

Global United Technology Services Co., Ltd.

Report No.: GTS201911000087F01

TEST Report

Applicant: Shenzhen FuShiKe Electronic Co., Ltd

Address of Applicant: F2, Building C, Kedashi Technology Park, No. 42 Xinzhang Road,

Guanlan Street, Longhua New District, Shenzhen, China 518110

Shenzhen FuShiKe Electronic Co., Ltd Manufacturer/Factory:

Address of

F2, Building C, Kedashi Technology Park, No. 42 Xinzhang Road, Manufacturer/Factory:

Guanlan Street, Longhua New District, Shenzhen, China 518110

Equipment Under Test (EUT)

Product Name: Bluetooth headset

Model No.: K12,K10E,S1, S2,K6P,K10I,T600,T200,T300,K15,K16,K10D,

Q5,Q5S,Q2,J32,T3

Trade Mark: N/A

FCC ID: 2APZE - K12

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: Oct.10,2019

Date of Test: Oct.10,2019-Nov.12, 2019

Date of report issued: Nov.12, 2019

Test Result: PASS *

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Lo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description
00	Nov.12, 2019	Original

Prepared By:	Date:	Nov.12,2019
	Project Engineer	
Check By:	Date:	Nov.12,2019

3 Contents

			Page
1	cov	ER PAGE	1
2	VER	SION	2
3	CON	TENTS	3
4	TES	T SUMMARY	4
5	GEN	ERAL INFORMATION	5
	5.1	GENERAL DESCRIPTION OF EUT	
	5.2	TEST MODE	_
	5.3	DESCRIPTION OF SUPPORT UNITS	7
	5.4	DEVIATION FROM STANDARDS	
	5.5	ABNORMALITIES FROM STANDARD CONDITIONS	7
	5.6	TEST FACILITY	
	5.7	TEST LOCATION	7
6	TES	T INSTRUMENTS LIST	8
7	TES	T RESULTS AND MEASUREMENT DATA	10
	7.1	ANTENNA REQUIREMENT	10
	7.2	CONDUCTED EMISSIONS	
	7.3	CONDUCTED PEAK OUTPUT POWER	
	7.4	20db Emission Bandwidth	
	7.5	FREQUENCIES SEPARATION	-
	7.6	HOPPING CHANNEL NUMBER	
	7.7 7.8	DWELL TIME	
	7.6 7.9	BAND EDGE	
	7.9.1		
	7.9.2		
	7.10	SPURIOUS EMISSION	
	7.10.		
	7.10		
8	TES	T SETUP PHOTO	50
Ω.	EUT	CONSTRUCTIONAL DETAILS	E0

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Frequency Range Measurement Uncertainty				
Radiated Emission	30MHz-200MHz	3.8039dB	(1)			
Radiated Emission	200MHz-1GHz	3.9679dB	(1)			
Radiated Emission	1GHz-18GHz	4.29dB	(1)			
Radiated Emission	18GHz-40GHz	3.30dB	(1)			
AC Power Line Conducted Emission 0.15MHz ~ 30MHz 3.44dB (1)						
Note (1): The measurement uncert	tainty is for coverage factor of k	=2 and a level of confidence of 9	95%.			

5 General Information

5.1 General Description of EUT

Product Name:	Bluetooth headset
Model No.:	K12
Series model:	K10E,S1,S2,K6P,K10I,T600,T200,T300,K15,K16,K10D,Q5,Q5S,
	Q2,J32,T3
Test sample(s) ID:	GTS201911000087F01
Sample(s) Status:	Engineer sample
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, π/4-DQPSK, 8-DPSK
Antenna Type:	Chip
Antenna gain:	2.00dBi
Power supply:	DC 3.7V From Adapter and DC 5V From external circuit
	DC 3.7 V FIORI Adapter and DC 3V FIORI external circuit
Adapter	Mode:EP-TA20CBC
(Auxiliary test suppled by test Lab):	Input:AC100-240V-50/60Hz, 0.5A
	Output:DC 5V,2A

Operation Frequency each of channel									
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz		
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz		
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz		
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz		
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz		
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz		
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz		
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz		
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz		
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz		
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz		
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz		
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz		
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz		
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz		
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz		
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz		
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz		
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz		
20	2421MHz	40	2441MHz	60	2461MHz				

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.3 Description of Support Units

None.

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

• IC —Registration No.: 9079A

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6 Test Instruments list

Radi	Radiated Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020			
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A			
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 26 2019	June. 25 2020			
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 26 2019	June. 25 2020			
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 26 2019	June. 25 2020			
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 26 2019	June. 25 2020			
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
8	Coaxial Cable	GTS	N/A	GTS213	June. 26 2019	June. 25 2020			
9	Coaxial Cable	GTS	N/A	GTS211	June. 26 2019	June. 25 2020			
10	Coaxial cable	GTS	N/A	GTS210	June. 26 2019	June. 25 2020			
11	Coaxial Cable	GTS	N/A	GTS212	June. 26 2019	June. 25 2020			
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 26 2019	June. 25 2020			
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 26 2019	June. 25 2020			
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 26 2019	June. 25 2020			
15	Band filter	Amindeon	82346	GTS219	June. 26 2019	June. 25 2020			
16	Power Meter	Anritsu	ML2495A	GTS540	June. 26 2019	June. 25 2020			
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 26 2019	June. 25 2020			
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 26 2019	June. 25 2020			
19	Splitter	Agilent	11636B	GTS237	June. 26 2019	June. 25 2020			
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 26 2019	June. 25 2020			
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 19 2019	Oct. 18 2020			
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 19 2019	Oct. 18 2020			
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 19 2019	Oct. 18 2020			
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 26 2019	June. 25 2020			

Con	Conducted Emission							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 26 2019	June. 25 2020		
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 26 2019	June. 25 2020		
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June. 26 2019	June. 25 2020		
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A		
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
7	Thermo meter	KTJ	TA328	GTS233	June. 26 2019	June. 25 2020		
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 26 2019	June. 25 2020		
9	ISN	SCHWARZBECK	NTFM 8158	GTD565	June. 26 2019	June. 25 2020		

RF C	RF Conducted Test:								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 26 2019	June. 25 2020			
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 26 2019	June. 25 2020			
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 26 2019	June. 25 2020			
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 26 2019	June. 25 2020			
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 26 2019	June. 25 2020			
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 26 2019	June. 25 2020			
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 26 2019	June. 25 2020			
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 26 2019	June. 25 2020			
9	Power Sensor	Agilent	E9300A	GTS589	June. 26 2019	June. 25 2020			
10	Spectrum analyzer	Agilent	N9020A	GTS591	June. 26 2019	June. 25 2020			

Gene	General used equipment:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 26 2019	June. 25 2020		
2	Barometer	ChangChun	DYM3	GTS255	June. 26 2019	June. 25 2020		

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 9 of 50

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

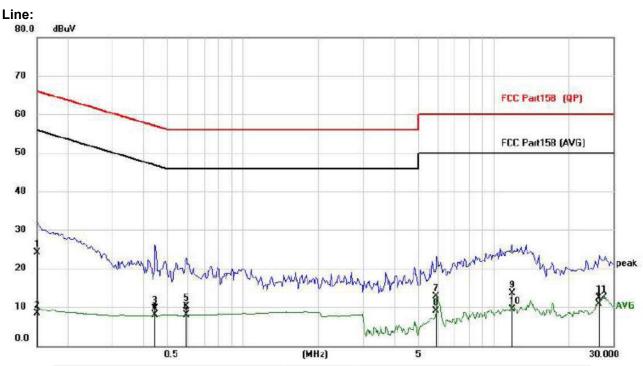
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

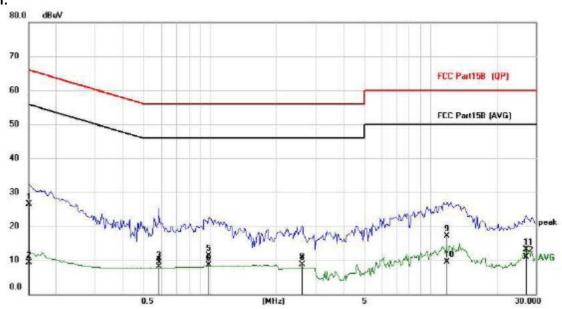
E.U.T Antenna:

The antenna is chip antenna, the best case gain of the is 2.00dBi, reference to the appendix II for details


7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207						
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	150KHz to 30MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9KHz, VBW=30KHz	z, Sweep tir	ne=auto				
Limit:	Frequency range (MHz	Limit (dBuV)					
		. Qt	ıasi-peak	Aver			
	0.15-0.5	- 6	66 to 56*	56 to			
	0.5-5		56	4			
	5-30 * Decreases with the logar	rithm of the	frequency	5)		
Test setup:	Reference P		irequericy.				
Test procedure:	AUX Equipment E.U.T Filter AC power Remark: E.U.T Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m						
	line impedance stabiliza 50ohm/50uH coupling i 2. The peripheral devices LISN that provides a 50 termination. (Please ref photographs). 3. Both sides of A.C. line a interference. In order to positions of equipment according to ANSI C63	mpedance are also co Dohm/50uH fer to the bloare checked of find the mand all of the	for the measinnected to the coupling impock diagram of for maximulaximum emisine interface c	uring equipmone main power bedance with of the test set on conducted asion, the related by the solution of the test set on the related by the	ent. or through a 50ohm tup and tive e changed		
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for de	tails					
Test environment:	Temp.: 25 °C	Humid.:	52%	Press.:	1012mbar		
Test voltage:	AC 120V, 60Hz						
Test results:	Pass						

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.


Measurement data:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1500	13.61	10.57	24.18	66.00	-41.82	QP
2		0.1500	-2.26	10.57	8.31	56.00	-47.69	AVG
3		0.4464	-1.22	10.75	9.53	56.94	-47.41	QP
4		0.4464	-2.92	10.75	7.83	46.94	-39.11	AVG
5		0.5946	-0.82	10.85	10.03	56.00	-45.97	QP
6	*	0.5946	-2.89	10.85	7.96	46.00	-38.04	AVG
7		5.9133	1.10	11.65	12.75	60.00	-47.25	QP
8		5.9133	-2.74	11.65	8.91	50.00	-41.09	AVG
9		11.8101	1.37	12.08	13.45	60.00	-46.55	QP
10		11.8101	-2.78	12.08	9.30	50.00	-40.70	AVG
11		26.3805	-0.97	13.25	12.28	60.00	-47.72	QP
12		26.3805	-2.57	13.25	10.68	50.00	-39.32	AVG

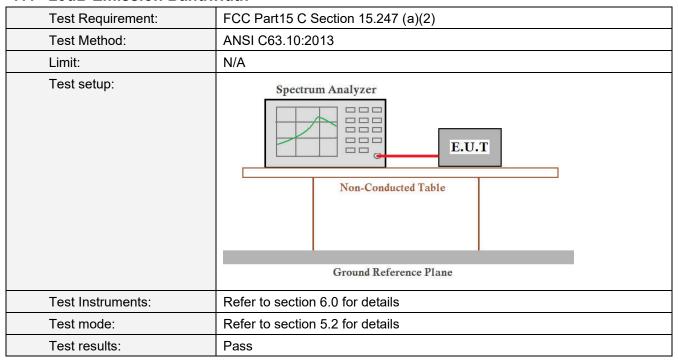
Neutral:

. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
MHz	dBuV	dB	dBuV	dBuV	dB	Detector
0.1500	15.93	10.57	26.50	66.00	-39.50	QP
0.1500	-1.22	10.57	9.35	56.00	-46.65	AVG
0.5829	-1.59	10.84	9.25	56.00	-46.75	QP
0.5829	-2.68	10.84	8.16	46.00	-37.84	AVG
0.9885	0.27	11.09	11.36	56.00	-44.64	QP
0.9885	-2.61	11.09	8.48	46.00	-37.52	AVG
2.6187	-2.59	11.30	8.71	56.00	-47.29	QP
2.6187	-2.69	11.30	8.61	46.00	-37.39	AVG
11.8842	4.92	12.09	17.01	60.00	-42.99	QP
11.8842	-2.51	12.09	9.58	50.00	-40.42	AVG
27.0825	-0.23	13.29	13.06	60.00	-46.94	QP
27.0825	-2.35	13.29	10.94	50.00	-39.06	AVG
	MHz 0.1500 0.1500 0.5829 0.5829 0.9885 0.9885 2.6187 2.6187 11.8842 11.8842	MHz dBuV 0.1500 15.93 0.1500 -1.22 0.5829 -1.59 0.5829 -2.68 0.9885 0.27 0.9885 -2.61 2.6187 -2.59 2.6187 -2.69 11.8842 4.92 11.8842 -2.51 27.0825 -0.23	MHz dBuV dB 0.1500 15.93 10.57 0.1500 -1.22 10.57 0.5829 -1.59 10.84 0.5829 -2.68 10.84 0.9885 0.27 11.09 0.9885 -2.61 11.09 2.6187 -2.59 11.30 11.8842 4.92 12.09 11.8842 -2.51 12.09 27.0825 -0.23 13.29	MHz dBuV dB dBuV 0.1500 15.93 10.57 26.50 0.1500 -1.22 10.57 9.35 0.5829 -1.59 10.84 9.25 0.5829 -2.68 10.84 8.16 0.9885 0.27 11.09 11.36 0.9885 -2.61 11.09 8.48 2.6187 -2.59 11.30 8.71 2.6187 -2.69 11.30 8.61 11.8842 4.92 12.09 17.01 11.8842 -2.51 12.09 9.58 27.0825 -0.23 13.29 13.06	K. Freq. Level Factor ment Limit MHz dBuV dB dBuV dBuV 0.1500 15.93 10.57 26.50 66.00 0.1500 -1.22 10.57 9.35 56.00 0.5829 -1.59 10.84 9.25 56.00 0.5829 -2.68 10.84 8.16 46.00 0.9885 0.27 11.09 11.36 56.00 0.9885 -2.61 11.09 8.48 46.00 2.6187 -2.59 11.30 8.71 56.00 2.6187 -2.69 11.30 8.61 46.00 11.8842 4.92 12.09 17.01 60.00 27.0825 -0.23 13.29 13.06 60.00	MHz dBuV dB dBuV dBuV dB 0.1500 15.93 10.57 26.50 66.00 -39.50 0.1500 -1.22 10.57 9.35 56.00 -46.65 0.5829 -1.59 10.84 9.25 56.00 -46.75 0.5829 -2.68 10.84 8.16 46.00 -37.84 0.9885 0.27 11.09 11.36 56.00 -44.64 0.9885 -2.61 11.09 8.48 46.00 -37.52 2.6187 -2.59 11.30 8.71 56.00 -47.29 2.6187 -2.69 11.30 8.61 46.00 -37.39 11.8842 4.92 12.09 17.01 60.00 -42.99 11.8842 -2.51 12.09 9.58 50.00 -40.42 27.0825 -0.23 13.29 13.06 60.00 -46.94

Motos

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

7.3 Conducted Peak Output Power


Test Requirement:	FCC Part15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.10:2013		
Limit:	30dBm(for GFSK),20.97dBm(for EDR)		
Test setup:	Power sensor and Spectrum analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data

Mode	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
	Lowest	-3.546		
GFSK	Middle	-1.805	30.00	Pass
	Highest	-3.170		
	Lowest	-1.242		
π/4-DQPSK	Middle	-1.319	20.97	Pass
	Highest	-2.868		
	Lowest	-1.903		
8-DPSK	Middle	-0.432	20.97	Pass
	Highest	-1.490		

7.4 20dB Emission Bandwidth

Measurement Data

Mode	Test channel 20dB Emission Bandwidth (MHz)		Result
	Lowest	0.8454	
GFSK	Middle	0.8393	Pass
	Highest	0.8378	
	Lowest	1.273	
π/4-DQPSK	Middle	1.274	Pass
	Highest	1.273	
	Lowest	1.203	
8-DPSK	Middle	1.201	Pass
	Highest	1.201	

Test plot as follows:

Test mode: GFSK mode

Lowest channel

Middle channel

Highest channel

Test mode: π/4-DQPSK mode

Lowest channel

Middle channel

Highest channel

Test mode: 8-DPSK mode

Lowest channel

Middle channel

Highest channel

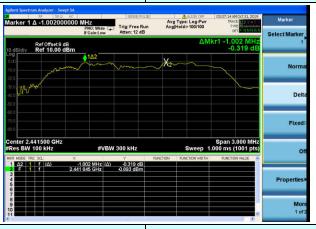
7.5 Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)			
Test Method:	ANSI C63.10:2013			
Receiver setup:	RBW=100KHz, VBW=300KHz, detector=Peak			
Limit:	GFSK: 20dB bandwidth π/4-DQPSK & 8DSK: 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

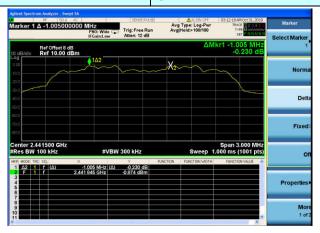
Measurement Data

Mode	Test channel	Frequencies Separation (kHz)	Limit (kHz)	Result
			25KHz or	
GFSK	Middle	1.005	2/3*20dB	Pass
			bandwidth	
			25KHz or	
π/4-DQPSK	Middle	1.002	2/3*20dB	Pass
			bandwidth	
			25KHz or	
8-DPSK	Middle	1.005	2/3*20dB	Pass
			bandwidth	

Remark: We have tested all mode at high, middle and low channel, and recorded worst case at middle


Page 20 of 50

Test plot as follows:


Modulation mode: GFSK

Test mode: $\pi/4$ -DQPSK

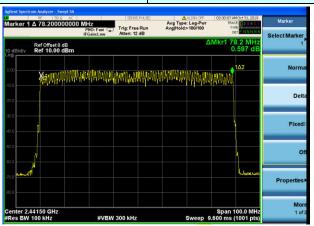
Test mode: 8-DPSK

7.6 Hopping Channel Number

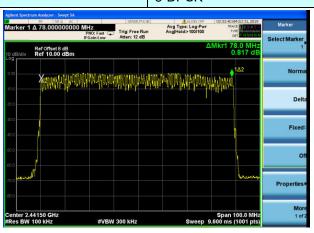
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013		
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak		
Limit:	15 channels		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK	79	≥15	Pass
π/4-DQPSK	79		Pass
8-DPSK	79		Pass



Test plot as follows:



Test mode: $\pi/4$ -DQPSK

Test mode: 8-DPSK

7.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013		
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak		
Limit:	0.4 Second		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data

GFSK mode:

Frequency	Packet	Pulse time (ms)	Dwell time(s)	Limit(ms)	Result
2441MHz	DH1	0.380	0.122	400	Pass
2441MHz	DH3	1.648	0.264	400	Pass
2441MHz	DH5	2.900	0.309	400	Pass

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) × (1600 ÷ 2 ÷ 79) ×31.6 Second for DH1, 2-DH1, 3-DH1

Dwell time=Pulse time (ms) × (1600 ÷ 4 ÷ 79) ×31.6 Second for DH3, 2-DH3, 3-DH3

Dwell time=Pulse time (ms) × $(1600 \div 6 \div 79) \times 31.6$ Second for DH5, 2-DH5, 3-DH5

π/4-DQPSK mode:

Frequency	Packet	Pulse time (ms)	Dwell time(s)	Limit(ms)	Result
2441MHz	2DH1	0.384	0.123	400	Pass
2441MHz	2DH3	1.632	0.261	400	Pass
2441MHz	2DH5	2.860	0.305	400	Pass

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) × (1600 ÷ 2 ÷ 79) ×31.6 Second for DH1, 2-DH1, 3-DH1

Dwell time=Pulse time (ms) × $(1600 \div 4 \div 79) \times 31.6$ Second for DH3, 2-DH3, 3-DH3

Dwell time=Pulse time (ms) × $(1600 \div 6 \div 79) \times 31.6$ Second for DH5, 2-DH5, 3-DH5

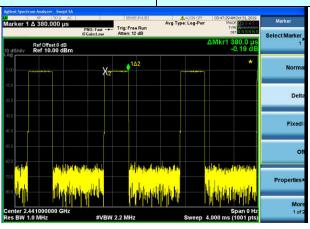
8-DPSK mode:

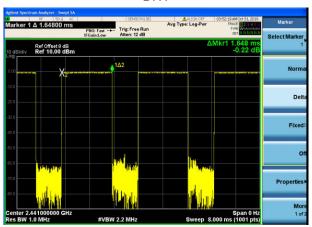
Frequency	Packet	Pulse time (ms)	Dwell time(s)	Limit(ms)	Result
2441MHz	3DH1	0.384	0.123	400	Pass
2441MHz	3DH3	1.632	0.261	400	Pass
2441MHz	3DH5	2.900	0.309	400	Pass

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

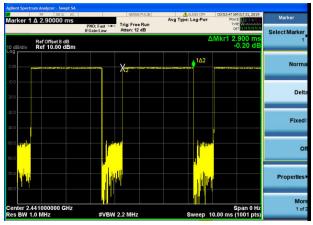
Dwell time=Pulse time (ms) × (1600 ÷ 2 ÷ 79) ×31.6 Second for DH1, 2-DH1, 3-DH1

Dwell time=Pulse time (ms) × $(1600 \div 4 \div 79) \times 31.6$ Second for DH3, 2-DH3, 3-DH3


Dwell time=Pulse time (ms) × $(1600 \div 6 \div 79)$ ×31.6 Second for DH5, 2-DH5, 3-DH5

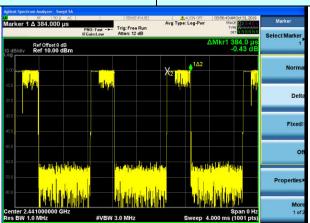

Test plot as follows:

GFSK mode:

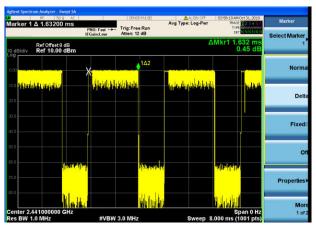

Test channel: 2441MHz

DH1

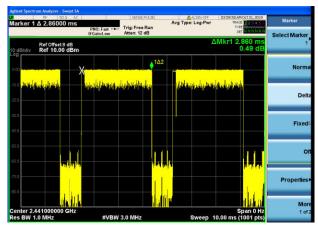
DH3



DH5

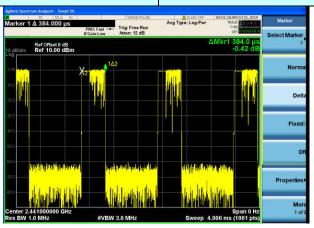


π/4-DQPSK mode:

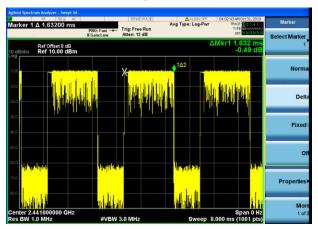

Test channel: 2441MHz

2DH1

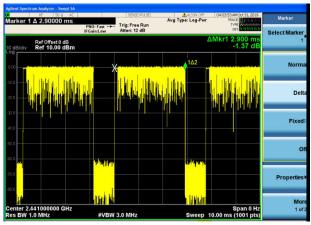
2DH3



2DH5



8-DPSK mode:


Test channel: 2441MHz

3DH1

3DH3

3DH5

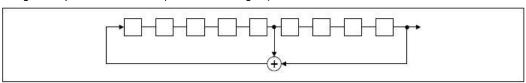
7.8 Pseudorandom Frequency Hopping Sequence

Test Requirement:

FCC Part15 C Section 15.247 (a)(1)/g/h requirement:

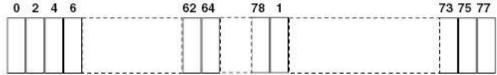
a(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.


(g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

(h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

EUT Pseudorandom Frequency Hopping Sequence


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29-1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

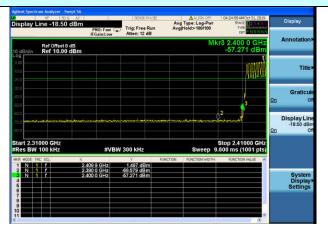
it permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted.

7.9 Band Edge

7.9.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013				
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

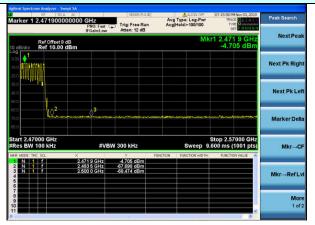
Test plot as follows:


GFSK Mode:

Test channel:

No-hopping mode

Lowest channel

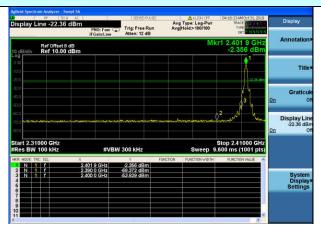

Hopping mode

Test channel:

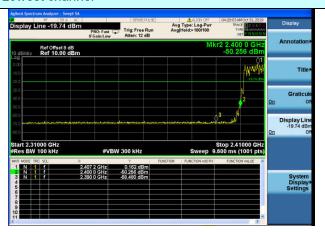
| Marker 3 2.5000000000000 GHz | PROF Fast | Trig Free Run | Avg Type: Leg Pwr | Avg Properties | Marker 3 2.5000 GHz | PROF Fast | Trig Free Run | Avg Type: Leg Pwr | Avg Properties | Marker 3 2.500 GHz | Ref Offset 8 8 | Mkr3 2.500 GHz | Ref 10.00 dBm | Ref 10.00 dBm

No-hopping mode

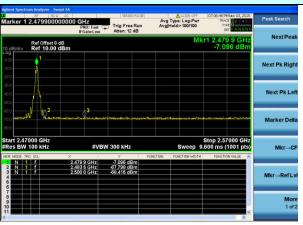
Highest channel



Hopping mode


π/4-DQPSK Mode:

Test channel:


No-hopping mode

Lowest channel

Hopping mode

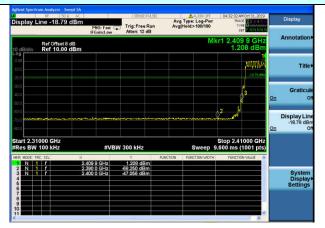
Test channel:

No-hopping mode

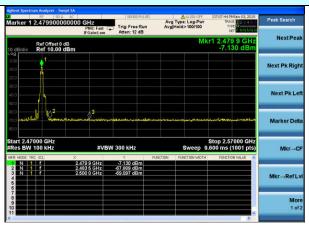
Highest channel



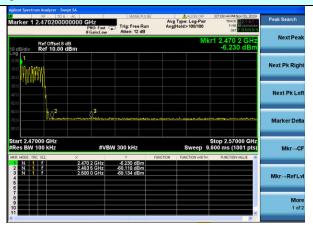
Hopping mode


8-DPSK Mode:

Test channel:


No-hopping mode

Lowest channel


Hopping mode

Test channel:

No-hopping mode

Highest channel

Hopping mode

7.9.2 Radiated Emission Method

7.3.2 Radiated Ellission We	, tilou				
Test Requirement:	FCC Part15 C Section 15.209 and 15.205				
Test Method:	ANSI C63.10:2013				
Test Frequency Range:	All of the restrict 2500MHz) data		tested, only	the worst	band's (2310MHz to
Test site:	Measurement D	istance: 3m			
Receiver setup:	Frequency	Detector	RBW	VBW	Remark
·	Above 1GHz	Peak	1MHz	3MHz	Peak Value
	Above Toriz	Peak	1MHz	10Hz	Average Value
Limit:	Freque	ency	Limit (dBuV/		Remark
	Above 1	GHz	54.0 74.0		Average Value Peak Value
Test setup:	Tum Table < 150cm > 1	EUT+	Test Antenna	?	
Test Procedure:	ground at a 3 determine the 2. The EUT was antenna, whi tower. 3. The antenna ground to de horizontal an measurement 4. For each sus and then the and the rotal maximum reasonable and the emission limit specified Ba 6. If the emission limit specified EUT would be 10dB margin.	B meter camber e position of the set 3 meters che was mount the management of the set of the management of the set of the	er. The table was highest race away from the ed on the toped from one naximum value rizations of the con, the EUT tuned to heiged from 0 decents set to Peadaximum Hole EUT in peak could be stopherwise the eested one by	was rotated diation. The interference of a variable of the field the antenna was arrang that from 1 in grees to 36 at Detect Field Mode. The mode was apped and the missions the one using part of the state of the s	r meters above the d strength. Both are set to make the ed to its worst case meter to 4 meters 0 degrees to find the unction and 10dB lower than the ne peak values of the nat did not have peak, quasi-peak or
Test Instruments:	Refer to section				
Test mode:	Refer to section	5.2 for details	3		
Test results:	Pass				

Measurement Data

Remark: GFSK, Pi/4 DQPSK and 8DPSK all have been tested, only worse case GFSK is reported.

Operation Mode: GFSK TX Low channel(2402MHz)

Horizontal (Worst case)

Trefizerital (Trefet caes)						
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2390 58.62 -5.68 52.94 74 -21.06 peak						
2390 41.65 -5.68 35.97 54 -18.03 AVG						
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.						

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2390	61.49	-5.68	55.81	74	-18.19	peak
2390	43.72	-5.68	38.04	54	-15.96	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: GFSK TX High channel (2480MHz)

Horizontal (Worst case)

Frequency Meter Reading Factor Emission Level Limits Margin Detector Type (MHz) (dBμV) (dB) (dBμV/m) (dBμV/m) (dB) Type 2483.5 59.75 -5.85 53.9 74 -20.1 peak 2483.5 42.58 -5.85 36.73 54 -17.27 AVG	,	. ,					
2483.5 59.75 -5.85 53.9 74 -20.1 peak	Frequency		Factor	Emission Level	Limits	Margin	Detector
	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5 42.58 -5.85 36.73 54 -17.27 AVG	2483.5	59.75	-5.85	53.9	74	-20.1	peak
2.00.0	2483.5	42.58	-5.85	36.73	54	-17.27	AVG

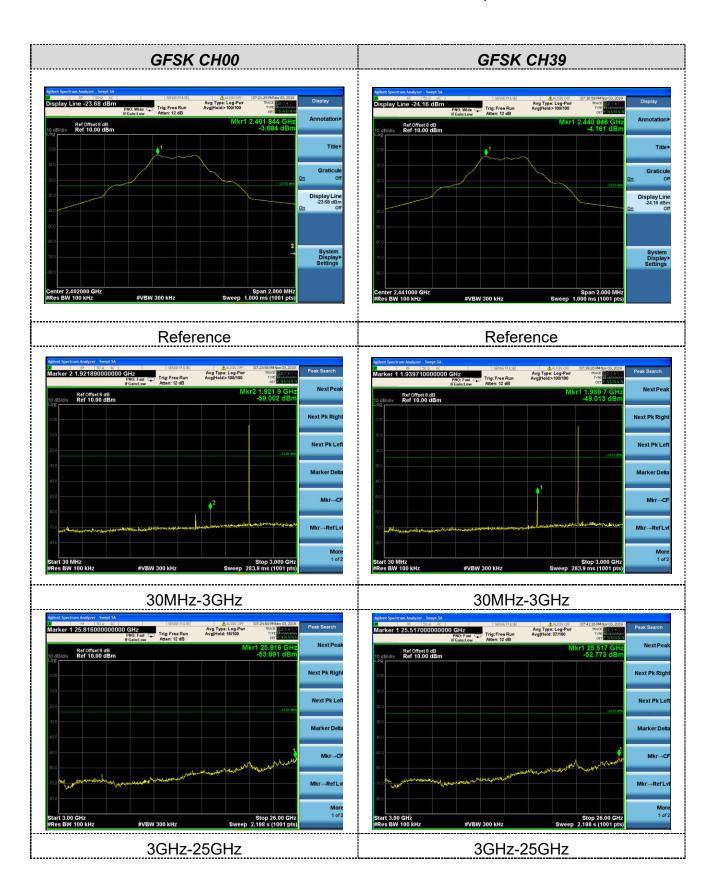
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

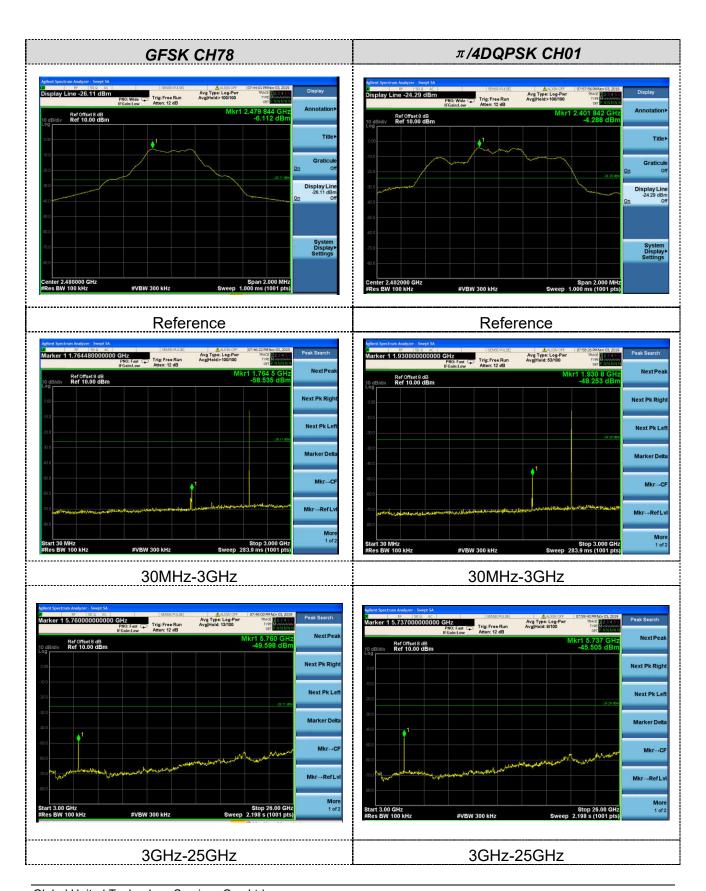
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	62.15	-5.85	56.3	74	-17.7	peak
2483.5	44.57	-5.85	38.72	54	-15.28	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

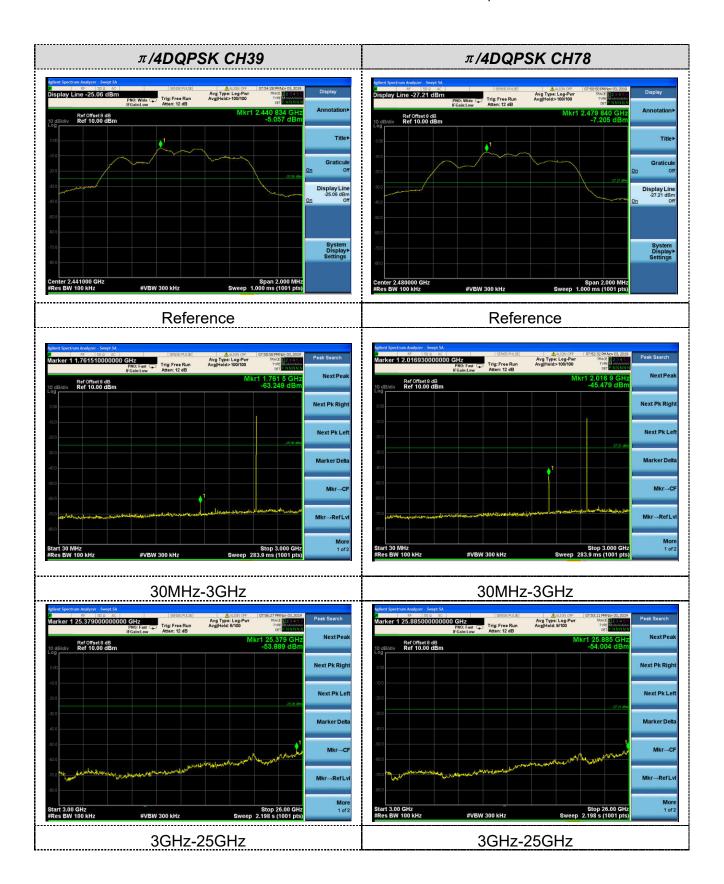
Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

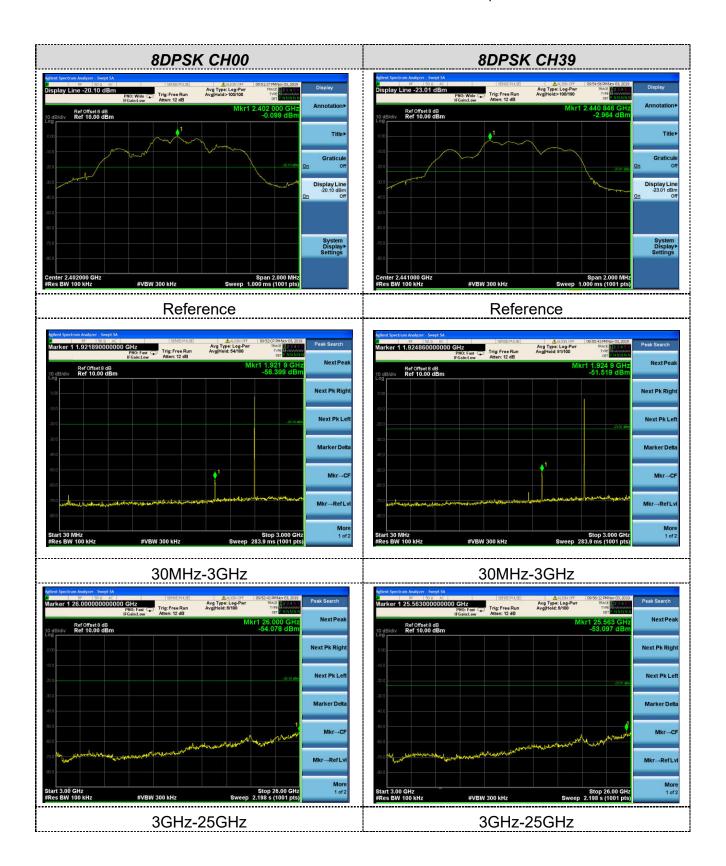


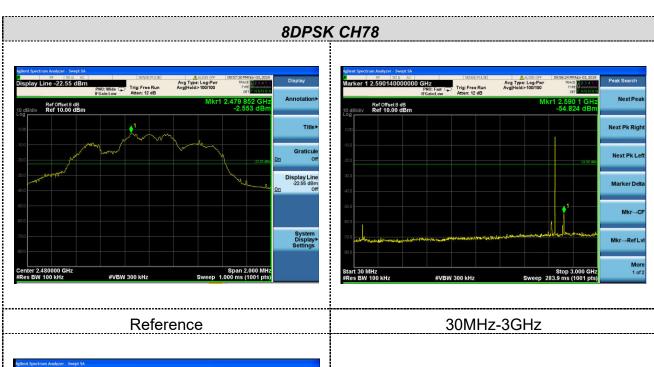
7.10 Spurious Emission

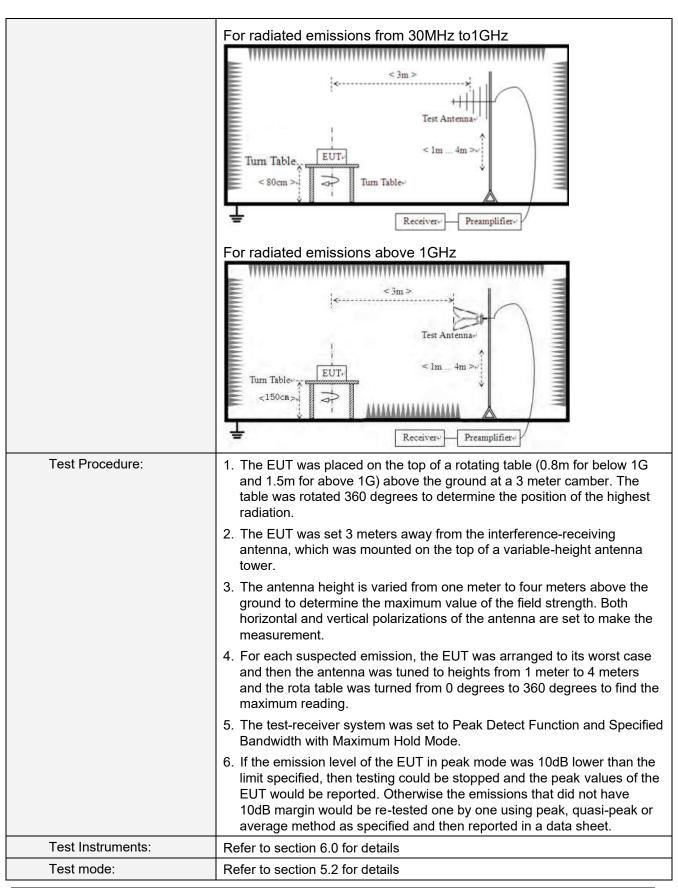

7.10.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				









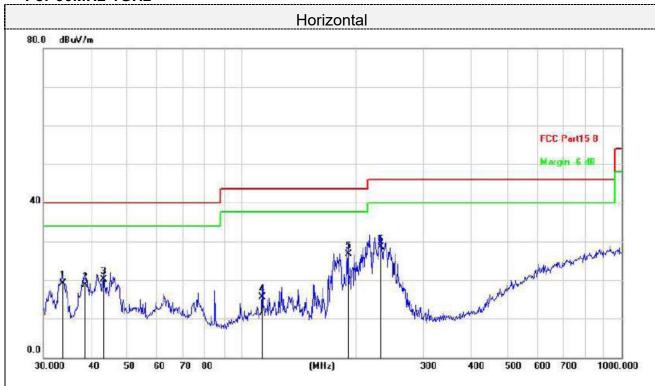
7.10.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209							
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	9kHz to 25GHz							
Test site:	Measurement Distance: 3m							
Receiver setup:	Frequency	cy Detector RBW VBV		W VBV		1	Value	
	9KHz-150KHz	ıasi-peak	-peak 200l		600H	z (Quasi-peak	
	150KHz-30MHz	Qι	ıasi-peak	9KF	łz	30KH	z (Quasi-peak
	30MHz-1GHz	Qι	ıasi-peak	120K	Ήz	300KH	łz (Quasi-peak
	Above 1GHz		Peak	1MF	Ηz	3MHz	z	Peak
	ABOVE TOTIZ		Peak	1MF	Ηz	10Hz	<u>-</u>	Average
Limit:	Frequency		Limit (u\	//m)	٧	'alue		asurement Distance
	0.009MHz-0.490M	Hz	2400/F(k	(Hz)		QP		300m
	0.490MHz-1.705M	Hz	24000/F(I	KHz)		QP	30m	
	1.705MHz-30MH	Z	30		QP		30m	
	30MHz-88MHz	100		QP				
	88MHz-216MHz	<u>.</u>	150			QP		
	216MHz-960MH	Z	200		QP		3m	
	960MHz-1GHz		500	500		QP		OIII
	Above 1GHz		500	500 Average				
	7 1.50 1 51 1.2		5000		F	Peak		
Test setup:	For radiated emiss	ions	from 9kH	z to 30)MH	Z		
	Tum Table Tum Table Im Receiver							

Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Test voltage:	AC 120V, 60Hz					
Test results:	Pass					

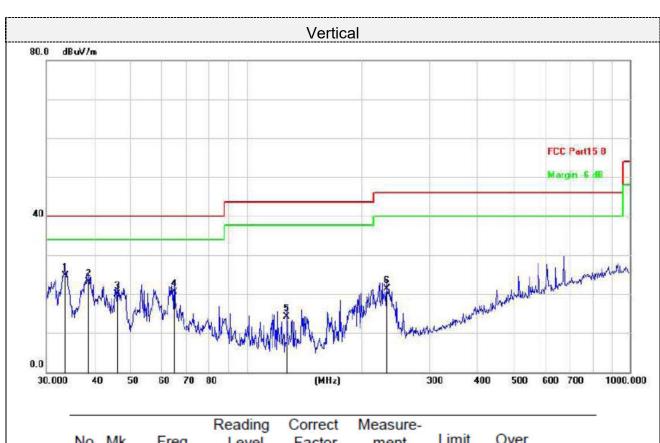
Measurement data:

Remarks:


- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.


For 30MHz-1GHz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		33.7986	37.79	-18.59	19.20	40.00	-20.80	QP
2		38.7518	35.03	-16.33	18.70	40.00	-21.30	QP
3		43.3534	35.03	-14.93	20.10	40.00	-19.90	QP
4		113.3163	32.29	-16.79	15.50	43.50	-28.00	QP
5	*	191.0738	40.00	-13.30	26.70	43.50	-16.80	QP
6		233.3487	42.07	-13.47	28.60	46.00	-17.40	QP

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 45 of 50

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	*	33.5624	40.00	-15.20	24.80	40.00	-15.20	QP
2		38.7518	36.91	-13.81	23.10	40.00	-16.90	QP
3		46.0164	34.64	-14.74	19.90	40.00	-20.10	QP
4		64.6594	37.83	-17.33	20.50	40.00	-19.50	QP
5		127.6645	32.42	-18.22	14.20	43.50	-29.30	QP
6		232.5318	38.91	-17.51	21.40	46.00	-24.60	QP

For 1GHz to 25GHz

Remark: For test above 1GHz GFSK and Pi/4 DQPSK were test at Low, Middle, and High channel; only the worst result of GFSK was reported as below:

CH Low (2402MHz)

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	,			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type			
4804	61.55	-3.61	57.94	74	-16.06	peak			
4804	46.27	-3.61	42.66	54	-11.34	AVG			
7206	58.38	-0.85	57.53	74	-16.47	peak			
7206	44.23	-0.85	43.38	54	-10.62	AVG			
_	1	1							
Remark: Facto	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.								

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin				
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type			
4804	63.27	-3.61	59.66	74	-14.34	peak			
4804	45.52	-3.61	41.91	54	-12.09	AVG			
7206	57.38	-0.85	56.53	74	-17.47	peak			
7206	43.61	-0.85	42.76	54	-11.24	AVG			
		-	 -	-					
		-		-					
Remark: Facto	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.								

CH Middle (2441MHz)

Horizontal:

Honzontan	Meter								
Frequency	Reading	Factor	Emission Level	Limits	Margin]			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type			
4882	59.22	-3.49	55.73	74	-18.27	peak			
4882	46.17	-3.49	42.68	54	-11.32	AVG			
7326	56.32	-0.8	55.52	74	-18.48	peak			
7326	42.18	-0.8	41.38	54	- 12.62	AVG			
	-	-	_			_			
	-		_			_			
Remark: Facto	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.								

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	5			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type			
4882	61.31	- 3.49	57.82	74	-16.18	peak			
4882	46.72	- 3.49	43.23	54	- 10.77	AVG			
7326	57.29	- 0.8	56.49	74	- 17.51	peak			
7326	42.95	-0.8	42.15	54	-11.85	AVG			
	 -		 -		_				
_	-			-	_				
Remark: Facto	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.								

CH High (2480MHz)

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	5
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4960	59.98	-3.41	56.57	74	-17.43	peak
4960	47.02	- 3.41	43.61	54	-10.39	AVG
7440	56.28	-0.72	55.56	74	- 18.44	peak
7440	42.62	- 0.72	41.9	54	- 12.1	AVG
-	I	I	_	-		_
	1	I	_	1		
			D 1:6			

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4960	63.18	-3.41	59.77	74	-14.23	peak
4960	47.09	-3.41	43.68	54	-10.32	AVG
7440	58.51	-0.72	57.79	74	-16.21	peak
7440	42.85	-0.72	42.13	54	-11.87	AVG
		l	_	-	-	_
	-	1	_	ļ	-	_

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

- (1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the **appendix II** for details.

-----End-----