%H): 26℃/56%RH Polarziation: Horizontal

Remarks:1. Result=Reading+Antenna+Cable
2. If Peak Result complies with QP Limit, QP Result is deemed to comply with QP Limit.


Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Mode: Transmitting mode:802.11b TX Test by: Jason

2412MHz

Temp./Hum.(%H): 26 ℃/56%RH Polarziation: Vertical

Remarks:1. Result=Reading+Antenna+Cable
2. If Peak Result complies with QP Limit, QP Result is deemed to comply with QP Limit.

■ Above 1GHz

Remark: The pre-test were performed on lowest, middle and highest frequencies, only the worst case's data was showed.

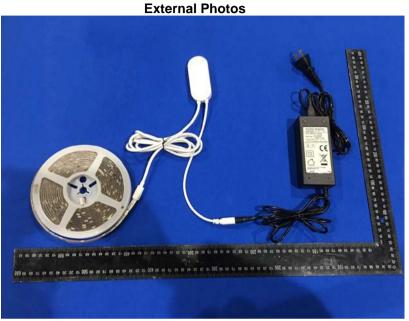
was snowed.		000 445		Tast	ah a wa a l	1	-4	
	Test mode: 802.11b			Test channel:		Lowest		
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	45.22	27.79	6.62	37.10	42.53	74.00	-31.47	Vertical
7236.00	43.54	27.19	6.68	37.97	39.44	74.00	-34.56	Vertical
9648.00	42.23	28.07	7.16	37.56	39.90	74.00	-34.10	Vertical
12060.00	*					74.00		Vertical
14472.00	*					74.00		Vertical
16884.00	*					74.00		Vertical
4824.00	48.06	27.79	6.62	37.10	45.37	74.00	-28.63	Horizontal
7236.00	43.38	27.19	6.68	37.97	39.28	74.00	-34.72	Horizontal
9648.00	41.85	28.07	7.16	37.56	39.37	74.00	-34.63	Horizontal
12060.00	*					74.00		Horizontal
14472.00	*					74.00		Horizontal
16884.00	*					74.00		Horizontal
Average value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	38.39	27.79	6.62	37.10	36.70	54.00	-17.30	Vertical
7236.00	32.43	27.19	6.68	37.97	38.33	54.00	-15.67	Vertical
9648.00	22.60	28.07	7.16	37.56	20.27	54.00	-33.73	Vertical
12060.00	*					54.00		Vertical
14472.00	*					54.00		Vertical
16884.00	*					54.00		Vertical
4824.00	37.65	27.79	6.62	37.10	34.96	54.00	-19.04	Horizontal
7236.00	31.98	27.19	6.68	37.97	27.88	54.00	-26.12	Horizontal
9648.00	31.61	28.07	7.16	37.56	29.28	54.00	-24.72	Horizontal
12060.00	*					54.00		Horizontal
14472.00	*					54.00		Horizontal
16884.00	*					54.00		Horizontal

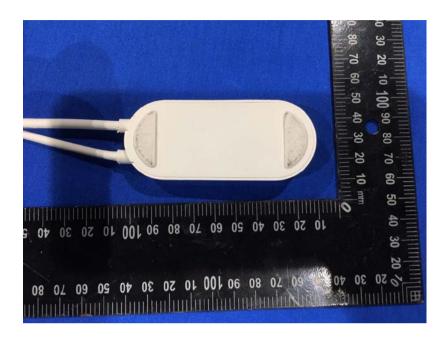
Remark:

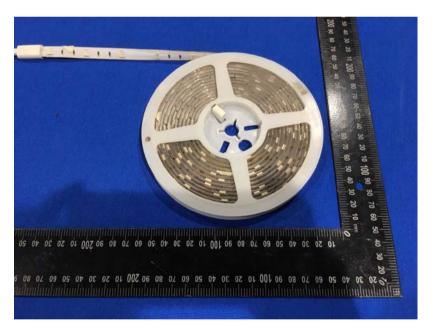
- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

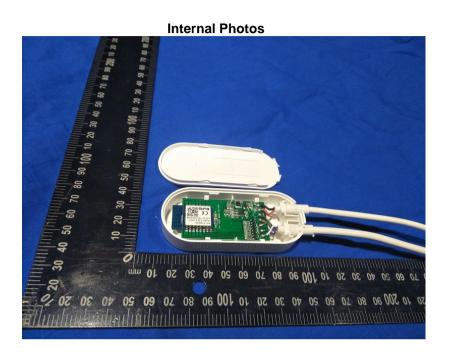
8 Test Setup Photo

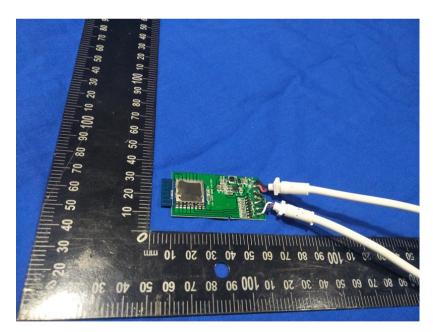
Radiated Emission

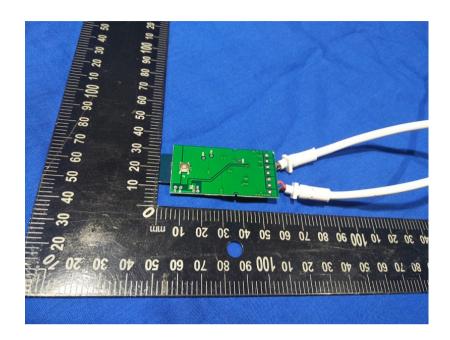

Conducted Emission


EUT Constructional Details 9

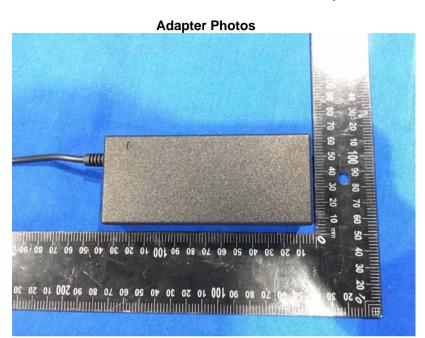












Wifi antenna

-----End-----