

FCC Test Report

Report No.:AGC01684180502FE02

FCC ID : 2APZC-SVT4000SE

APPLICATION PURPOSE : Original Equipment

PRODUCT DESIGNATION : Smart Verification Terminal

BRAND NAME : DERMALOG

MODEL NAME : SVT4000SE

CLIENT: DERMALOG Identification Systems GmbH

DATE OF ISSUE : July 12, 2018

STANDARD(S) : FCC Part 22H & 24E Rules

REPORT VERSION: V1.1

Attestation of Global Compliance (Shenzhen) Co., Ltd.

S ALGC BALLON

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

Page 2 of 62

REPORT REVISE RECORD

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0		June 25, 2018	Invalid	Original Report
V1.1	1 st	July 12, 2018	Valid	Revise Report P7

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Report No.: AGC01684180502FE02 Page 3 of 62

TABLE OF CONTENTS

1.VERIFICATION OF COMPLIANCE	
2. GENERAL INFORMATION	6
2.1 PRODUCT DESCRIPTION	6
2.2RELATED SUBMITTAL(S) / GRANT (S)	7
2.3 TEST METHODOLOGY	
2.4 TEST FACILITY	
2.6 SPECIAL ACCESSORIES	11
2.7 EQUIPMENT MODIFICATIONS	
3. SYSTEM TEST CONFIGURATION	12
3.1 EUT CONFIGURATION	
3.2 EUT EXERCISE	12
3.3 CONFIGURATION OF EUT SYSTEM	12
4. SUMMARY OF TEST RESULTS	
5. DESCRIPTION OF TEST MODES	
6. OUTPUT POWER	
6.1 CONDUCTED OUTPUT POWER	
6.2 RADIATED OUTPUT POWER	21
6.2.1 MEASUREMENT METHOD	21
6.2.2 PROVISIONS APPLICABLE	
6.3. PEAK-TO-AVERAGE RATIO	
6.3.1 MEASUREMENT METHOD	
6.3.2 PROVISIONS APPLICABLE	25
6.3.3 MEASUREMENT RESULT	
7. OCCUPIED BANDWIDTH	
7.1 MEASUREMENT METHOD	27
7.2 PROVISIONS APPLICABLE	
7.3 MEASUREMENT RESULT	
8. BAND EDGE	33
8.1 MEASUREMENT METHOD	33
8.2 PROVISIONS APPLICABLE	33
8.3 MEASUREMENT RESULT	
9. SPURIOUS EMISSION	
9.1 CONDUCTED SPURIOUS EMISSION	
9.2 RADIATED SPURIOUS EMISSION	48
Q 2 2 TEST SETUP	The Marie

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.cent.com.

Report No.: AGC01684180502FE02 Page 4 of 62

10. FREQUENCY STABILITY	53
10.1 MEASUREMENT METHOD	53
10.2 PROVISIONS APPLICABLE	54
10.3 MEASUREMENT RESULT	55
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	61

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGC, this document to confirmed at attp://www.agc.gett.com.

Page 5 of 62

1.VERIFICATION OF COMPLIANCE

DERMALOG Identification Systems GmbH
Mittelweg 120, 20148 Hamburg, Germany
DERMALOG Identification Systems GmbH
Mittelweg 120, 20148 Hamburg, Germany
Smart Verification Terminal
DERMALOG
SVT4000SE
May. 28, 2018~June 25, 2018
None
Normal

We hereby certify that:

The above equipment was tested by Attestation of Global Compliance(Shenzhen) Co., Ltd. The data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI/TIA-603-E-2016. The sample tested as described in this report is in compliance with the FCC Rules Part 22H and 24E.

The test results of this report relate only to the tested sample identified in this report.

Tested By	donjon voung	
III	Donjon Huang(Huang Dongyang)	June 25, 2018
Reviewed By	Bore xie	
T. T. W. T. T.	Bart Xie(Xie Xiaobin)	June 25, 2018
Approved By	Forrest ce	
张 <u>推</u> 删	Forrest Lei(Lei Yonggang) Authorized Officer	June 25, 2018

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a trp://www.ago.go.tt.com.

Page 6 of 62

2. GENERAL INFORMATION

2.1 PRODUCT DESCRIPTION

A major technical description of EUT is described as following:

Product Designation:	Smart Verification Terminal
Hardware version:	MAIN-360D-V2.4
Software version:	SVT4000SE_V1.0.0
Frequency Bands:	☐ GSM 850 ☐ PCS1900 (U.S. Bands) ☐ GSM 900 ☐ DCS 1800 (Non-U.S. Bands) ☐ UMTS FDD Band II ☐ UMTS FDD Band IV ☐ UMTS FDD Band V (U.S. Bands) ☐ UMTS FDD Band I ☐ UMTS FDD Band VIII (Non-U.S. Bands)
Antenna Type	PIFA Antenna
Type of Modulation	GSM / GPRS :GMSK EGPRS: GMSK/8PSK WCDMA : QPSK
Antenna gain(GSM):	GSM850: -1.05dBi; PCS1900: -1.36dBi; WCDMA850: -1.22dBi; WCDMA1900:-1.14dBi
Power Supply:	DC 3.8V by battery
Battery parameter:	DC3.8V/3000mAh
Dual Card:	GSM Card Slot WCDMA / GSM/LTE Card Slot
GPRS Class	12 300 0 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Extreme Vol. Limits:	DC3.4 V to 4.35 V (Normal: DC3.8 V)
Extreme Temp. Tolerance	-10℃ to +50℃
ALS. THE	C4.35V and Low Voltage DC3.4V were declared by manufacturer operating normally with higher or lower voltage.

We found out the test mode with the highest power level after we analyze all the data rates. So we chose worst cases a representative.

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

^{***} **Note:**1.The maximum power levels are GSM for MCS-4: GMSK link, and RMC 12.2kbps mode for WCDMA band II, WCDMA band V, only these modes were used for all tests.

Page 7 of 62

GSM/WCDMA Card Slot:

	Maximum ERP/EIRP	Max. Conducted Power	Max. Average	
	(dBm)	(dBm)	Burst Power (dBm)	
GSM 850	31.22	32.85	31.94	
PCS 1900	27.12	29.12	28.85	
UMTS BAND II	21.62	23.61	22.37	
UMTS BAND V	21.07	23.40	21.85	

GSM Card Slot:

	Maximum ERP/EIRP	mum ERP/EIRP Max. Conducted Power	
	(dBm)	(dBm)	Burst Power (dBm)
GSM 850	30.59	31.31	31.67
PCS 1900	26.59	27.55	28.41

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.cett.com.

Page 8 of 62

2.2 RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for FCC ID:2APZC-SVT4000SE, filing to comply with the FCC Part 22H&24E requirements.

2.3 TEST METHODOLOGY

The radiated emission testing was performed according to the procedures of ANSI/TIA-603-E-2016, and KDB 971168 D01 Power Means License Digital Systems V03R01.

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Report No.: AGC01684180502FE02 Page 9 of 62

2.4 TEST FACILITY

Site	Attestation of Global Compliance (Shenzhen) Co., Ltd
Location	1-2F., Bldg.2, No.1-4, ChaxiSanwei Technical Industrial Park, Gushu, Xixiang, Bao'an District B112-B113, Bldg.12, BaoanBldg Materials Center, No.1 of Xixiang Inner Ring Road, Baoan District, Shenzhen 518012
NVLAP LAB CODE	600153-0
Designation Number	CN5028
Description	Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by National Voluntary Laboratory Accreditation program, NVLAP Code 600153-0

ALL TEST EQUIPMENT LIST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
TEST RECEIVER	R&S	ESPI	101206	Jun.20, 2017	Jun.19, 2018
TEST RECEIVER	R&S	ESPI	101206	Jun.18, 2018	Jun.17, 2019
LISN	R&S	ESH2-Z5	100086	Aug.21, 2017	Aug.20, 2018
TEST RECEIVER	R&S	ESCI	10096	Jun.20, 2017	Jun.19, 2018
TEST RECEIVER	R&S	ESCI	10096	Jun.18, 2018	Jun.17, 2019
EXA Signal Analyzer	Aglient	N9010A	MY53470504	Dec.08, 2017	Dec.07, 2018
Horn antenna	SCHWARZBECK	BBHA 9170	#768	Sep.20, 2017	Sep.19, 2018
preamplifier	ChengYi	EMC184045SE	980508	Sep.15, 2017	Sep.14, 2018
Double-Ridged Waveguide Horn	ETS LINDGREN	3117	00034609	May.18, 2017	May.17, 2019
Broadband Preamplifier	SCHWARZBECK	BBV 9718	9718-205	Jun.20, 2017	Jun.19, 2018
Broadband Preamplifier	SCHWARZBECK	BBV 9718	9718-205	Jun.18, 2018	Jun.17, 2019
ANTENNA	SCHWARZBECK	VULB9168	D69250	Sep.28, 2017	Sep.27, 2018
SIGNAL ANALYZER	Agilent	N9020A	MY52090123	Sep. 21, 2017	Sep. 20, 2018
USB Wideband Power Sensor	Agilent	U2021XA	MY54110007	Sep. 21, 2017	Sep. 20, 2018
Universal Radio Communication Tester	R&S	CMU200	120237	Mar.01,2018	Feb.28,2019
Universal Radio Communication	Agilent	8960	GB46200384	July 16,2017	July 15,2018

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Page 10 of 62

Tester				The sometimens	检测
Power Splitter	Agilent	11636A	34 🦠	Sep.21,2017	Sep.20,2018
Attenuator	JFW	50FHC-006-50	N/A	Jun. 20, 2017	Jun. 19, 2018
Attenuator	JFW	50FHC-006-50	N/A	Jun.18, 2018	Jun.17, 2019

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Page 11 of 62

2.6 SPECIAL ACCESSORIES

The battery was supplied by the applicant were used as accessories and being tested with EUT intended for FCC grant together.

2.7 EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago-gott.com.

Page 12 of 62

3. SYSTEM TEST CONFIGURATION

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT EXERCISE

The Transmitter was operated in the maximum output power mode through Communication Tester. The TX frequency was fixed which was for the purpose of the measurements.

3.3 CONFIGURATION OF EUT SYSTEM

Fig. 2-1 Configuration of EUT System

Table 2-1 Equipment Used in EUT System

Item	Equipment	Equipment Model No.		Remark	
Ton of Glo	Smart Verification Terminal	SVT4000SE	2APZC-SVT4000SE	EUT	
2	Adapter	SC/10WA050200US	DC 5.0V 2A	Accessory	
3	Battery	HDT-7100	DC3.8V/ 3000mAh	Accessory	
4 @	USB	N/A	N/A	Accessory	

^{***}Note: All the accessories have been used during the test. The following "EUT" in setup diagram means EUT system.

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 13 of 62

4. SUMMARY OF TEST RESULTS

Item Number	Item Description		FCC Rules	Result	
-C		Conducted Output Power	2.1046	The Page 1	
Output Power	Radiated Output Power	22.913(a) (2) / 24.232 (c)	Pass		
2	Peak-to-Average Ratio	Peak-to-Average Ratio	24.232(d)	Pass	
3 %	Spurious Emission	Conducted Spurious Emission Radiated	2.1051/22.917/24.238	Pass	
4	Frequency Stability	Spurious Emission	2.1055/22.355/24.235	Pass	
5	Occupied Bandwidth	Alles attor or other	2.1049	Pass	
6	Band Edge	100	2.1051/22.917(a)/24.238(a)	Pass	

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Page 14 of 62

5. DESCRIPTION OF TEST MODES

During the testing, the EUT was controlled via Rhode & Schwarz Digital Radio Communication Tester (CMU 200)to ensure max power transmission and proper modulation. Three channels (The top channel, the middle channel and the bottom channel) were chosen for testing on both GSMand PCS frequency band.

***Note: GSM/GPRS/EGPRS 850, GSM/GPRS/EGPRS 1900, WCDMA/HSPA band II, WCDMA/HSPA band V, mode have been tested during the test.

The worst condition was recorded in the test report if no other modes test data.

The results spowfil this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 15 of 62

6. OUTPUT POWER

6.1 CONDUCTED OUTPUT POWER

6.1.1 MEASUREMENT METHOD

The transmitter output port was connected to base station.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Measure the maximum burst average power and average power for othermodulation signal.

The EUT was setup for the max output power with pseudo random data modulation. Power was measured with Spectrum Analyzer. The measurements were performed on all modes(GSM/GPRS/EGPRS 850, GSM/GPRS/EGPRS1900, WCDMA/HSPA band II,WCDMA/HSPA band V)at 3 typical channels(the Top Channel, the Middle Channel and the Bottom Channel) for each band.

6.1.2 MEASUREMENT RESULT

	Conducted Output Power Limits for GPRS	S/EDGE 850 band		
Mode	Nominal Peak Power	Tolerance(dB)		
GSM	33 dBm (2W)	- 2		
EDGE	27 dBm(0.5W)	±2		
	Conducted Output Power Limits for GPRS	S/EDGE 1900band		
Mode	Nominal Peak Power	Tolerance(dB)		
GSM	30 dBm (1W)	- 2		
EDGE	26 dBm (0.4W)	±2		
	Conducted Output Power Limits for U	JMTS band II		
Mode	Nominal Peak Power	Tolerance(dB)		
WCDMA	24dBm (0.25W)	- 2 III - 2		
	Conducted Output Power Limits for U	JMTS band V		
Mode	Nominal Peak Power	Tolerance(dB)		
WCDMA	24dBm (0.25W)	- 2		

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Report No.: AGC01684180502FE02 Page 16 of 62

GSM 850:

, NO.2	Frequency	Reference	Peak	Tolerance	Avg.Burst	Duty cycle	Frame
Mode	(MHz)	Power	Power	Toloranoc	Power	Factor(dB)	Power(dBm)
Nobal Corns	824.2	33	32.85	-0.15	31.94	-9	22.94
GSM850	836.6	33	32.25	-0.75	31.87	-9	22.87
	848.8	33	32.31	-0.69	31.90	-9	22.90
CDDC050	824.2	33	32.21	-0.79	31.25	-9	22.25
GPRS850	836.6	33	32.09	-0.91	31.35	-9	22.35
(1 Slot)	848.8	33	32.24	-0.76	31.45	-9 🔏 🦠	22.45
ODDOOGO	824.2	30	29.46	-0.54	28.77	-6	22.77
GPRS850	836.6	30	29.55	-0.45	28.69	-6	22.69
(2 Slot)	848.8	30	29.69	-0.31	28.75	-6	22.75
CDDC050	824.2	28.23	27.47	-0.76	26.31	-4.26	22.05
GPRS850	836.6	28.23	27.66	-0.57	26.21	-4.26	21.95
(3 Slot)	848.8	28.23	27.58	-0.65	26.45	-4.26	22.19
GPRS850	824.2	27	26.49	-0.51	25.35	-3	22.35
	836.6	27	26.37	-0.63	25.47	-3	22.47
(4 Slot)	848.8	27	26.48	-0.52	25.37	-3	22.37

	Channel	Frequency	Peak Power	Avg.Burst Power
Mode		(MHz)	(dBm)	(dBm)
环境	128	824.2	28.19	25.59
EDGE	190	836.6	28.14	25.45
(1 Slot)	251	848.8	28.15	25.34
FDOF	128	824.2	24.21	22.11
EDGE	190	836.6	24.68	22.34
(2 Slot)	251	848.8	24.78	22.18
EDOE	128	824.2	23.11	21.52
EDGE	190	836.6	23.34	21.16
(3 Slot)	251	848.8	23.48	21.49
EDGE (4 Clat)	128	824.2	22.28	19.27
	190	836.6	22.49	19.14
(4 Slot)	251	848.8	22.37	19.33

The results showned this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc.gett.com.

Page 17 of 62

PCS 1900:

Mode	Frequency (MHz)	Reference Power	Peak Power	Tolerance	Avg.Burst Power	Duty cycle Factor(dB)	Frame Power(dBm)
® Affectation	1850.2	30	29.12	-0.88	28.85	-9	19.85
GSM1900	1880	30	28.76	-1.24	28.41	-9	19.41
在 枪 河	1909.8	30	28.67	-1.33	28.38	-9 J	19.38
CDDC4000	1850.2	30	28.61	-1.39	27.56	-9	18.56
GPRS1900	1880	30	28.11	-1.89	27.95	-9	18.95
(1 Slot)	1909.8	30	28.59	-1.41	27.59	-9	18.59
CDDC4000	1850.2	27	25.15	-1.85	24.45	-6	18.45
GPRS1900	1880	27	25.33	-1.67	24.49	-6	18.49
(2 Slot)	1909.8	27	25.14	-1.86	24.53	-6	18.53
CDDC4000	1850.2	25.23	24.59	-0.64	23.15	-4.26	18.89
GPRS1900 (3 Slot)	1880	25.23	24.67	-0.56	23.46	-4.26	19.20
	1909.8	25.23	24.58	-0.65	23.69	-4.26	19.43
-GO **	1850.2	24	23.15	-0.85	22.28	-3	19.28
GPRS1900	1880	24	23.10	-0.9	22.34	-3	19.34
(4 Slot)	1909.8	24	23.21	-0.79	22.27	-3	19.27

Mada	Channel	Frequency	Peak Power	Avg.Burst Power
Mode		(MHz)	(dBm)	(dBm)
EDOEnd Cloud	512	1850.2	27.15	24.01
EDGE	661	1880	27.36	24.16
(1 Slot)	810	1909.8	27.44	24.35
EDOE	512	1850.2	23.09	21.52
EDGE	661	1880	23.13	21.25
(2 Slot)	810	1909.8	23.17	21.67
EDOE (512	1850.2	23.35	21.49
EDGE	661	1880	23.49	21.68
(3 Slot)	810	1909.8	23.39	21.44
FDCF	512	1850.2	22.61	20.15
EDGE	661	1880	22.39	20.36
(4 Slot)	810	1909.8	22.54	20.49

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Page 18 of 62

UMTS BAND II

Mode	Frequency	Reference	Peak Power	Tolerance	Avg.Burst Power
200	(MHz)	power			J
WCDM41000	1852.4	24	23.26	-0.74	22.13
WCDMA1900 RMC	1880	24	23.61	-0.39	22.37
	1907.6	24	23.46	-0.54	21.60
WODW 4000	1852.4	24	23.32	-0.68	22.08
WCDMA1900 AMR	1880	24	23.24	-0.76	22.09
60	1907.6	24	23.13	-0.87	20.73
HSDPA -	1852.4	24	21.68	-2.32	20.72
514	1880	24	21.94	-2.06	21.06
Subtest 1	1907.6	24	21.71	-2.29	21.08
HCDDA	1852.4	24	22.27	-1.73	20.26
HSDPA -	1880	24	22.05	-1.95	20.08
Subtest 2	1907.6	24	22.41	-1.59	20.22
LICODA	1852.4	24	22.01	-1.99	20.07
HSDPA -	1880	24	22.11	-1.89	19.78
Subtest 3	1907.6	24	22.31	-1.69	20.00
HODBA	1852.4	24	22.21	-1.79	20.49
HSDPA -	1880	24	22.24	-1.76	20.92
Subtest 4	1907.6	24	22.92	-1.08	20.84
HOLIDA	1852.4	24	22.13	-1.87	20.66
HSUPA -	1880	24 0 4	21.94	-2.06	20.86
Subtest 1	1907.6	24	22.04	-1.96	20.58
- LIGUDA	1852.4	24	22.17	-1.83	21.40
HSUPA -	1880	24	22.07	-1.93	21.41
Subtest 2	1907.6	24	22.47	-1.53	21.07
THOUDA 6	1852.4	24	22.38	-1.62	21.44
HSUPA	1880	24	22.06	-1.94	21.27
Subtest 3	1907.6	24	21.91	-2.09	21.09
HOUDA	1852.4	24	22.64	-1.36	21.25
HSUPA -	1880	24	22.43	-1.57	21.12
Subtest 4	1907.6	24	22.58	-1.42	22.16
1101124	1852.4	24	22.24	-1.76	21.17
HSUPA -	1880	24	22.62	-1.38	21.10
Subtest 5	1907.6	24	22.55	-1.45	21.13

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.cett.com.

Page 19 of 62

UMTS BAND V

Mode	Frequency (MHz)	Reference power	Peak Power	Tolerance	Avg.Burst Powe
boal Compilar	826.4	24	23.19	-0.81	21.26
WCDMA850 RMC	836.4	24	23.05	-0.95	21.12
KIVIO	846.6	24	23.40	-0.60	21.38
据: 河川	826.4	24	22.93	-1.07	21.35
WCDMA850 AMR	836.4	24	23.04	-0.96	21.46
Mostal MVII C	846.6	24	23.09	-0.91	21.44
LICDDA	826.4	24	22.40	-1.60	19.79
HSDPA	836.4	24	22.19	-1.81	20.01
Subtest 1	846.6	24	22.02	-1.98	20.46
LICDDA	826.4	24	22.16	-1.84	20.27
HSDPA	836.4	24	21.91	-2.09	20.09
Subtest 2	846.6	24	22.82	-1.18	20.30
HSDPA	826.4	24	21.95	-2.05	20.92
® # Jone	836.4	24	21.91	-2.09	20.20
Subtest 3	846.6	24	22.40	-1.60	20.45
HCDDA	826.4	24	22.84	-1.16	20.53
HSDPA -	836.4	24	22.50	-1.50	20.60
Subtest 4	846.6	24	22.66	-1.34	20.85
HCLIDA	826.4	24	22.41	-1.59	20.66
HSUPA	836.4	24	23.05	-0.95	21.85
Subtest 1	846.6	24	22.51	-1.49	21.42
HELIDA	826.4	24	22.35	-1.65	20.87
HSUPA -	836.4	24	22.42	-1.58	21.80
Subtest 2	846.6	24	22.22	-1.78	21.47
LICLIDA	826.4	24	22.73	-1.27	20.96
HSUPA	836.4	24	22.41	-1.59	20.61
Subtest 3	846.6	24	21.21	-2.79	20.93
HCLIDA	826.4	24	22.35	-1.65	20.68
HSUPA	836.4	24	22.44	-1.56	20.24
Subtest 4	846.6	24	22.86	-1.14	20.98
HELIDA	826.4	24	22.73	-1.27	20.84
HSUPA	836.4	24	22.35	-1.65	20.46
Subtest 5	846.6	24	22.76	-1.24	21.01

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (\$\frac{1}{2}\text{C}\$, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-gett.com.

Page 20 of 62

According to 3GPP 25.101 sub-clause 6.2.2, the maximum output power is allowed to be reduced by following the table.

Table 6.1aA: UE maximum output power with HS-DPCCH and E-DCH

UE Transmit Channel Configuration	CM(db)	MPR(db)
For all combinations of ,DPDCH,DPCCH	0< CM<2 F	MAN Y (CM 4 O)
HS-DPDCH,E-DPDCH and E-DPCCH	0≤ CM≤3.5	MAX(CM-1,0)

Note: CM=1 for β_c/β_d =12/15, β_hs/β_c =24/15. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

The device supports MPR to solve linearity issues (ACLR or SEM) due to the higher peak-to average ratios (PAR) of the HSUPA signal. This prevents saturating the full range of the TX DAC inside of device and provides a reduced power output to the RF transceiver chip according to the Cubic Metric (a function of the combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH).

When E-DPDCH channels are present the beta gains on those channels are reduced firsts to try to get the power under the allowed limit. If the beta gains are lowered as far as possible, then a hard limiting is applied at the maximum allowed level.

The SW currently recalculates the cubic metric every time the beta gains on the E-DPDCH are reduced. The cubic metric will likely get lower each time this is done. However, there is no reported reduction of maximum output power in the HSUPA mode since the device also provides a compensate for the power back-off by increasing the gain of TX_AGC in the transceiver (PA) device.

The end effect is that the DUT output power is identical to the case where there is no MPR in the device.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true and the sample (s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true and the sample (s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a sample (s) are retained for 30 days only. The document is issued by AGC, this document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only are retained for 30 days on 30

Page 21 of 62

6.2 RADIATED OUTPUT POWER 6.2.1 MEASUREMENT METHOD

The measurements procedures specified in ANSI/TIA-603-E-2016.were applied.

- 1. Effective Radiated Power (ERP) and Equivalent Isotropic Radiated Power (EIRP) measurements are performed using the substitution method described in ANSI/TIA-603-E-2016. with the EUT transmitting into an integral antenna. Measurements on signal operating below 1GHz are performed using dipole antennas. Measurements on signals operating above 1GHz are performed using broadband horn antennas. All measurements are performed as RMS average measurements while the EUT operating at its maximum duty cycle, at maximum power, and at the approximate frequencies.
- 2. In an anechoic antenna test chamber, a half-wave dipole antenna for the frequency band of interest is placed at the reference centre of the chamber. An RF Signal source for the frequency band of interest is connected to the dipole with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A known (measured) power (Pin) is applied to the input of the dipole, and the power received (Pr) at the chamber's probe antenna is recorded.
- 3. The substitution method is used. Substitution values at each frequency are measured before and saved to the test software. A "reference path loss" is established as ARpl=Pin + 2.15 - Pr. TheARpl is the attenuation of "reference path loss", and including the gain of receive antenna, the cable loss and the air loss. The measurement results are obtained as described below: Power=PMea+ARpl
- 4. The EUT is substituted for the dipole at the reference centre of the chamber and a scan is performed to obtain the radiation pattern.
- From the radiation pattern, the co-ordinates where the maximum antenna gain occurs are identified.
- 6. The EUT is then put into continuously transmitting mode at its maximum power level.
- 7. Power mode measurements are performed with the receiving antenna placed at the coordinates determined in Step 3 to determine the output power as defined in Rule 24.232 (b) and (c). The "reference path loss" from Step1 is added to this result.
- 8. This value is EIRP since the measurement is calibrated using a half-wave dipole antenna of known gain (2.15 dBi) and known input power (Pin).
- 9. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi...

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 💢 €, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-cert.com.

Page 22 of 62

6.2.2 PROVISIONS APPLICABLE

Mode	FCC Part Section(s)	Nominal Peak Power
GSM/EDGE 850	22.913(a)(2)	<=38.45dBm (7W). ERP
GSM/EDGE 1900	24.232(c)	<=33dBm (2W). EIRP
UMTS BAND II	24.232(c)	<=33dBm (2W),EIRP
UMTS BANDV	22.913(a)(2)	<=38.45dBm (7W).ERP

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Page 23 of 62

6.2.3 MEASUREMENT RESULT

Radiated Power (ERP) for GSM/EDGE 850						
		Result				
Mode	Frequency	Max. Peak ERP (dBm)	Polarization Of Max. ERP	Conclusion		
- T	824.2	31.16	Horizontal	Pass		
The Global Compile	836.6	31.22	Horizontal	Pass		
CCM	848.8	31.20	Horizontal	Pass		
GSM	824.2	28.30	Vertical	Pass		
	836.6	28.51	Vertical	Pass		
® ## sta	848.8	28.19	Vertical	Pass		
30	824.2	25.96	Horizontal	Pass		
	836.6	25.48	Horizontal	Pass		
FDOF	848.8	26.86	Horizontal	Pass		
EDGE	824.2	23.55	Vertical	Pass		
	836.6	23.48	Vertical	Pass		
	848.8	23.69	Vertical	Pass		

Radiated Power (E.I.R.P) for GSM/EDGE 1900						
		Res				
Mode	Frequency	Max. Peak	Polarization	Conclusion		
		E.I.R.P.(dBm)	Of Max. E.I.R.P.			
C Attestati	1850.2	27.12	Horizontal	Pass		
	1880.0	26.99	Horizontal	Pass		
GSM	1909.8	27.10	Horizontal	Pass		
GSIVI	1850.2	24.55	Vertical	Pass		
C	1880.0	24.64	Vertical	Pass		
	1909.8	24.39	Vertical	Pass		
不怕	1850.2	23.55	Horizontal	Pass		
The station of Global Co	1880.0	23.46	Horizontal	Pass		
EDGE -	1909.8	23.69	Horizontal	Pass		
	1850.2	21.22	Vertical	Pass		
KET JUNI	1880.0	21.19	Vertical	Pass		
® #	1909.8	21.36	Vertical	Pass		

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Report No.: AGC01684180502FE02 Page 24 of 62

	Ra	adiated Power (E.I.R.P) for	· UMTS band II	
		Res	ult	
Mode	Frequency	Max. Peak E.I.R.P (dBm)	Polarization Of Max. E.I.R.P	Conclusion
	1852.4	21.62	Horizontal	Pass
The Compiler	1880	21.58	Horizontal	Pass
LIMTO	1907.6	21.47	Horizontal	Pass
UMTS	1852.4	19.88	Vertical	Pass 🚛
0.5	1880	19.42	Vertical	Pass
	1907.6	19.69	Vertical	Pass

	R	adiated Power (ERP) for UM	ITS band V	
		Re	esult	
Mode	Frequency	Max. Peak ERP	Polarization	Conclusion
		(dBm)	Of Max. ERP	
45 m	826.4	20.96	Horizontal	Pass
THE OF Global Compiles	836.4	21.07	Horizontal	Pass
LIMTO	846.6	20.48	Horizontal	Pass
UMTS	826.4	19.66	Vertical	Pass
	836.4	19.58	Vertical	Pass
® Stations	846.6	19.69	Vertical	Pass

Note: Above is the worst mode data.

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Page 25 of 62

6.3. PEAK-TO-AVERAGE RATIO

6.3.1 MEASUREMENT METHOD

Use one of the procedures presented in 4.1 to measure the total peak power and record as PPk. Use one of the applicable procedures presented 4.2 to measure the total average power and record as PAvg. Both the peak and average power levels must be expressed in the same logarithmic units (e.g., dBm). Determine the PAPR from:

PAPR (dB) = PPk (dBm) - PAvg (dBm).

6.3.2 PROVISIONS APPLICABLE

This is the test for the Peak-to-Average Ratio from the EUT.

Power Complementary Cumulative Distribution Function (CCDF) curves provide a means for characterizing the power peaks of a digitally modulated signal on a statistical basis. A CCDF curve depicts the probability of the peak signal amplitude exceeding the average power level. Most contemporary measurement instrumentation include the capability to produce CCDF curves for an input signal provided that the instrument's resolution bandwidth can be set wide enough to accommodate the entire input signal bandwidth. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago.gent.com.

Page 26 of 62

6.3.3 MEASUREMENT RESULT

	A contract of the contract of		The same and
Modes		GSM850(GSM)	
Channel	128	190	251
Channel	(Low)	(Mid)	(High)
Frequency	201.0	000.0	040.0
(MHz)	824.2	836.6	848.8
Peak-To-Average Ratio (dB)/GSM	1.22	1.16	1.26
Peak-To-Average Ratio (dB)/EDGE	1.99	2.03	1.89

The state of the s		100000
PCS1900 (GSM)		
512	661	810
(Low)	(Mid)	(High)
4050.0	4000	4000 0
1850.2	1880	1909.8
0.85	0.78	0.86
2.11	1.99	1.86
	(Low) 1850.2 0.85	512 661 (Low) (Mid) 1850.2 1880 0.85 0.78

With the state of	ion of the state o		
Modes		UMTS BAND II	
Channel	9262	9400	9538
Channel	(Low)	(Mid)	(High)
Frequency	1852.6	1880	1907.4
(MHz)	1052.0	1000	1907.4
Peak-To-Average Ratio (dB)	1.02	1.10	1.07

Modes	UMTS BAND V		
Channel	4132	4182	4233
Channel	(Low)	(Mid)	(High)
Frequency	926.4	926.6	946.6
(MHz)	826.4	836.6	846.6
Peak-To-Average Ratio (dB)	1.56	1.62	1.52

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 27 of 62

7. OCCUPIED BANDWIDTH

7.1 MEASUREMENT METHOD

- 1. The Occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper Frequency limits, the mean power radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured.
- 2. RBW=1~5% of the expected OBW, VBW>=3 x RBW, Detector=Peak, Trace mode=max hold, Sweep=auto couple, and the trace was allowed to stabilize.

7.2 PROVISIONS APPLICABLE

The emission bandwidth is defined as two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26dB below the transmitter power

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 28 of 62

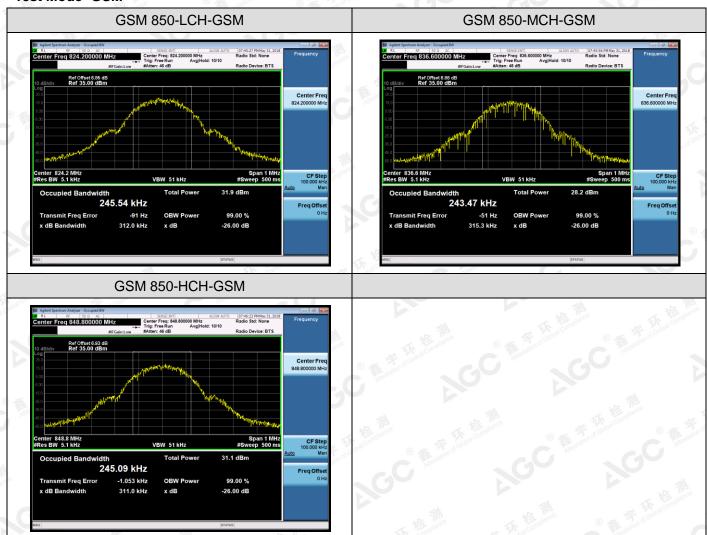
7.3 MEASUREMENT RESULT

Test Results

				- A - ollo	2 12 - 12 11 12 12 12 12 12 12 12 12 12 12 12	VIII.
	Test			Occupied Bandwidth	Emission Bandwidth	Verdict
000	Band			(KHZ)	(KHZ)	verdict
	C C ***	latio."	LCH	245.5	312.0	PASS
	GSM850		MCH	243.5	315.3	PASS
		mplies (S) The Fig. (S) and s)	HCH	245.1	311.0	PASS

To at Daniel	Test	Test	Occupied Bandwidth	Emission Bandwidth	\/a valiat
Test Band	Mode	Channel	(KHZ)	(KHZ)	Verdict
GSM1900	ion of the second	LCH	246.0	314.5	PASS
	GSM	MCH	246.2	308.9	PASS
		HCH	244.6	312.9	PASS

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.cett.com.

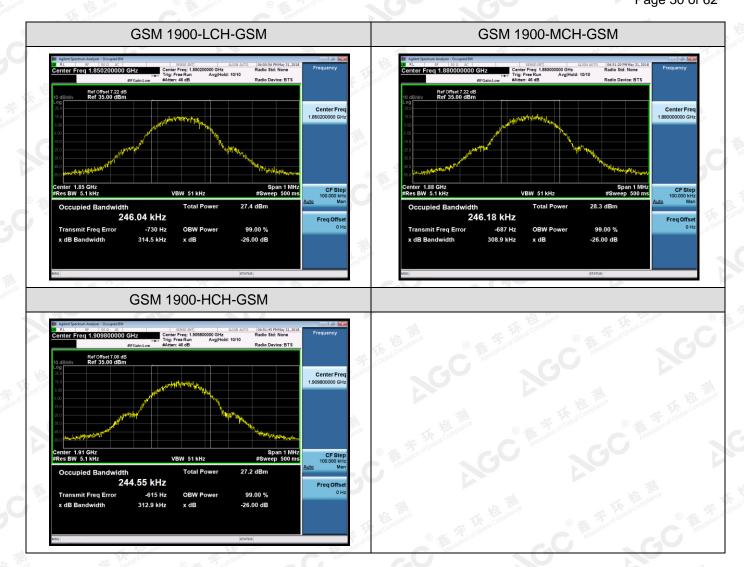


Page 29 of 62

For GSM

Test Band=GSM850/PCS1900

Test Mode=GSM

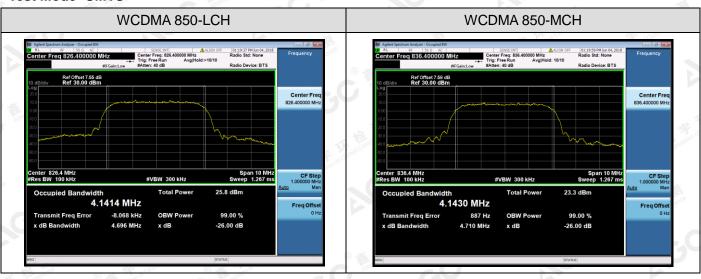


The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Report No.: AGC01684180502FE02 Page 30 of 62

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.agc.gett.com.

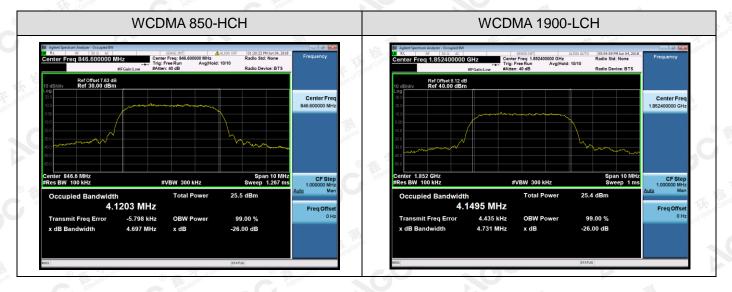
Report No.: AGC01684180502FE02 Page 31 of 62

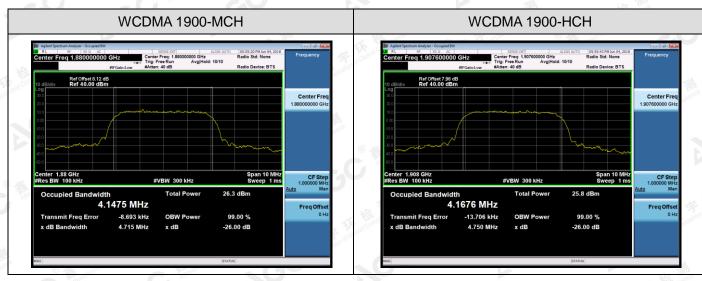

Test Band	Test	Test	Occupied Bandwidth	Emission Bandwidth	Verdict
	Mode	Channel	(KHZ)	(KHZ)	
WCDMA 850	地	LCH	4141.4	4696	PASS
	UMTS	MCH	4143.0	4710	PASS
		HCH	4120.3	4697	PASS

Test Band	Test	Test Occupied Bandwidth		Emission Bandwidth	Verdict
	Mode	Channel	(KHZ)	(KHZ)	
WCDMA 1900	9	LCH	4138.2	4731	PASS
	UMTS	MCH	4140.0	4715	PASS
	on of clobal con"	HCH	4112.7	4750	PASS

For WCDMA

Test Band=WCDMA850/WCDMA1900


Test Mode=UMTS



The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true; //www.agc.gett.com.

Report No.: AGC01684180502FE02 Page 32 of 62

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.agc.gett.com.

Page 33 of 62

8. BAND EDGE

8.1 MEASUREMENT METHOD

- 1. All out of band emissions are measured with an analyzer spectrum connected to the antenna terminal of the EUT while the EUT at its maximum duty cycle, at maximum power, and at the approximate frequencies. All data rates were investigated to determine the worst case configuration
- 2. The test set up and general procedure is similar to conducted peak output power test. Only different for setting the measurement configuration of the measuring instrument of Spectrum Analyzer.
- 3. Start and stop frequency were set such that the band edge would be placed in the center of the plot.
- 4. Span was set large enough so as to capture all out of band emissions near the band edge.
- 5. RBW>1% of the emission bandwidth, VBW >=3 x RBW, Detector=RMS, Number of points>=2 x Span/RBW Trace mode=max hold, Sweep time=auto couple, and the trace was allowed to stabilize

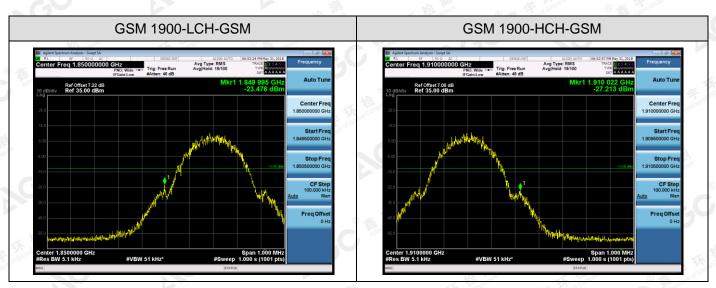
8.2 PROVISIONS APPLICABLE

As Specified in FCC rules of 22.917(a) 24.238(a) and KDB 971168 D1 V03R01.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 34 of 62


8.3 MEASUREMENT RESULT

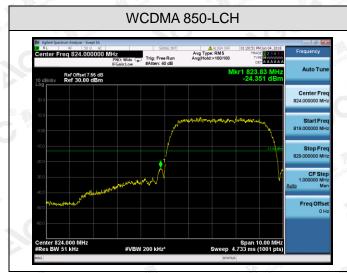

Test Results

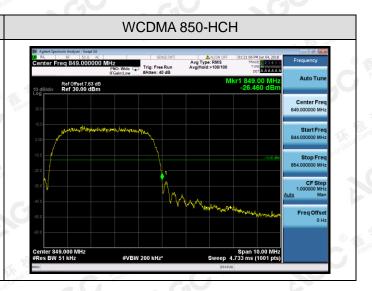
For GSM

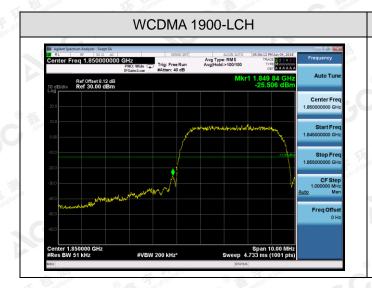
Test Band=GSM850/GSM1900

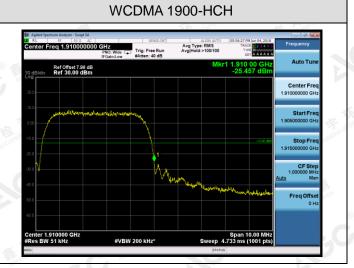
Test Mode=GSM

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.




Page 35 of 62


For WCDMA


Test Band=WCDMA850/WCDMA1900

Test Mode=UMTS

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 36 of 62

9. SPURIOUS EMISSION

9.1 CONDUCTED SPURIOUS EMISSION

9.1.1MEASUREMENT METHOD

The following steps outline the procedure used to measure the conducted emissions from the EUT.

- 1. The level of the carrier and the various conducted spurious and harmonic frequency is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the approximate frequencies. All data rates were investigated to determine the worst case configuration.
- 2. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the equipment of PCS1900 band, this equates to a frequency range of 30 MHz to 19.1 GHz, data taken from 30 MHz to 20 GHz. For GSM850, data taken from 30 MHz to 9 GHz.
- 3. Determine EUT transmit frequencies: the following typical channels were chosen to conducted emissions testing.

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-cent.com. **IGC** 8

Report No.: AGC01684180502FE02 Page 37 of 62

110		7 A		4.A. (60)	T. III	
	Т	ypical Channels fo	or testing of G	SM 850		
Channel			Frequency (MHz)			
Hopat Co., And Court	128			824.2		LE FILL
2C 3	190			836.6	一学习	obal Complian
	251	The County of th	The Management of the Compliant	848.8	Attestation	a.C

		Typical Channel	s for testing of Po	CS 1900		
Channel			Frequency (MHz)			
	512	下校 700 TV 100	o phance © Mar Hallon	1850.2	- GO	3
® # 1000	661	od Clobal Co	- GO ***	1880.0		
60	810	- GO		1909.8	THE THE	® 4

Typical Channels for testing of UMTS band II					
Channel			Frequency (MHz)		
	9262			1852.4	inance The Total Compilares
10	9400	下 拉	· 不 ·	1880	(C) Allestotion o
T TO SAID	9538	(a) The state of Clopes	® Milestation of C	1907.6	3

Typical Channels for testing of UMTS band V				
Channel	Frequency (MHz)			
4132	826.4			
4182	836.6			
4233	846.6			

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGC, this document to confirmed at attp://www.agc.gett.com.

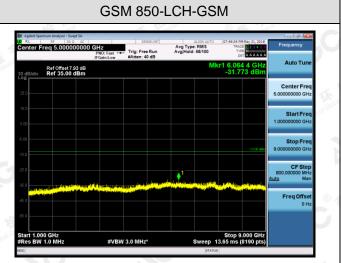
Page 38 of 62

9.1.2 PROVISIONS APPLICABLE

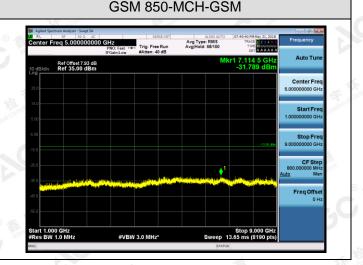
On any frequency outside frequency band of the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago-gott.com.

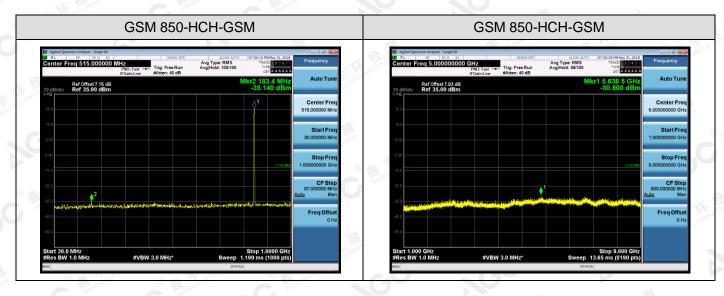

Page 39 of 62

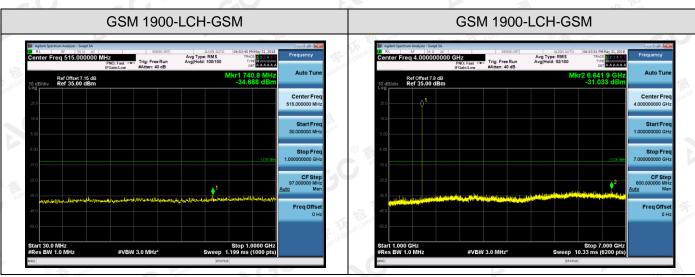

9.1.3MEASUREMENT RESULT

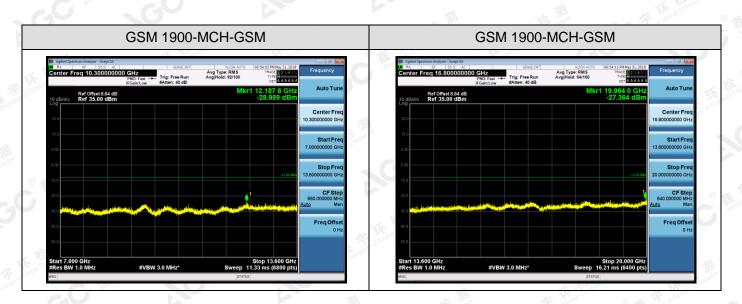
Test Results


Test Band=GSM850/GSM1900

Test Mode=GSM






The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Report No.: AGC01684180502FE02 Page 40 of 62

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.