

Shenzhen HTT Technology Co., Ltd.

Report No.: HTT202302426F01

TEST Report

Applicant: Shenzhen FuShiKe Electronic Co., Ltd

Address of Applicant: 3/F, No.8, Xinhu South Street, Xintian, Guanlan Street,

Longhua District, Shenzhen, China 518110

Manufacturer: Shenzhen FuShiKe Electronic Co., Ltd

Address of 3/F, No.8, Xinhu South Street, Xintian, Guanlan Street,

Manufacturer: Longhua District, Shenzhen, China 518110

Equipment Under Test (EUT)

Product Name: Bluetooth headset

Model No.: JBT600

Series model: N/A

Trade Mark: N/A

FCC ID: 2APZE-JBT600

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: Feb.28,2023

Date of Test: Feb.28,2023~Mar.09,2023

Date of report issued: Mar.09,2023

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

1. Version

Version No.	Date	Description
00	Mar.09,2023	Original

Tested/ Prepared By	Ervin Xu	Date:	Mar.09,2023
	Project Engineer	_	
Check By:	Bruce Zhu	Date:	Mar.09,2023
	Reviewer		
Approved By :	Kein Yang	Date:	Mar.09,2023
	Authorized Signature		

2. Contents

			Page
1.	. VEF	RSION	2
2.		NTENTS	
3.		ST SUMMARY	
4.	. GEI	NERAL INFORMATION	5
	4.1.	GENERAL DESCRIPTION OF EUT	5
	4.2.	TEST MODE	
	4.3.	DESCRIPTION OF SUPPORT UNITS	7
	4.4.	DEVIATION FROM STANDARDS	7
	4.5.	ABNORMALITIES FROM STANDARD CONDITIONS	7
	4.6.	TEST FACILITY	7
	4.7.	TEST LOCATION	
	4.8.	ADDITIONAL INSTRUCTIONS	7
5.	. TES	ST INSTRUMENTS LIST	8
6.	. TES	ST RESULTS AND MEASUREMENT DATA	9
	6.1.	CONDUCTED EMISSIONS	9
	6.2.	CONDUCTED PEAK OUTPUT POWER	
	6.3.	20DB EMISSION BANDWIDTH	
	6.4.	FREQUENCIES SEPARATION	17
	6.5.	HOPPING CHANNEL NUMBER	19
	6.6.	DWELL TIME	21
	6.7.	BAND EDGE	26
	6.7.	1. Conducted Emission Method	26
	6.7.	2. Radiated Emission Method	30
	6.8.	Spurious Emission	
		1. Conducted Emission Method	
	6.8.	2. Radiated Emission Method	37
7.	. TES	ST SETUP PHOTO	45
8.	. EUT	CONSTRUCTIONAL DETAILS	45

3. Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)(iii)	Pass
Dwell Time	15.247 (a)(1)(iii)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes			
Radiated Emission	30~1000MHz	3.45 dB	(1)			
Radiated Emission	1~6GHz	3.54 dB	(1)			
Radiated Emission	6~40GHz	5.38 dB	(1)			
Conducted Disturbance	0.15~30MHz	2.66 dB	(1)			
Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.						

4. General Information

4.1. General Description of EUT

•	
Product Name:	Bluetooth headset
Model No.:	JBT600
Series model:	N/A
Test sample(s) ID:	HTT202302426-1(Engineer sample) HTT202302426-2(Normal sample)
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, π/4-DQPSK, 8-DPSK
Antenna Type:	Chip Antenna
Antenna gain:	3.50dBi
Power Supply:	DC 3.8V Form Battery and DC 5V From External Circuit

Operation	Frequency each	n of channel					
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

4.3. Description of Support Units

None.

4.4. Deviation from Standards

None.

4.5. Abnormalities from Standard Conditions

None.

4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

4.7. Test Location

All tests were performed at:

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Tel: 0755-23595200 Fax: 0755-23595201

4.8. Additional Instructions

Test Software	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

Shenzhen HTT Technology Co.,Ltd.

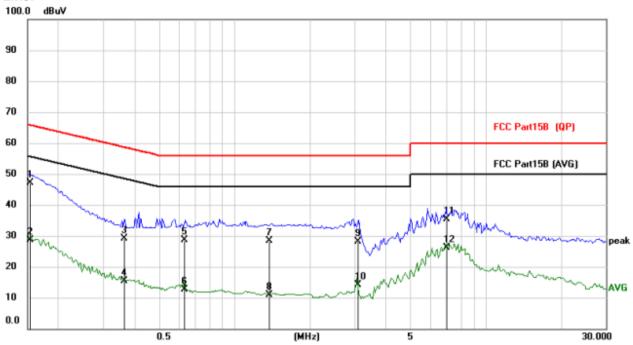
5. Test Instruments list

<u>J.</u>	rest mstrume		T	1		1
Item	Test Equipment	Manufacturer	Model No.	Inventory	Cal.Date	Cal.Due date
	Toot Equipment	- marraraotaror		No.	(mm-dd-yy)	(mm-dd-yy)
1	3m Semi- Anechoic Chamber	Shenzhen C.R.T technology co., LTD	9*6*6	HTT-E028	Aug. 10 2020	Aug. 09 2024
2	Control Room	Shenzhen C.R.T technology co., LTD	4.8*3.5*3.0	HTT-E030	Aug. 10 2020	Aug. 09 2024
3	EMI Test Receiver	Rohde&Schwar	ESCI7	HTT-E022	May 23 2022	May 22 2023
4	Spectrum Analyzer	Rohde&Schwar	FSP	HTT-E037	May 23 2022	May 22 2023
5	Coaxial Cable	ZDecl	ZT26-NJ-NJ-0.6M	HTT-E018	May 23 2022	May 22 2023
6	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-2M	HTT-E019	May 23 2022	May 22 2023
7	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-0.6M	HTT-E020	May 23 2022	May 22 2023
8	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-8.5M	HTT-E021	May 23 2022	May 22 2023
9	Composite logarithmic antenna	Schwarzbeck	VULB 9168	HTT-E017	May 23 2022	May 22 2023
10	Horn Antenna	Schwarzbeck	BBHA9120D	HTT-E016	May 23 2022	May 22 2023
11	Loop Antenna	Zhinan	ZN30900C	HTT-E039	May 23 2022	May 22 2023
12	Horn Antenna	Beijing Hangwei Dayang	OBH100400	HTT-E040	May 23 2022	May 22 2023
13	low frequency Amplifier	Sonoma Instrument	310	HTT-E015	May 23 2022	May 22 2023
14	high-frequency Amplifier	HP	8449B	HTT-E014	May 23 2022	May 22 2023
15	Variable frequency power supply	Shenzhen Anbiao Instrument Co., Ltd	ANB-10VA	HTT-082	May 23 2022	May 22 2023
16	EMI Test Receiver	Rohde & Schwarz	ESCS30	HTT-E004	May 23 2022	May 22 2023
17	Artificial Mains	Rohde & Schwarz	ESH3-Z5	HTT-E006	May 23 2022	May 22 2023
18	Artificial Mains	Rohde & Schwarz	ENV-216	HTT-E038	May 23 2022	May 22 2023
19	Cable Line	Robinson	Z302S-NJ-BNCJ-1.5M	HTT-E001	May 23 2022	May 22 2023
20	Attenuator	Robinson	6810.17A	HTT-E007	May 23 2022	May 22 2023
	Variable frequency power supply	Shenzhen Yanghong Electric Co., Ltd	YF-650 (5KVA)	HTT-E032	May 23 2022	May 22 2023
22	Control Room	Shenzhen C.R.T technology co., LTD	8*4*3.5	HTT-E029	May 23 2022	May 22 2023
23	DC power supply	Agilent	E3632A	HTT-E023	May 23 2022	May 22 2023
24	EMI Test Receiver	Agilent	N9020A	HTT-E024	May 23 2022	May 22 2023
25	Analog signal generator	Agilent	N5181A	HTT-E025	May 23 2022	May 22 2023
26	Vector signal generator	Agilent	N5182A	HTT-E026	May 23 2022	May 22 2023
27	Power sensor	Keysight	U2021XA	HTT-E027	May 23 2022	May 22 2023
28	Temperature and Shenzhen Anbiao humidity meter Instrument Co., Ltd		TH10R	HTT-074	May 23 2022	May 22 2023
29	Radiated Emission Test Software Farad		EZ-EMC	N/A	N/A	N/A
30	Conducted Emission		EZ-EMC	N/A	N/A	N/A
31	RF Test Software	panshanrf	TST	N/A	N/A	N/A

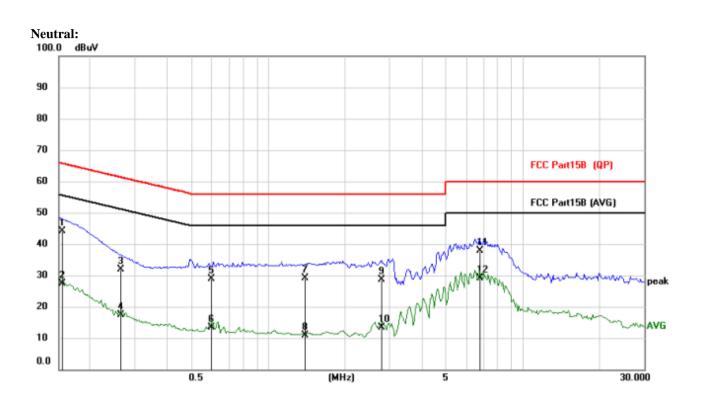
Shenzhen HTT Technology Co.,Ltd.

6. Test results and Measurement Data

6.1. Conducted Emissions


Test Requirement:	FCC Part15 C Section 15.207			
Test Method:	ANSI C63.10:2013			
Test Frequency Range:	150KHz to 30MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto		
Limit:	Frequency range (MHz)	Limit	(dBuV)	
		age		
	0.15-0.5	56 to		
	0.5-5	56	46	
	5-30 * Decreases with the logarithn	60	50)
Test setup:	Reference Plane			
Test procedure:	Remark E.U.T Test table/Insulation plane Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a line impedance stabilization 500hm/50uH coupling impedance of the peripheral devices are	n network (L.I.S.N.) edance for the measu	main power tl This provides uring equipme	a ent.
	LISN that provides a 50ohn termination. (Please refer to photographs). 3. Both sides of A.C. line are interference. In order to find positions of equipment and according to ANSI C63.10::	n/50uH coupling impose the block diagram of the block diagram of the checked for maximum emised the maximum emised all of the interface controls.	edance with 5 of the test set m conducted sion, the relat ables must be	oohm up and tive e changed
Test Instruments:	Refer to section 6.0 for details	3		
Test mode:	Refer to section 5.2 for details			
Test environment:	Temp.: 25 °C Hun	nid.: 52%	Press.:	1012mbar
Test voltage:	AC 120V, 60Hz	l .	1	
Test results:	Pass			

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.


Measurement data:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	*	0.1539	36.73	10.37	47.10	65.79	-18.69	QP
2		0.1539	18.19	10.37	28.56	55.79	-27.23	AVG
3		0.3645	18.60	10.43	29.03	58.63	-29.60	QP
4		0.3645	4.91	10.43	15.34	48.63	-33.29	AVG
5		0.6336	17.98	10.65	28.63	56.00	-27.37	QP
6		0.6336	1.97	10.65	12.62	46.00	-33.38	AVG
7		1.3746	17.48	10.87	28.35	56.00	-27.65	QP
8		1.3746	0.09	10.87	10.96	46.00	-35.04	AVG
9		3.0738	17.25	10.85	28.10	56.00	-27.90	QP
10		3.0738	3.21	10.85	14.06	46.00	-31.94	AVG
11		6.9663	24.07	11.42	35.49	60.00	-24.51	QP
12		6.9663	14.75	11.42	26.17	50.00	-23.83	AVG

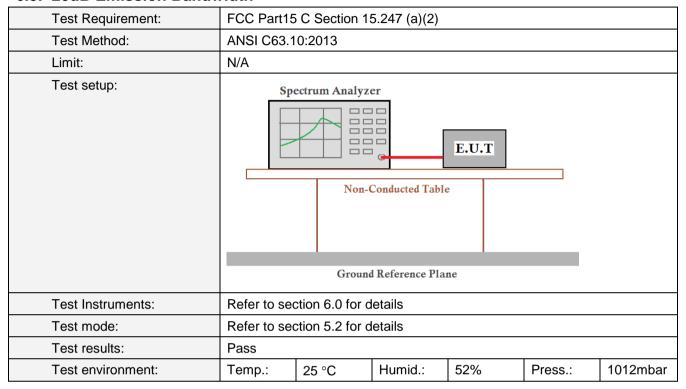
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1556	33.99	10.26	44.25	65.70	-21.45	QP
2	0.1556	17.17	10.26	27.43	55.70	-28.27	AVG
3	0.2631	21.73	10.23	31.96	61.33	-29.37	QP
4	0.2631	7.09	10.23	17.32	51.33	-34.01	AVG
5	0.5979	18.30	10.50	28.80	56.00	-27.20	QP
6	0.5979	2.78	10.50	13.28	46.00	-32.72	AVG
7	1.4019	18.36	10.81	29.17	56.00	-26.83	QP
8	1.4019	0.19	10.81	11.00	46.00	-35.00	AVG
9	2.7863	17.78	10.84	28.62	56.00	-27.38	QP
10	2.7863	2.66	10.84	13.50	46.00	-32.50	AVG
11	6.7713	26.89	10.93	37.82	60.00	-22.18	QP
12 *	6.7713	18.28	10.93	29.21	50.00	-20.79	AVG

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Los

Shenzhen HTT Technology Co.,Ltd.

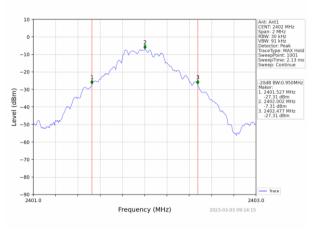
6.2. Conducted Peak Output Power


Test Requirement:	FCC Part15	FCC Part15 C Section 15.247 (b)(3)					
Test Method:	ANSI C63.1	10:2013					
Limit:	30dBm(for	GFSK),20.97	dBm(for EDF	₹)			
Test setup:	Power sensor and Spectrum analyzer E.U.T Non-Conducted Table						
		Ground Reference Pla	ane				
Test Instruments:	Refer to see	ction 6.0 for c	letails				
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar	

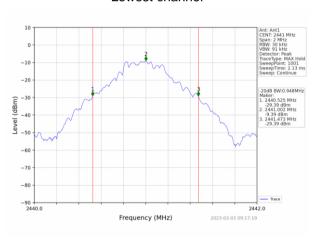
Measurement Data

Mode	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
	Lowest	-4.91			
GFSK	Middle	-6.95	30.00	Pass	
	Highest	-9.34			
	Lowest	-2.60			
π/4-DQPSK	Middle	-4.55	20.97	Pass	
	Highest	-6.99			
	Lowest	-1.98			
8-DPSK	Middle	-4.07	20.97	Pass	
	Highest	-6.53			

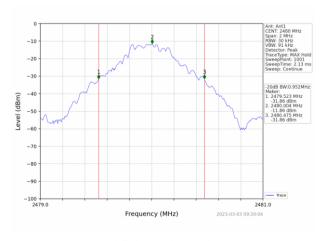
6.3. 20dB Emission Bandwidth


Measurement Data

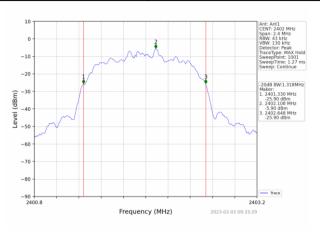
Mode	Test channel	20dB Emission Bandwidth (MHz)	Result
	Lowest	0.950	
GFSK	Middle	0.948	Pass
	Highest	0.952	
	Lowest	1.318	
π/4-DQPSK	Middle	1.301	Pass
	Highest	1.308	
	Lowest	1.310	
8-DPSK	Middle	1.308	Pass
	Highest	1.310	

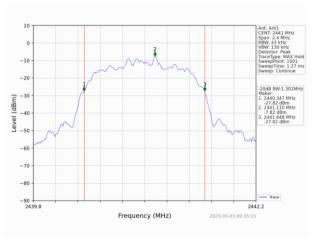


Test plot as follows:


Test mode: GFSK mode

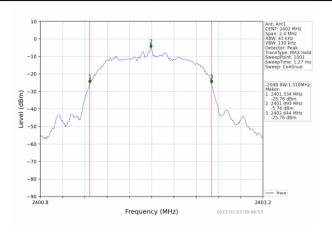
Lowest channel

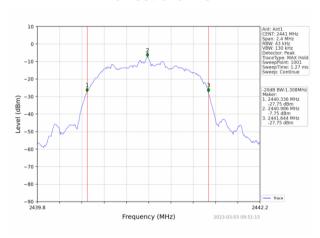

Middle channel

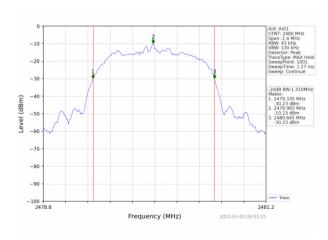

Highest channel

Test mode: $\pi/4$ -DQPSK mode

Lowest channel


Middle channel


Highest channel


Test mode: 8-DPSK mode

Lowest channel

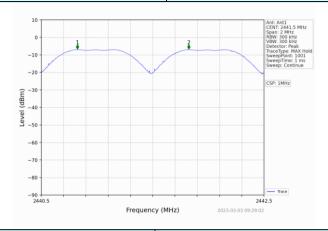
Middle channel

Highest channel

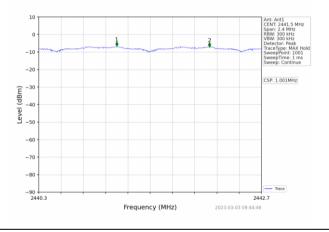
6.4. Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)							
Test Method:	ANSI C63.10:2013							
Receiver setup:		RBW=100KHz, VBW=300KHz, detector=Peak						
Limit:	GFSK: 20dB bandwidth $\pi/4$ -DQPSK : 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)							
Test setup:	Sp							
Test Instruments:	Refer to se	ction 6.0 for o	details					
Test mode:	Refer to section 5.2 for details							
Test results:	Pass							
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		

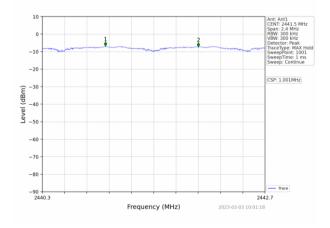
Measurement Data


Measurement Date	<u>a</u>			
Mode	Test channel	Frequencies Separation (MHz)	Limit (kHz)	Result
			25KHz or	
GFSK	Middle	1.000	2/3*20dB	Pass
			bandwidth	
			25KHz or	
π/4-DQPSK	Middle	1.001	2/3*20dB	Pass
			bandwidth	
			25KHz or	
8-DPSK	Middle	1.001	2/3*20dB	Pass
			bandwidth	
	1	1		

Remark: We have tested all mode at high, middle and low channel, and recorded worst case at middle



Test plot as follows:


Modulation mode: GFSK

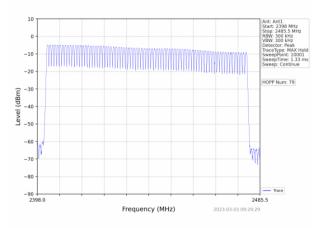
Test mode: $\pi/4$ -DQPSK

Modulation mode: 8-DPSK

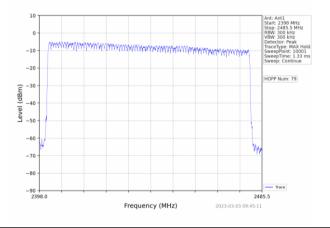
Shenzhen HTT Technology Co.,Ltd.

6.5. Hopping Channel Number

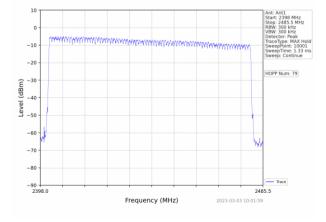
Test Requirement:	FCC Part15	FCC Part15 C Section 15.247 (a)(1)(iii)						
Test Method:	ANSI C63.1	10:2013						
Receiver setup:	RBW=100k Detector=P	Hz, VBW=30 eak	0kHz, Frequ	ency range=2	2400MHz-248	3.5MHz,		
Limit:	15 channels	S						
Test setup:	Spe	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to see	ction 6.0 for d	letails					
Test mode:	Refer to section 5.2 for details							
Test results:	Pass	Pass						
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		


Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK	79		Pass
π/4-DQPSK	79	≥15	Pass
8-DPSK	79		Pass



Test plot as follows:


Test mode: GFSK

Test mode: $\pi/4$ -DQPSK

Test mode: 8-DPSK

Shenzhen HTT Technology Co.,Ltd.

6.6. Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(iii)						
Test Method:	ANSI C63.10:	:2013					
Receiver setup:	RBW=1MHz,	VBW=1MH	z, Span=0Hz	z, Detector=P	'eak		
Limit:	0.4 Second						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section	on 6.0 for d	etails				
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						
Test environment:	Temp.: 2	25 °C	Humid.:	52%	Press.:	1012mbar	

Measurement Data

GFSK mode:

Frequency	Packet	Pulse time (ms)	Dwell time(ms)	Limit(ms)	Result
Hopping	DH1	0.402	128.640	400	Pass
Hopping	DH3	1.662	262.596	400	Pass
Hopping	DH5	2.904	290.400	400	Pass

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) \times (1600 ÷ 2 ÷ 79) \times 31.6 Second for DH1, 2-DH1, 3-DH1

Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3, 3-DH3

Dwell time=Pulse time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second for DH5, 2-DH5, 3-DH5

$\pi/4$ -DOPSK mode:

Frequency	Packet	Pulse time (ms)	Dwell time(ms)	Limit(ms)	Result
Hopping	2DH1	0.410	131.200	400	Pass
Hopping	2DH3	1.666	254.898	400	Pass
Hopping	2DH5	2.916	312.012	400	Pass

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) x (1600 \div 2 \div 79) x31.6 Second for DH1, 2-DH1, 3-DH1

Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3, 3-DH3

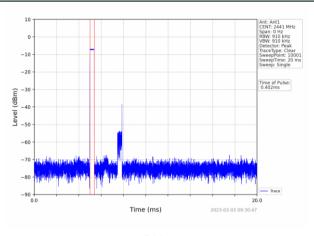
Dwell time=Pulse time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second for DH5, 2-DH5, 3-DH5

8-DPSK mode:

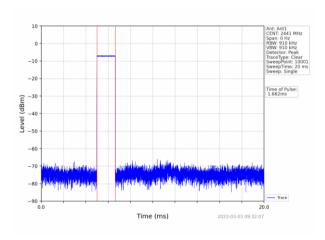
Frequency	Packet	Pulse time (ms)	Dwell time(ms)	Limit(ms)	Result
Hopping	3DH1	0.400	128.000	400	Pass
Hopping	3DH3	1.660	272.240	400	Pass
Hopping	3DH5	2.918	303.472	400	Pass

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

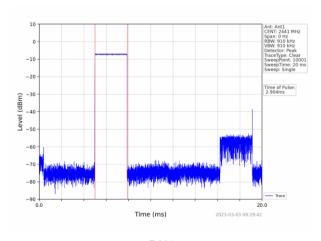
Dwell time=Pulse time (ms) \times (1600 \div 2 \div 79) \times 31.6 Second for DH1, 2-DH1, 3-DH1

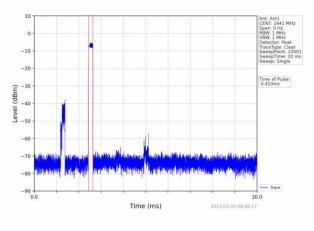

Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3, 3-DH3

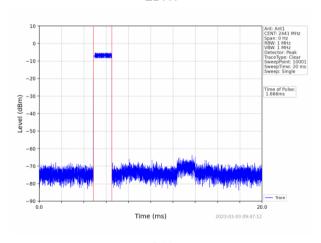
Dwell time=Pulse time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second for DH5, 2-DH5, 3-DH5

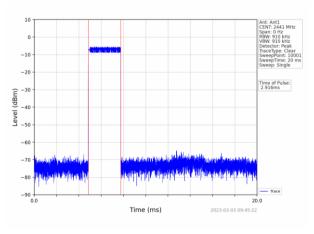


Test plot as follows:

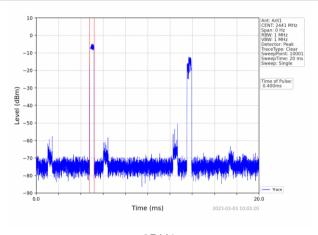

GFSK mode



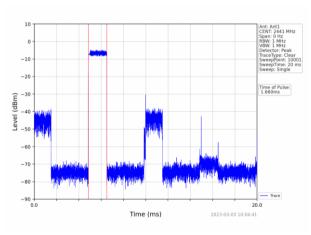


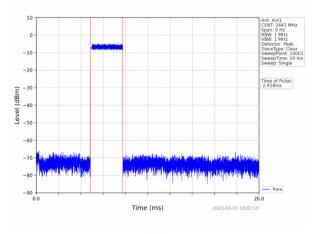

π/4-DQPSK mode

2DH1



2DH3



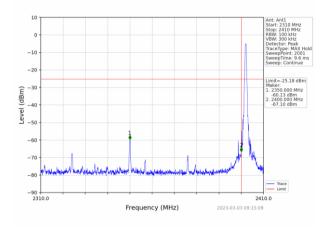

8-DPSK mode

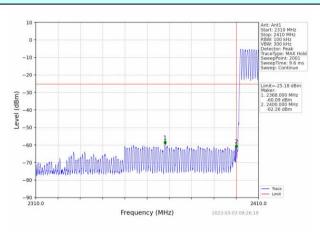
3DH1

3DH3

6.7. Band Edge

6.7.1. Conducted Emission Method

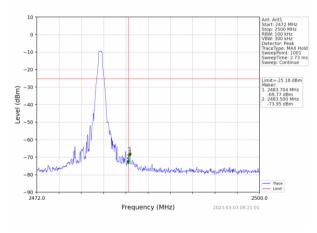

Test Requirement:	FCC Part15 C Section 15.247 (d)								
Test Method:	ANSI C63.10:2013								
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak								
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.								
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane								
Test Instruments:	Refer to section 6.0 for details								
Test mode:	Refer to section 5.2 for details								
Test results:	Pass								
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar								

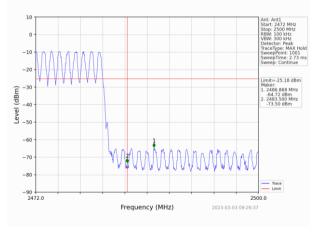


Test plot as follows: GFSK Mode:

Test channel

Lowest channel

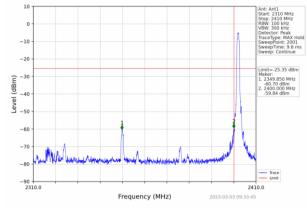


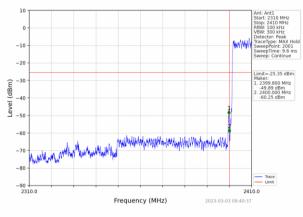

No-hopping mode

Hopping mode

Test channel:

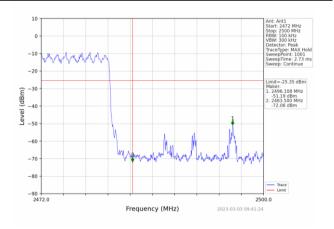
Highest channel


No-hopping mode


Hopping mode

π/4-DQPSK Mode:

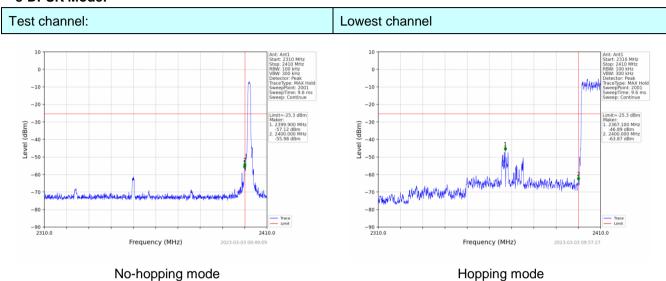
Test channel Lowest channel


No-hopping mode

Hopping mode

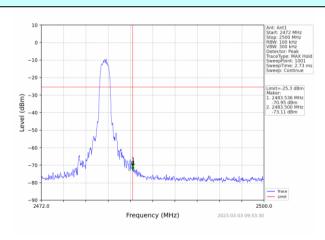
Test channel:

Highest channel

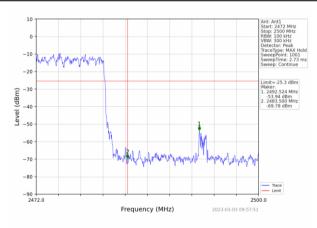


No-hopping mode

Hopping mode



8-DPSK Mode:



Test channel:

Highest channel

Hopping mode

6.7.2. Radiated Emission Method

	a Elillosion Meti	Lillission Metriod									
Test Requirement:	FCC Part15 C	Section 15.	209 a	nd 15.205							
Test Method:	ANSI C63.10:	ANSI C63.10:2013									
Test Frequency Range:		All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.									
Test site:	Measurement	t Distance: 3	m								
Receiver setup:	Frequency	Detect	or	RBW	VBW	Re	emark				
·	Above 1GHz	Peak		1MHz	3MHz		k Value				
I inclu	Fred	Peak Peak		1MHz imit (dBuV	10Hz		ge Value emark				
Limit:		•	-	54.0			ge Value				
	Above	e 1GHz		74.0			k Value				
Test setup:	Turn Table	EUT+	< 3m :	Test Antenna	?						
	. = = = = = =										
Test Procedure:	determine 2. The EUT wantenna, watower. 3. The antenna ground to a horizontal ameasurem 4. For each sand then thand the rotamaximum 5. The test-resident and the emission limit specific EUT would margin work.	a 3 meter can the position of	mber. of the ters a cunted raried e max colariz nission curned m was um Ho ting co . Othe ted or	The table way from the don the top from one natimum value tations of the nation of the set to Peasible Mode. UT in peak bould be stoperwise the end to he ignerated to the set of the set	was rotated diation. The interfer of a variation of	erence-receiviable-height four meters a ield strength ha are set to unged to its wall meter to 4 360 degrees to Function are set 10dB lowed the peak vas that did now, quasi-peak	ving antenna above the . Both make the vorst case meters is to find the and Specified er than the alues of the thave 10dB ak or				
Test Instruments:	Refer to section										
Test mode:	Refer to section	on 5.2 for de	tails								
Test results:	Pass	1			1		1				
Test environment:	Temp.: 2	25 °C	Humi	d.: 52%	, D	Press.:	1012mbar				

Shenzhen HTT Technology Co.,Ltd.

Measurement Data

Remark: GFSK, Pi/4 DQPSK,8-DPSK all have been tested, only worse case GFSK is reported.

Operation Mode: GFSK TX Low channel(2402MHz)

Horizontal (Worst case)

1 10112011	iai (VVOISI C	<i>asc)</i>						
Fraguenay	Meter Reading	Antenna		Preamp	Emission Level	Limits	Morgin	
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	LIIIIIIS	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBuV/m)	(dB)	Type
((/	(==,)	(/	()	(== =	(p. 1, 11.)	()	
2390	59.11	26.20	5.72	33.30	57.73	74.00	-16.27	peak
								'
2390	45.62	26.20	5.72	33.30	44.24	54.00	-9.76	AVG

Vertical:

Fraguenay	Meter Reading	Antenna		Preamp	Emission Level	Limits	Morgin	
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	LIIIIIIS	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2390	58.96	26.20	5.72	33.30	57.58	74.00	-16.42	peak
2390	45.60	26.20	5.72	33.30	44.22	54.00	-9.78	AVG

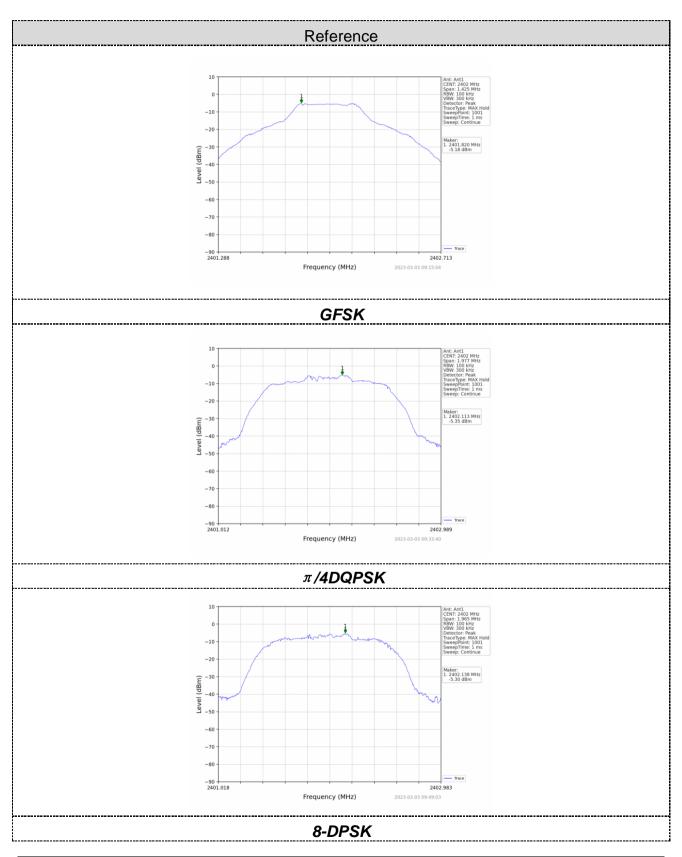
Operation Mode: GFSK TX High channel (2480MHz)

Horizontal (Worst case)

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	55.27	28.60	6.97	32.70	58.14	74.00	-15.86	peak
2483.5	40.99	28.60	6.97	32.70	43.86	54.00	-10.14	AVG

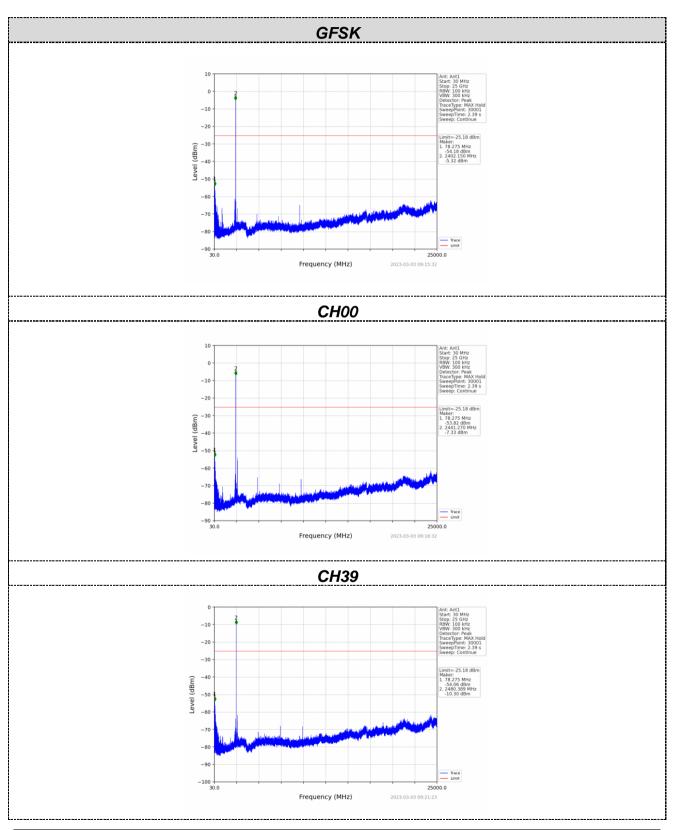
Vertical:

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2483.5	54.98	28.60	6.97	32.70	57.85	74.00	-16.15	peak
2483.5	42.30	28.60	6.97	32.70	45.17	54.00	-8.83	AVG

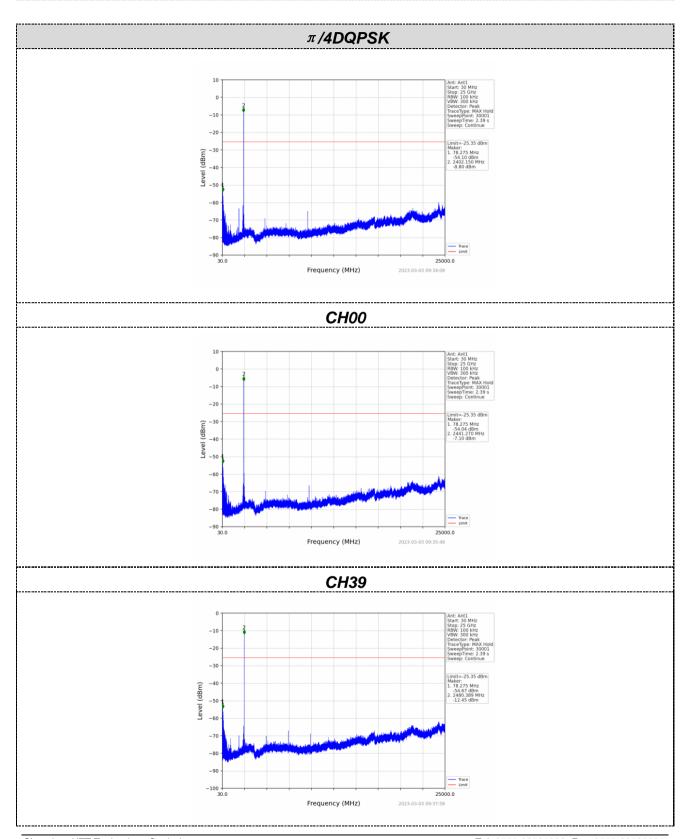


6.8. Spurious Emission

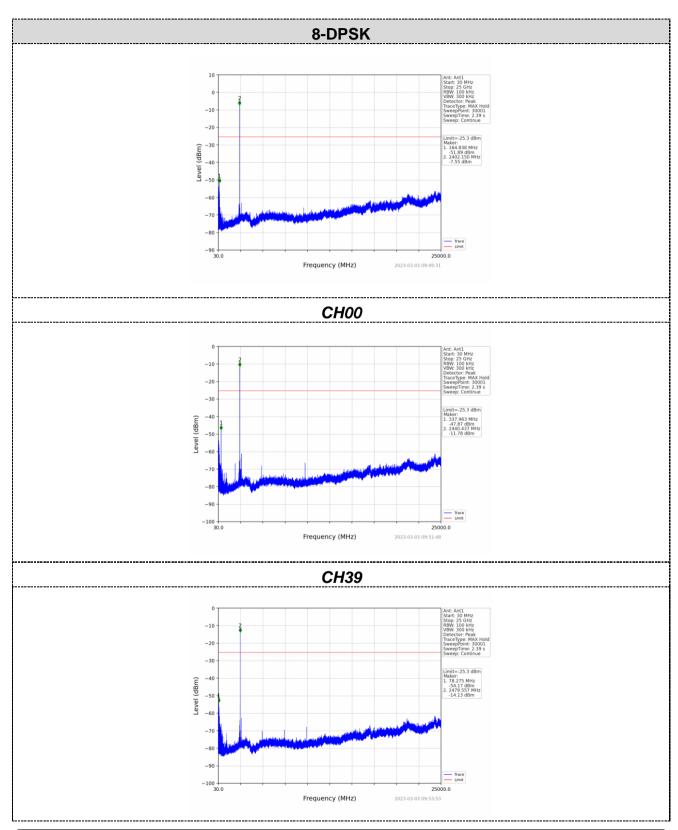
6.8.1. Conducted Emission Method


Test Requirement:	FCC Part15	C Section 1	5.247 (d)							
Test Method:	ANSI C63.1	NSI C63.10:2013								
Limit:	spectrum ir produced b 100 kHz ba	itentional rad y the intentio ndwidth with ver, based or	iator is opera nal radiator s in the band th	e frequency be ting, the radio hall be at leas at contains the conducted o	o frequency p st 20 dB belo ne highest lev	ower that is w that in the				
Test setup:	Sp									
Test Instruments:	Refer to se	Refer to section 6.0 for details								
Test mode:	Refer to se	Refer to section 5.2 for details								
Test results:	Pass									
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar				

Shenzhen HTT Technology Co.,Ltd.



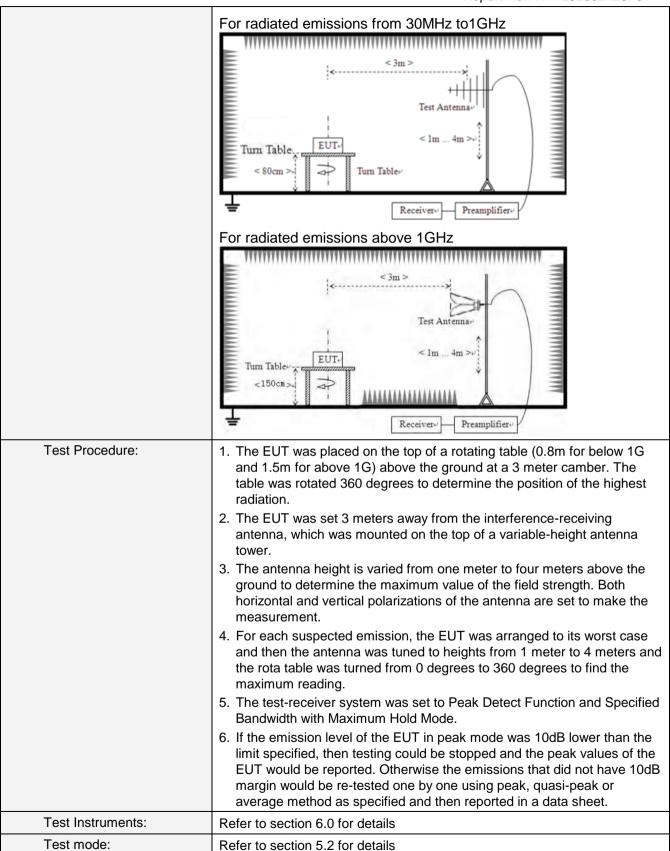
Shenzhen HTT Technology Co.,Ltd.


CH78

Shenzhen HTT Technology Co.,Ltd.

CH78

Shenzhen HTT Technology Co.,Ltd.



CH78

6.8.2. Radiated Emission Method

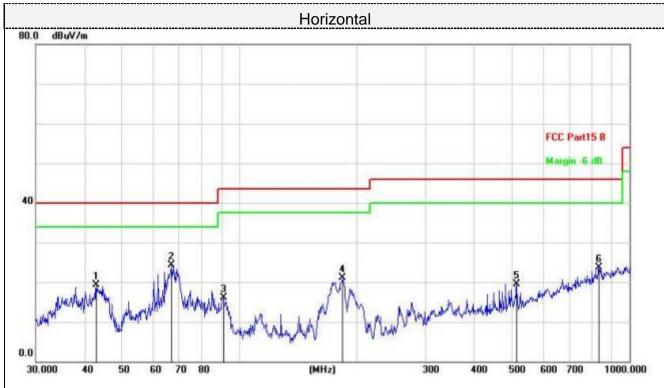
6.8.2. Radiated Ei	nission Method											
Test Requirement:	FCC Part15 C Section	on 15	5.209									
Test Method:	ANSI C63.10:2013											
Test Frequency Range:	9kHz to 25GHz											
Test site:	Measurement Distar	nce: 3	3m									
Receiver setup:	Frequency		Detector	RBW		VBW		Value				
	9KHz-150KHz	ă	ıasi-peak	200H	Ηz	600Hz	Z	Quasi-peak				
	150KHz-30MHz	Qι	uasi-peak	9KF	łz	30KH:	Z	Quasi-peak				
	30MHz-1GHz	Qı	Quasi-peak		Ήz	300KH	lz	Quasi-peak				
	Above 1GHz		Peak	1MF	Ηz	3MHz	<u>,</u>	Peak				
	710070 10112		Peak	1MF	Ιz	10Hz		Average				
Limit:	Frequency		Limit (u\	//m)	V	alue	٨	Measurement Distance				
	0.009MHz-0.490M	.009MHz-0.490MHz 2400/F(KHz) QP 490MHz-1 705MHz 24000/F(KHz) QP						300m				
	0.490MHz-1.705M	.490MHz-1.705MHz 24000/F(KHz) QP 1.705MHz-30MHz 30 QP						05MHz 24000/F(KHz) QP		QP 30		30m
		1.705MHz-30MHz 30						30m				
	30MHz-88MHz		100		QP		_					
	88MHz-216MHz		150		QP							
	216MHz-960MH		200			QP		3m				
	960MHz-1GHz		500	Av		QP verage						
	Above 1GHz		500									
			5000		F	Peak						
Test setup:	For radiated emiss	ions	from 9kH	z to 30)MH	Z		_				
	Tum Table Tum Table Receiver											

Shenzhen HTT Technology Co.,Ltd.

Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Test voltage:	AC 120V, 6	0Hz				
Test results:	Pass					

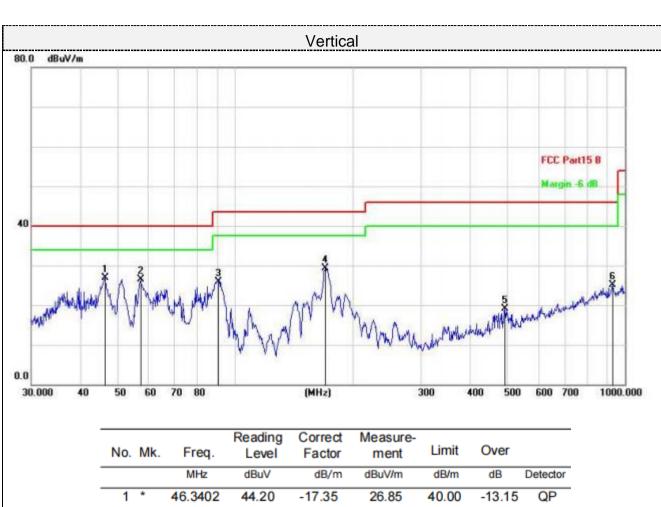
Measurement data:

Remarks:


- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.


For 30MHz-1GHz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dB/m	dB	Detector
1		42.8997	36.68	-17.31	19.37	40.00	-20.63	QP
2	*	66.7325	43.62	-19.37	24.25	40.00	-15.75	QP
3		90.8554	37.91	-21.82	16.09	43.50	-27.41	QP
4		183.8440	40.97	-19.80	21.17	43.50	-22.33	QP
5		513.6331	32.47	-12.96	19.51	46.00	-26.49	QP
6		836.2441	29.80	-6.18	23.62	46.00	-22.38	QP

Final Level =Receiver Read level + Correct Factor

No.	Mk.	Freq.	Reading Level	Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dB/m	dB	Detector
1	*	46.3402	44.20	-17.35	26.85	40.00	-13.15	QP
2		57.1914	44.28	-17.87	26.41	40.00	-13.59	QP
3		90.5374	47.67	-21.86	25.81	43.50	-17.69	QP
4		170.1948	48.77	-19.46	29.31	43.50	-14.19	QP
5		492.4685	32.63	-13.57	19.06	46.00	-26.94	QP
6		929.0082	30.04	-4.91	25.13	46.00	-20.87	QP

Final Level = Receiver Read level + Correct Factor

For 1GHz to 25GHz

Remark: For test above 1GHz GFSK,Pi/4 DQPSK and 8-DPSK $\,$ were test at Low, Middle, and

High

channel; only the worst result of GFSK was reported as below:

CH Low (2402MHz)

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4804	51.63	31.40	8.18	31.50	59.71	74.00	-14.29	peak
4804	36.80	31.40	8.18	31.50	44.88	54.00	-9.12	AVG
7000	15.40	0= 00	40.00	04.40		- 4.00	40.05	l .
7206	45.12	35.80	10.83	31.40	60.35	74.00	-13.65	peak
7206	30.12	35.80	10.83	31.40	45.35	54.00	-8.65	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4804	51.33	31.40	8.18	31.50	59.41	74.00	-14.59	peak
4804	35.74	31.40	8.18	31.50	43.82	54.00	-10.18	AVG
7206	44.13	35.80	10.83	31.40	59.36	74.00	-14.64	peak
7206	29.36	35.80	10.83	31.40	44.59	54.00	-9.41	AVG
	_							
Remark: Facto	or = Antenna Fac	tor + Cable Los	s – Pre-amplifieı					

CH Middle (2441MHz)

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4882	50.64	31.40	9.17	32.10	59.11	74.00	-14.89	peak
4882	37.42	31.40	9.17	32.10	45.89	54.00	-8.11	AVG
7323	43.65	35.80	10.83	31.40	58.88	74.00	-15.12	peak
7323	29.11	35.80	10.83	31.40	44.34	54.00	-9.66	AVG

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4882	51.65	31.40	9.17	32.10	60.12	74.00	-13.88	peak
4882	36.94	31.40	9.17	32.10	45.41	54.00	-8.59	AVG
7323	42.39	35.80	10.83	31.40	57.62	74.00	-16.38	peak
7323	28.87	35.80	10.83	31.40	44.10	54.00	-9.90	AVG

CH High (2480MHz)

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detecto
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4960	51.36	31.40	9.17	32.10	59.83	74.00	-14.17	peak
4960	37.45	31.40	9.17	32.10	45.92	54.00	-8.08	AVG
7440	44.26	35.80	10.83	31.40	59.49	74.00	-14.51	peak
7440	28.77	35.80	10.83	31.40	44.00	54.00	-10.00	AVG

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4960	50.98	31.40	9.17	32.10	59.45	74.00	-14.55	peak
4900	50.96	31.40	9.17	32.10	59.45	74.00	-14.55	peak
4960	36.77	31.40	9.17	32.10	45.24	54.00	-8.76	AVG
7440	43.68	35.80	10.83	31.40	58.91	74.00	-15.09	peak
7440	29.55	35.80	10.83	31.40	44.78	54.00	-9.22	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Remark:

- (1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

7. Test Setup Photo

Reference to the appendix I for details.

8. EUT Constructional Details

Reference to the appendix II for details.

