Global United Technology Services Co., Ltd.

Report No.: GTSL202108000201F01

TEST REPORT

Applicant: Shenzhen FuShiKe Electronic Co., Ltd

3/F, No.8, Xinhu South Street, Xintian, Guanlan Street, **Address of Applicant:**

Longhua District, Shenzhen, China 518110

Manufacturer/Factory: Shenzhen FuShiKe Electronic Co., Ltd

Address of 3/F, No.8, Xinhu South Street, Xintian, Guanlan Street,

Longhua District, Shenzhen, China 518110 Manufacturer/Factory:

Equipment Under Test (EUT)

Product Name: Bluetooth headset

Model No.: A10, A19, K21, F400, T800, T900, K28, K26, Engage-Pro

Trade Mark: N/A

FCC ID: 2APZE-A10

FCC CFR Title 47 Part 15 Subpart C Section 15.247 **Applicable standards:**

Date of sample receipt: Aug. 18,2021

Date of Test: Aug. 18,2021-Aug. 27,2021

Date of report issued: Aug. 27,2021

PASS * **Test Result:**

Authorized Signature:

Robinson Lu **Laboratory Manager**

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description	
00	Aug. 27,2021	Original	
6 2 9 9 9	2 2 2 2	0 0 0 0	

Prepared By:	Joseph Ou	Date:	Aug. 27,2021	
	Project Engineer	<u> </u>		e de
Check By:	Labour lux	Date:	Aug. 27,2021	
	Paviowar			6

3 Contents

		Page
1	COVER PAGE	1
2	2 VERSION	2
-		
3		
4	1 TEST SUMMARY	4
5	GENERAL INFORMATION	E
၁		
	5.1 GENERAL DESCRIPTION OF EUT	5
	5.2 TEST MODE	
	5.3 DESCRIPTION OF SUPPORT UNITS	7
	5.4 DEVIATION FROM STANDARDS	
	5.5 ABNORMALITIES FROM STANDARD CONDITIONS	
	5.6 TEST FACILITY	
	5.7 TEST LOCATION	7
6	TEST INSTRUMENTS LIST	8
A		
7	TEST RESULTS AND MEASUREMENT DATA	10
	7.1 ANTENNA REQUIREMENT	10
	7.2 CONDUCTED EMISSIONS	
	7.3 CONDUCTED PEAK OUTPUT POWER	
	7.4 20DB EMISSION BANDWIDTH	
	7.5 CARRIER FREQUENCIES SEPARATION.	
	7.6 HOPPING CHANNEL NUMBER	
	7.7 DWELL TIME	
	7.8 BAND EDGE	
	7.8.1 Conducted Emission Method	
	7.8.2 Radiated Emission Method	
	7.9 Spurious Emission	
	7.9.1 Conducted Emission Method	
	7.9.2 Radiated Emission Method	
8		
a	ELIT CONSTRUCTIONAL DETAILS	47

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)(iii)	Pass
Dwell Time	15.247 (a)(1)(iii)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

200		
BOMHz-200MHz	3.8039dB	(1)
200MHz-1GHz	3.9679dB	(1)
1GHz-18GHz	4.29dB	(1)
18GHz-40GHz	3.30dB	(1)
15MHz ~ 30MHz	3.44dB	(1)
	200MHz-1GHz	200MHz-1GHz 3.9679dB 1GHz-18GHz 4.29dB 18GHz-40GHz 3.30dB

5 General Information

5.1 General Description of EUT

Off Conciai Description of Lot	
Product Name:	Bluetooth headset
Model No.:	A10
Test sample(s) ID:	GTSL202108000201-1
Sample(s) Status:	Engineer sample
Hardware Version:	V1.1
Software Version:	V1.0
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, π/4-DQPSK, 8-DPSK
Antenna Type:	Chip ANT
Antenna gain:	4.90dBi
Power supply:	DC 3.7V/400mAh Form Battery and DC 5V From External Circuit
Adapter Information	Mode: CD122
(Auxiliary test provided by the lab):	Input: AC100-240V, 50/60Hz, 500mA
	Output: DC 5V, 2A

Operation	Frequency eac	h of channel					
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode

Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.3 Description of Support Units

None.

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC—Registration No.: 381383

Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

• IC —Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

6 Test Instruments list

Rad	iated Emission:			6	* *	
Item	Test Equipment Manufacturer		Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 24 2021	June. 23 2022
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 24 2021	June. 23 2022
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 24 2021	June. 23 2022
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 24 2021	June. 23 2022
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
8	Coaxial Cable	GTS	N/A	GTS213	June. 24 2021	June. 23 2022
9	Coaxial Cable	GTS	N/A	GTS211	June. 24 2021	June. 23 2022
10	Coaxial cable	GTS	N/A	GTS210	June. 24 2021	June. 23 2022
11	Coaxial Cable	GTS	N/A	GTS212	June. 24 2021	June. 23 2022
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 24 2021	June. 23 2022
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 24 2021	June. 23 2022
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 24 2021	June. 23 2022
15	Band filter	Amindeon	82346	GTS219	June. 24 2021	June. 23 2022
16	Power Meter	Anritsu	ML2495A	GTS540	June. 24 2021	June. 23 2022
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 24 2021	June. 23 2022
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 24 2021	June. 23 2022
19	Splitter	Agilent	11636B	GTS237	June. 24 2021	June. 23 2022
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 24 2021	June. 23 2022
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 18 2020	Oct. 17 2021
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 18 2020	Oct. 17 2021
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 18 2020	Oct. 17 2021
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 24 2021	June. 23 2022

Cond	Conducted Emission									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)				
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022				
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 24 2021	June. 23 2022				
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 24 2021	June. 23 2022				
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	June. 24 2021	June. 23 2022				
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A				
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A				
7	Thermo meter	KTJ	TA328	GTS233	June. 24 2021	June. 23 2022				
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 24 2021	June. 23 2022				
9	ISN	SCHWARZBECK	NTFM 8158	GTS565	June. 24 2021	June. 23 2022				
10	High voltage probe	SCHWARZBECK	TK9420	GTS537	July. 09 2021	July. 08 2022				

RF Conducted Test:								
ltem	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 24 2021	June. 23 2022		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 24 2021	June. 23 2022		
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 24 2021	June. 23 2022		
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 24 2021	June. 23 2022		
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 24 2021	June. 23 2022		
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 24 2021	June. 23 2022		
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 24 2021	June. 23 2022		
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 24 2021	June. 23 2022		

Gene	General used equipment:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
_1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 24 2021	June. 23 2022			
2	Barometer	ChangChun	DYM3	GTS255	June. 24 2021	June. 23 2022			

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

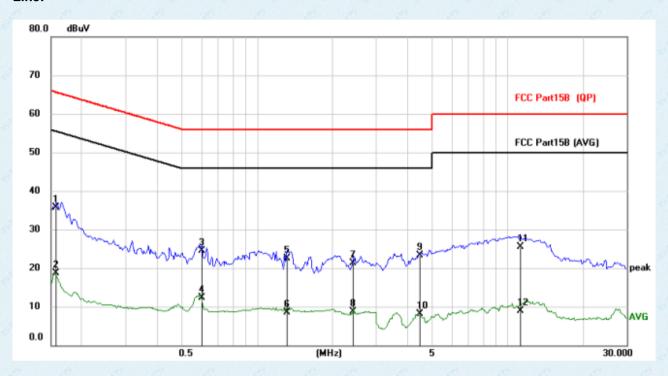
(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is Chip antenna, the best case gain of the is 4.90dBi, reference to the appendix II for details

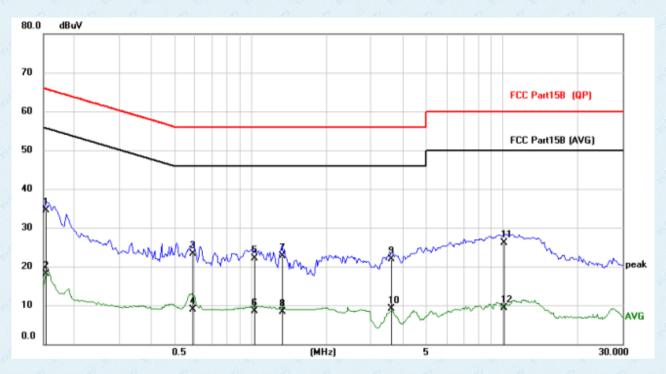
7.2 Conducted Emissions

71E Odiladotea Elillosiono							
Test Requirement:	FCC Part15 C Section 15.207	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10:2013	ANSI C63.10:2013					
Test Frequency Range:	150KHz to 30MHz	150KHz to 30MHz					
Class / Severity:	Class B	Class B					
Receiver setup:	RBW=9KHz, VBW=30KHz, S	Sweep time=auto					
Limit:		Limi	t (dBuV)				
	Frequency range (MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
Test setup:	* Decreases with the logarith						
Test procedure:	AUX Equipment E.U.T Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators line impedance stabilizatio	Filter — AC p					
	50ohm/50uH coupling imp 2. The peripheral devices are LISN that provides a 50oh termination. (Please refer photographs).	edance for the meas a also connected to the m/50uH coupling imp	uring equipment. ne main power through a pedance with 50ohm				
	 Both sides of A.C. line are interference. In order to fin positions of equipment and according to ANSI C63.10 	d the maximum emis	ssion, the relative cables must be changed				
Test Instruments:	interference. In order to fin positions of equipment and	d the maximum emisd all of the interface of 2013 on conducted in	ssion, the relative cables must be changed				
Test Instruments: Test mode:	interference. In order to fin positions of equipment and according to ANSI C63.10 Refer to section 6.0 for details	d the maximum emist all of the interface of the conducted in the cond	ssion, the relative cables must be changed				
Test mode:	interference. In order to fin positions of equipment and according to ANSI C63.10 Refer to section 6.0 for details Refer to section 5.2 for details	d the maximum emisd all of the interface of the conducted of the co	ssion, the relative cables must be changed measurement.				
Test mode: Test environment:	interference. In order to fin positions of equipment and according to ANSI C63.10 Refer to section 6.0 for details Refer to section 5.2 for details Temp.: 25 °C Hui	d the maximum emist all of the interface of the conducted in the cond	ssion, the relative cables must be changed				
Test mode:	interference. In order to fin positions of equipment and according to ANSI C63.10 Refer to section 6.0 for details Refer to section 5.2 for details	d the maximum emisd all of the interface of the conducted of the co	ssion, the relative cables must be changed measurement.				


Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

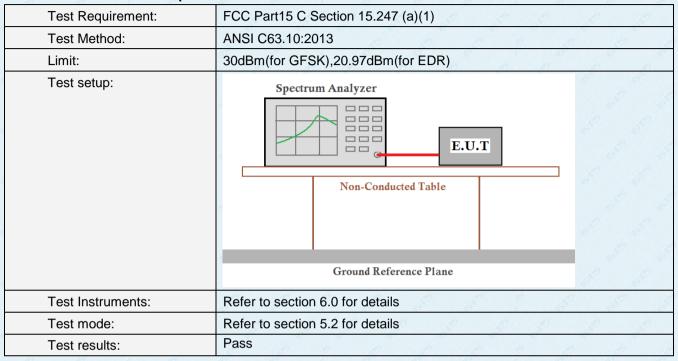
Measurement data:

Pre-scan all test modes, found worst case at GFSK 2480MHz, and so only show the test result of GFSK 2480MHz


Line:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	*	0.1578	24.73	10.93	35.66	65.58	-29.92	QP
2		0.1578	7.79	10.93	18.72	55.58	-36.86	AVG
3		0.6023	13.58	10.92	24.50	56.00	-31.50	QP
4		0.6023	1.39	10.92	12.31	46.00	-33.69	AVG
5		1.3200	11.47	10.94	22.41	56.00	-33.59	QP
6		1.3200	-2.48	10.94	8.46	46.00	-37.54	AVG
7		2.4237	10.30	10.98	21.28	56.00	-34.72	QP
8		2.4237	-2.33	10.98	8.65	46.00	-37.35	AVG
9		4.4742	12.27	11.08	23.35	56.00	-32.65	QP
10		4.4742	-2.89	11.08	8.19	46.00	-37.81	AVG
11		11.2914	14.22	11.38	25.60	60.00	-34.40	QP
12		11.2914	-2.45	11.38	8.93	50.00	-41.07	AVG

Neutral:


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	*	0.1539	23.49	10.92	34.41	65.79	-31.38	QP
2		0.1539	7.25	10.92	18.17	55.79	-37.62	AVG
3		0.5907	12.47	10.92	23.39	56.00	-32.61	QP
4		0.5907	-2.04	10.92	8.88	46.00	-37.12	AVG
5		1.0392	11.22	10.92	22.14	56.00	-33.86	QP
6		1.0392	-2.33	10.92	8.59	46.00	-37.41	AVG
7		1.3317	11.70	10.94	22.64	56.00	-33.36	QP
8		1.3317	-2.59	10.94	8.35	46.00	-37.65	AVG
9		3.6162	10.92	11.04	21.96	56.00	-34.04	QP
10		3.6162	-1.97	11.04	9.07	46.00	-36.93	AVG
11		10.1760	14.83	11.37	26.20	60.00	-33.80	QP
12		10.1760	-2.06	11.37	9.31	50.00	-40.69	AVG

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

7.3 Conducted Peak Output Power

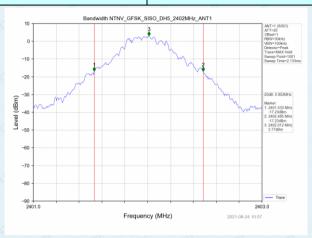
Measurement Data

Mode	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
200	Lowest	5.37	20 20	2
GFSK	Middle	4.59	30.00	Pass
	Highest	4.18		
	Lowest	5.84		
π/4-DQPSK	Middle	5.13	20.97 Pass	Pass
8 8	Highest	4.73		8 8
2 2	Lowest	6.24	2 2 3	<i>3</i> 0 - 30
8-DPSK	Middle	5.54	20.97	Pass
	Highest	5.16		

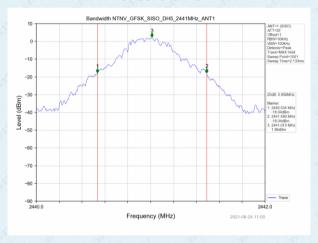
7.4 20dB Emission Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Limit:	N/A
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

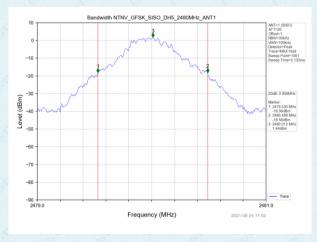
Measurement Data


Mode	Test channel	20dB Emission Bandwidth (MHz)	Result
	Lowest	0.952	10 10 10
GFSK	Middle	0.956	Pass
	Highest	0.959	
	Lowest	1.323	6 - 6 - 6
π/4-DQPSK	Middle	1.323	Pass
8 8 2	Highest	1.323	8 8 8
2 2 2 3	Lowest	1.342	2 2
8-DPSK	Middle	1.319	Pass
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Highest	1.304	

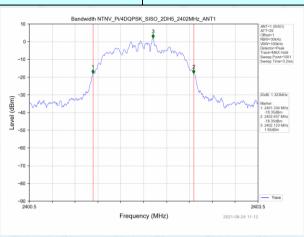
Page 15 of 47



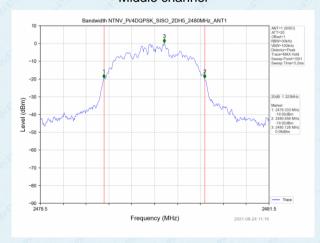
Test plot as follows:


Test mode: GFSK mode

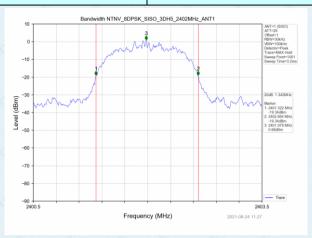
Lowest channel

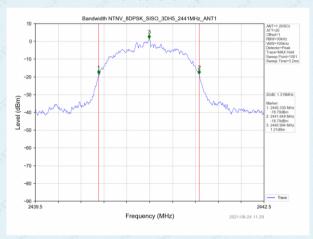

Middle channel

Highest channel


Test mode: $\pi/4$ -DQPSK mode

Lowest channel


Middle channel


Highest channel

Test mode: 8-DPSK mode

Lowest channel

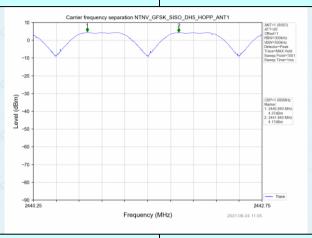
Middle channel

Highest channel

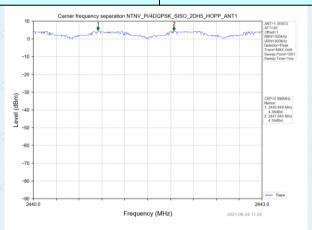
7.5 Carrier Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)				
Test Method:	ANSI C63.10:2013				
Receiver setup:	RBW=100KHz, VBW=300KHz, detector=Peak				
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass 6 6 6 6 6				

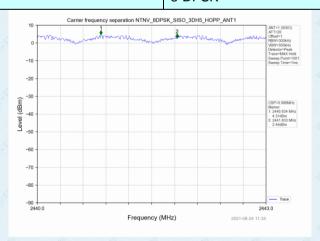
Measurement Data


Mode	Carrier Frequencies Separation (MHz)	20dB bandwidth (MHz) (worse case)	Limit (MHz)	Result
GFSK	1.000	0.959	≥0.633	
π/4-DQPSK	0.996	1.323	≥0.882	Pass
8-DPSK	0.999	1.342	≥0.895	

Note: According to section 7.4


Test plot as follows:

Modulation mode: GFSK


Modulation mode:

π/4-DQPSK

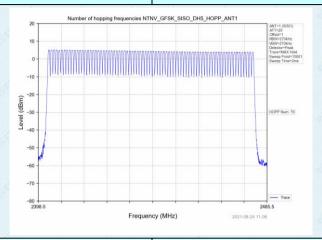
Modulation mode:

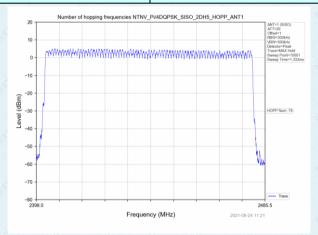
8-DPSK

7.6 Hopping Channel Number

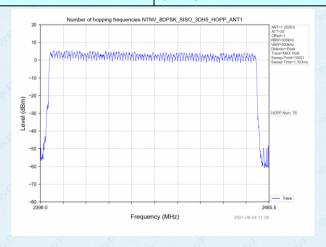
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(iii)		
Test Method:	ANSI C63.10:2013		
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak		
Limit:	15 channels		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @		

Measurement Data:


Mode	Hopping channel numbers	Limit	Result	
GFSK	79	≥15	Pass	
π/4-DQPSK	79	≥15	Pass	
8-DPSK	79	≥15	Pass	


Test plot as follows:

Report No.: GTSL202108000201F01


Test mode: GFSK

Test mode: $\pi/4$ -DQPSK

Test mode: 8-DPSK

7.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(iii)				
Test Method:	ANSI C63.10:2013				
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak				
Limit:	0.4 Second				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

Measurement Data

Report No.: GTSL202108000201F01

GFSK mode:

Frequency	Packet	Dwell time(ms)	Limit(ms)	Result
2441MHz	DH1	125.440	400	Pass
2441MHz	DH3	252.450	400	Pass
2441MHz	DH5	347.160	400	Pass

Remarks:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

Test channel: 2441MHz as blow

DH1 time slot= $0.392 (ms)^* (1600/ (2*79))^* 31.6 = 124.410 ms$ DH3 time slot= $1.650 (ms)^* (1600/ (4*79))^* 31.6 = 281.010 ms$ DH5 time slot= $2.893 (ms)^* (1600/ (6*79))^* 31.6 = 290.300 ms$

π/4-DQPSK mode:

Frequency	Packet	Dwell time(ms)	Limit(ms)	Result
2441MHz	2DH1	125.120	400	Pass
2441MHz	2DH3	278.880	400	Pass
2441MHz	2DH5	343.144	400	Pass

Remarks:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

Test channel: 2441MHz as blow

DH1 time slot=0.391(ms)*(1600/ (2*79))*31.6=130.062ms

DH3 time slot=1.660(ms)*(1600/ (4*79))*31.6=251.712ms

DH5 time slot=2.908(ms)*(1600/ (6*79))*31.6=322.233ms

8-DPSK mode:

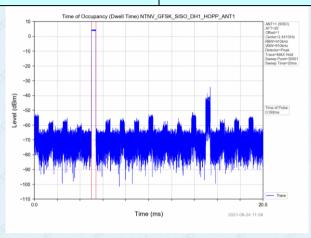
Frequency	Packet	Dwell time(ms)	Limit(ms)	Result
2441MHz	3DH1	131.200	400	Pass
2441MHz	3DH3	252.472	400	Pass
2441MHz	3DH5	331.854	400	Pass

Remarks:

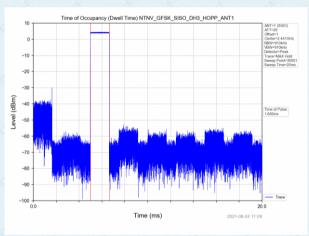
The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

Test channel: 2441MHz as blow

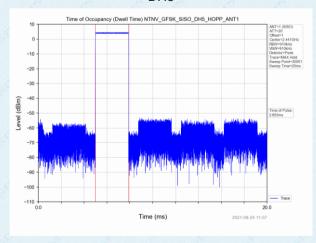
DH1 time slot=0.410(ms)*(1600/ (2*79))*31.6=131.610ms DH3 time slot=1.661(ms)*(1600/ (4*79))*31.6=249.150ms DH5 time slot=2.911(ms)*(1600/ (6*79))*31.6=314.496ms


Test plot as follows:

GFSK mode:

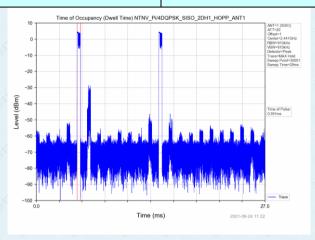

Test channel:

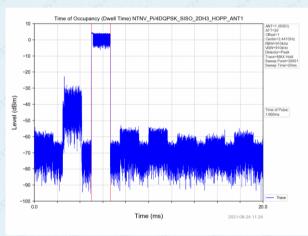
Report No.: GTSL202108000201F01



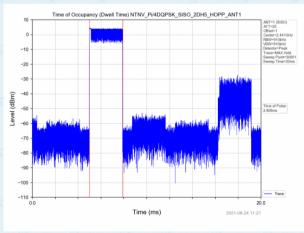
DH1

DH3



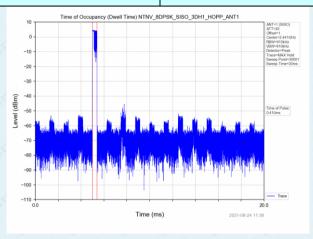

π/4-DQPSK mode:

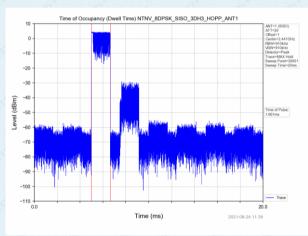
Report No.: GTSL202108000201F01


Test channel: 2441MHz

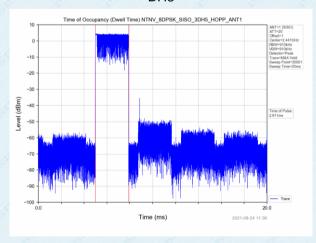
DH1

DH3




8-DPSK mode:

Report No.: GTSL202108000201F01

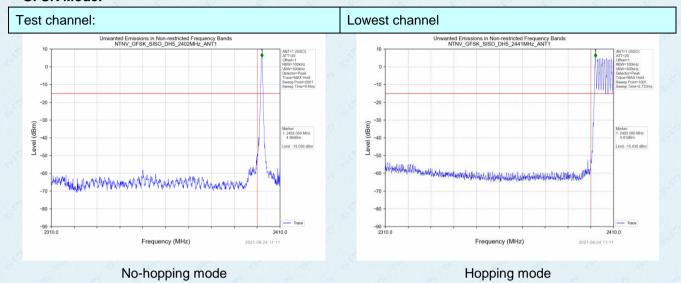

Test channel: 2441MHz

DH1

DH3

DH₅

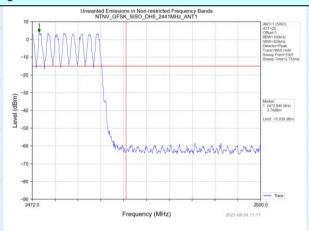
7.8 Band Edge


7.8.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013				
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

Test plot as follows:

GFSK Mode:

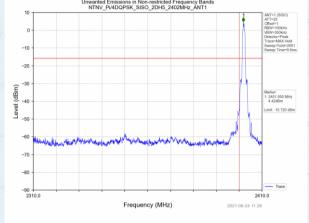


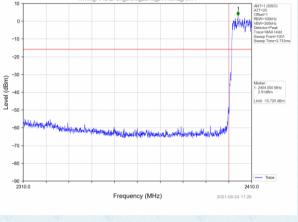
Test channel:

Unwanted Emissions in Non-restricted Frequency Bands NTNV_GFSK_SISO_DH5_2480MHz_ANT1 ATT-18850 ATT-2880Hz ATT-18850 ATT-2880Hz ATT-

No-hopping mode

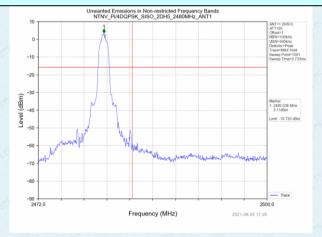
Highest channel

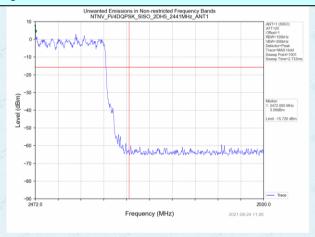



Hopping mode

π/4-DQPSK Mode:

Test channel: Lowest channel Unwanted Emissions in Non-restricted Frequency Bands NTNV_PI4DQPSK_SISO_2DH5_2402MHz_ANT1 10 Unwanted Emissions in Non-restricted Frequency Bands NTNV_PI4DQPSK_SISO_2DH5_2441MHz_ANT1



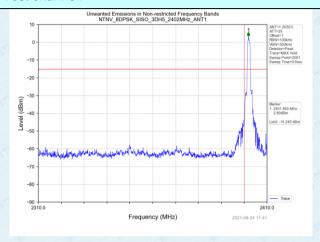


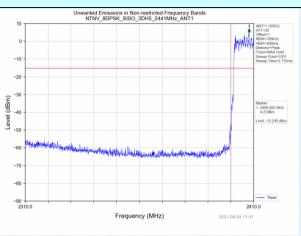
No-hopping mode

Hopping mode

Test channel: Highest channel

No-hopping mode

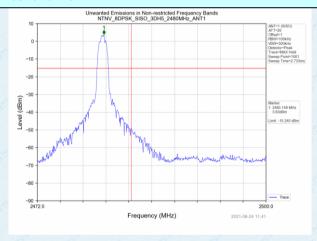

Hopping mode

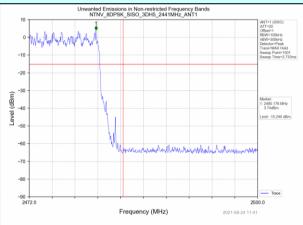


8-DPSK Mode:

Test channel:

Lowest channel




No-hopping mode

Hopping mode

Test channel:

Highest channel

No-hopping mode

Hopping mode

7.8.2 Radiated Emission Method

Test Requirement:	FCC Part15 C S	Section 15.209	and 15.205		9 9				
Test Method:	ANSI C63.10:20	13							
Test Frequency Range:	All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.								
Test site:	Measurement Distance: 3m								
Receiver setup:	Frequency Detector RBW VBW Remark								
·	Above 1CHz Peak 1MHz 3MHz Peak Val								
	Peak 1MHz 10Hz Average Value								
Limit:	Freque	ncy			Remark				
	Above 1	GHz	54.0 74.0	A 4	Average Value Peak Value				
·	Turn Tables	< 3n	Test Antenna-	amplifier					
Test Procedure:	ground at a 3 determine the 2. The EUT was antenna, which tower. 3. The antenna ground to det horizontal and measurement 4. For each sus and then the and the rotal maximum reasonable bear would be margin would be margin would be selected.	meter camber position of the set 3 meters che was mounted to the set 3 meters che was mounted to the set 3 meters and vertical polarity. The set of the se	er. The table was highest race away from the ed on the top ed from one maximum value rizations of the con, the EUT cuned to heighed from 0 decembers as set to Peadold Mode. EUT in peak could be stopherwise the edone by one united to heigher the edone heigher the edon	was rotated liation. he interference of a variable of the field e antenna was arrangents from 1 regrees to 36 k. Detect Formode was apped and the missions the sing peak, or sing peak,	r meters above the distrength. Both are set to make the ed to its worst case meter to 4 meters 0 degrees to find the unction and Specified 10dB lower than the peak values of the nat did not have 10dB quasi-peak or				
Test Instruments:	Refer to section	6.0 for details	9 19	18 1	9 9 9				
Test mode:	Refer to section	5.2 for details		0 0					
Test results:	Pass	4 6			-6 6				

Measurement Data

Test channel:

Lowest channel

Peak value:

Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390	61.35	-5.68	55.67	74	-18.33	Horizontal
2390	60.98	-5.68	55.30	74	-18.70	Vertical

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Average value:

Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390	45.27	-5.68	39.59	54	-14.41	Horizontal
2390	44.93	-5.68	39.25	54	-14.75	Vertical

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Test channel:

Highest channel

Peak value:

Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.5	60.38	-5.85	54.53	74	-19.47	Horizontal
2483.5	60.71	-5.85	54.86	74	-19.14	Vertical

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

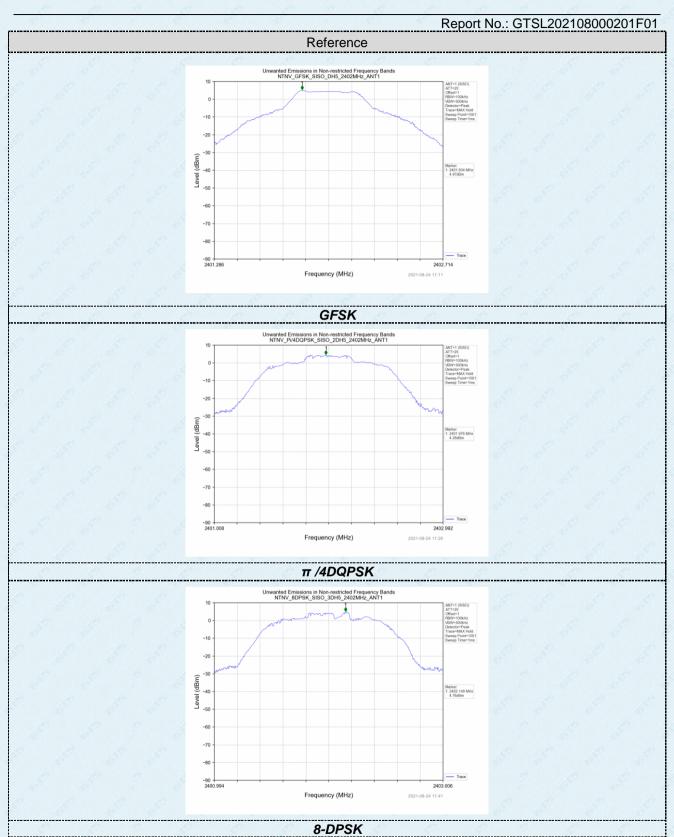
Average value:

Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.5	44.75	-5.85	38.90	54	-15.10	Horizontal
2483.5	43.90	-5.85	38.05	54	-15.95	Vertical

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Remarks:

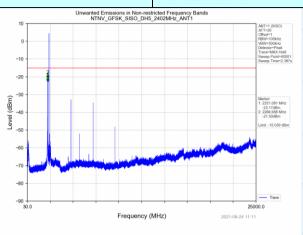
- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.
- 4. During the test, pre-scan the GFSK, π /4-DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.

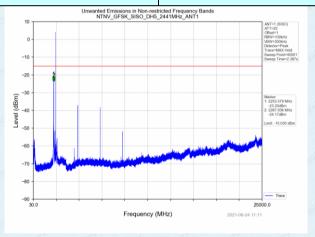


7.9 Spurious Emission

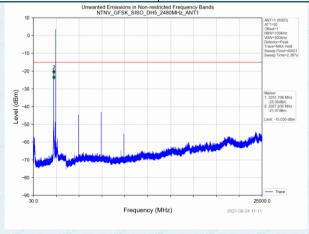
7.9.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					




GFSK mode:

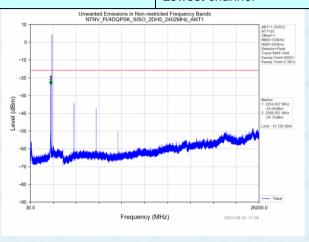
Test channel: Lowest channel


30MHz~25GHz

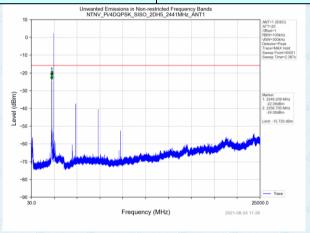
Test channel: Middle channel

30MHz~25GHz

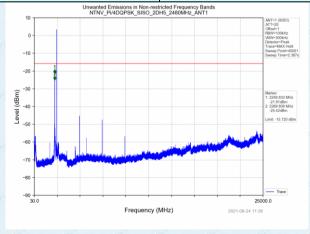
Test channel: Highest channel


30MHz~25GHz

π/4-DQPSK mode:


Report No.: GTSL202108000201F01

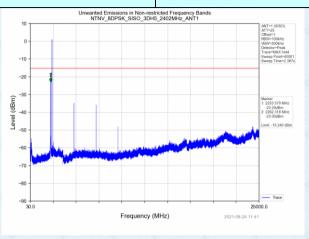
Test channel: Lowest channel


30MHz~25GHz

Test channel: Middle channel

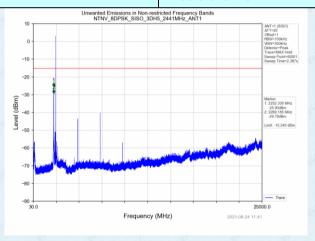
30MHz~25GHz

Test channel: Highest channel



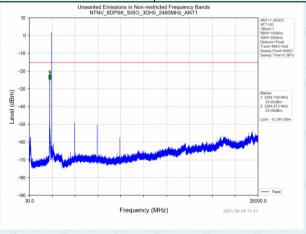
30MHz~25GHz

8-DPSK mode: Test channel: Report No.: GTSL202108000201F01


Lowest channel

30MHz~25GHz

Test channel:


Middle channel

30MHz~25GHz

Test channel:

Highest channel

30MHz~25GHz

7.9.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section	on 15	5.209	19	je.	D.	2 2			
Test Method:	ANSI C63.10:2013		5 B	e ,		9				
Test Frequency Range:	9kHz to 25GHz									
Test site:	Measurement Distar	Measurement Distance: 3m								
Receiver setup:	Frequency	E	Detector	RBV	٧	VBW	Value			
	9KHz-150KHz	Qι	ıasi-peak	200⊦	lz	600Hz	Quasi-peak			
	150KHz-30MHz	Qu	ıasi-peak	9KH	z	30KHz	Quasi-peak			
	30MHz-1GHz	Qı	ıasi-peak	120KI	Hz	300KHz	Quasi-peak			
	Above 1GHz		Peak	1MH	z	3MHz	Peak			
	Above IGHZ	6	Peak	1MH	z	10Hz	Average			
Limit:	Frequency		Limit (u\	//m)	Va	lue	Measurement Distance			
	0.009MHz-0.490M	lHz	2400/F(k	(Hz)	Q	(P	300m			
	0.490MHz-1.705M	0.490MHz-1.705MHz		000/F(KHz)		(P	30m			
	1.705MHz-30MHz		30		Q	(P	30m			
	30MHz-88MHz		100		QP					
	88MHz-216MHz		150		Q	(P				
	216MHz-960MHz		200		QP		3m			
	960MHz-1GHz		500		QP		3111			
	Above 1GHz		500		Average					
	710000 10112		5000		Pe	eak				
Test setup:	For radiated emiss	sions	from 9kH	z to 30	MHz					
	< 80cm >		< 3m > Test Ar m Table»	atenna O						

Report No.: GTSL202108000201F01 For radiated emissions from 30MHz to1GHz 4m > EUT-Tum Table Receiver. Preamplifier. For radiated emissions above 1GHz Test Antenna-< 1m ... 4m > EUT. Turn Table <150cm> Receiver Preamplifier-Test Procedure: 1. The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test Instruments: Refer to section 6.0 for details Test mode: Refer to section 5.2 for details

Global United Technology Services Co., Ltd.

 $No.\ 123\text{-}128,\ Tower\ A,\ Jinyuan\ Business\ Building,\ No.2,\ Laodong\ Industrial\ Zone,$

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

		Report No.:	GTSL202108	000201F01			
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar	
Test voltage:	AC 120V,	AC 120V, 60Hz					
Test results:	Pass	10 10	10	10		0 0	

Measurement data:

Remarks:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

■ Below 1GHz

Pre-scan all test modes, found worst case at GFSK 2402MHz, and so only show the test result of GFSK 2402MHz

Horizontal:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		45.3755	31.19	-17.92	13.27	40.00	-26.73	QP
2		67.6751	36.06	-19.65	16.41	40.00	-23.59	QP
3		113.3163	34.89	-20.11	14.78	43.50	-28.72	QP
4		207.1226	41.40	-19.91	21.49	43.50	-22.01	QP
5		281.0075	42.43	-18.94	23.49	46.00	-22.51	QP
6	*	459.1144	45.75	-16.01	29.74	46.00	-16.26	QP

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
-			MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
	1		56.0007	35.47	-18.64	16.83	40.00	-23.17	QP
Г	2		67.4382	41.59	-19.63	21.96	40.00	-18.04	QP
Г	3		84.9995	35.95	-21.06	14.89	40.00	-25.11	QP
Г	4		199.2855	35.22	-20.17	15.05	43.50	-28.45	QP
	5		356.6758	34.79	-17.49	17.30	46.00	-28.70	QP
	6	*	455.9058	45.94	-16.03	29.91	46.00	-16.09	QP

■ Above 1GHz

Test channel: Lowest channel

Peak value:

	S 4	Ø&	8 -8	8 <u>-</u> 8	Ø <u>-</u> Ø	E 6
£ £	2-8	, <u>-</u> -	7 ? <i>8</i>	8 8	2 3	
7206	60.59	-0.85	59.74	74	-14.26	Horizontal
4804	60.81	-3.61	57.20	74	-16.80	Horizontal
7206	60.29	-0.85	59.44	74	-14.56	Vertical
4804	61.32	-3.61	57.71	74	-16.29	Vertical
Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Average value:

Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804	45.83	-3.61	42.22	54	-11.78	Vertical
7206	44.82	-0.85	43.97	54	-10.03	Vertical
4804	45.80	-3.61	42.19	54	-11.81	Horizontal
7206	45.01	-0.85	44.16	54	-9.84	Horizontal
8 - 8	- 2 <i>8</i>	- S 3	?	_ & &	7 <i>\$</i>	
<u> 4</u> 9	8 4	ee	& <u>-</u> -8	<i>8</i>	\$ <u></u> \$	Ø Ø

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Test channel: Middle channel

Peak value:

8 8	2 8	<u></u>	9 9 <u>-</u> \$	g g	2 8	
9 9	gg	g - g	2 - 2	00	g g	g- g
7326	58.88	-0.80	58.08	74	-15.92	Horizontal
4882	61.22	-3.49	57.73	74	-16.27	Horizontal
7326	59.72	-0.80	58.92	74	-15.08	Vertical
4882	60.58	-3.49	57.09	74	-16.91	Vertical
Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Average value:

Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4882	45.62	-3.49	42.13	54	-11.87	Vertical
7326	43.25	-0.80	42.45	54	-11.55	Vertical
4882	44.59	-3.49	41.10	54	-12.90	Horizontal
7326	44.10	-0.80	43.30	54	-10.70	Horizontal
9 2	8 -	g g	8 -8	g -g		\$ \$
8-8	2 — B	_ \$2- }	?	_88	?— \$	3

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Test channel: Highest channel

Peak value:

8 8	2 8	£	7 - J	B B	2 8	
	g9 9	g" g"	g g	g g	gg	g g
7440	61.24	-0.72	60.52	74	-13.48	Horizontal
4960	59.80	-3.41	56.39	74	-17.61	Horizontal
7440	61.28	-0.72	60.56	74	-13.44	Vertical
4960	61.27	-3.41	57.86	74	-16.14	Vertical
Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Average value:

Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960	45.82	-3.41	42.41	54	-11.59	Vertical
7440	44.73	-0.80	43.93	54	-10.07	Vertical
4960	45.82	-3.41	42.41	54	-11.59	Horizontal
7440	43.68	-0.80	42.88	54	-11.12	Horizontal
	E	g g	8 8	gg	g -g	g g
8-8	2- B	_ S ² s	? ? <u></u>	- B B	? &	<u> </u>

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Remarks:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. The test data shows only the worst case GFSK mode

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----