
Project #: 23228-15

Company: Swimmersive Co. dba Zygo

EUT Name: Swimmersive Zygo
EUT Model: ZY300

FCC and ISED Canada

Wireless Test Report

Prepared for:

Swimmersive Co. dba Zygo
16854 Mooncrest Dr
Encino, CA 91436

By

Nemko PTI, Inc.
1601 North A.W. Grimes Blvd., Suite B
Round Rock, Texas 78665

July 22, 2022

Written by

Shakil Murad
Wireless Engineer

Revision History

Revision Number	Description	Date
Draft01	Initial release for review	8/3/2022
Draft02	Changed IC to ISED Canada	8/8/2022

Table of Contents

Test Result Summary	6
1.0 Introduction.....	7
1.1 Scope.....	7
1.2 EUT Description	7
1.3 Support Equipment	7
1.4 EUT Test Configuration.....	7
1.5 Modifications to Equipment.....	7
1.6 Test Site	7
1.7 Measurement Corrections	7
1.8 Applicable Documents	8
2.0 AC Power-line Conducted Emissions	9
2.1 Test Procedure	9
2.2 Test Criteria	9
2.3 Test Results	9
2.3.2 AC Power-line Conducted Emissions Test Data	10
3.0 Carrier Frequency Separation	12
3.1 Test Procedure	12
3.1 Test Criteria	12
3.1 Test Results	12
4.0 Number of Hopping Frequencies.....	13
4.1 Test Procedure	13
4.2 Test Criteria	13
4.3 Test Results	13
5.0 Time of Occupancy (Dwell Time)	14
5.1 Test Procedure	14
5.2 Test Criteria	14
5.3 Test Results	14
6.0 Output Power	15
6.1 Test Procedure	15
6.2 Test Criteria	15
6.3 Test Results	15
7.0 Occupied Bandwidth.....	17
7.1 Test Procedure	17
7.2 Test Criteria	17
7.3 Test Results	17
8.0 Duty Cycle	19
9.0 Band Edge	20
9.1 Test Procedure	20
9.2 Test Criteria	20
9.3 Test Results	20
10.0 Conducted Antenna Port Spurious Emissions, Transmit Mode	23
10.1 Test Procedure.....	23
10.2 Test Criteria.....	23
10.3 Test Results	23
10.3.1 100 kHz Bandwidth with 20 dBc Limit Test data	24
10.3.2 15.209 Limit Test data.....	25
11.0 Transmitter Radiated Spurious Emissions	27
11.1 Test Procedure.....	27
11.2 Test Criteria.....	27
11.3 Test Results	27
11.3.1 Hopping Mode, 30 MHz to 25 GHz	28
12.0 Radiated Spurious Emissions, Receive Mode.....	33
12.1 Test Procedure.....	33
12.2 Test Criteria.....	33
12.3 Test Results	33
12.3.1 Hopping Mode, 30 MHz to 18 GHz	34
13.0 Antenna Construction	37
13.1 Procedure.....	37
13.2 Criteria	37

13.3	Results	37
14.0	Measurement Bandwidths	38
15.0	Test Equipment	38
15.1	Conducted Measurements at the Antenna Port	38
15.1	Conducted Emissions	39
15.2	Radiated Emissions	40
Appendix: Policy, Rationale, and Evaluation of EMC Measurement Uncertainty		41

NOTICE:

(1) This Report must not be used to claim product endorsement, by NVLAP, NIST, the FCC or any other Agency. This report also does not warrant certification by NVLAP or NIST.

(2) This report shall not be reproduced except in full, without the written approval of Nemko PTI, Inc.

(3) The significance of this report is dependent on the representative character of the test sample submitted for evaluation and the results apply only in reference to the sample tested. The manufacturer must continuously implement the changes shown herein to attain and maintain the required degree of compliance.

Compliance Certificate

FCC MRA Designation Number: US5270
NVLAP Accreditation Number: 200062-0

Applicant	Device & Test Identification
Swimmersive Co. dba Zygo 16854 Mooncrest Dr Encino, CA 91436	Model(s): ZY300 FCC ID: 2APZQ-ZYGOV2 IC ID: 23961-ZYGOV2 Laboratory Project ID: 23228-15

The device named above was tested utilizing the following standards and found to be in compliance with the required criteria:

Test Requirements:

Requirement	Reference	Test Description
FCC 47 CFR Part 15 C	15.247	Operation within the bands 2400-2483.5 MHz
	15.207	Conducted emission limits
	15.209	Radiated emission limits; general requirements
	15.205	Restricted Bands of Operation
	15.203	Antenna requirement
FCC 47 CFR Part 1 I*	1.1310	Radiofrequency radiation exposure limits
RSS-247	Issue 2	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices
RSS-Gen	Issue 5	General Requirements and Information for the Certification of Radio Apparatus
RSS-102	Issue 5	Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)

*MPE is reported separately from this document. **Corresponding RSS references are listed in the body of the report.

I, Shakil Murad, for Nemko PTI, Inc., being familiar with the above requirements and test procedures have reviewed the test setup, measured data, and this report. I believe them to be true and accurate.

Shakil Murad
Wireless Engineer

NVLAP[®]
TESTING
NVLAP LAB CODE 200062-0

This report has been reviewed and accepted by the Applicant. The undersigned is responsible for ensuring that this device will continue to comply with the requirements listed above.

Representative of Applicant

Test Result Summary

Test	FCC Part 15 Rule Paragraphs	IC RSS References	Test Results
AC Mains Conducted Emissions	15.207 (a)	RSS-Gen 7.2	Pass
Carrier Frequency Separation	15.247(a)(1)	RSS-247 5.1(b)	Pass
Number of Hopping Frequencies	15.247(a)(1)(iii)	RSS-247 5.1(d)	Pass
Time of Occupancy (Dwell Time)	15.247(a)(1)(iii)	RSS-247 5.1(d)	Pass
Output Power	15.247 (b)(1)	RSS-247 5.4 (b)	Pass
Occupied Bandwidth	15.247 (a)(1); 2.1049	RSS-247 5.1 (a)	Pass
Duty Cycle	15.247 (f)	RSS-247 5.3 (a)	Pass
Band Edge	15.247 (d); 15.205 (a)	RSS-247 5.5; RSS-Gen 6.13	Pass
Conducted Spurious Emissions	15.247 (d); 15.209 (a)	RSS-247 5.5; RSS-GEN 6.13	Pass
Transmitter Spurious Emissions	15.247 (d); 15.209 (a)	RSS-247 5.5; RSS-Gen 6.13 & 8.10	Pass
Receiver Radiated Spurious Emissions	15.109	RSS-Gen 7.3	Pass
Antenna Requirement	15.203	RSS-Gen 6.8	Pass

1.0 Introduction

1.1 Scope

This report describes the extent to which the equipment under test (EUT) conformed to the intentional radiator requirements of the United States and Canada.

Nemko PTI, Inc., follows the guidelines of National Institute of Standards and Technology (NIST) for all uncertainty calculations, estimates, and expressions thereof for electromagnetic compatibility testing.

1.2 EUT Description

Manufacturer / Model	Serial #	Description
Swimmersive Co. dba Zygō Model: ZY300	RB44B1233	DSS 2400-2483.5 MHz FHSS transceiver Bluetooth protocols.

1.3 Support Equipment

Manufacturer / Model	Serial #	Description
ZYGO / ZY400	HC07C0827	Headset
Motorola / Moto	N/A	Cell Phone
Belkin / WC8002dq	N/A	USB Charger

1.4 EUT Test Configuration

The EUT was exercised in a manner consistent with normal operations.

1.5 Modifications to Equipment

A PCB mounted 50 ohm resistor was soldered in place of the 200 MHz radio antenna to facilitate Radiated Spurious Emissions measurements.

1.6 Test Site

Measurements were made at the Nemko PTI semi-anechoic facility designated Site 45 (FCC 776781, IC 3036B-1) in Austin, Texas. The site is registered with the FCC under Section 2.948 and Industry Canada per RSS-GEN, and is subsequently confirmed by laboratory accreditation (NVLAP). The test site is located at 11400 Burnet Road, Austin, Texas 78758, while the main office is located at 1601 North A.W. Grimes Boulevard, Suite B, Round Rock, Texas, 78665. CAB Identifier: US 0123.

1.7 Measurement Corrections

Parameter	From Sums Of
Radiated Field Strength	Raw Measured Level + Antenna Factor + Cable Losses – Amplifier Gain
Conducted Antenna Port	Raw Measured Level + Attenuator Factor + Cable Losses
Conducted Mains Port	Raw Measured Level + LISN Factor + Cable/Filter/Limiter Losses

Additionally, measurement distance extrapolation factors (such as 1/d above 30 MHz) are applied and documented where used.

1.8 Applicable Documents

Table 1.8.1: Applicable Documents

Document	Title
47 CFR	Part 15 – Radio Frequency Devices Subpart C -Intentional Radiators
RSS-247 Issue 2	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices
RSS-102 Issue 5	Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)
RSS-Gen Issue 5	General Requirements and Information for the Certification of Radio Apparatus
ANSI C63.10 2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
KDB 558074 D01	GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEM, FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES
KDB 412172 D01	GUIDELINES FOR DETERMINING THE EFFECTIVE RADIATED POWER (ERP) AND EQUIVALENT ISOTROPICALLY RADIATED POWER (EIRP) OF AN RF TRANSMITTING SYSTEM
KDB 447498 D01	RF EXPOSURE PROCEDURES AND EQUIPMENT AUTHORIZATION POLICIES FOR MOBILE AND PORTABLE DEVICES
OET Bulletin 65 Edition 97-01	Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields

2.0 AC Power-line Conducted Emissions

2.1 Test Procedure

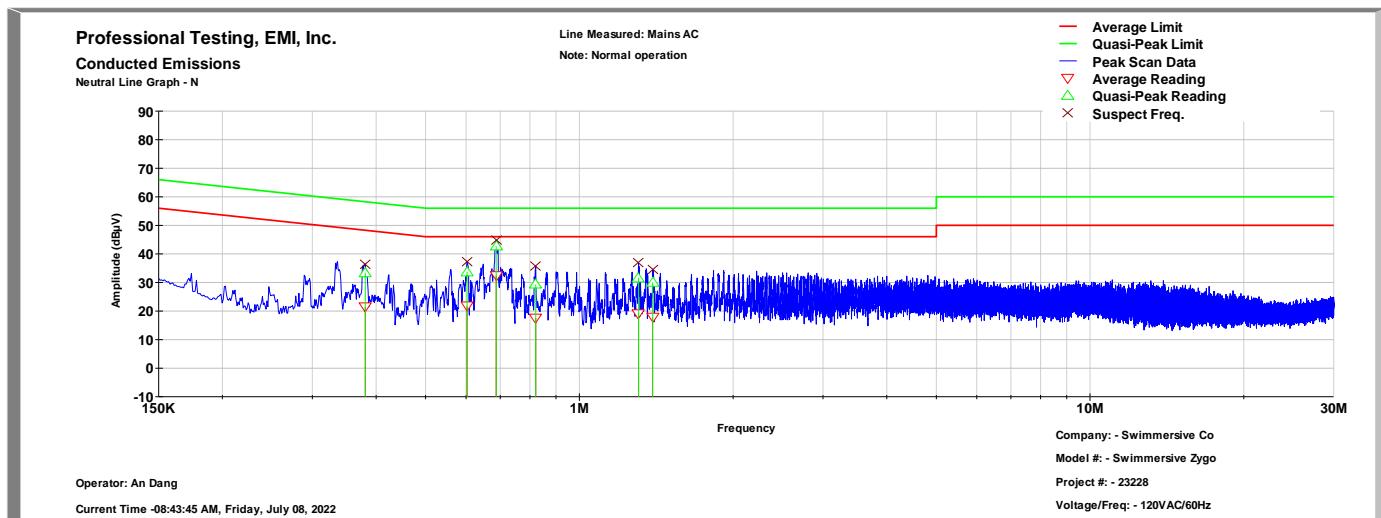
Measure emissions of the EUT from the AC mains network terminated into a standard line impedance network (LISN).

2.2 Test Criteria

AC Power-line Conducted Emissions Limit		
Frequency (MHz)	Quasi-Peak (dBuV)	Average (dBuV)
0.150 – 0.500	66 – 56 *	56 – 46 *
0.500 – 5	56	46
5 – 30	60	50

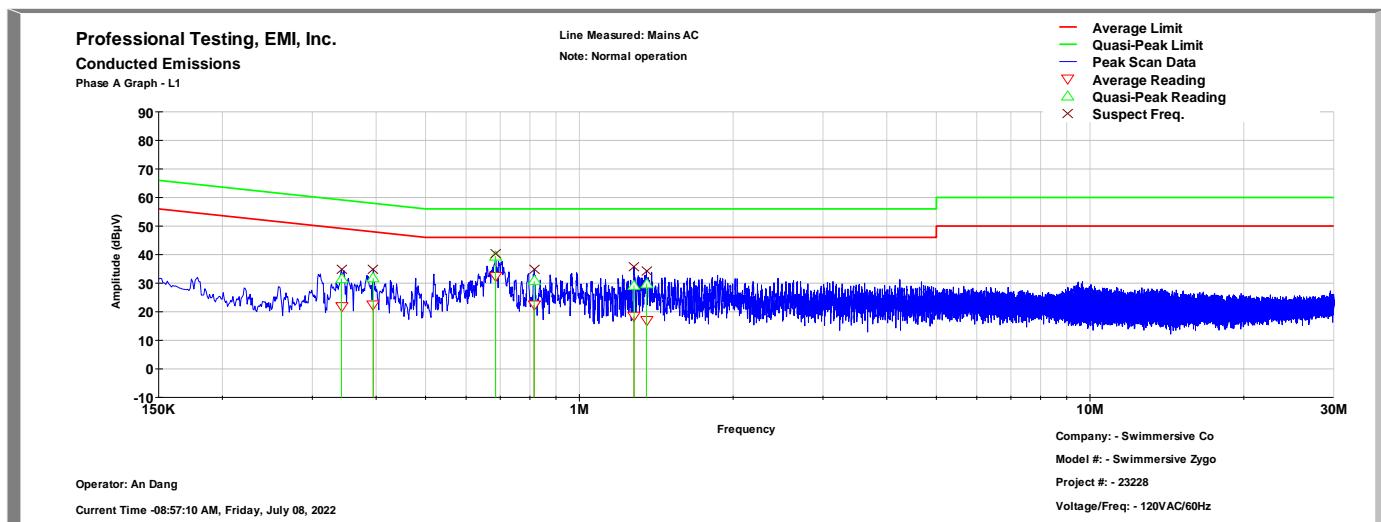
Note 1: * Decreases with the logarithm of the frequency.

2.3 Test Results


Table 2.3.1: Conducted Emissions Test Results – AC Mains

EUT Name	Swimmersive Zyg		Model or Serial #	Model ZY100			
EUT Line Voltage	120	VAC	Frequency	60	Hz		
Emissions Limit Level	FCC.15 Class B		EUT Test Mode or Configuration	Charging			
Frequency Range			Line Tested	Test Results			
150kHz to 30MHz			Neutral Line	Pass			
			Phase A (Line 1)	Pass			
Notes:							

The requirements were satisfied. Test plots and tabular data are presented on the following page.


2.3.2 AC Power-line Conducted Emissions Test Data

Neutral Line Emissions Data

Frequency (MHz)	Quasi-peak Reading (dB μ V)	Quasi-peak Limit (dB μ V)	Quasi-peak Margin (dB)	Quasi-peak Results	Average Reading (dB μ V)	Average Limit (dB μ V)	Average Margin (dB)	Average Results	Peak Reading (dB μ V)
(MHz)	(dB μ V)	(dB μ V)	(dB)	(Pass/Fail)	(dB μ V)	(dB μ V)	(dB)	(Pass/Fail)	(dB μ V)
0.381	33.4	58.3	-24.9	PASS	21.4	48.3	-26.9	PASS	39.4
0.603	33.7	56.0	-22.3	PASS	21.7	46.0	-24.3	PASS	39.6
0.687	42.7	56.0	-13.3	PASS	32.4	46.0	-13.6	PASS	49.7
0.822	29.3	56.0	-26.7	PASS	17.5	46.0	-28.5	PASS	37.2
1.306	31.7	56.0	-24.3	PASS	19.2	46.0	-26.8	PASS	38.0
1.392	30.1	56.0	-25.9	PASS	17.9	46.0	-28.1	PASS	37.4

Line 1 Emissions Data

Frequency (MHz)	Quasi-peak Reading (dB μ V)	Quasi-peak Limit (dB μ V)	Quasi-peak Margin (dB)	Quasi-peak Results	Average Reading (dB μ V)	Average Limit (dB μ V)	Average Margin (dB)	Average Results	Peak Reading (dB μ V)
(MHz)	(dB μ V)	(dB μ V)	(dB)	(Pass/Fail)	(dB μ V)	(dB μ V)	(dB)	(Pass/Fail)	(dB μ V)
0.342	31.6	59.2	-27.5	PASS	21.7	49.2	-27.4	PASS	37.5
0.395	31.7	58.0	-26.2	PASS	22.5	48.0	-25.4	PASS	37.8
0.685	39.5	56.0	-16.5	PASS	32.3	46.0	-13.7	PASS	46.4
0.816	30.8	56.0	-25.2	PASS	22.3	46.0	-23.7	PASS	35.8
1.279	29.2	56.0	-26.8	PASS	18.4	46.0	-27.6	PASS	36.5
1.353	29.9	56.0	-26.1	PASS	17.0	46.0	-29.0	PASS	38.8

3.0 Carrier Frequency Separation

3.1 Test Procedure

The EUT was connected through an attenuator to the spectrum analyzer. The radio was allowed to hop normally while the analyzer was in max hold mode. ANSI C63.10-2013, section 7.8.2, procedure is used for the measurements.

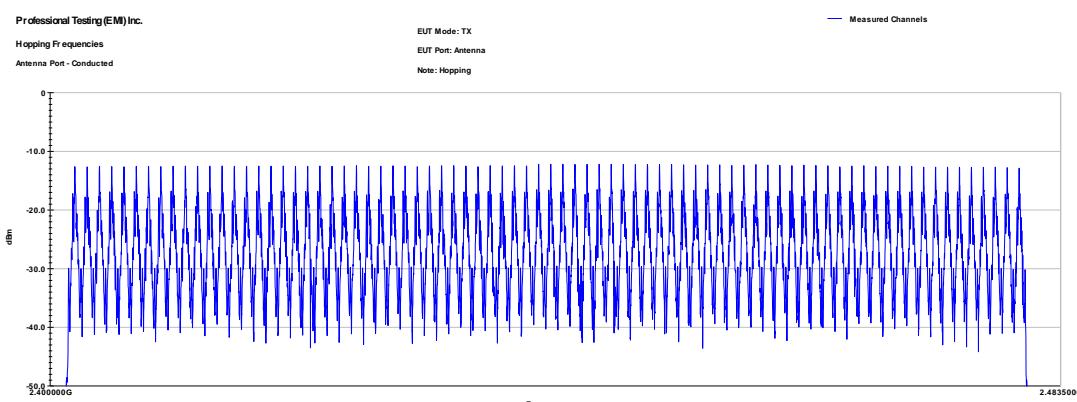
3.1 Test Criteria

47 CFR (USA) // IC (Canada)	
Section Reference	Limit
15.247(a)(1) // RSS-247 5.1(b)	FHSs shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

3.1 Test Results

The requirements were satisfied.

4.0 Number of Hopping Frequencies


4.1 Test Procedure

The EUT was connected through an attenuator to the spectrum analyzer. The radio was allowed to hop normally while the analyzer was in max hold mode. ANSI C63.10-2013, section 7.8.3, procedure is used for the measurements.

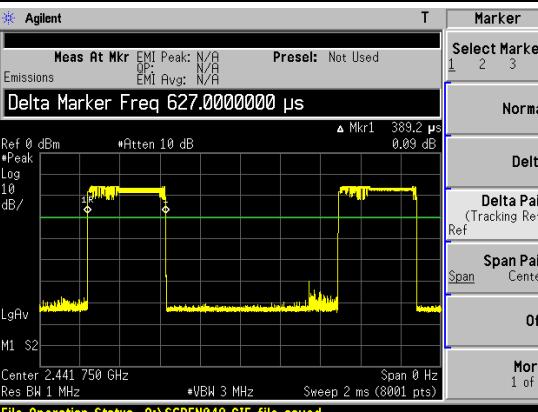
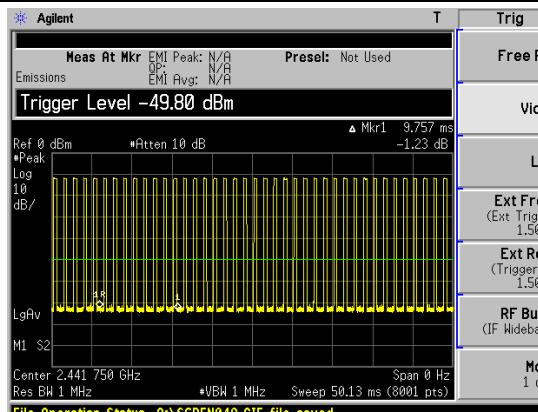
4.2 Test Criteria

47 CFR (USA) // IC (Canada)	
Section Reference	Limit
15.247(a)(1)(iii) // RSS-247 5.1(d)	FHSs operating in the band 2400-2483.5 MHz shall use at least 15 hopping channels.

4.3 Test Results

Project Number:	23228-15			Test Date(s):		7/5/2022										
Environmental Conditions:	Temperature	22.3	°C	Humidity	53	RH	Barometric Pressure	29.92 in Hg								
Measurement Parameters:	RBW	30	kHz	VBW	100	kHz	Detector	Peak								
Frequency Band (MHz)	Measured Hopping Frequencies			Limit			Test Result									
2400 2483.5	79			> 15			Pass									
<p>Professional Testing (EM) Inc. Hopping Frequencies Antenna Port - Conducted EUT Mode: TX EUT Port: Antenna Note: Hopping</p> <p>Measured Channels</p> <p>Frequency</p> <p>Project # - 23228-15 EUT Name - Swimmersive Zyg Client - Swimmersive Co.</p> <p>Operator: Shakil Murad Current Time - 12:40:08 PM, Tuesday, July 05, 2022</p>																
Hopping Channels (MHz)																
2402.01	2412.01	2422.01	2432.01	2442.01	2452.01	2462.01	2472.01									
2403.02	2413.02	2423.01	2433.01	2443.01	2453.01	2463.01	2473.01									
2404.01	2414.02	2424.02	2434.02	2444.01	2454.01	2464.01	2474.01									
2405.01	2415.01	2425.01	2435.02	2445.02	2455.02	2465.02	2475.01									
2406.01	2416.01	2426.01	2436.01	2446.01	2456.01	2466.02	2476.02									
2407.01	2417.01	2427.01	2437.01	2447.01	2457.01	2467.01	2477.01									
2408.02	2418.02	2428.01	2438.01	2448.01	2458.01	2468.01	2478.01									
2409.01	2419.02	2429.02	2439.02	2449.01	2459.01	2469.01	2479.01									
2410.01	2420.01	2430.01	2440.02	2450.02	2460.02	2470.01	2480.01									
2411.01	2421.01	2431.01	2441.01	2451.01	2461.02	2471.02										

5.0 Time of Occupancy (Dwell Time)



5.1 Test Procedure

The EUT was connected through an attenuator to the spectrum analyzer. The radio was allowed to hop normally while the analyzer was in max hold mode. ANSI C63.10-2013, section 7.8.4, procedure is used for the measurements.

5.2 Test Criteria

47 CFR (USA) // IC (Canada)	
Section Reference	Limit
15.247(a)(1)(iii) // RSS-247 5.1(d)	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed.

5.3 Test Results

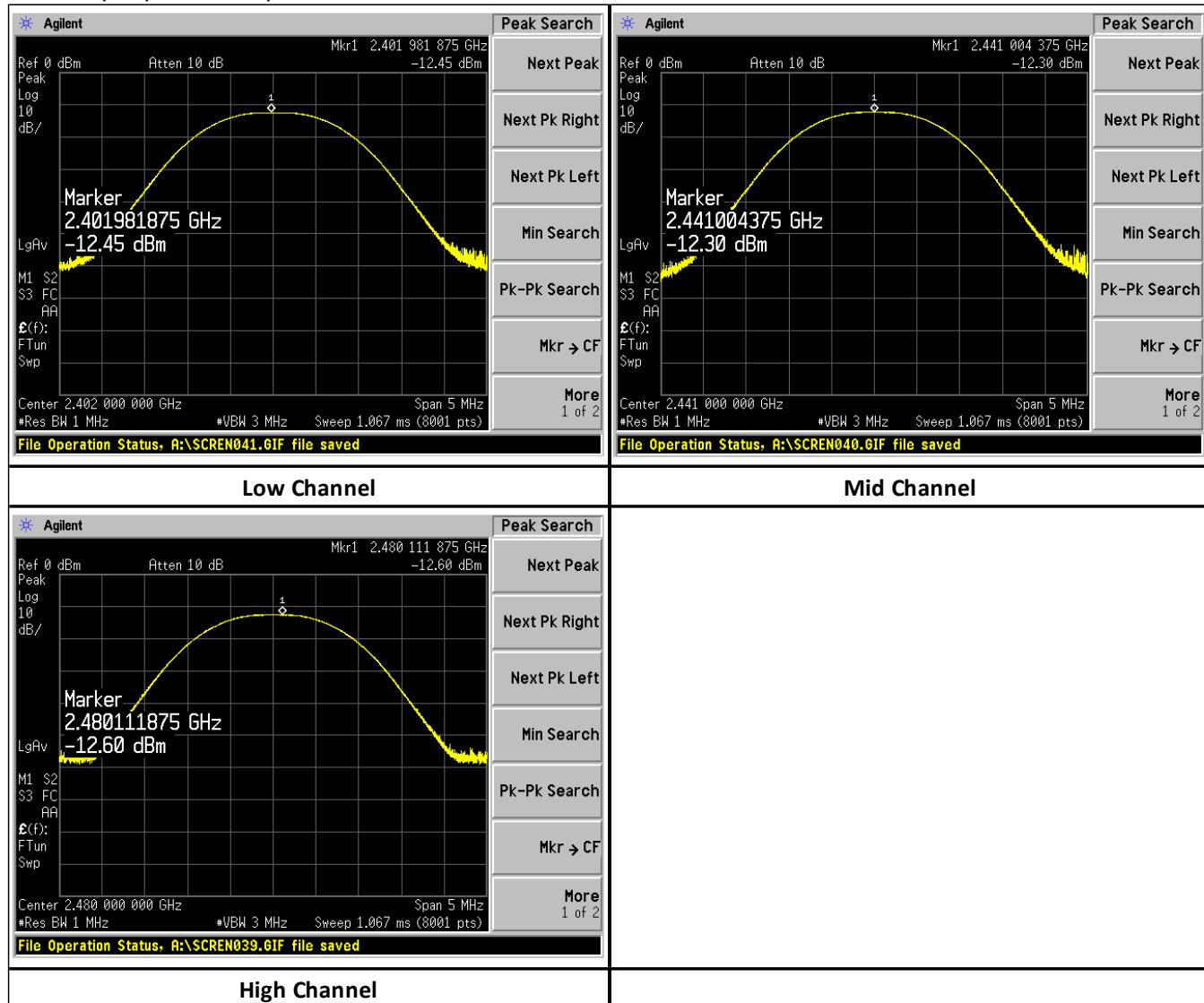
Project Number:			23228-15			Test Date(s):			7/5/2022							
Environmental Conditions:			Temperature		22.3 °C	Humidity		53 RH	Barometric Pressure		29.92 in Hg					
Measurement Parameters:			RBW	1 MHz	VBW	3 MHz	Detector	Peak								
Total Number of Channels:			79			Time of Occupancy (0.4 sec * # of Chs):				31.6	sec.					
Sweep Time:	50 ms	Number of Hopps:	40	Hopping Time Within 1sec (# of Hopps/Sweep Time):					800	Hopps/sec						
Frequency (MHz)	Transmitter ON Time (ms)		Maximum Occupancy Time on a Single Channel ((On Time*# of Hopps/sec.)/# of Chs)*Time of Occupancy						Limit (ms)	Test Result						
2441	0.3892		124.544						< 400	PASS						
Transmitter ON Time						Number of Hopps within 50 ms										

6.0 Output Power

6.1 Test Procedure

The EUT was connected directly to the spectrum analyzer with an attenuator for the measurements. Low, mid, and high channel were measured. ANSI C63.10-2013, section 7.8.5, procedure is used for the measurements.

6.2 Test Criteria


47 CFR (USA) // IC (Canada)	
Section Reference	Limit
15.247(b)(1) // RSS-247 (b)	1 W peak (+30 dBm) Limit Restated as Field: 125.23 dB μ V/m @ 3 m

6.3 Test Results

Project Number:	23228-15			Test Date(s):		7/1/2022		
Environmental Conditions:	Temperature	22.4 °C	Humidity	52	RH	Barometric Pressure	29.88	in Hg
EUT (6 or 20 dB) Bandwidth:	1.034	MHz						
Measurement Parameters:	RBW	1 MHz	VBW	3 MHz	Span	3 MHz	Detector	Peak
Channel	Frequency	Measured Power	Attenuator Factor	Corrected Power			Test Result	
	(MHz)	(dBm)	(dB)	(dBm)				
0	2402	-12.45	20.115	7.665			30	
39	2441	-12.3	20.115	7.815			30	
80	2480	-12.6	20.115	7.515			30	

The requirements were satisfied. Test plots are presented on the following page.

Peak output power test plots:

7.0 Occupied Bandwidth

7.1 Test Procedure

The EUT was connected directly to the spectrum analyzer with an attenuator for the measurements. Low, mid, and high channel were measured. ANSI C63.10-2013, section 6.9.2 and 6.9.3, procedure is used for the measurements.

7.2 Test Criteria

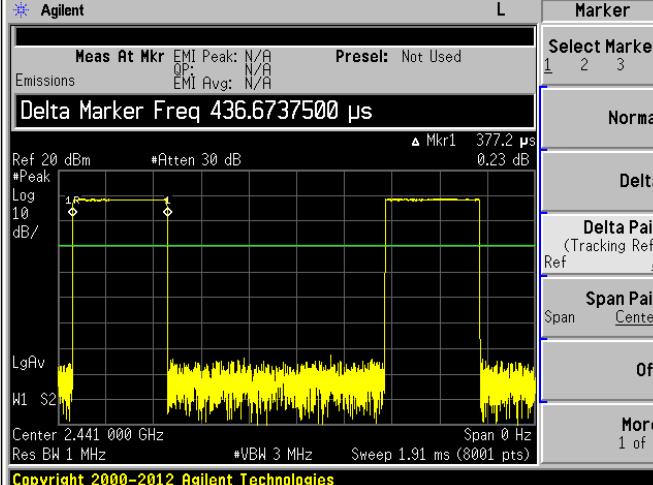
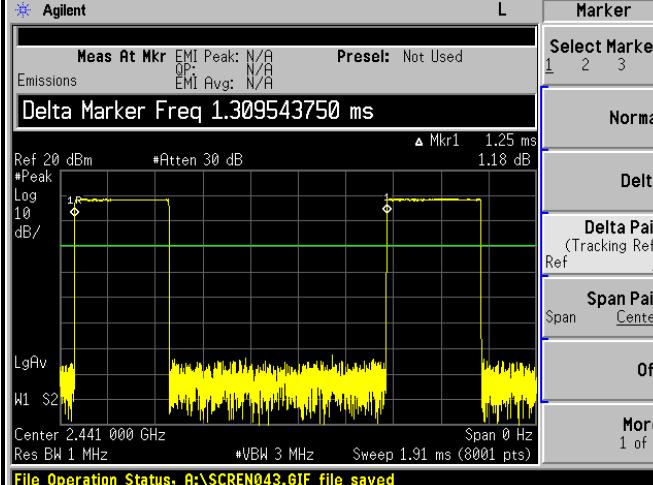
47 CFR (USA) // IC (Canada)	
Section Reference	Limit
15.247(a)(1), 2.1049 // RSS-247 5.1(a)	20 dB Bandwidth 99% (all methods)

In cases where the software function fails to find/mark the correct edge of the modulated envelope, a manual measurement (marker-delta over display line) is taken with the same spectrum analyzer settings.

7.3 Test Results

Project Number:	23228-15				Test Date(s):			7/1/2022									
Environmental Conditions:	Temperature	22.1	°C	Humidity	52	RH	Barometric Pressure	29.87	in Hg								
Measurement Parameters:	RBW	30	kHz	VBW	90	kHz	Span	3	MHz	Detector	Peak						
<hr/>																	
Measurement Bandwidth:			20	dB	<hr/>												
Channel	Frequency	Measured Bandwidth				Reported Minimum Bandwidth											
	(MHz)	(kHz)				(kHz)											
0	2402	1034				1034											
39	2441	1034															
80	2480	1034															

Frequency	Measured Bandwidth	Reported Maximum Bandwidth
Channel	(MHz)	(kHz)
0	2402	987.0757
39	2441	987.1936
80	2480	986.7058



The EUT met the requirements. Test plots are presented on the following page.

Occupied Bandwidth data plots, Recorded: 20 dB, 99% BW

8.0 Duty Cycle

Measurement is based on intervals not to exceed 100 msec. Maximum transmitter on time is divided by the lesser of 100 msec or the actual measured minimum transmitter interval time. The result is converted to dB and applied as needed to peak measurements of transmitter artifacts to determine average power. This is not a pass/fail measurement. ANSI C63.10-2013, section 7.5, procedure is used for the measurements.

Project Number:	23228			Test Date(s):			7/1/20222											
Environmental Conditions:		Temperature	22.4	°C	Humidity	52	RH	Barometric Pressure		29.88	in Hg							
Measurement Parameters:		RBW	1	MHz	VBW	3	MHz	Span	0	MHz	Detector	Peak						
On Time (ms)		Max On Time Allowed (ms)	On Time Result	Time Interval (ms)		Duty Cycle Factor (dB) (20 * Log(On time/Interval))			Duty Cycle Factor Allowed (dB)									
0.3772	100	Pass	1.25	-10.41			-20			-5.2								
RF Exposure Duty Cycle Reduction Factor (10 * Log(On Time/Period), (dB))																		
												File Operation Status: A:\SCREEN043.GIF file saved						
Transmit Event Time						Time Interval (Return to channel time)												

9.0 Band Edge

9.1 Test Procedure

The EUT was connected directly to the spectrum analyzer with an attenuator for the measurements. EUT is placed into normal transmit operation on the nearest band edge channel. The spectrum analyzer is approximately centered on the band edge frequency with span sufficient to include the peak of the adjacent fundamental signal. Measurement includes at least two standard bandwidths from the respective band edge. If required, the band-edge marker-delta method is utilized. ANSI C63.10-2013, section 6.10.4 and 6.10.5, procedure is used for the measurements.

9.2 Test Criteria

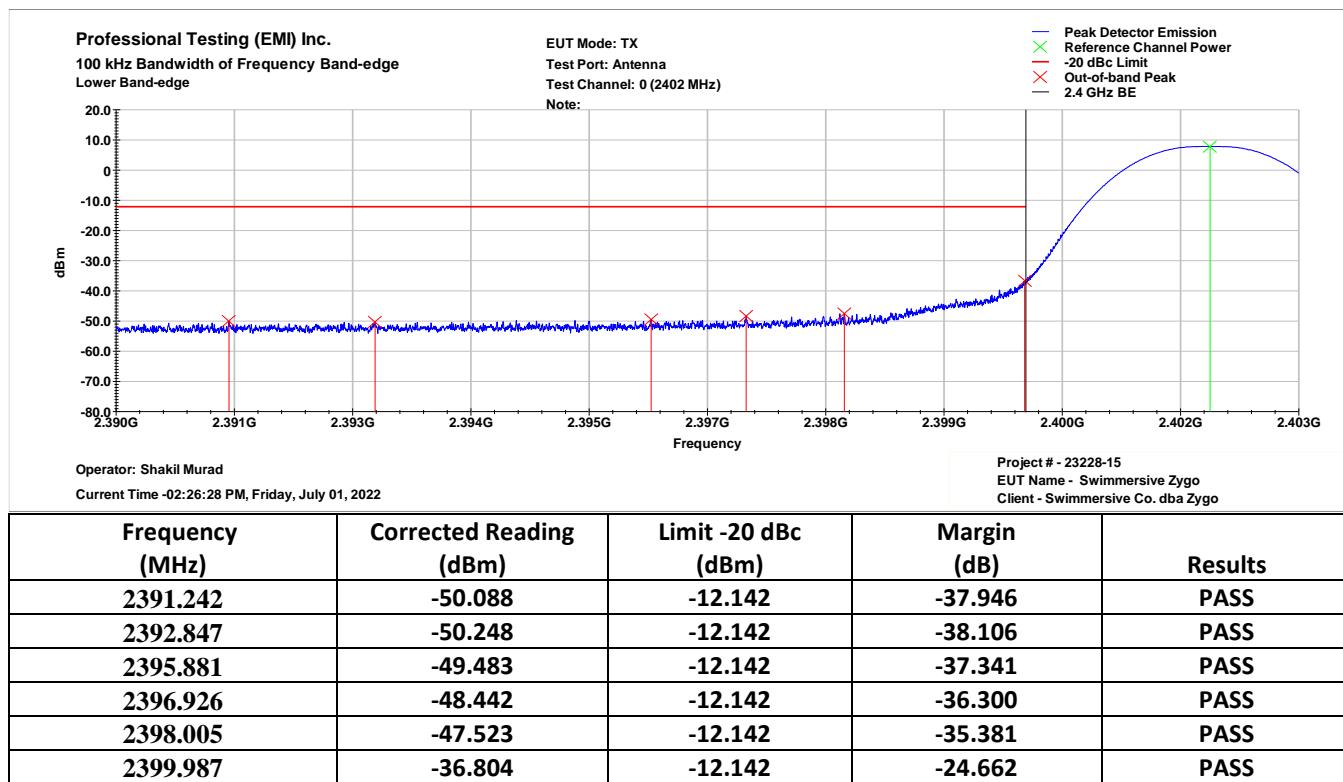
47 CFR (USA) // IC (Canada)	
Section Reference	Limit
15.247 (d), 15.205 (a) // RSS-247 5.5, RSS-Gen 6.13	Unwanted Emissions Adjacent to Authorized Band

9.3 Test Results

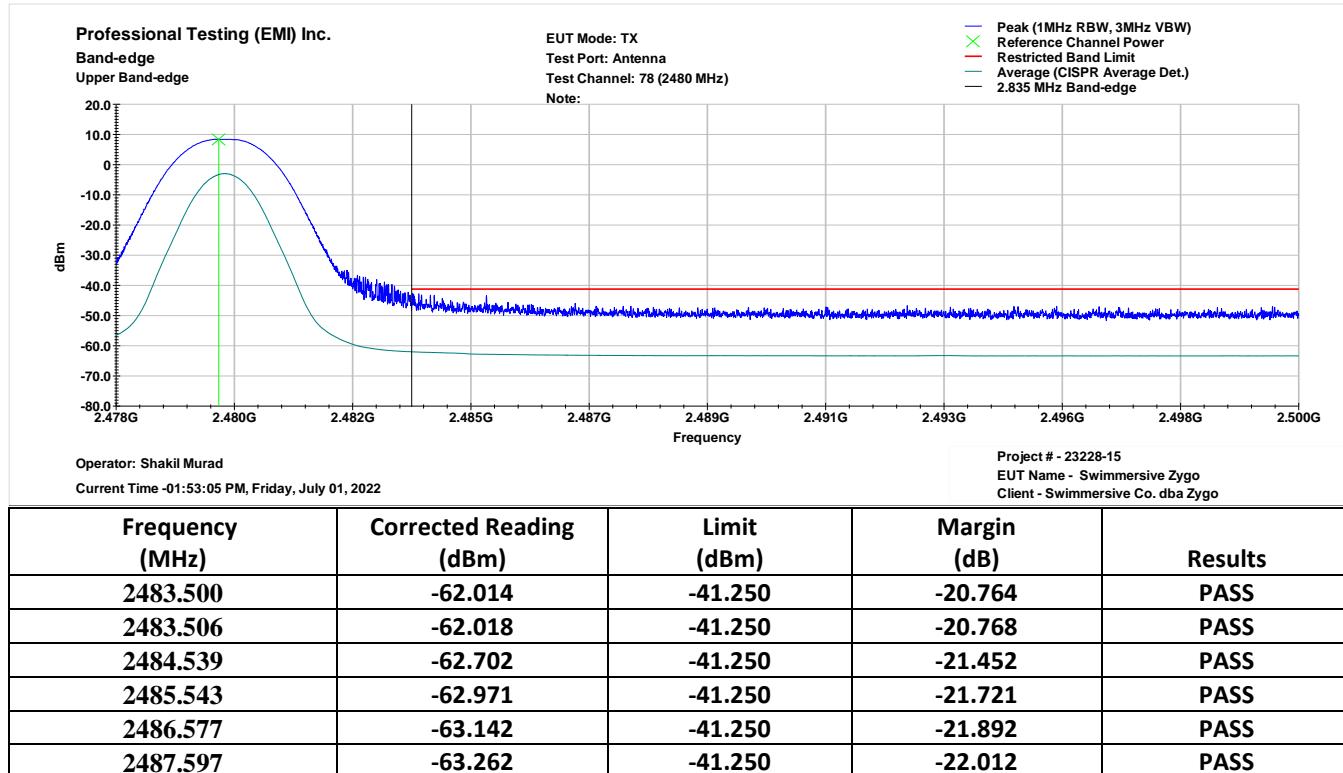
Measurements included fundamental with 2 standard bandwidths (standard bandwidth 1 MHz) beyond the band edges to provide a clear view of the fundamental and the declining emission levels. Beyond this point, the general emission limits are applied in the radiated emission tests reported elsewhere in the report.

This is a conducted measurement with limits derived from the general emission field strength limits. The far field path loss equation is utilized to convert the field strength limits to EIRP limits in dBm as follows:

$$\text{Given EIRP} = E_{\text{dB}\mu\text{V/m}} + 20\text{Log}_{10}(d) - 104.8$$


$$\text{EIRP} = 54 \text{ dB}\mu\text{V/m} + 20\text{Log}_{10}(3 \text{ m}) - 104.8 \text{ dB} = -41.25 \text{ dBm} \text{ (commonly -41 dBm is applied)}$$

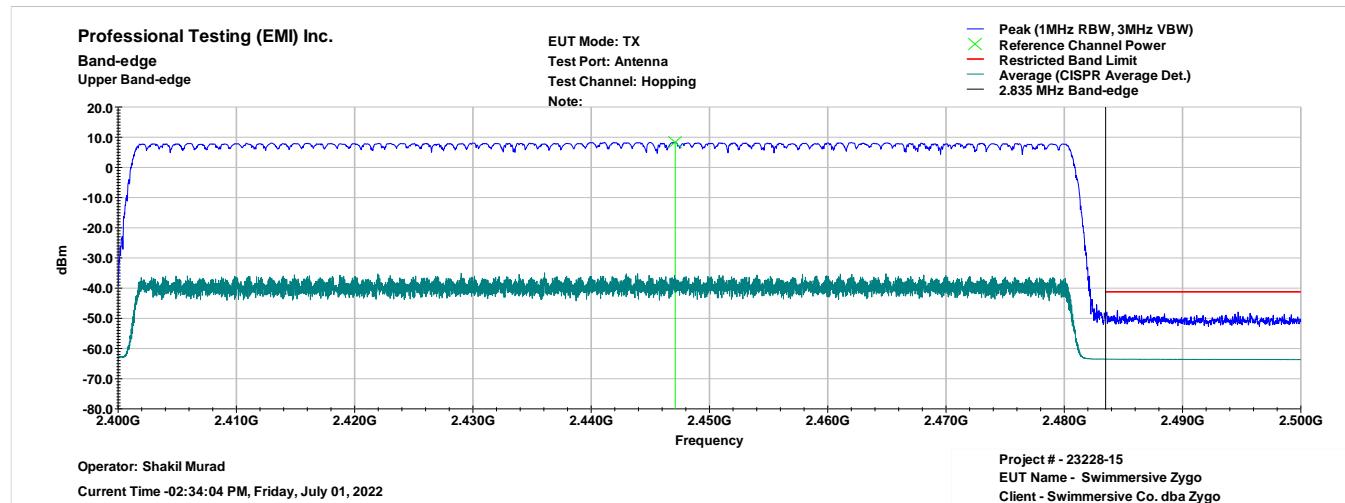
Emissions below band measured with peak detection in 100 kHz RBW.


Emissions above band measured with peak detection and 1 Hz video average in 1 MHz RBW if the peak emission exceeds the average limit.

The requirement was satisfied. Test plots and tabular data are presented on the following page.

Lower Band-edge

Upper Band-edge



Lower Band-edge - Hopping

Frequency (MHz)	Corrected Reading (dBm)	Limit -20 dBc (dBm)	Margin (dB)	Results
2392.475	-56.540	-11.770	-44.770	PASS
2397.177	-56.042	-11.770	-44.272	PASS
2399.349	-49.535	-11.770	-37.765	PASS
2400.000	-49.619	-11.770	-37.849	PASS

Upper Band-edge - Hopping

Frequency (MHz)	Corrected Reading (dBm)	Limit (dBm)	Margin (dB)	Results
2483.550	-63.518	-41.250	-22.268	PASS
2485.425	-63.554	-41.250	-22.304	PASS
2487.800	-63.577	-41.250	-22.327	PASS
2488.875	-63.597	-41.250	-22.347	PASS
2490.012	-63.608	-41.250	-22.358	PASS
2492.100	-63.609	-41.250	-22.359	PASS

10.0 Conducted Antenna Port Spurious Emissions, Transmit Mode

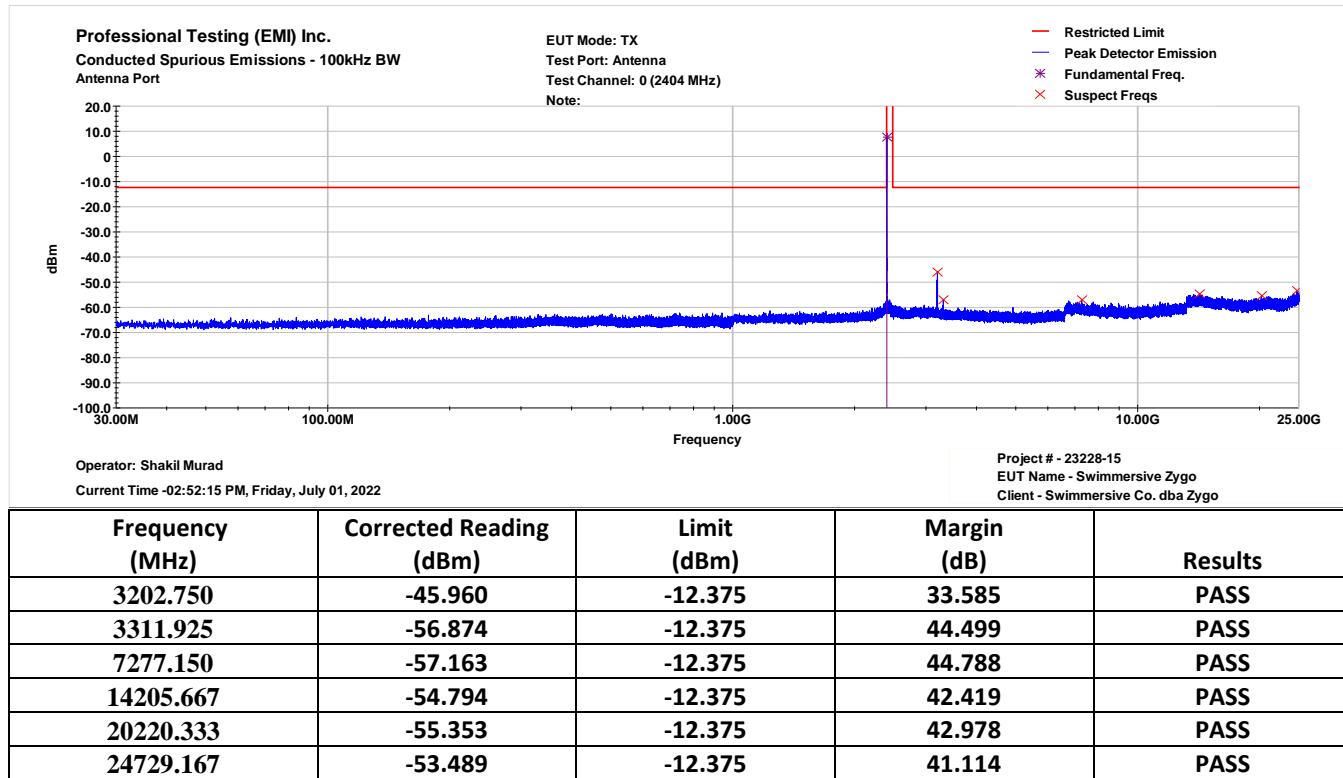
10.1 Test Procedure

The EUT was connected directly to the spectrum analyzer with an attenuator for the measurements. Conducted antenna port emissions are measured with the EUT transmitting on Low, Mid, and High channels. ANSI C63.10-2013, section 7.8.8 and 11.12.2, procedure is used for the measurements.

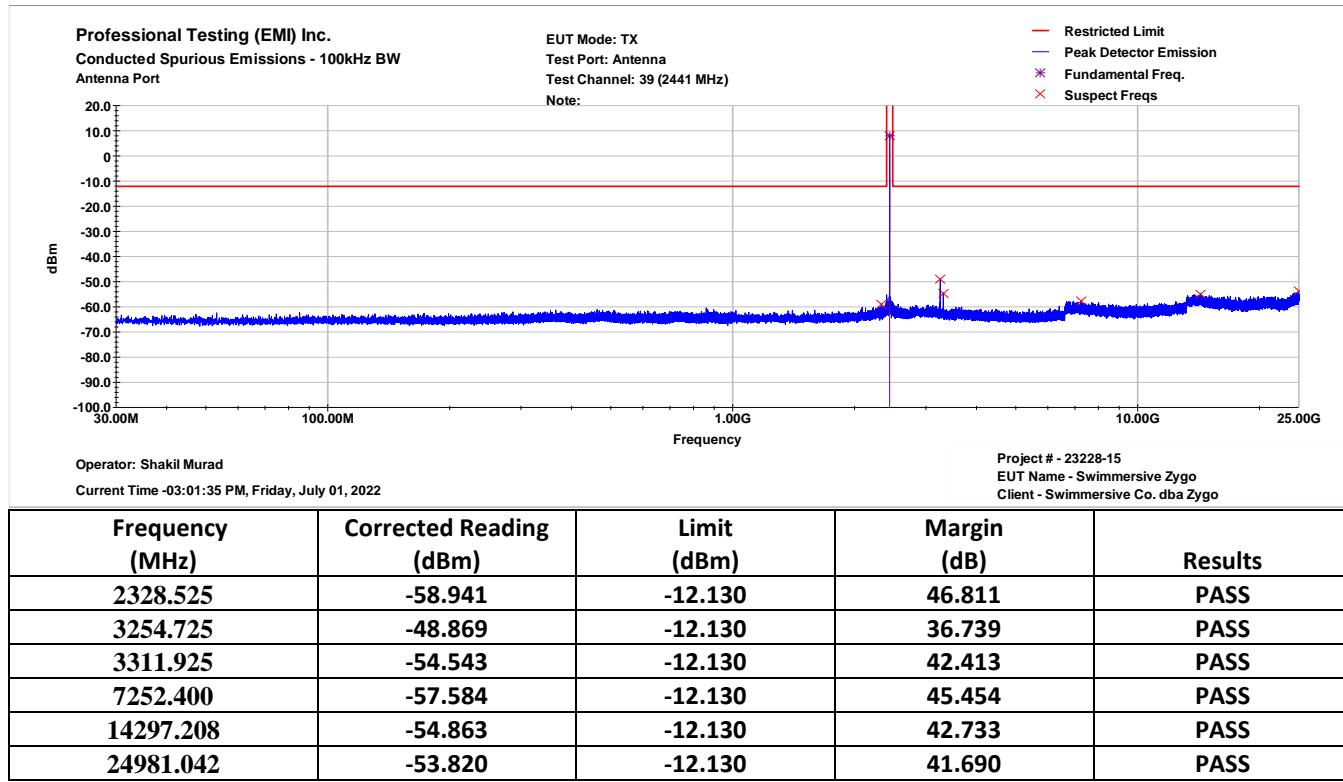
10.2 Test Criteria

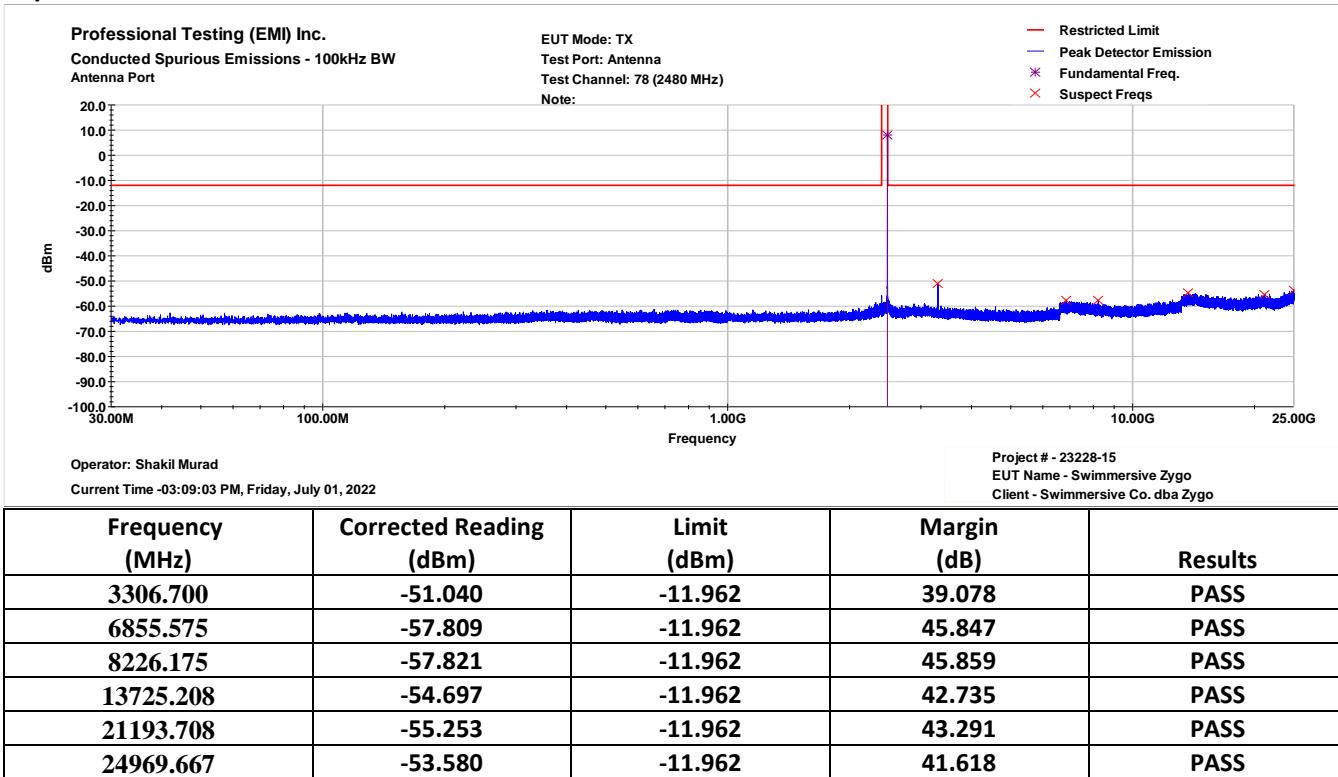
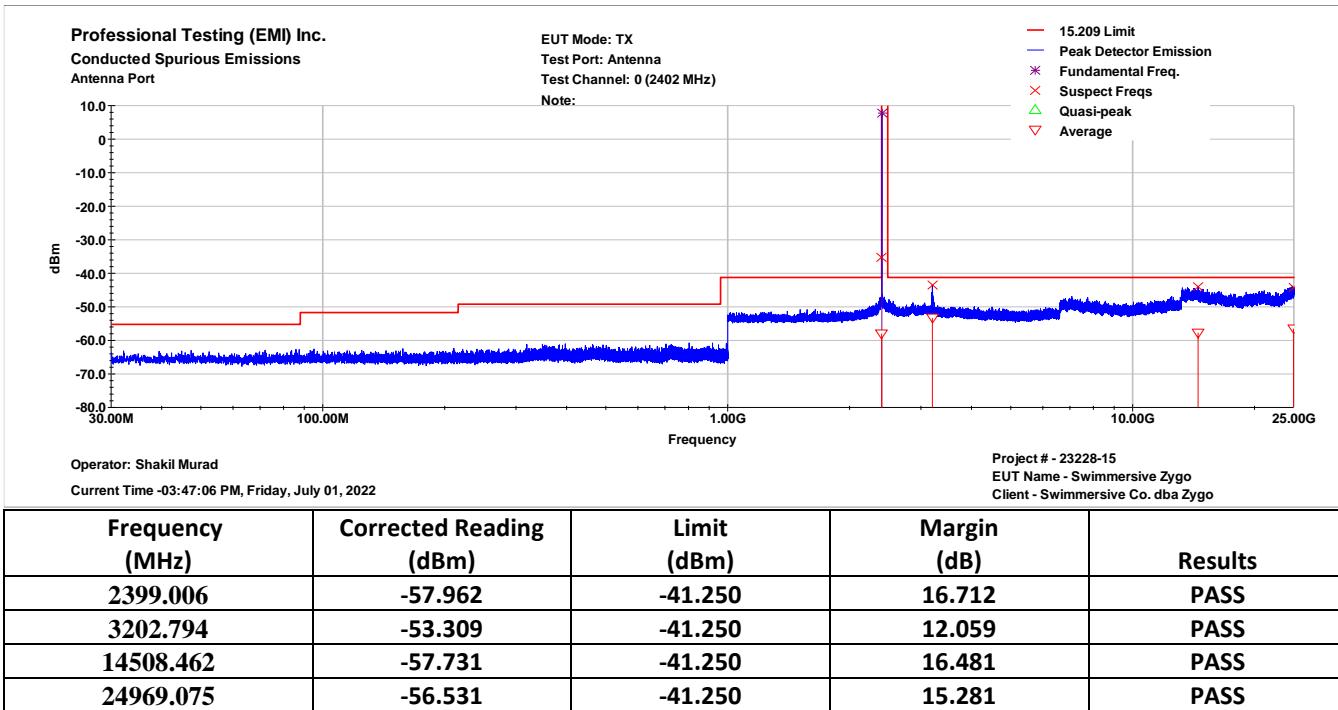
47 CFR (USA) // IC (Canada)	
Section Reference	Limit
15.247 (d), 15.209 (a) // RSS-247 5.5, RSS-Gen 6.13	Unwanted Emissions at Antenna Port Conducted Spurious/Harmonic Emissions Transmit Mode

10.3 Test Results

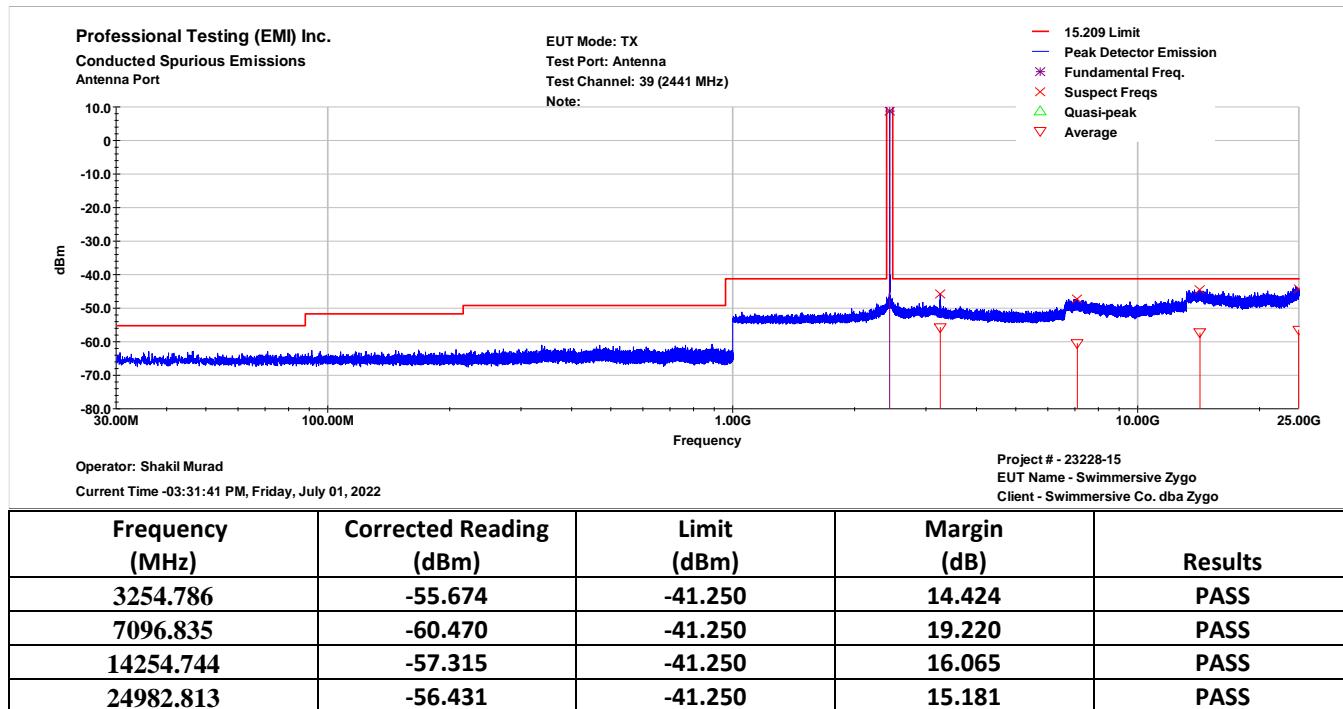

Three channels were tested. EUT was transmitting continuously and modulated.

The top, middle, and bottom channels were tested. Testing was conducted with 100 kHz RBW with 20 dBc Limit, and with 15.209 limits with required resolution/video bandwidths.

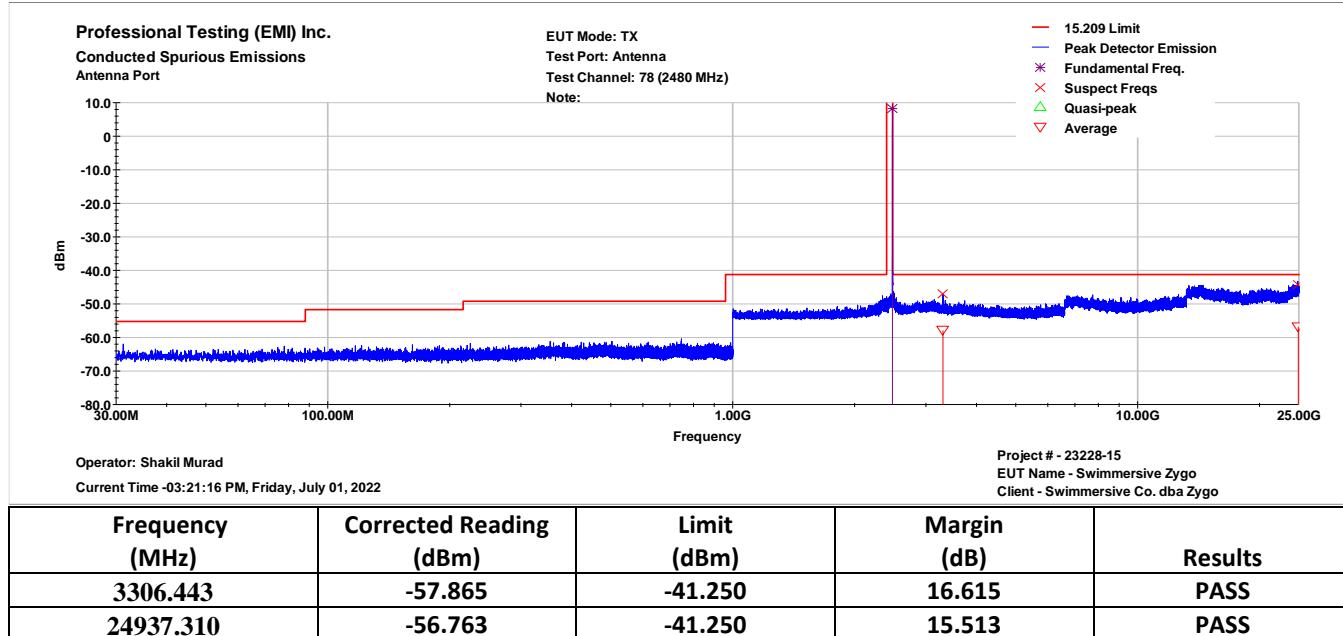

The EUT satisfied the requirements. Test plots and tabular data are presented on the following page.



10.3.1 100 kHz Bandwidth with 20 dBc Limit Test data

Bottom Channel: 100 kHz Bandwidth

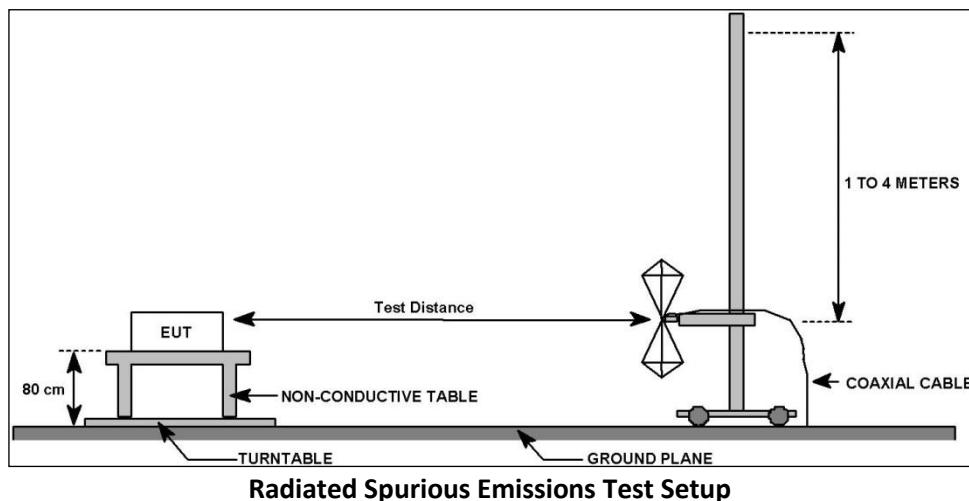


Middle Channel: 100 kHz Bandwidth



Top Channel: 100 kHz Bandwidth**10.3.2 15.209 Limit Test data****Bottom Channel – 15.209 Limit**

Middle Channel – 15.209 Limit


Top Channel – 15.209 Limit

11.0 Transmitter Radiated Spurious Emissions

11.1 Test Procedure

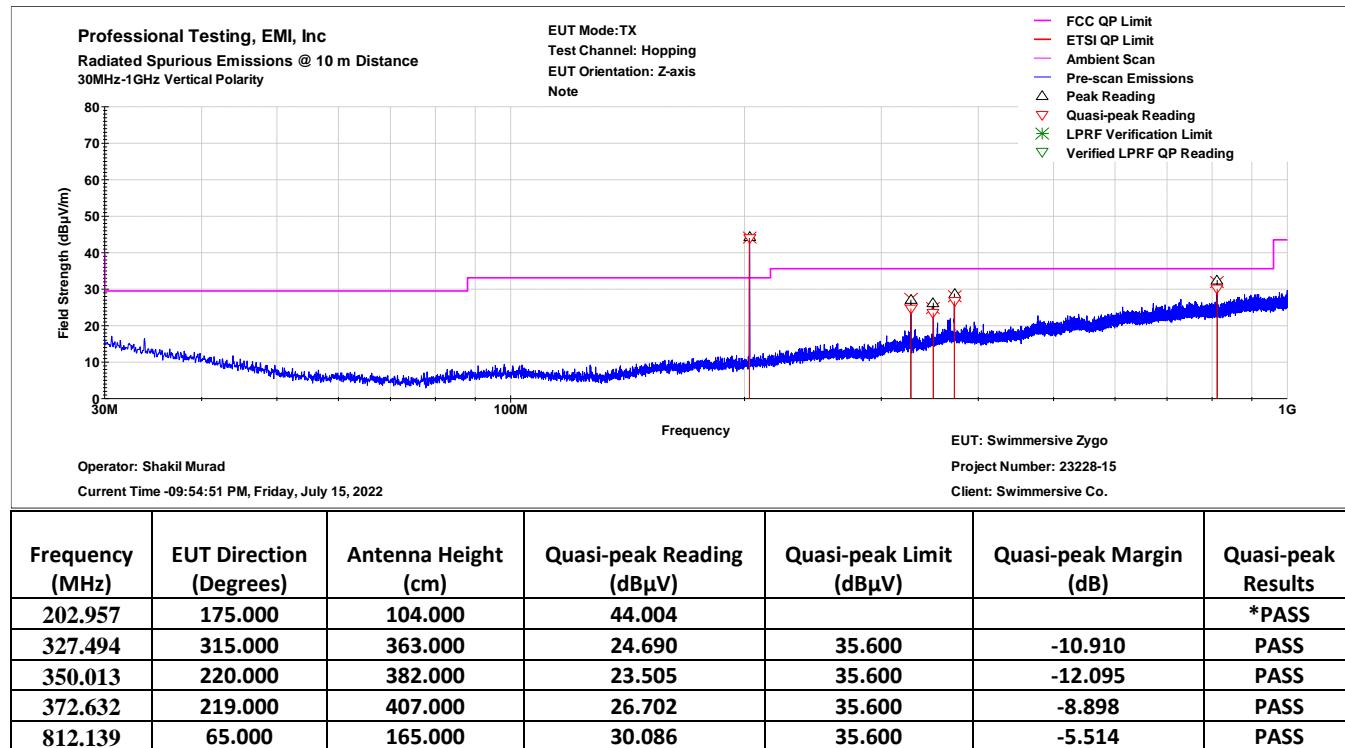
Radiated emissions are measured with the EUT in normal operation transmitting on normal hopping channels. ANSI C63.10-2013, section 6.3, 6.5 and 6.6, procedure is used for the measurements.

Table 11.1.1: Test Distance, Table Height, and Detection Method

30 MHz to 1 GHz	1 GHz to 18 GHz	18 GHz to 26.5 GHz
10 m, 80 cm	3 m, 1.5 m	1 m, 1.5 m
Quasi-peak	Peak & Average	Peak & Average

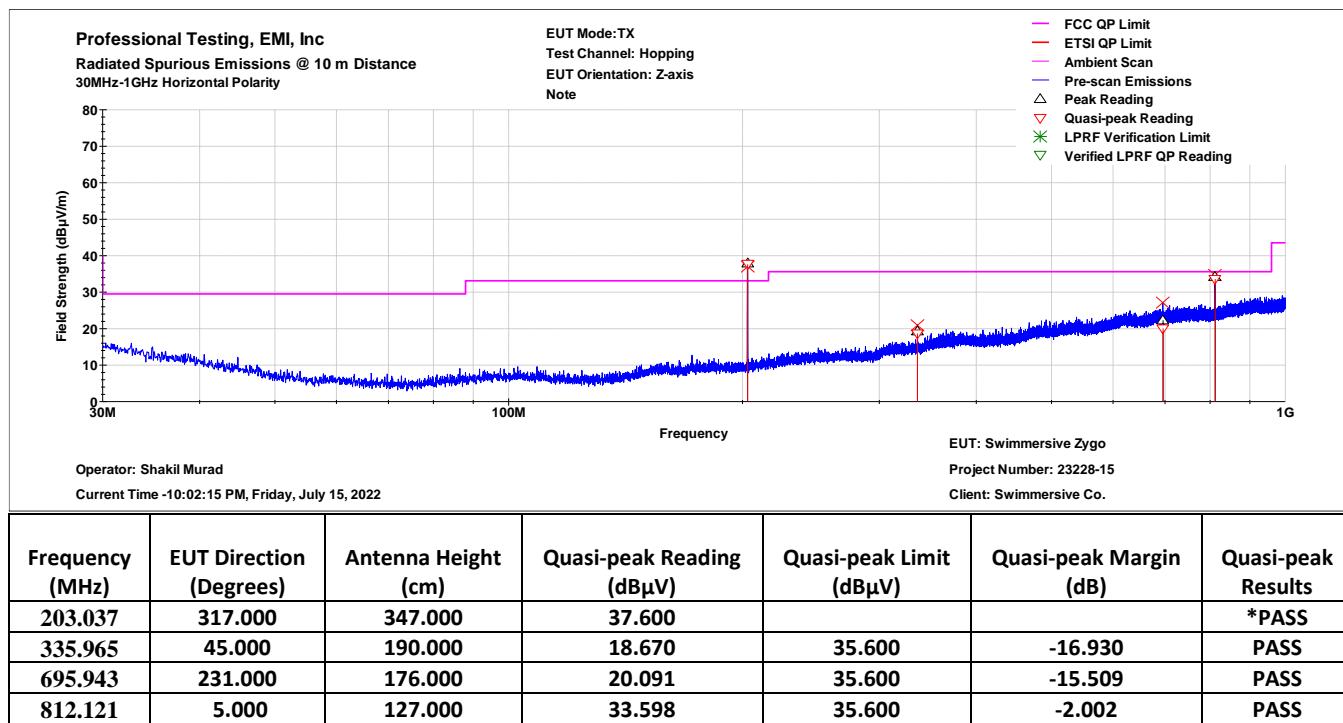
11.2 Test Criteria

47 CFR (USA) // IC (Canada)	
Section Reference	Limit
15.247(d), 15.209 (a) // RSS-247 5.5, RSS-Gen 6.13 & 8.10	Field Strength of Radiated Spurious/Harmonic Emissions Transmit Mode


11.3 Test Results

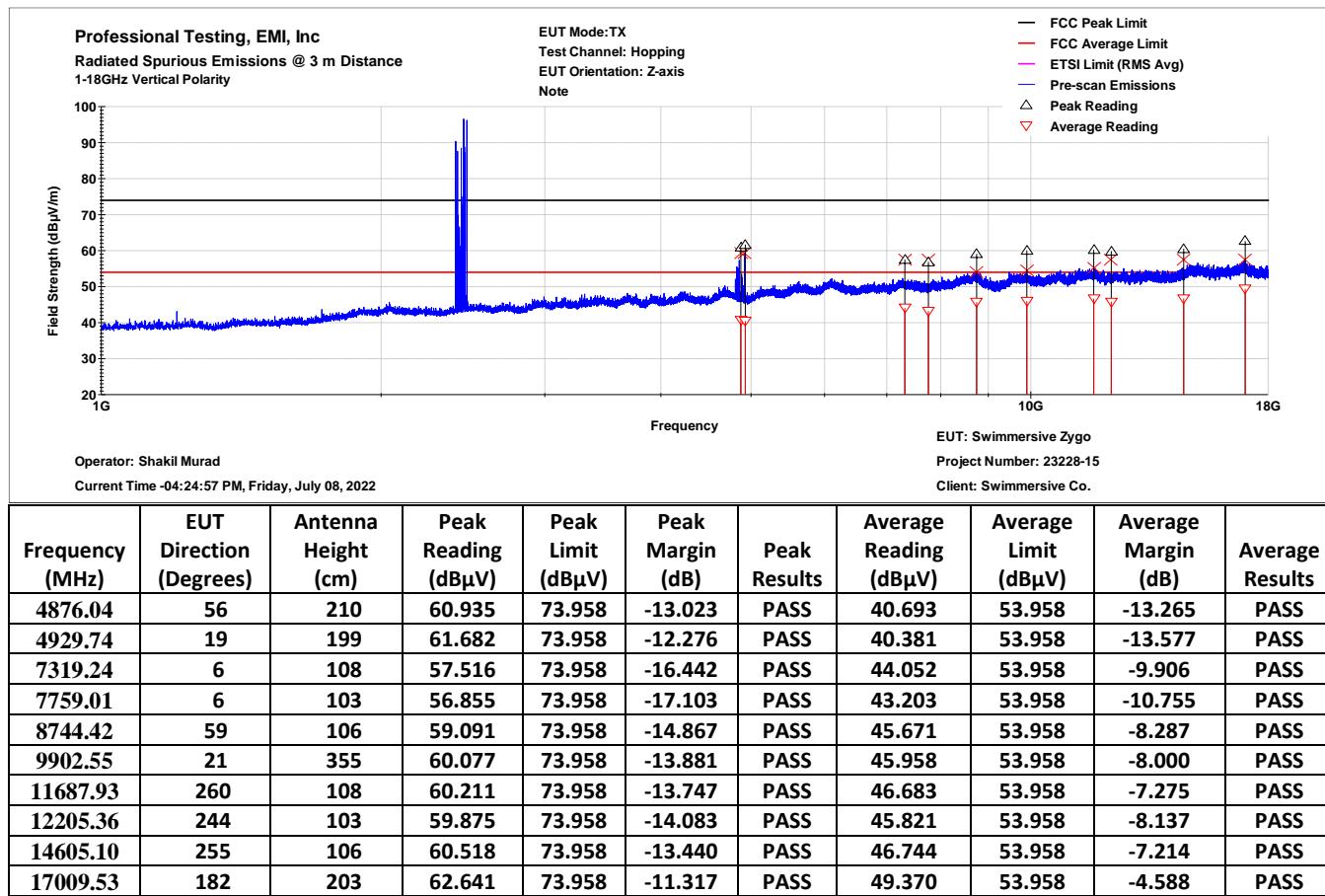
EUT was tested in normal operation and transmitting continuously modulated. Device tested in normal operational orientation.

The EUT satisfied the requirement. Test plots and tabular data are presented on the following page.

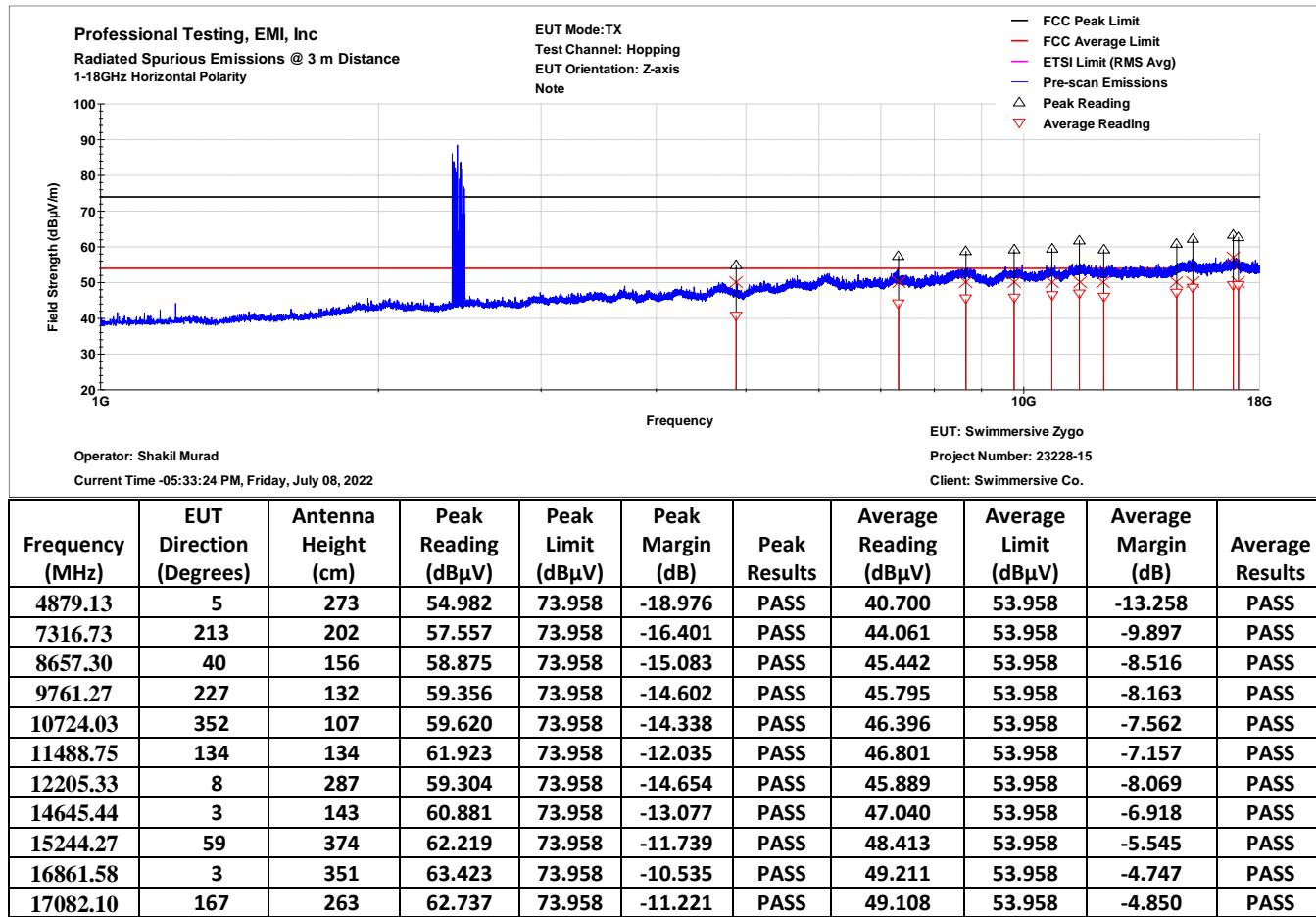

11.3.1 Hopping Mode, 30 MHz to 25 GHz

30MHz - 1GHz Vertical Polarity Emissions Data

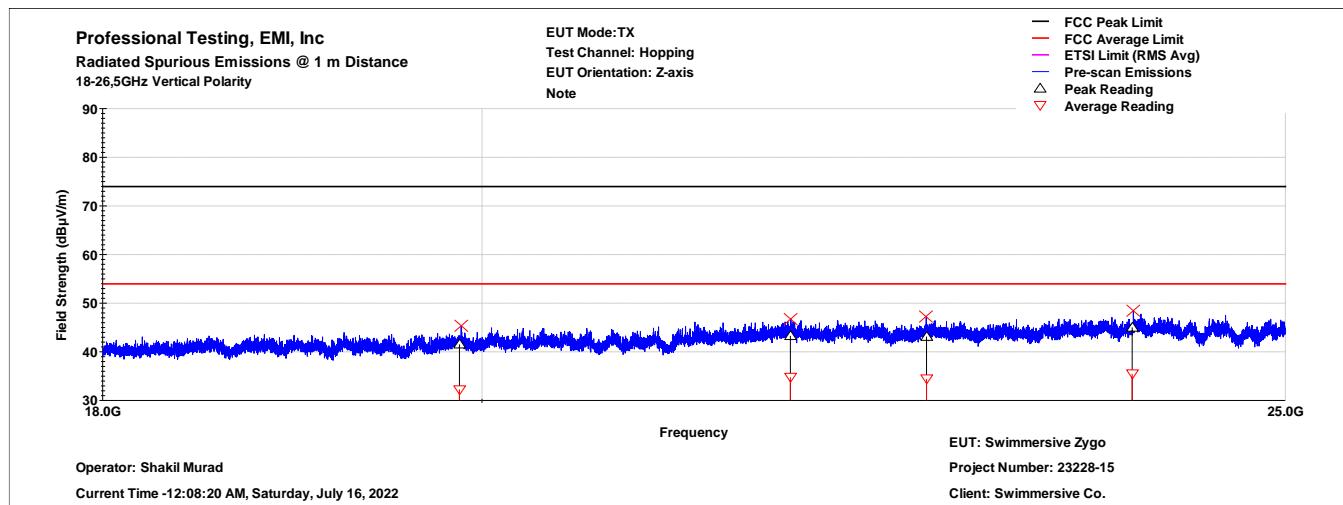
*Note: 203 MHz is the fundamental frequency of low frequency radio.


30MHz - 1GHz Horizontal Polarity Emissions Data

*Note: 203 MHz is the fundamental frequency of low frequency radio.

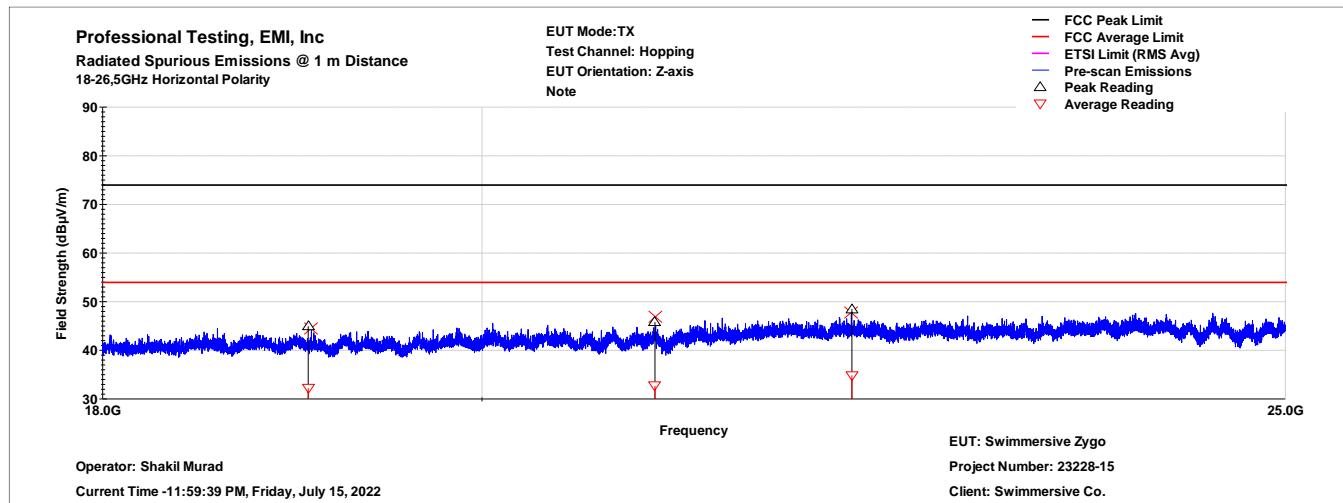

1GHz - 18GHz Vertical Polarity Emissions Data

Note: a 10 dB attenuator was used at the input of the preamp for this frequency range to prevent preamp from saturating.



1GHz - 18GHz Horizontal Polarity Emissions Data

Note: a 10 dB attenuator was used at the input of the preamp for this frequency range to prevent preamp from saturating.



18GHz - 25GHz Vertical Polarity Emissions Data

Frequency (MHz)	EUT Direction (Degrees)	Antenna Height (cm)	Peak Reading (dB μ V)	Peak Limit (dB μ V)	Peak Margin (dB)	Peak Results	Average Reading (dB μ V)	Average Limit (dB μ V)	Average Margin (dB)	Average Results
19875.19	358	100.000	41.526	73.958	-32.432	PASS	32.281	53.958	-21.677	PASS
21788.99	357	100.000	43.262	73.958	-30.696	PASS	34.797	53.958	-19.161	PASS
22628.95	357	100.000	43.126	73.958	-30.832	PASS	34.425	53.958	-19.533	PASS
23959.06	296	100.000	45.022	73.958	-28.936	PASS	35.453	53.958	-18.505	PASS

18GHz - 25GHz Horizontal Polarity Emissions Data

Frequency (MHz)	EUT Direction (Degrees)	Antenna Height (cm)	Peak Reading (dB μ V)	Peak Limit (dB μ V)	Peak Margin (dB)	Peak Results	Average Reading (dB μ V)	Average Limit (dB μ V)	Average Margin (dB)	Average Results
19057.67	258	100.000	44.943	73.958	-29.015	PASS	32.227	53.958	-21.731	PASS
20984.56	102	100.000	45.794	73.958	-28.164	PASS	32.690	53.958	-21.268	PASS
22164.17	242	100.000	48.461	73.958	-25.497	PASS	34.874	53.958	-19.084	PASS

12.0 Radiated Spurious Emissions, Receive Mode

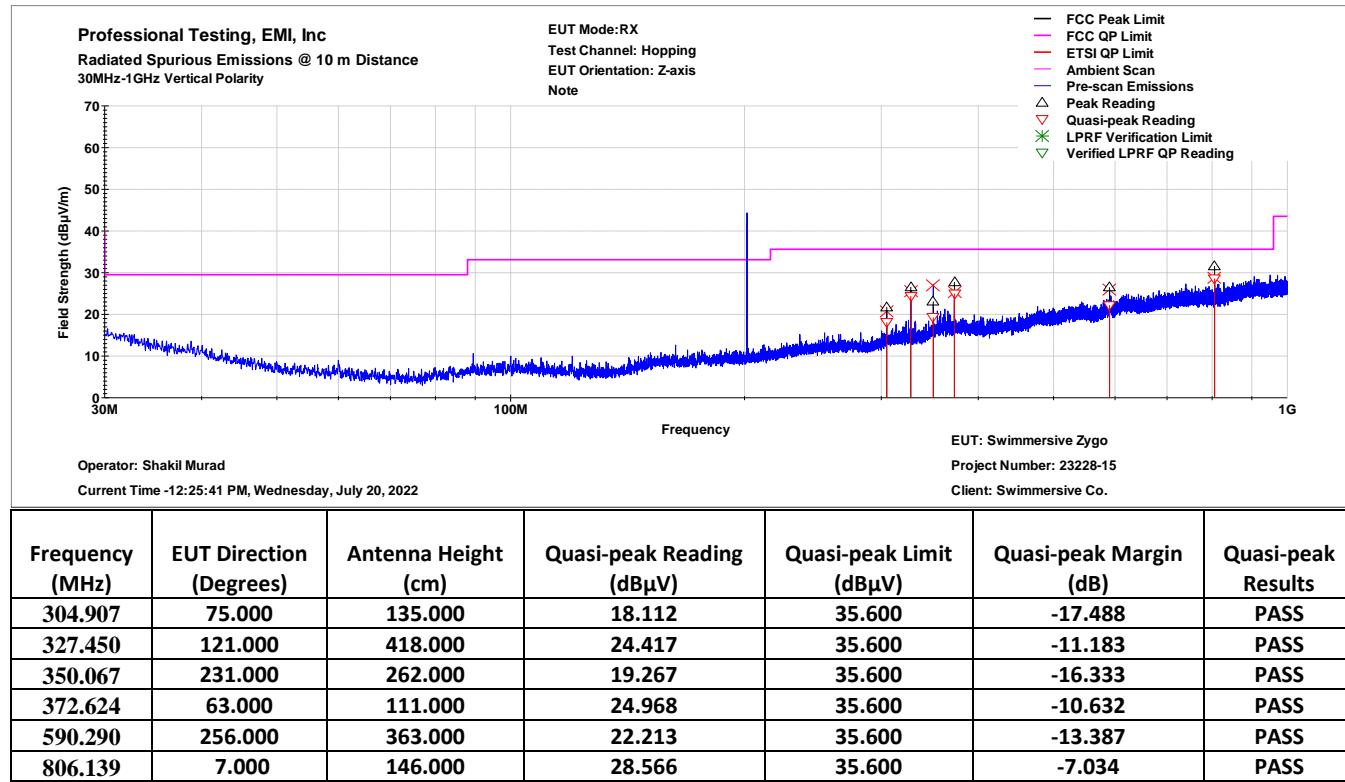
12.1 Test Procedure

Receive mode radiated emissions were measured with the EUT in normal operation transmitting/receiving on the hopping channel. ANSI C63.10-2013, section 6.3, 6.5 and 6.6, procedure is used for the measurements.

Table 12.1.1: Test Distance, Table Height, and Detection Method

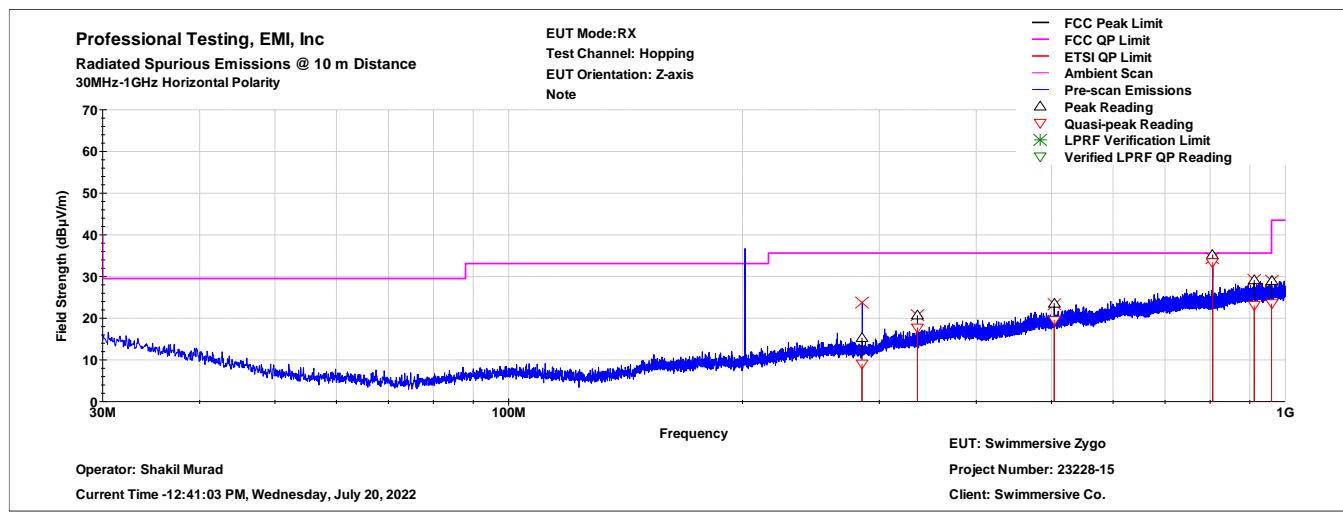
30 MHz to 1 GHz	1 GHz to 18 GHz	18 GHz to 25 GHz
10 m, 80 cm	3 m, 80 cm	1 m, 80 cm
Quasi-peak	Peak & Average	Peak & Average

12.2 Test Criteria


47 CFR (USA) // IC (Canada)	
Section Reference	Parameter
15.109 // RSS-Gen 7.3	Field Strength of Radiated Spurious/Harmonic Emissions Receive Mode

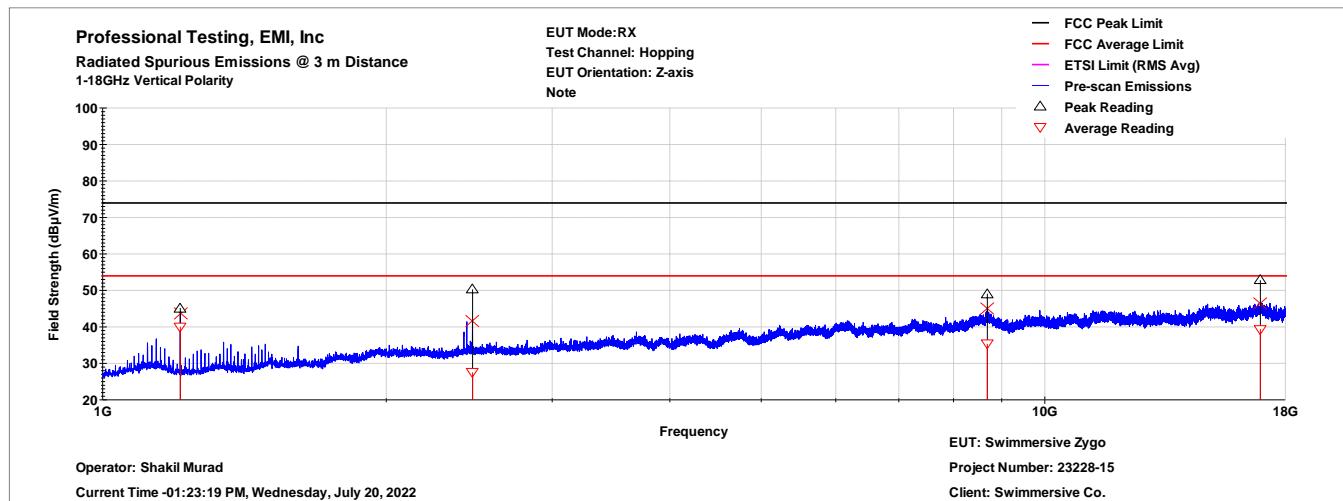
12.3 Test Results

The requirement was satisfied. Test plots and tabular data are presented on the following page.

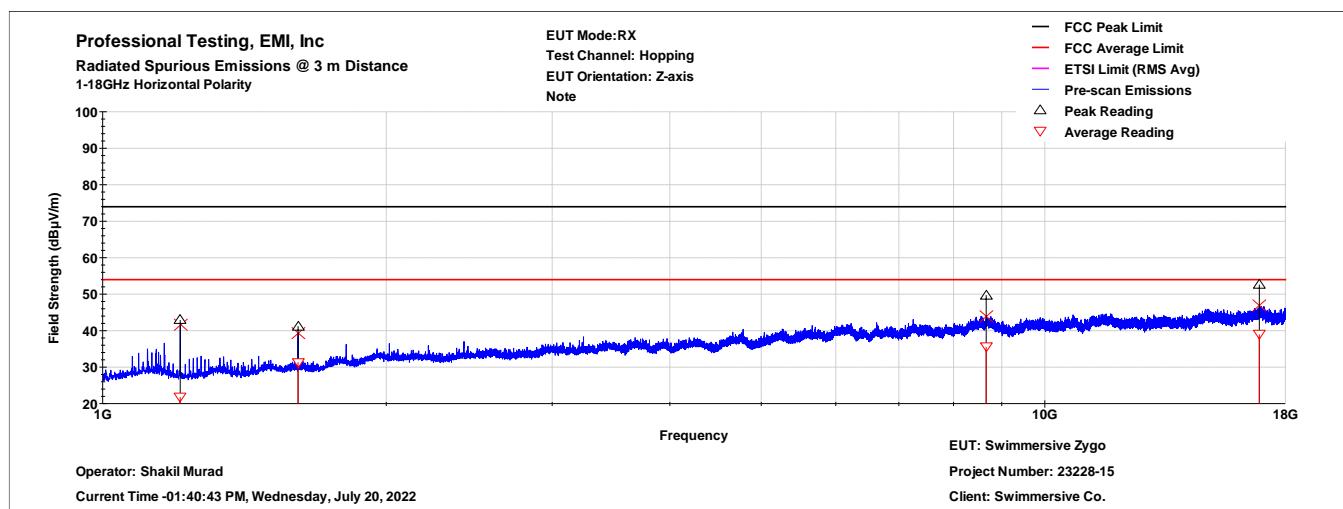

12.3.1 Hopping Mode, 30 MHz to 18 GHz

30MHz - 1GHz Vertical Polarity Emissions Data

Note: Emission appears in above plot at approximately 203 MHz is the fundamental single of low frequency radio.


30MHz - 1GHz Horizontal Polarity Emissions Data

Frequency (MHz)	EUT Direction (Degrees)	Antenna Height (cm)	Quasi-peak Reading (dB μ V)	Quasi-peak Limit (dB μ V)	Quasi-peak Margin (dB)	Quasi-peak Results
285.047	299.000	123.000	9.032	35.600	-26.568	PASS
335.991	215.000	128.000	17.765	35.600	-17.835	PASS
504.007	263.000	236.000	19.587	35.600	-16.013	PASS
806.156	38.000	128.000	33.438	35.600	-2.162	PASS
911.938	245.000	413.000	23.047	35.600	-12.553	PASS
959.966	357.000	221.000	23.465	35.600	-12.135	PASS


Note: Emission appears in above plot at approximately 203 MHz is the fundamental single of low frequency radio.

1GHz - 18GHz Vertical Polarity Emissions Data

Frequency (MHz)	EUT Direction (Degrees)	Antenna Height (cm)	Peak Reading (dB μ V)	Peak Limit (dB μ V)	Peak Margin (dB)	Peak Results	Average Reading (dB μ V)	Average Limit (dB μ V)	Average Margin (dB)	Average Results
1209.10	7	171	45.173	73.958	-28.785	PASS	40.046	53.958	-13.912	PASS
2469.64	77	217	50.284	73.958	-23.674	PASS	27.525	53.958	-26.433	PASS
8689.68	16	235	49.059	73.958	-24.899	PASS	35.319	53.958	-18.639	PASS
16935.71	166	265	52.790	73.958	-21.168	PASS	39.396	53.958	-14.562	PASS

1GHz - 18GHz Horizontal Polarity Emissions Data

Frequency (MHz)	EUT Direction (Degrees)	Antenna Height (cm)	Peak Reading (dB μ V)	Peak Limit (dB μ V)	Peak Margin (dB)	Peak Results	Average Reading (dB μ V)	Average Limit (dB μ V)	Average Margin (dB)	Average Results
1208.73	90	363	42.889	73.958	-31.069	PASS	21.757	53.958	-32.201	PASS
1612.32	106	375	41.227	73.958	-32.731	PASS	31.351	53.958	-22.607	PASS
8665.73	4	357	49.720	73.958	-24.238	PASS	35.525	53.958	-18.433	PASS
16891.06	329	374	52.570	73.958	-21.388	PASS	38.986	53.958	-14.972	PASS

13.0 Antenna Construction

13.1 Procedure

A direct examination of the antenna construction is performed and compared to rule criteria that prevent wireless device antennas from being modified by end users.

13.2 Criteria

47 CFR (USA) // IC (Canada)	
Section Reference	Antenna Construction
15.203 // RSS-Gen 6.8	Type of Antenna(s) Type of Connector Gain

13.3 Results

Table 8.3.1 Antenna Construction Details
Chip Antenna
Manufacturer: Swimmersive Co. dba Zyg Model/PN: None Antenna peak gain: -0.52 dBi. Antenna Type: Inverted 'F' Antenna Connector: No connector. Chip is soldered to circuit board.

User cannot substitute antenna.

Gain is under maximum limit of 6 dBi.

The requirement was satisfied.

14.0 Measurement Bandwidths

Radiated Emissions Spectrum Analyzer Bandwidth and Measurement Time - Peak Scan				
Frequency Band Start (MHz)	Frequency Band Stop (MHz)	6 dB Bandwidth (kHz)	Number of Ranges Used	Measurement Time per Range
0.009	0.15	0.3	2	Multiple Sweeps
0.15	30	9	6	Multiple Sweeps
30	1000	120	2	Multiple 800 mS Sweeps
1000	6000	1000	2	Multiple Sweeps
6000	18000	1000	2	Multiple Sweeps
18000	26500	1000	2	Multiple Sweeps

*Notes:

1. The settings above are specifically calculated for the E4440A series of spectrum analyzers, which have 8,000 data points per range.
2. The measurement receiver resolution bandwidth setting was 300 Hz for quasi-peak measurements from 9-150 kHz.
3. The measurement receiver resolution bandwidth setting was 9 kHz for quasi-peak measurements from 0.15-30 MHz.
4. The measurement receiver resolution bandwidth setting was 120 kHz for quasi-peak measurements from 30-1000 MHz.
5. The measurement receiver resolution bandwidth setting was 1 MHz for average measurements from 1-18 GHz.

15.0 Test Equipment

15.1 Conducted Measurements at the Antenna Port

Asset#	Manufacturer	Model	Equipment Nomenclature	Serial Number	Calibration Due Date
1930	Agilent	E4440A-239	Spectrum Analyzer, 3 Hz - 26.5 GHz	MY45304903	4/1/2023
A118	Narda	768A-20	20 dB 20 W Attenuator, DC - 11GHz	105357	12/10/2022

15.1 Conducted Emissions

Tile! Software Version:		Version: 7.1.2.17 (Jan 08, 2016 - 02:12:48 PM) or 4.1.A.0, April 14, 2009, 11:01:00PM			
Test Profile:		2020_CE_TILE7_v4			
Asset #	Manufacturer	Model	Equipment Nomenclature	Serial Number	Calibration Due Date
1145	HP	8568B	Spectrum Analyzer 100Hz-1.5GHz	2517A01821	7/21/2023
2113	HP	85662A	Spec Anal Dsply for A/N 1842	2403A07470	N/A
990	HP	85685A	RF Preselector	3010A01119	7/9/2022
1279	HP	85650A	Quasi Peak Adapter	2521A00935	7/8/2022
C192	HP	none	Cable, RF, BNC-BNC, 0.2032m, Grey	None	1/14/2024
C029	HP	HP92227C	Cable, RF, BNC-BNC, 4.06m, Grey	None	2/8/2023
C107	Pomona	RG-223	Cable, BNC-BNC, 2.64m, RG-223 (black)	None	8/3/2022
1185	EMCO	3825/2	LISN, 10kHz-100MHz	1235	8/23/2022
1088	PTI	PTI-ALF4	Attenuator Limiter Filter	none	2/26/2023
1173	PTI	100k HPF	Filter, High Pass, 100kHz	none	2/14/2024
303	EMCO	3109	Antenna, Bi Con, 20-300MHz	2002	1/10/2023

15.2 Radiated Emissions

Tile! Software Version:		Version: 7.1.2.17 (Jan 08, 2016 - 02:12:48 PM) or 4.1.A.0, April 14, 2009, 11:01:00PM			
Test Profile:		2020_RE_Unintentional_TILE7_v4			
Asset #	Manufacturer	Model	Equipment Nomenclature	Serial Number	Calibration Due Date
2262	Keysight	E4440A	Spectrum Analyzer, 3 Hz - 26.5 GHz	MY42510155	11/8/2022
1509A	Braden	TDK 10M	TDK 10M Chamber, NSA < 1 GHz	DAC-012915-005	4/9/2023
1969	HP	11713A	Attenuator/Switch Driver	3748A04113	N/A
942	EMCO	11968D	Turntable, 4ft.	9510-1835	N/A
1326	EMCO	1051-12	Controller, Antenna Mast	9101-1564	N/A
1244	EMCO	1050C	Controller, Antenna Mast	1100	N/A
C026A	none	RG-233U	Cable Coax, N-N, 0.914m, 9 kHz - 30 MHz	None	10/21/2022
C026	none	RG214	Cable Coax, N-N, 25m, 9 kHz - 30 MHz	None	10/21/2022
C027A	none	RG214	Cable Coax, N-N, 25m, 25MHz - 1GHz	None	9/9/2022
1293	EMCO	6502	Antenna, Loop, Active, .01-30MHz	2040	9/14/2022
C027	none	RG214	Cable Coax, N-N, 25m, 25MHz - 1GHz	None	9/14/2022
C233	Sucoflex	None	Cable, SMA-SMA, 7.62m, 9kHz - 1.5 GHz, Purple	None	10/22/2023
1926	ETS-Lindgren	3142D	Antenna, Biconilog, 26 MHz - 6 GHz	135454	7/15/2023
1425	Electro-Metrics	BPA-1000	Preamp, Broadband 10k-1GHz	123	3/23/2024
C289	Pasternack	PE354-24	Cable, N-SMA, 0.610m Blue	1310	9/9/2022
C030	none	none	Cable Coax, N-N, 30m, 1 - 18GHz	None	9/15/2022
C038	none	LMR-400	Cable Coax, N-N, 0.15m	None	N/A
1780	ETS-Lindgren	3117	Antenna, Double Ridged Guide Horn, 1 - 18 GHz	110313	4/16/2023
2004	Miteq	AFS44-00101800-2S-10P-44	Amplifier, 40dB, 100MHz-18GHz	None	1/14/2024
1326	EMCO	1051-12	Controller, Antenna Mast	9101-1564	N/A
1542	A.H. Systems	SAS-572	Antenna, Horn 18-26.5GHz, 20dB gain	225	N/A
1973	Agilent	83017A	Amplifier, Microwave 0.5-26.5 GHz	MY39500497	11/10/2022
A114	none	None	Attenuator, SMA, 10dB, 1W, DC-18GHz	None	10/1/2022

Appendix: Policy, Rationale, and Evaluation of EMC Measurement Uncertainty

All uncertainty calculations, estimates and expressions thereof shall be in accordance with NIST policy. Since PTI operates in accordance with NIST (NVLAP) Handbook 150-11: 2007, all instrumentation having an effect on the accuracy or validity of tests shall be periodically calibrated or verified traceable to national standards by a competent calibration laboratory. The certificates of calibration or verification on this instrumentation shall include estimates of uncertainty as required by NIST Handbook 150-11.

1. Rationale and Summary of Expanded Uncertainty.

Each piece of instrumentation at Nemko PTI that is used in making measurements for determining conformance to a standard (or limit), shall be assessed to evaluate its contribution to the overall uncertainty of the measurement in which it is used. The assessment of each item will be based on either a type A evaluation or a type B evaluation. Most of the evaluations will be type B, since they will be based on the manufacturer's statements or specifications of the calibration tolerances, or uncertainty will be stated along with a brief rationale for the type of evaluation and the resulting stated uncertainties.

The individual uncertainties included in the combined standard uncertainty for a specific test result will depend on the configuration in which the item of instrumentation is used. The combination will always be based on the law of propagation of uncertainty. Any systematic effects will be accommodated by including their uncertainties, in the calculation of the combined standard uncertainty; except that if the direction and amount of the systematic effect cannot be determined and separated from its uncertainty, the whole effect will be treated as uncertainty and combined along with the other elements of the test setup.

Type A evaluations of standard uncertainty will usually be based on calculating the standard deviation of the mean of a series of independent observations, but may be based on a least-squares curve fit or the analysis of variance for unusual situations. Type B evaluations of standard uncertainty will usually be based on manufacturer's specifications, data provided in calibration reports, and experience. The type of probability distribution used (normal, rectangular, a priori, or u-shaped) will be stated for each Type B evaluation.

In the evaluation of the uncertainty of each type of measurement, the uncertainty caused by the operator will be estimated. One notable operator contribution to measurement uncertainty is the manipulation of cables to maximize the measured values of radiated emissions. The operator contribution to measurement uncertainty is evaluated by having several operators independently repeat the same test. This results in a Type A evaluation of operator-contributed measurement uncertainty.

A summary of the expanded uncertainties of Nemko PTI measurements is shown as Table 1. These are the worst-case uncertainties considering all operative influence factors.

Table 1: Summary of Measurement Uncertainties for Site 45

Type of Measurement	Frequency Range	Meas. Dist.	Expanded Uncertainty U, dB (k=2)
Mains Conducted Emissions	150 kHz to 30 MHz	N/A	2.9
Telecom Conducted Emissions	150 kHz to 30 MHz	N/A	2.8
Radiated Emissions	30 to 1,000 MHz	10 m	4.8
	1 to 18 GHz	3 m	5.7

End of Report