

Report No.: FCC1908186 File Reference No.: 2019-08-29

Applicant: LEADER PREMIUMS LTD

Product: SPEAKER

Model No.: AE0066

Brand Name: N/A

Test Standards: FCC Part 15.249

Test Result: It is herewith confirmed and found to comply with the

requirements set up by ANSI C63.4&FCC Part 15 Subpart C, Paragraph 15.249 regulations for the evaluation of

electromagnetic compatibility

Approved By

Jack Chung

Jack Chung

Manager

Dated: August 29, 2019

Results appearing herein relate only to the sample tested

The technical reports is issued errors and omissions exempt and is subject to withdrawal at

SHENZHEN TIMEWAY TESTING LABORATORIES

Zone C, 1st Floor, Block B, Jun Xiang Da Building, Zhongshan Park Road West, Tong Le Village, Nanshan District, Shenzhen, China

Tel (755) 83448688, Fax (755) 83442996, E-Mail:info@timeway-lab.com

Report No.: FCC1908186 Page 2 of 45

Date: 2019-08-29

Special Statement:

The testing quality ability of our laboratory meet with "Quality Law of People's Republic of China" Clause 19.

The testing quality system of our laboratory meet with ISO/IEC-17025 requirements, which is approved by CNAS. This approval result is accepted by MRA of APLAC.

Our test facility is recognized, certified, or accredited by the following organizations:

CNAS-LAB Code: L2292

The EMC Laboratory has been assessed and in compliance with CNAS-CL01 accreditation criteria for testing Laboratories (identical to ISO/IEC 17025:2005 General Requirements) for the Competence of testing Laboratories.

FCC-Registration No.: 744189

The EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 744189.

Industry Canada (IC) — Registration No.:5205A

The EMC Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 5205A.

A2LA (Certification Number: 5013.01)

The EMC Laboratory has been accredited by the American Association for Laboratory Accreditation (A2LA). Certification Number:5013.01

38

Report No.: FCC1908186

Date: 2019-08-29

Test Report Conclusion

Content 1.0 General Details 4 4 1.1 Test Lab Details.... 1.2 Applicant Details.... 4 1.3 Description of EUT 1.4 Submitted Sample.... 4 1.5 Test Duration. 5 1.6 Test Uncertainty. 5 1.7 Test By..... 5 2.0 List of Measurement Equipment..... 7 3.0 Technical Details..... 3.1 Summary of Test Results.... 7 3.2 7 Test Standards.... 4.0 EUT Modification.... 7 Power Line Conducted Emission Test. 5.0 5.1 Schematics of the Test. 8 5.2 Test Method and Test Procedure. 5.3 Configuration of the EUT..... 8 5.4 EUT Operating Condition.... 5.5 Conducted Emission Limit. 9 5.6 Test Result. 6.0 Radiated Emission test.... 12 Test Method and Test Procedure. 6.1 12 6.2 Configuration of the EUT..... 12 6.3 EUT Operation Condition.... 12 6.4 Radiated Emission Limit. 13 Test Result.... 6.5 14 7.0 Band Edge.... 22 7.1 Test Method and Test Procedure. 22 7.2 Radiated Test Setup. 22 7.3 Configuration of the EUT..... 22 7.4 EUT Operating Condition.... 22 7.5 Band Edge Limit..... 22 7.6 Band Edge Test Result. 23 8.0 Antenna Requirement..... 27 20dB bandwidth measurement. 9.0 28 FCC ID Label..... 10.0 37

The report refers only to the sample tested and does not apply to the bulk.

11.0

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

Photo of Test Setup and EUT View.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Report No.: FCC1908186 Page 4 of 45

Date: 2019-08-29

1.0 General Details

1.1 Test Lab Details

Name: SHENZHEN TIMEWAY TESTING LABORATORIES.

Address: Zone C, 1st Floor, Block B, Jun Xiang Da Building, Zhongshan Park Road West, Tong Le

Village, Nanshan District, Shenzhen, China

Telephone: (755) 83448688 Fax: (755) 83442996

Site on File with the Federal Communications Commission – United Sates

Registration Number: 744189 For 3m Anechoic Chamber

1.2 Applicant Details

Applicant: LEADER PREMIUMS LTD

Address: 9/F., Hengfu Mansion B building, NO.858. Fuming Road, Ningbo, China

Telephone: -Fax: --

1.3 Description of EUT

Product: SPEAKER

Manufacturer: LEADER PREMIUMS LTD

Address: 9/F., Hengfu Mansion B building, NO.858. Fuming Road, Ningbo, China

Brand Name: N/A
Model Number: AE0066
Additional Model Name N/A

Input Voltage: DC5.0V, 1A or Built-in 3.7V Li-ion battery Modulation Type: GFSK, Pi/4D-QPSK, 8DPSK (Bluetooth)

Operation Frequency: 2402-2480MHz

Channel Separate: 1MHz
Channel Number: 79

Antenna Designation PCB antenna with gain 0dBi Max

1.4 Submitted Sample: 2 Sample

1.5 Test Duration

209-08-22 to 2019-08-29

1.6 Test Uncertainty

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Report No.: FCC1908186 Page 5 of 45

Date: 2019-08-29

Conducted Emissions Uncertainty =3.6dB
Radiated Emissions below 1GHz Uncertainty =4.7dB
Radiated Emissions above 1GHz Uncertainty =6.0dB
Conducted Power Uncertainty =6.0dB
Occupied Channel Bandwidth Uncertainty =5%
Conducted Emissions Uncertainty =3.6dB

1.7 Test Engineer

The sample tested by

Print Name: Terry Tang

Page 6 of 45 Report No.: FCC1908186

2.0 Test Equipment					
Instrument Type	Manufacturer	Model	Serial No.	Date of Cal.	Due Date
ESPI Test Receiver	R&S	ESPI 3	100379	2019-06-21	2020-06-20
LISN	R&S	EZH3-Z5	100294	2019-06-21	2020-06-20
LISN	R&S	EZH3-Z5	100253	2019-06-21	2020-06-20
Ultra Broadband ANT	R&S	HL562	100157	2019-06-21	2020-06-20
Impuls-Begrenzer	R&S	ESH3-Z2	100281	2019-06-21	2020-06-20
Loop Antenna	EMCO	6507	00078608	2018-06-25	2021-06-24
Spectrum	R&S	FSIQ26	100292	2019-06-21	2020-06-20
Horn Antenna	A-INFO	LB-180400-KF	J211060660	2019-06-21	2021-06-20
Horn Antenna	R&S	BBHA 9120D	9120D-631	2018-07-09	2021-07-08
Bilog Antenna	Schwarebeck	VULB9163	9163/340	2018-07-04	2021-07-03
9*6*6 Anechoic			N/A	2018-02-07	2021-02-06
EMI Test Receiver	RS	ESVB	826156/011	2019-06-21	2020-06-20
EMI Test Receiver	RS	ESH3	860904/006	2019-06-21	2020-06-20
Spectrum	HP/Agilent	ESA-L1500A	US37451154	2019-06-21	2020-06-20
Spectrum	HP/Agilent	E4407B	MY50441392	2019-06-21	2020-06-20
Spectrum	RS	FSP	1164.4391.38	2019-01-20	2020-01-19
DE C 11	771 1'	ZT26-NJ-NJ-8		2010 07 21	2020 06 20
RF Cable	Zhengdi	M/FA		2019-06-21	2020-06-20
RF Cable	Zhengdi	7m		2019-06-21	2020-06-20
RF Switch	EM	EMSW18	060391	2019-06-21	2020-06-20
Pre-Amplifier	Schwarebeck	BBV9743	#218	2019-06-21	2020-06-20
Pre-Amplifier	HP/Agilent	8449B	3008A00160	2019-06-21	2020-06-20
LISN	SCHAFFNER	NNB42	00012	2019-01-08	2020-01-07

Report No.: FCC1908186 Page 7 of 45

Date: 2019-08-29

3.0 Technical Details

3.1 Summary of test results

The EUT has been tested according to the following specifications:

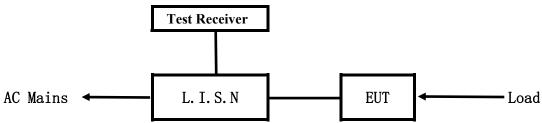
Standard	Test Type	Result	Notes	
FCC Part 15, Paragraph 15.207	Conducted Emission Test	PASS	Complies	
FCC Part 15 Subpart C Paragraph 15.249(a) & 15.249(b) Limit	Field Strength of Fundamental	PASS	Complies	
FCC Part 15, Paragraph 15.209 and RSS-210	Radiated Emission Test	PASS	Complies	
FCC Part 15 Subpart C Paragraph 15.249(d) Limit	Band Edge Test	PASS	Complies	

3.2 Test Standards

FCC Part 15 Subpart C, Paragraph 15.249, ANSI C63.4:2014 and ANSI C63.10:2013

4.0 EUT Modification

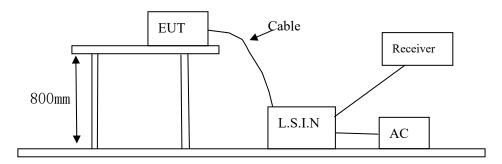
No modification by SHENZHEN TIMEWAY TESTING LABORATORIES


Report No.: FCC1908186

Date: 2019-08-29

5. Power Line Conducted Emission Test

5.1 Schematics of the test



EUT: Equipment Under Test

5.2 Test Method and test Procedure

The EUT was tested according to ANSI C63.4-2014. The Frequency spectrum From 0.15MHz to 30MHz was investigated. The LISN used was 50ohm/50uH as specified by section 5.1 of ANSI C63.4-2014.

Block diagram of Test setup

5.3 Configuration of The EUT

The EUT was configured according to ANSI C63.4-2014. All interface ports were connected to the appropriate peripherals. All peripherals and cables are listed below.

One channels are provided to the EUT

A. EUT

Device	Manufacturer	Model	FCC ID
SPEAKER	LEADER PREMIUMS LTD	AE0066	2APYY-AE0066

Report No.: FCC1908186 Page 9 of 45

Date: 2019-08-29

B. Internal Device

Device	Manufacturer	Model	FCC ID/DOC
N/A			

C. Peripherals

Device	Manufacturer	Model	Rating
Power Supply	KEYU	KA23-0502000DEU	Input: 100-240V~, 50/60Hz, 0.35A;
			Output: DC5V, 2A

5.4 EUT Operating Condition

Operating condition is according to ANSI C63.4 -2014

- A Setup the EUT and simulators as shown on follow
- B Enable AF signal and confirm EUT active to normal condition

5.5 Power line conducted Emission Limit according to Paragraph 15.107 and 15.207

Engage out (MHz)	Class A Lir	nits (dB µ V)	Class B Limits (dB µ V)		
Frequency(MHz)	Quasi-peak Level	Average Level	Quasi-peak Level	Average Level	
$0.15 \sim 0.50$	79.0	79.0 66.0		56.0~46.0*	
$0.50 \sim 5.00$	73.0	60.0	56.0	46.0	
$5.00 \sim 30.00$	73.0	60.0	60.0	50.0	

Notes:

- 1. *Decreasing linearly with logarithm of frequency.
- 2. The tighter limit shall apply at the transition frequencies

5.6 Test Results:

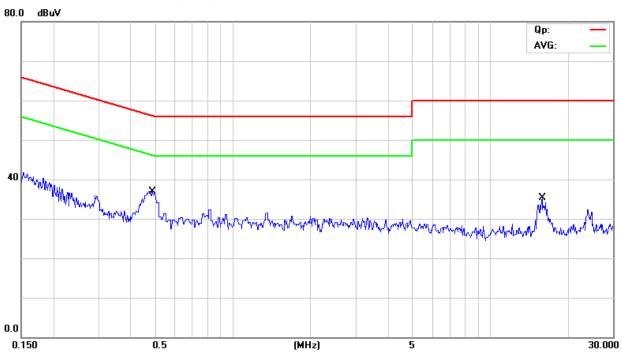
Pass

Report No.: FCC1908186 Page 10 of 45

Date: 2019-08-29

A: Conducted Emission on Live Terminal (150kHz to 30MHz)

EUT Operating Environment


Temperature: 26°C Humidity: 65%RH Atmospheric Pressure: 101 kPa

EUT set Condition: Charging and Communication by Bluetooth

Equipment Level: Class B

Results: PASS

Please refer to following diagram for individual

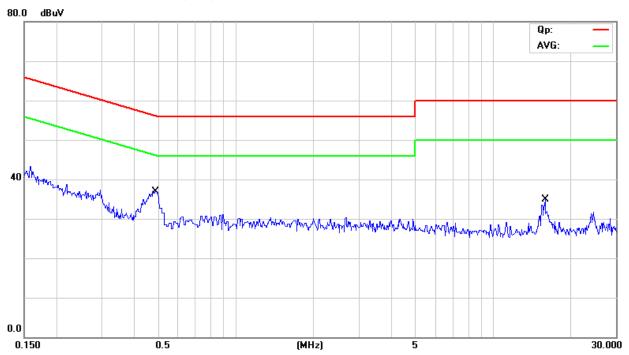
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∀	dBu∨	dB	Detector	Comment
1	*	0.4845	22.30	9.77	32.07	56.26	-24.19	QP	
2		0.4845	9.40	9.77	19.17	46.26	-27.09	AVG	
3		15.8701	-6.00	10.43	4.43	60.00	-55.57	QP	
4		15.8701	-12.00	10.43	-1.57	50.00	-51.57	AVG	

Report No.: FCC1908186 Page 11 of 45

Date: 2019-08-29

B: Conducted Emission on Neutral Terminal (150kHz to 30MHz)

EUT Operating Environment


Temperature: 26°C Humidity: 65%RH Atmospheric Pressure: 101 kPa

EUT set Condition: Charging and Communication by Bluetooth

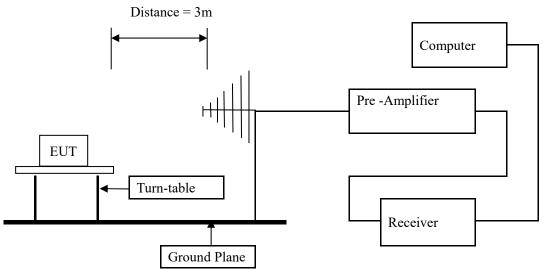
Equipment Level: Class B

Results: Pass

Please refer to following diagram for individual

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∀	dBu∨	dB	Detector	Comment
1		0.4874	23.00	9.77	32.77	56.21	-23.44	QP	
2	*	0.4874	17.00	9.77	26.77	46.21	-19.44	AVG	
3		15.8780	-6.30	10.43	4.13	60.00	-55.87	QP	
4		15.8780	-11.90	10.43	-1.47	50.00	-51.47	AVG	

Report No.: FCC1908186 Page 12 of 45


Date: 2019-08-29

6 Radiated Emission Test

- 6.1 Test Method and test Procedure:
- (1) The EUT was tested according to ANSI C63.10-2013. The radiated test was performed at Timeway EMC Laboratory. This site is on file with the FCC laboratory division, Registration No. 744189
- (2) The EUT, peripherals were put on the turntable which table size is 1m x 1.5 m, table high 0.8 m. All set up is according to ANSI C63.10-2013.
- (3) The frequency spectrum from 30 MHz to 25 GHz was investigated. All readings from 30 MHz to 1 GHz are quasi-peak values with a resolution bandwidth of 120 kHz. All readings are above 1 GHz, peak values with a resolution bandwidth of 1 MHz (Note: for Fundamental frequency radiated emission measurement, RBW=3MHz, VBW=10MHz). Measurements were made at 3 meters.
- (4) The antenna high is varied from 1 m to 4 m high to find the maximum emission for each frequency.
- (5) The antenna polarization: Vertical polarization and Horizontal polarization.

Block diagram of Test setup

- 6.2 Configuration of The EUT

 Same as section 5.3 of this report
- 6.3 EUT Operating Condition
 Same as section 5.4 of this report.

Report No.: FCC1908186 Page 13 of 45

Date: 2019-08-29

6.4 Radiated Emission Limit

All emission from a digital device, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strength specified below:

A FCC Part 15 Subpart C Paragraph 15.249(a) Limit

Fundamental Frequency	Field Stre	ength of Fundame	ental (3m)	Field S	trength of Harmo	nics (3m)
(MHz)	mV/m	dBu	V/m	uV/m	dBuV/m	
2400-2483.5	50	94 (Average)	114 (Peak)	500	54 (Average)	74 (Peak)

Note:

- 1. RF Field Strength (dBuV) = 20 log RF Voltage (uV)
- 2.Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.
- 3. The emission limit in this paragraph is based on measurement instrumentation employing an average detector.

B. Frequencies in restricted band are complied to limit on Paragraph 15.209.

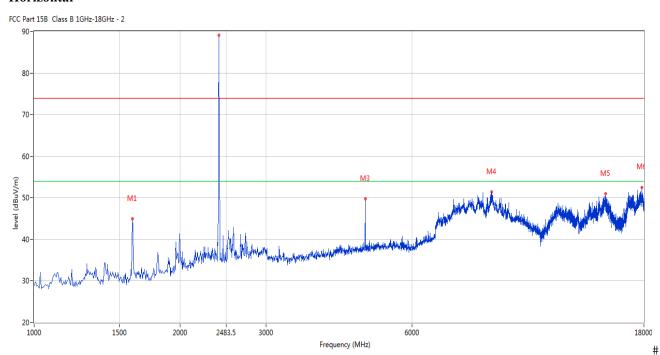
Frequency Range (MHz)	Distance (m)	Field strength (dB μ V/m)
30-88	3	40.0
88-216	3	43.5
216-960	3	46.0
Above 960	3	54.0

Note:

- 1. RF Voltage $(dBuV) = 20 \log RF \text{ Voltage } (uV)$
- 2. In the Above Table, the tighter limit applies at the band edges.
- 3. Distance refers to the distance in meters between the measuring instrument antenna and the EUT
- 4. This is a handhold device. The radiated emissions should be tested under 3-axes position (Lying, Side, and Stand), After pre-test. It was found that the worse radiated emission was get at the lying position.
- 5. All scanning using PK detector. And the final emission level was get using QP detector for frequency range from 30-1000MHz.As to 1G-25G, the final emission level got using PK. For fundamental measurement, PK detector used.
- 6. Battery full charged during tests.
- 7. The three modulation modes of GFSK, Pi/4D-QPSK, and 8DPSK were tested. And only the worst case was recorded in the test report. GFSK was the worst case.

Report No.: FCC1908186 Page 14 of 45

Date: 2019-08-29

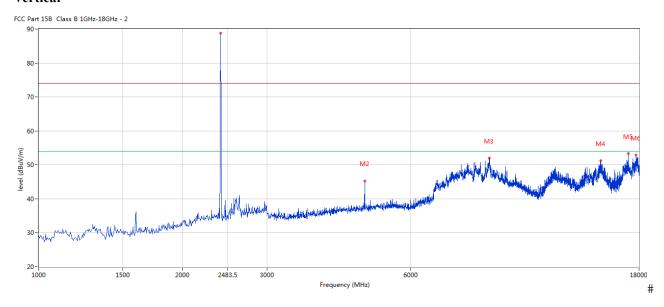


6.5 Test result

A Fundamental & Harmonics Radiated Emission Data

Please refer to the following test plots for details: Low Channel-2402MHz

Horizontal

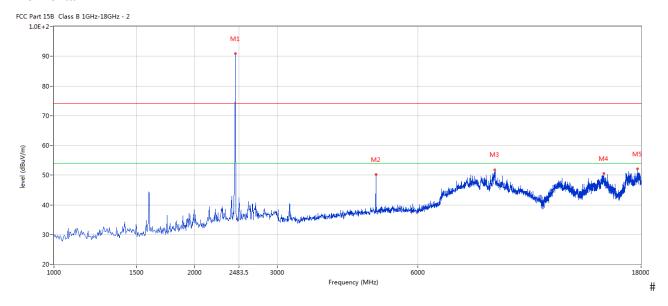

No.	Frequency	Results	Factor (dB)	Limit	Over Limit	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(0)	(cm)		
1	1594.851	44.94	-7.98	74.0	-29.06	Peak	101.00	100	Н	Pass
2	2402.149	89.08	-3.57	114.0	-24.92	Peak	18.00	100	Н	Pass
3	4802.799	49.75	3.12	74.0	-24.25	Peak	96.00	100	Н	Pass
4	8741.565	51.37	7.97	74.0	-22.63	Peak	41.00	100	Н	Pass
5	15017.246	50.88	12.68	74.0	-23.12	Peak	0.00	100	Н	Pass
6	17842.789	52.52	12.71	74.0	-21.48	Peak	0.00	100	Н	Pass

Report No.: FCC1908186 Page 15 of 45

Date: 2019-08-29

Vertical

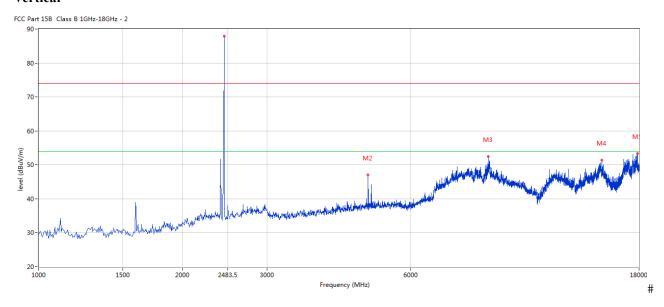
No.	Frequency	Results	Factor	Limit	Over	Detector	Table (o)	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	Limit			(cm)		
					(dB)					
1	2402.149	88.87	-3.57	114.0	-25.13	Peak	115.00	100	V	N/A
2	4802.799	45.28	3.12	74.0	-28.72	Peak	51.00	100	V	Pass
3	8745.814	51.99	7.97	74.0	-22.01	Peak	0.00	100	V	Pass
4	14957.761	51.24	12.65	74.0	-22.76	Peak	0.00	100	V	Pass
5	17090.727	53.35	12.92	74.0	-20.65	Peak	0.00	100	V	Pass
6	17753.562	52.92	12.75	74.0	-21.08	Peak	0.00	100	V	Pass


Report No.: FCC1908186 Page 16 of 45

Date: 2019-08-29

Please refer to the following test plots for details: Middle Channel-2441MHz

Horizontal

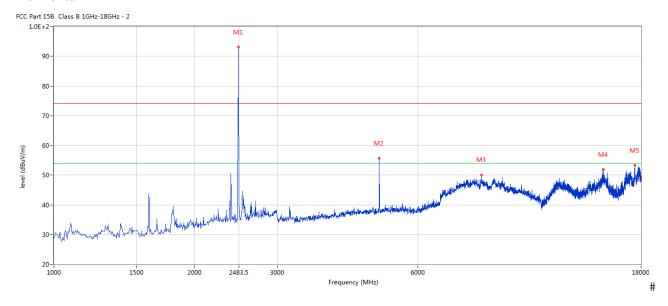

No.	Frequency	Results	Factor	Limit	Over	Detector	Table (o)	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	Limit			(cm)		
					(dB)					
1	2440.390	90.91	-3.57	114.0	-23.09	Peak	9.00	100	Н	Pass
2	4879.280	50.28	3.20	74.0	-23.72	Peak	46.00	100	Н	Pass
3	8762.809	51.84	7.96	74.0	-22.16	Peak	14.00	100	Н	Pass
4	14979.005	50.48	12.71	74.0	-23.52	Peak	0.00	100	Н	Pass
5	17706.823	52.10	12.76	74.0	-21.90	Peak	0.00	100	Н	Pass

Report No.: FCC1908186 Page 17 of 45

Date: 2019-08-29

Vertical

No.	Frequency	Results	Factor	Limit	Over	Detector	Table (o)	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	Limit			(cm)		
					(dB)					
1	2440.390	87.93	-3.57	114.0	-26.07	Peak	150.00	100	V	N/A
2	4883.529	47.04	3.20	74.0	-26.96	Peak	342.00	100	V	Pass
3	8716.071	52.47	7.98	74.0	-21.53	Peak	246.00	100	V	Pass
4	15034.241	51.37	12.58	74.0	-22.63	Peak	360.00	100	V	Pass
5	17876.781	53.31	12.70	74.0	-20.69	Peak	360.00	100	V	Pass

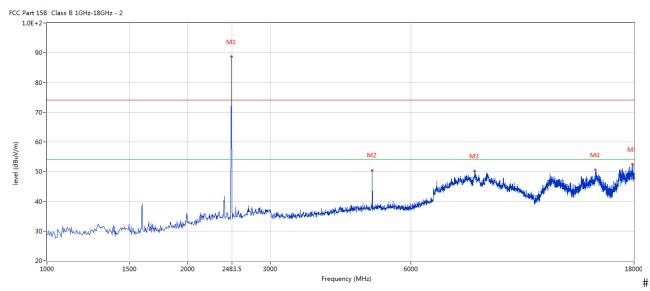

Report No.: FCC1908186 Page 18 of 45

Date: 2019-08-29

Please refer to the following test plots for details: High Channel-2480MHz

Horizontal

No.	Frequency	Results	Factor	Limit	Over	Detector	Table (o)	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	Limit			(cm)		
					(dB)					
1	2479.630	93.08	-3.57	114.0	-20.92	Peak	342.00	100	Н	Pass
2	4960.010	55.75	3.36	74.0	-18.25	Peak	300.00	100	Н	Pass
2*	4960.010	39.16	3.36	54.0	-14.84	AV	300.00	100	Н	Pass
3	8201.950	50.12	8.33	74.0	-23.88	Peak	186.00	100	Н	Pass
4	14957.761	51.91	12.65	74.0	-22.09	Peak	360.00	100	Н	Pass
5	17464.634	53.28	12.84	74.0	-20.72	Peak	360.00	100	Н	Pass


Page 19 of 45

Report No.: FCC1908186

Date: 2019-08-29

Vertical

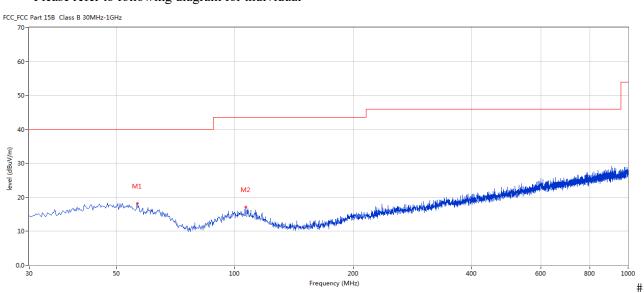
No.	Frequency	Results	Factor	Limit	Over	Detector	Table (o)	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	Limit			(cm)		
					(dB)					
1	2479.630	88.71	-3.57	114.0	-25.29	Peak	151.00	100	V	Pass
2	4960.010	50.46	3.36	74.0	-23.54	Peak	0.00	100	V	Pass
3	8201.950	50.24	8.33	74.0	-23.76	Peak	110.00	100	V	Pass
4	14889.778	50.55	12.47	74.0	-23.45	Peak	0.00	100	V	Pass
5	17864.034	52.40	12.71	74.0	-21.60	Peak	0.00	100	V	Pass

Note: (1) Emission Level = Reading Level + Antenna Factor + Cable Loss-Amplifier

- (2)Margin=Emission-Limits
- (3)According to section 15.35(b), the peak limit is 20dB higher than the average limit
- (4) For test purpose, keep EUT continuous transmitting
- (5) For emission above 18GHz, It is only the floor noise. No necessary to take down.
- (6) For the field Strength of Fundamental, because the final PK value is less than AV limit, no necessary to take down AV measurement result.

Report No.: FCC1908186 Page 20 of 45

Date: 2019-08-29



B. General Radiated Emission Data Radiated Emission In Horizontal (30MHz----1000MHz)

EUT set Condition: Keep Tx transmitting

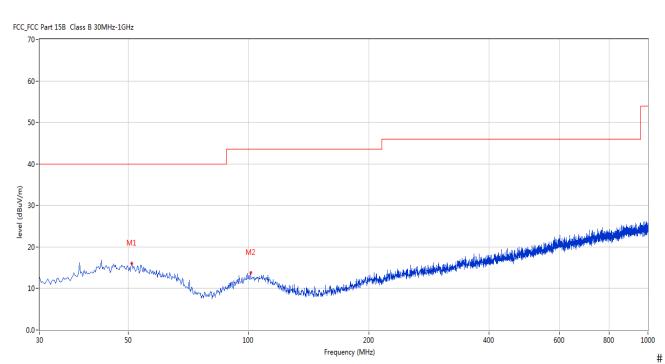
Results: Pass

Please refer to following diagram for individual

No.	Frequen	Results	Factor	Limit	Over	Detector	Table (o)	Height	ANT	Verdict
	cy (MHz)	(dBuV/m	(dB)	(dBuV/m	Limit			(cm)		
))	(dB)					
1	56.426	18.24	-12.15	40.0	-21.76	Peak	148.00	100	Н	Pass
2	106.611	17.18	-13.36	43.5	-26.32	Peak	345.00	100	Н	Pass

Report No.: FCC1908186 Page 21 of 45

Date: 2019-08-29



Radiated Emission In Vertical (30MHz----1000MHz)

EUT set Condition: Keep Tx transmitting

Results: Pass

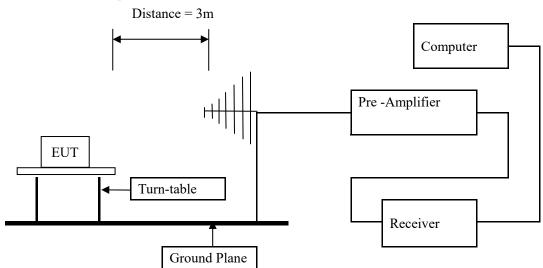
Please refer to following diagram for individual

ı	No.	Frequency	Results	Factor (dB)	Limit	Over Limit	Detector	Table	Height	ANT	Verdict
		(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(o)	(cm)		
	1	51.092	16.04	-11.41	40.0	-23.96	Peak	328.00	200	V	Pass
	2	101.277	13.77	-13.45	43.5	-29.73	Peak	200.00	200	V	Pass

Page 22 of 45

Report No.: FCC1908186

Date: 2019-08-29



7. Band Edge

7.1 Test Method and test Procedure:

- (1) The EUT was tested according to ANSI C63.10–2013. The radiated test was performed at Timeway EMC Laboratory. This site is on file with the FCC laboratory division, Registration No. 744189
- (2) Set Spectrum as RBW=1MHz,VBW=3MHz and Peak detector used
- (3) The antenna high is varied from 1 m to 4 m high to find the maximum emission for each frequency.
- (4) The antenna polarization: Vertical polarization and Horizontal polarization.

7. 2 Radiated Test Setup

For the actual test configuration, please refer to the related items – Photos of Testing

7.3 Configuration of The EUT

Same as section 5.3 of this report

7.4 EUT Operating Condition

Same as section 5.4 of this report.

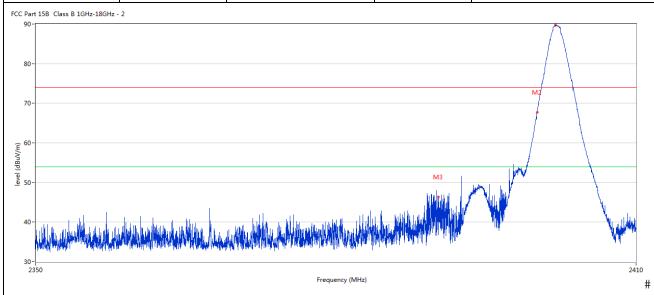
7.5 Band Edge Limit

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

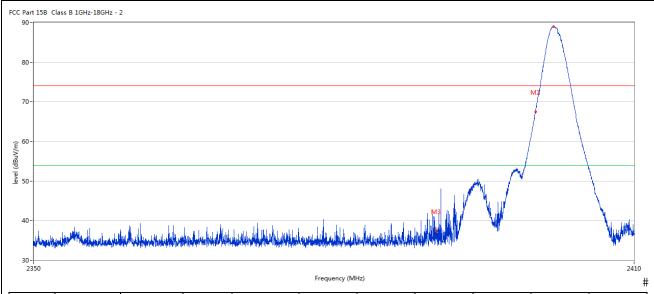
In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.


Report No.: FCC1908186 Page 23 of 45

Date: 2019-08-29

7.6 Test Result

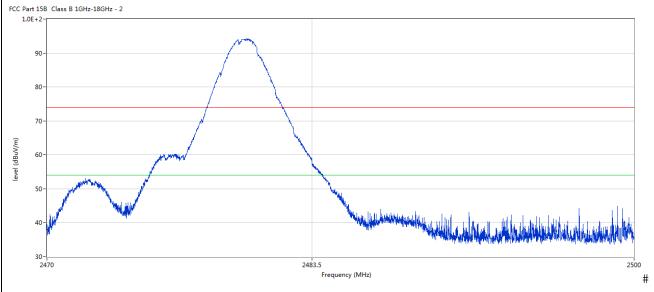
Product:	Sl	PEAKER	Polarity	Horizontal
Mode	Keepin	g Transmitting	Test Voltage	DC3.7V
Temperature	2	4 deg. C,	Humidity	56% RH
Test Result:		Pass		1
2400MHz	PK (dBμV/m)	67.76	Limit	$74~dB\mu V/m$
2400MHz	AV (dBμV/m)	49.21	Limit	$54~dB\mu V/m$
2390 MHz	2390 MHz PK (dBμV/m) 46.30		Limit	$74~dB\mu V/m$
2390 MHz	2390 MHz AV (dBμV/m)		Limit	$54~dB\mu V/m$



#										
No.	Frequency	Results	Factor	Limit	Over	Detector	Table (o)	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	Limit			(cm)		
					(dB)					
1	2401.872	89.70	-3.57	74.0	15.70	Peak	22.00	100	Н	N/A
2	2400	67.76	-3.57	74.0	-6.24	Peak	22.00	100	Н	Pass
2*	2400	49.21	-3.57	54.0	-4.79	AV	22.00	100	Н	Pass
3	2390	46.30	-3.53	74.0	-27.70	Peak	112.00	100	Н	Pass
		•								

Report No.: FCC1908186 Page 24 of 45

Product:	SI	PEAKER	Detector	Vertical
Mode	Keepin	g Transmitting	Test Voltage	DC3.7V
Temperature	24	4 deg. C,	Humidity	56% RH
Test Result:		Pass		-
2400MHz	PK (dBμV/m)	67.47	Limit	74 dBμV/m
2400MHz	AV (dBμV/m)	48.89	Limit	$54 \text{ dB}\mu\text{V/m}$
2390 MHz	PK (dBμV/m)	37.34	Limit	$74~dB\mu V/m$
2390 MHz	2390 MHz AV (dBμV/m)		Limit	54 dBμV/m



ı	No.	Frequency	Results	Factor	Limit	Over	Detector	Table (o)	Height	ANT	Verdict
		(MHz)	(dBuV/m)	(dB)	(dBuV/m)	Limit			(cm)		
						(dB)					
Γ.	1	2401.857	89.02	-3.57	74.0	15.02	Peak	112.00	100	V	N/A
	2	2400	67.47	-3.57	74.0	-6.53	Peak	112.00	100	V	Pass
2	2*	2400	48.89	-3.57	54.0	-5.11	AV	112.00	100	V	Pass
(3	2390	37.34	-3.53	74.0	-36.66	Peak	240.00	100	V	Pass

Report No.: FCC1908186 Page 25 of 45

Product:	SI	PEAKER	Polarity	Horizontal
Mode	Keeping	g Transmitting	Test Voltage	DC3.7V
Temperature	24	4 deg. C,	Humidity	56% RH
Test Result:		Pass		
2483.5MHz	PK (dBμV/m) 56.53		Limit	$74 \; dB\mu V/m$
2483.5MHz	AV (dBμV/m) 37.21		Limit	$54~dB\mu V/m$

#										
No.	Frequency	Results	Factor	Limit	Over	Detector	Table (o)	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	Limit			(cm)		
					(dB)					
1	2480.152	94.31	-3.57	114.0	-19.69	Peak	337.00	100	Н	Pass
1*	2480.152	77.52	-3.57	94.0	-16.48	AV	337.00	100	Н	Pass
2	2483.5	56.53	-3.57	74.0	-17.47	Peak	341.00	100	Н	Pass
2*	2483.5	37.21	-3.57	54.0	-16.79	AV	341.00	100	Н	Pass

Page 26 of 45

Report No.: FCC1908186

Date: 2019-08-29

P	Product:		SP	EAKER		Detec	etor		Vertical	
	Mode		Keeping	Transmitting	g	Test Vo	ltage		DC3.7V	
Ter	mperature		deg. C,		Humidity		56% RH			
Tes	st Result:	Pass								
248	83.5MHz	PK (dB)	μV/m)	52.	52.31		nit	7	74 dBµV/n	n
248	83.5MHz	AV (dB _l	34.	34.55		nit	4	54 dBμV/n	1	
CC Part 15 1.0E+2	5B Class B 1GHz-18GHz	z - 2	1			,	'			
90 80 70)									
(dgn//m) 60 50		- Andrew Constant		<u></u>						
40)					the state of the s	kirokendheribulpuddib			antico a defendantiva and
2	2470				2483.5 Frequency (I	MHz)				2500
No.	Frequency	Results	Factor	Limit	Over	Detector	Table (o)	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	Limit (dB)			(cm)		
1	2479.823	89.03	-3.57	74.0	15.03	Peak	152.00	100	V	N/A
2	2483.5	52.31	-3.57	74.0	-21.69	Peak	152.00	100	V	Pass
		34.55 -3.57		1	-	+	152.00	100	V	

Note: 1. The PK emission level less than the AV limit. No necessary to record the AV emission level.

- 2. This is a handhold device. The radiated emissions should be tested under 3-axes position (Lying, Side, and Stand), After pre-test. It was found that the worse radiated emission was get at the lying position.
- 3. The three modulation modes of GFSK, Pi/4D-QPSK, and 8DPSK were tested. And only the worst case was recorded in the test report. GFSK was the worst case.

Report No.: FCC1908186 Page 27 of 45

Date: 2019-08-29

8.0 Antenna Requirement

Applicable Standard

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

This product has a PCB antenna. The antenna gain is 0dBi Max. It fulfills the requirement of this section. Test Result: Pass

Page 28 of 45

Report No.: FCC1908186

SK Modulation								
Product:	SPEAF	KER		Test Mode:		Keep transmitting		
Mode	Keeping Tra	nsmitting		Test Voltage		DC3	3.7V	
Temperature	24 deg	g. C,		Humidity		56%	RH	
Test Result:	Pas	s		Detector		P	K	
dB Bandwidth	859.7N	ИHz				_	-	
X	Marker 1 [T	'1 ndB]	RB	W 30 k	Hz Rl	F Att	10 dB	
Ref Lvl	ndB	20.00 dB	VB	W 100 k	Hz			
0 dBm	BW 859.719	43888 kHz	SW	T 8.5 m	s Uı	nit	dBm	
0				v ₁	[T1]	-1	7.69 dBm	
						2.40182	2866 GHz	
10				ndE	3	20	0.00 dB	
		1		BW	85	9.71943		
20			Λ	∇_{T}	[T1]	-3		
]]	a pl	$oldsymbol{ abla}_{\mathrm{T}^{2}}$	2 [T1]	2.40153		
30		\sim	\		. [11]	2.40239		
1MAX 40	TA			T2			:	
10				\				
50					7			
60							*	

70								
80								
90								
00								
Center 2.402	GHz	300 k	Hz/			Spa	an 3 MHz	

Report No.: FCC1908186 Page 29 of 45

Product:	SI	PEAKER		Т	est Mode:		Keep tra	nsmitting		
Mode	Keepin	g Transmit	ting	Te	est Voltage		DC3.7V 56% RH			
Temperature		4 deg. C,]	Humidity					
Test Result:		Pass					P	ΥK		
dB Bandwidth	85	53.7MHz								
<u> </u>	Marker	1 [T1 no	dB]	RBW	RBW 30 ki		F Att	10 dE	3	
Ref Lvl	ndB		00 dB	VBW	100 k					
0 dBm	BW 853	.707414	83 kHz	SWT	8.5 m	s U	nit	dE	m	
					v ₁	[T1]	-1	6.04 dB	m	
							2.44083	3467 GH		
-10			1		ndE	3	20		1	
			Ž~ a		BW		33.7074			
-20			100	$\sqrt{\Lambda}$	lacksquare	[T1]	-3			
		,	J	1	$ abla_{ m T2}$	2 [T1]	-3.44054	1008 GH 5.32 dB		
-30				$\overline{}$	1 2	. [11]	2.44139	9379 GH	z	
1MAX		Ti			T ²				1	
-40		~			عم					
	٠,٠٠٠	/			M					
-50						^				
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					Y				
							Vum			
-60								mandra		
-70										
-80									-	
-90									$\parallel$	
100										

Report No.: FCC1908186 Page 30 of 45



Product:		S	PEAKER			Test Mode	:	Keep tra	nsmitting		
Mode		Keepir	ng Transmi	tting		Test Voltag	e		3.7V		
Temperature			24 deg. C,			Humidity		56% RH			
Test Result:	Pass					Detector		PK			
OdB Bandwidth		8	59.7MHz								
	Marker 1 [T1 ndB]			ndB]	RBI	v 30 :	kHz	RF Att	10 dB		
Nef Lvl		ndB	20.	00 dB	VBI	v 100	kHz				
0 dBm		BW 859	9.719438	888 kHz	SW	Г 8.5 і	ms	Unit	dBm		
0						<b>v</b> ₁	[T1]	-1'	7.34 dBm		
								2.47983			
-10						nd	.B	20	0.00 dB		
				1		BW	7	859.71943	3888 kHz		
-20				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<b>\</b> \	Vη	T [T1]	-3'	7.81 dBm		
					VM			2.47953	3407 GHz		
-30			,	$\sim$	\	T	2 [T1]	-3'	7.02 dBm		
1MAX			TAN			T2 V		2.48039	9379 GHz		
-40		^	/~			1					
-50	~~	کیمسر					Yum	<b>.</b> .			
-60									-		
-70											
-80											
-90											
100											

Page 31 of 45

Report No.: FCC1908186



Product:				KER Test			Keep transmitting			
Mode	Kee	Keeping Transmitting					DC3.7V			
Temperature		24 deg. C,		Test Voltage Humidity		56% RH				
Test Result:		Pass			Detector		P	K		
0dB Bandwidth		1.232MHz						-		
	Marke	er 1 [T1 ndE	3]	RBW	30 kH	Iz RI	F Att	10 dB		
Ref Lvl	ndB	20.00	) dB	VBW	100 kH	Iz				
0 dBm	BW	1.23246493	3 MHz	SWT	8.5 ms	. Uı	nit	dBm		
0					<b>v</b> ₁	[T1]	-17	.67 dBm		
							2.40183			
-10					ndB		20	.00 dB		
			1		BW		1.23246	493 MHz		
-20			A		$\nabla_{\mathrm{T1}}$	[T1]	-37	.98 dBm		
			/ \ / \ \ _ \		_		2.40134	770 GHz		
3.0		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		$\bigvee$	$\sqrt{\nabla_{T2}}$	[T1]	-37	.16 dBm		
-30		<i>~</i>			7		2.40258	016 GHz		
		T.Z.			Ĭ					
-40		,			1	η				
						\				
-50						+				
						\~	<u> </u>			
-60								hanner .		
								<b>~~</b>		
-70										
-80										
-90										
Center 2.40	12 CH7	1	300 kHz,	/			Sna	n 3 MHz		

Report No.: FCC1908186 Page 32 of 45



Product:		SPEAKER		T	est Mode:		Keep tra	nsmitting		
Mode	Keep	oing Transmi	tting	Te	est Voltage		DC3.7V 56% RH			
Temperature		24 deg. C,		]	Humidity					
Test Result:			Detector		PK					
OdB Bandwidth		1.226MHz					-			
<u> </u>	Marke:	r 1 [T1 r	ndB]	RBW	30 k	Hz R	F Att	10 dB		
9 Ref Lvl	ndB		00 dB	VBW	100 k					
0 dBm	BW	1.226452	291 MHz	SWT	8.5 m	s U	nit	dBn	n	
					$lacktriangledown_1$	[T1]	-1	6.02 dBm		
							2.44082	2866 GHz	•	
-10			1		ndE		20			
			Ž a		BW		1.22645			
-20					$ abla_{\mathrm{T1}}$	[T1]	-3!			
		MM	ا ٧٠ لير	$\sim \sim$		[T1]	2.44035			
-30					~~	[11]	2.44158	3.71 авп 3016 GHz		
1MAX	Ţ	<u></u>			7		2.11150	010 0112	1	
-40					V	\				
-50	<b>~~~</b>					\m_				
							The state of the s	1-m_		
-60										
-70									1	
-80									1	
-90										
- 90										
100 Center 2.44	11 CII-		200	kHz/			G	ı an 3 MHz	4	

Report No.: FCC1908186 Page 33 of 45



Pi/4D-QPSK Mo Product:	SPEAKE	D	Test Mo	da:	Keep transmitting			
Mode					DC3.7V			
	Keeping Trans		Test Vol		56% RH			
Temperature	24 deg. (	<del>,</del>	Humid					
Test Result:	Pass		Detect	or	PK			
0dB Bandwidth	1.238MH							
	Marker 1 [T1				RF Att	10 dB		
Ref Lvl 0 dBm		0.00 dB 7695 MHz		0 kHz 5 ms (	Jnit	dBm		
0				▼1 [T1]	-17.	32 dBm		
					2.4798286	66 GHz		
-10				ndB	20.0	00 dB		
		1		BW	1.2384769	95 MHz		
-20		+A		$\nabla_{\text{T1}}$ [T1]	-37.	71 dBm		
		$_{\wedge}$ $/$ $\vee$ $/$	$\wedge$		2.479347	70 GHz		
-30				VT2 [T1]	-37.	94 dBm		
1MAX	T			T2	2.4805863	17 GHz		
-40								
-50								
-60						man -		
						Ĭ		
-70								
, 🤘								
-80								
-90								
-100								

Page 34 of 45

Report No.: FCC1908186



Product:		SPEAKER		Т	est Mode:		Keep tra	nsmitting		
Mode	Kee	oing Transmi	tting	Te	est Voltage		DC3.7V 56% RH			
Temperature		24 deg. C,		]	Humidity					
Test Result:		Pass	-	Detector		P	PΚ			
OdB Bandwidth		1.232MHz								
	Marke	r 1 [T1 r	ndB]	RBW	30 k	Hz R	F Att	10 dB		
Nef Lvl	ndB	20.	00 dB	VBW	100 k	Hz				
0 dBm	BW	1.232464	193 MHz	SWT	8.5 m	s U	nit	dBı	m	
0					<b>v</b> ₁	[T1]	-1	7.65 dBr	m	
							2.40182	2866 GH2		
-10					ndE	3	20			
			1		BW		1.2324			
-20			<del>                                     </del>		$ abla_{\mathrm{T1}}$	[T1]	-3			
		~~~	$\bigcup \bigvee \bigcup$	$\sim$	<b>∩</b> ∨ _{T2}	T1]	2.4013!			
-30		/ V	-	W		r [TT]	2.40258	7.87 dBr		
1MAX	5				£	2	2.4025	5017 G112	1	
-40	/	y			V	\				
-50						1~			1	
						V	m-~			
-60								-	~	
-70									-	
-80										
-90										
- 90										
100										
Center 2.40	2 GHz	ı	300	kHz/			Spa	an 3 MHz	= U Z	

Page 35 of 45

Report No.: FCC1908186

Product:		SPEAKER			Test Mode:		Keep transmitting		
Mode	Keepi	ng Transmit	ting	Te	est Voltage		DC3.7V 56% RH		
Temperature	-	24 deg. C,]	Humidity				
Test Result:			Detector		P	K			
dB Bandwidth	1	.238MHz					-	_	
	Marker	1 [T1 no	dB]	RBW	30 kl	Hz Rl	7 Att	10 dB	
Ref Lvl	ndB	20.		VBW	100 k				
0 dBm	BW :	1.238476	95 MHz	SWT	8.5 m	s Uı	nit	dBn	n
					v ₁	[T1]	-15	.94 dBm	
							2.44082	866 GHz	
-10			1		ndB		20	.00 dB	
			Λ		BW ▼ _{T1}		1.23847		
-20			+	L 0	V T1	[T1]	-35	.78 dBm	
		M	ً ا	~/~		[T1]		770 GHz .09 dBm	
-30		,			7		2.44158	617 GHz	-
1MAX	TA				V	2			1
-40									
-50						\/\-	haran .	me	
-60								\	
-70									-
-80									
-90									-
100			300 k					n 3 MHz	

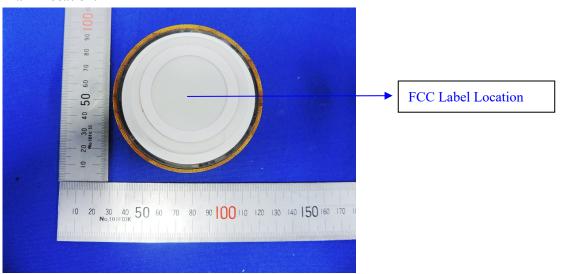
Page 36 of 45

Report No.: FCC1908186

Product:		SPEAKER		7	Test Mode:		Keep tra	nsmitting	
Mode	Keepi	ng Transmi	tting	Т	est Voltage		DC3.7V 56% RH		
Temperature		24 deg. C,			Humidity				
Test Result:			Detector		P	K			
dB Bandwidth		1.238MHz					-	-	
	Marker	1 [T1 n	ıdB]	RBW	30 k	Hz R	F Att	10 dB	
Ref Lvl	ndB	20.		VBW	100 k				
0 dBm	BW	1.238476	95 MHz	SWT	8.5 m	s U	nit	dBr	n
					v ₁	[T1]	-1'	7.28 dBn	
							2.47983	3467 GHz	ľ
-10					ndE)	20	.00 dB	1
			1 X		BW		1.23847		
-20					∇_{T}	[T1]	-3'	7.57 dBn	0
		MM	\int	\sim	$\nabla_{\mathbf{T}_{2}}$	2 [T1]	2.47934		
-30		/ (<u>~</u>	W 11	, [11]	2.48058	8617 GHz	1
1MAX	T				J.	2			1
-40									
-50	~					_			
-60									1
-70									
-80									
-90									
100									
Center 2.48	GHz		300	kHz/			sas	an 3 MHz	= 1

Report No.: FCC1908186 Page 37 of 45

Date: 2019-08-29



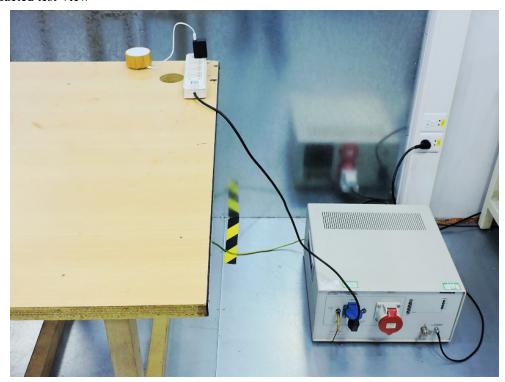
10.0 FCC ID Label

FCC ID: 2APYY-AB0066

The label must not be a stick-on paper label. The label on these products must be permanently affixed to the product and readily visible at the time of purchase and must last the expected lifetime of the equipment not be readily detachable.

Mark Location:

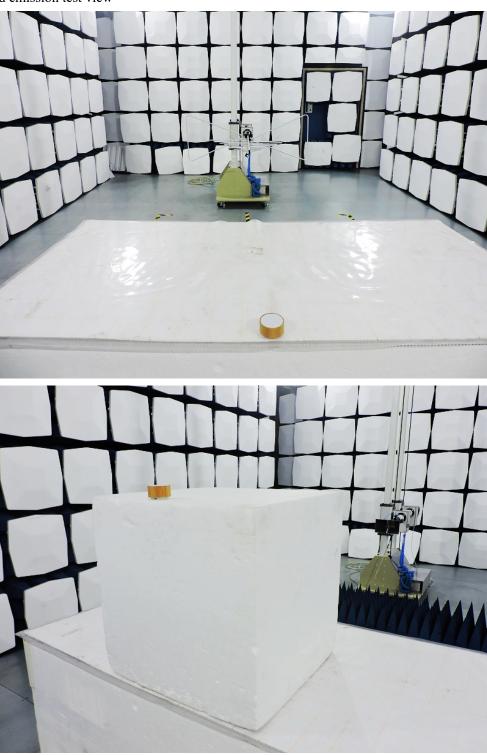
Page 38 of 45


Report No.: FCC1908186

Date: 2019-08-29

11.0 Photo of testing

11.1 Conducted test View--


Page 39 of 45

Report No.: FCC1908186

Date: 2019-08-29

Radiated emission test view

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it. or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or these paragraph directly consequed SHENZHEN TIMEWAY TESTING LABORATORIES. others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Report No.: FCC1908186

Date: 2019-08-29

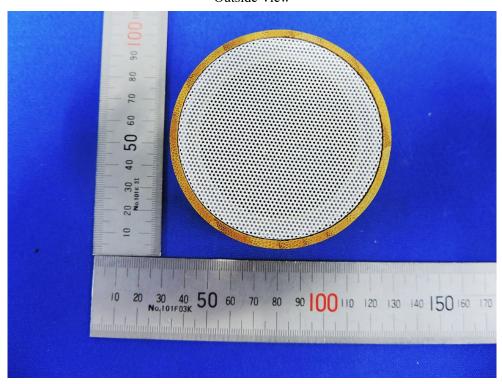
11.2 Photographs – EUT

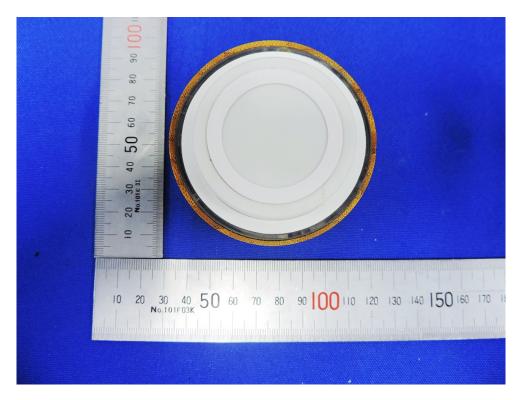
Outside View

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.


Report No.: FCC1908186


Date: 2019-08-29

Photographs - EUT

Outside View

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Page 42 of 45

Report No.: FCC1908186

Date: 2019-08-29

Outside View

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Page 43 of 45

Report No.: FCC1908186

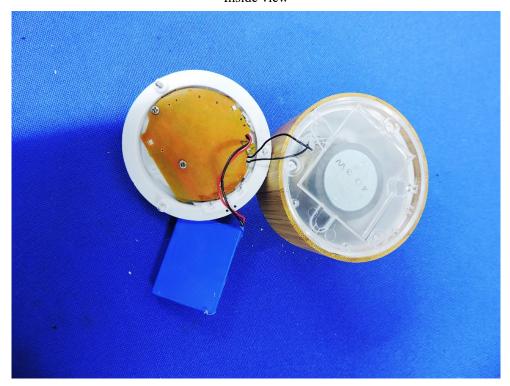
Date: 2019-08-29

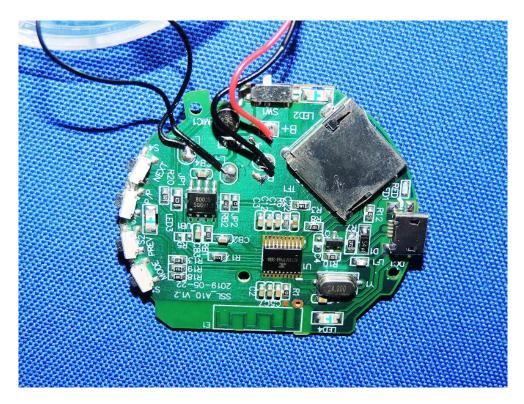
Outside View

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.


Page 44 of 45


Report No.: FCC1908186

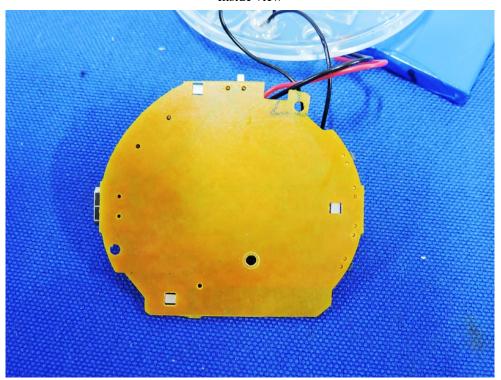
Date: 2019-08-29

Inside view

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES.

will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.


In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to

adopt any other remedies which may be appropriate.

Report No.: FCC1908186 Page 45 of 45

Inside view

-- End of the report--