

CLASS II PERMISSIVE CHANGE TEST REPORT

FCC 47 CFR PART 15 SUBPART C

Test Standard	FCC Part 15.209
Product name	Wireless Charger Module
Model No.	LPS-15WP K
Trade name	LUXSHAREICT
Operation Freq.	111-148 KHz
Test Result	Pass
Statements of Conformity	Determination of compliance is based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards.

The test results of this report relate only to the tested sample (EUT) identified in this report.

The test Report of full or partial shall not copy. Without written approval of SGS Compliance Certification Services Inc. (Wugu Laboratory)

Approved by:

Sehni Hu
Supervisor

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.
除非另有說明，此報告結果僅對測試之樣品負責，同時此樣品僅保留90天。本報告未經本公司書面許可，不可部份複製。

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <http://www.sgs.com.tw/Terms-and-Conditions> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <http://www.sgs.com.tw/Terms-and-Conditions>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instruction, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced, except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	October 25, 2023	Initial Issue	ALL	Peggy Tsai

Table of contents

1. GENERAL INFORMATION	4
1.1 EUT INFORMATION	4
1.2 EUT CHANNEL INFORMATION	5
1.3 ANTENNA INFORMATION	5
1.4 MEASUREMENT UNCERTAINTY	6
1.5 FACILITIES AND TEST LOCATION	7
1.6 INSTRUMENT CALIBRATION	8
1.7 SUPPORT AND EUT ACCESSORIES EQUIPMENT	9
1.8 TEST METHODOLOGY AND APPLIED STANDARDS	9
2. TEST SUMMARY	10
3. DESCRIPTION OF TEST MODES	11
3.1 THE WORST MODE OF OPERATING CONDITION	11
3.2 THE WORST MODE OF MEASUREMENT	11
3.3 FCC PART 15.205 & RSS GEN SECTION 8.10 RESTRICTED BANDS OF OPERATIONS	12
4. TEST RESULT	13
4.1 20DB BANDWIDTH	13
4.2 TRANSMITTER RADIATED EMISSION	15
4.3 AC POWER LINE CONDUCTED EMISSION	23
4.4 ANTENNA REQUIREMENT	26
APPENDIX 1 – PHOTOGRAPHS OF EUT	

1. GENERAL INFORMATION

1.1 EUT INFORMATION

Applicant	Lanto Electronic Ltd No 399, Baisheng Road, Jinxi Town, Kunshan City, Jiangsu , China 215234
Manufacturer	Lanto Electronic Ltd No 399, Baisheng Road, Jinxi Town, Kunshan City, Jiangsu , China 215234
Equipment	Wireless Charger Module
Model Name	LPS-15WP K
Model Discrepancy	N/A
Received Date	September 6, 2023
Date of Test	September 8 ~ 21, 2023
Power Operation	EUT Power from Adapter. Lenovo / ADL135SLC3A I/P: 100-240VAC, 2.5A, 50-60Hz O/P: 20.0VDC, 6.75A, 135.0W
Operation Frequency	111-148 KHz
SW version	NA
HW Version	NA
Class II Permissive Change	The major change filed under this application is: Additional Chassis added, brand: Lenovo, produce: Personal Computer, Model number: IdeaCentre AIO 27IRH9.

Remark:

1. For more details, refer to the User's manual of the EUT.
2. Disclaimer: Antenna information is provided by the applicant, test results of this report are applicable to the sample EUT received.

1.2 EUT CHANNEL INFORMATION

Frequency Range	111-148 KHz
Modulation Type	TX: FSK RX: ASK

Remark:

Refer as ANSI 63.10:2013 clause 5.6.1 Table 4 for test channels

Number of frequencies to be tested		
Frequency range in which device operates	Number of frequencies	Location in frequency range of operation
<input checked="" type="checkbox"/> 1 MHz or less	1	Middle
<input type="checkbox"/> 1 MHz to 10 MHz	2	1 near top and 1 near bottom
<input type="checkbox"/> More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom

1.3 ANTENNA INFORMATION

Antenna Type	Coil Antenna
--------------	--------------

Remark:

1. Disclaimer: Antenna information is provided by the applicant, test results of this report are applicable to the sample EUT received.

1.4 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
AC Powerline Conducted Emission	± 2.213 dB
Channel Bandwidth	± 2.7%
Radiated Emission_9kHz-30MHz	± 3.761 dB
Radiated Emission_30MHz-200MHz	± 3.473 dB
Radiated Emission_200MHz-1GHz	± 3.946 dB

Remark:

1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k=2$
2. ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report.

1.5 FACILITIES AND TEST LOCATION

All measurement facilities used to collect the measurement data are located at

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City, Taiwan.
 No. 12, Ln. 116, Wugong 3rd Rd., Wugu Dist., New Taipei City, Taiwan.

CAB identifier: TW1309

Test site	Test Engineer	Remark
AC Conduction Room	Tony Chao	-
Radiation	Tony Chao	-
Conducted	Marco Chan	-

Remark: The lab has been recognized as the FCC accredited lab. under the KDB 974614 D01 and is listed in the FCC public Access Link (PAL) database, FCC Registration No. :444940, the FCC Designation No.:TW1309

1.6 INSTRUMENT CALIBRATION

3M 966A Chamber Test Site_125K					
Equipment	Manufacturer	Model	S/N	Cal Date	Cal Due
PXA Signal Analyzer	Keysight Technologies	N9030B	MY62291089	2022-10-14	2023-10-13
Loop Antenna	COM-POWER	AL-130	121051	2023-05-23	2024-05-22
Preamplifier	EMEC	EM330	060609	2023-02-22	2024-02-21
Thermo-Hygro Meter	WISEWIND	1206	D07	2022-12-19	2023-12-18
Bi-Log Antenna	Sunol Sciences	JB3	A030105	2023-08-08	2024-08-07
Cable	Huber+Suhner	104PEA	20995+21000+182330	2023-02-22	2024-02-21
Turn Table	CCS	CC-T-1F	N/A	N.C.R	N.C.R
Controller	CCS	CC-C-1F	N/A	N.C.R	N.C.R
Antenna Tower	CCS	CC-A-1F	N/A	N.C.R	N.C.R
Software	e3 V9-210616c				

Conducted					
Equipment	Manufacturer	Model	S/N	Cal Date	Cal Due
LOOP ANTENNA	COM-POWER	AL-130	02-2644	2023-01-13	2024-01-12
EXA Signal Analyzer	KEYSIGHT	N9010B	MY60242460	2023-02-02	2024-02-01
Software	N/A				

AC Power Line Conducted Test Room					
Equipment	Manufacturer	Model	S/N	Cal Date	Cal Due
EMI Test Receiver	R&S	ESCI	100064	2023-06-07	2024-06-06
LISN	TESEQ	LN2-16N	22012	2023-03-08	2024-03-07
Cable	EMCI	CFD300-NL	CERF	2023-06-27	2024-06-26
Software	EZ-EMC(CCS-3A1-CE-WUGU)				

Remark:

1. Each piece of equipment is scheduled for calibration once a year.
2. N.C.R. = No Calibration Required.

1.7 SUPPORT AND EUT ACCESSORIES EQUIPMENT

There are no accessories and support equipment be used during the test.

EUT Accessories Equipment					
No.	Equipment	Brand	Model	Series No.	FCC ID
	N/A				

Support Equipment					
No.	Equipment	Brand	Model	Series No.	FCC ID
1	Phone	Apple	MQ8L2TA/A	N/A	N/A
2	Adapter	Lenovo	ADL135SLC3A	N/A	N/A
3	Mobile Phone	Apple	iphone 14	N/A	N/A

1.8 TEST METHODOLOGY AND APPLIED STANDARDS

The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC15.203, FCC 15.205, FCC 15.209 and FCC 15.215.

2. TEST SUMMARY

FCC Standard Sec.	Chapter	Test Item	Result
15.215	4.1	20dB Bandwidth	Pass
15.209 / 15.205	4.2	Transmitter Radiated Emission	Pass
15.207	4.3	AC Power-line Conducted Emission	Pass
15.203	4.4	Antenna Requirement	Pass

3. DESCRIPTION OF TEST MODES

3.1 THE WORST MODE OF OPERATING CONDITION

Operation mode	127KHz
RF Field strength	<u>-7.11 dBuV/m</u> @300m

3.2 THE WORST MODE OF MEASUREMENT

AC Power Line Conducted Emission	
Test Condition	AC Power line conducted emission for line and neutral
Power supply Mode	Mode 1:WPC EUT power by Adapter
Worst Mode	<input checked="" type="checkbox"/> Mode 1 <input type="checkbox"/> Mode 2 <input type="checkbox"/> Mode 3 <input type="checkbox"/> Mode 4

Radiated Emission Measurement Below 1G	
Test Condition	Radiated Emission Below 1G
Power supply Mode	Mode 1: EUT power by Adapter
Worst Mode	<input checked="" type="checkbox"/> Mode 1 <input type="checkbox"/> Mode 2 <input type="checkbox"/> Mode 3 <input type="checkbox"/> Mode 4

Remark:

1. The worst mode was record in this test report.
2. AC power line conducted emission and for below 1G radiation emission were performed the EUT transmit at the highest output power channel as worse case.
3. EUT pre-scanned in three axis ,X, Y, Z and two polarity, for radiated measurement. The worst case(Z-Plane) were recorded in this report

3.3 FCC PART 15.205 & RSS GEN SECTION 8.10 RESTRICTED BANDS OF OPERATIONS

According to FCC 15.205,

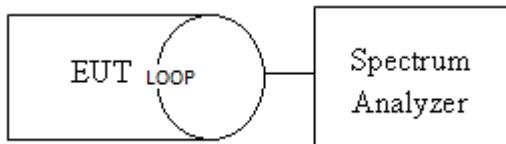
(a) Except as shown in other rules, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	(²)
13.36 - 13.41	322 - 335.4		

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

(b) Except as provided by other rules, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.


4. TEST RESULT

4.1 20DB BANDWIDTH

DEFINITION

According to FCC Part 15.215 (c) ,Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

TEST CONFIGURATION

TEST PROCEDURE

The Loop antenna connected to the spectrum analyzer, was touching to the transmitter antenna. Set the RBW=1KHz, VBW \geq 3 x RBW, Detector = Peak, Trace mode = Max hold, Sweep = 500ms. Measure the maximum width of the emission that is constrained by the frequencies associated with the Occupied Bandwidth.

TEST RESULTS

Compliance

Test Data

Temperature: 24.9°C

Test Date: September 8, 2023

Humidity: 54% RH

Tested By: Marco Chan

Occupied Channel Bandwidth Result						
Modulation Mode	Frequency (Fc)	99% Bandwidth (kHz)	99% Lower (kHz)	99% Upper (kHz)	20dB Lower (kHz)	20dB Upper (kHz)
Full charging loading	127.78	2.298	126.629	128.927	126.424	129.127
Limit		N/A	N/A	N/A	N/A	N/A
Result	Complied					

Note:

Because the measured signal adjusting the RBW per C63.10 would not be practical since measured bandwidth will always follow the RBW and the result will be approximately twice the RBW.

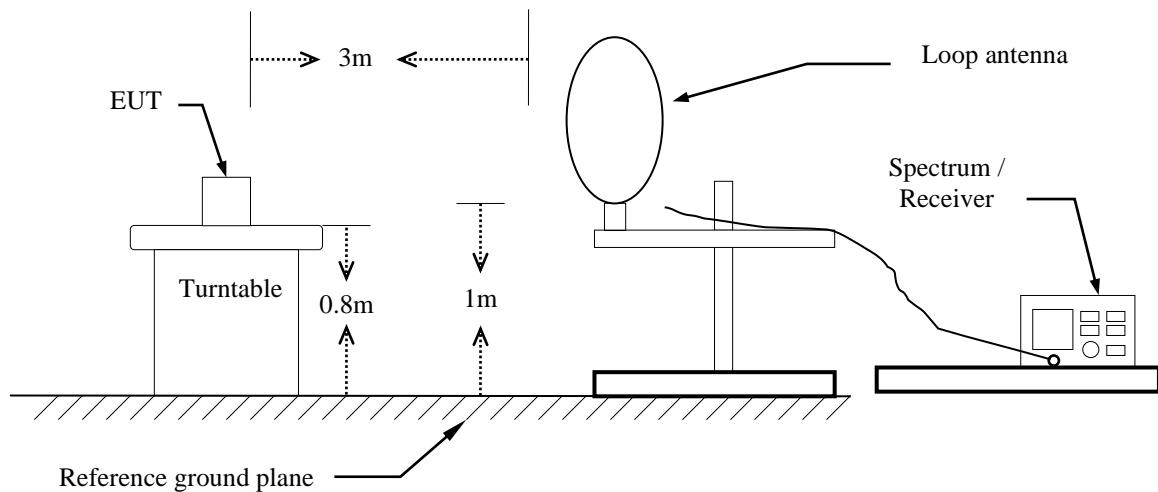
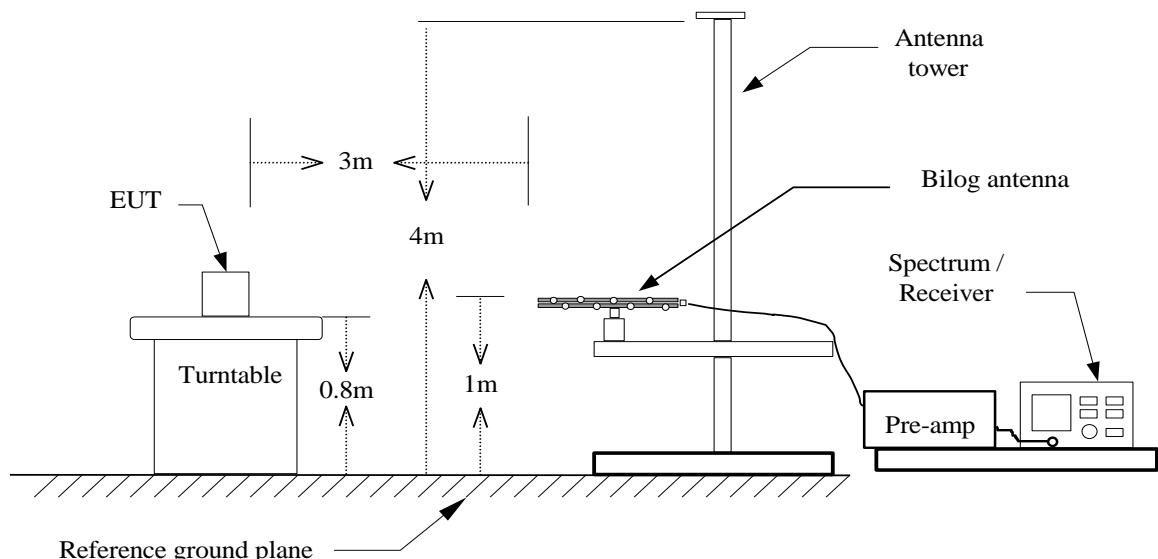
Test Plots

20dB & 99%OBW

4.2 TRANSMITTER RADIATED EMISSION

LIMIT

1. According to FCC PART 15.209(a), except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:



Frequency (MHz)	Field Strength ($\mu\text{V/m}$)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: Except as provided in other rules, fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

2. In the above emission table, the tighter limit applies at the band edges.

Above 30MHz

Frequency (MHz)	Field Strength		Measurement Distance (meter)
	($\mu\text{V/m}$)	($\text{dB}\mu\text{V/m}$)	
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

Test Configuration**9kHz ~ 30MHz****30MHz ~ 1GHz**

TEST PROCEDURE

For 9KHz ~ 30MHz

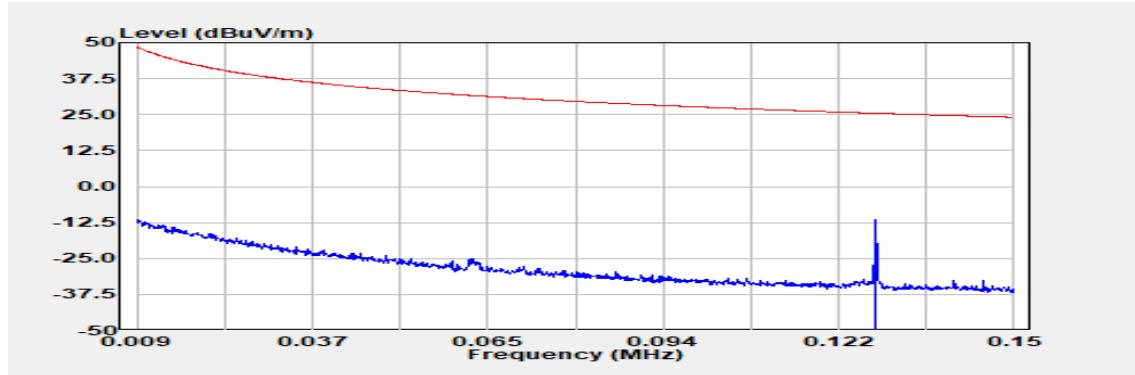
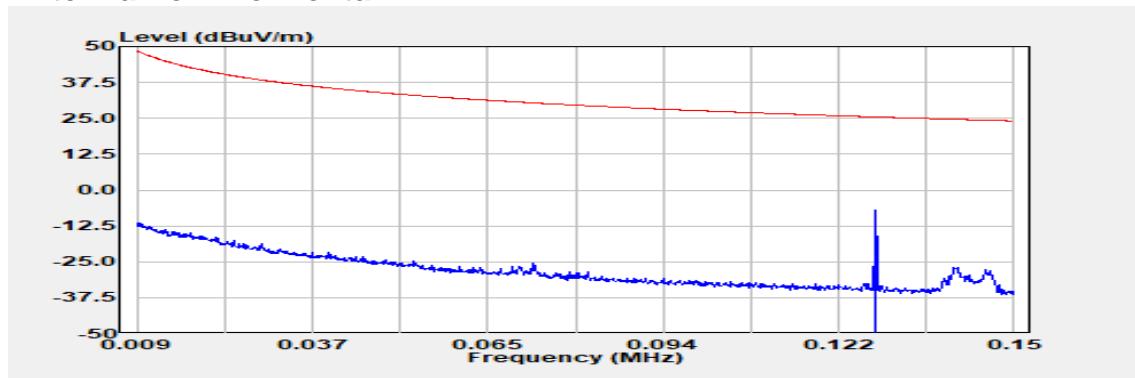
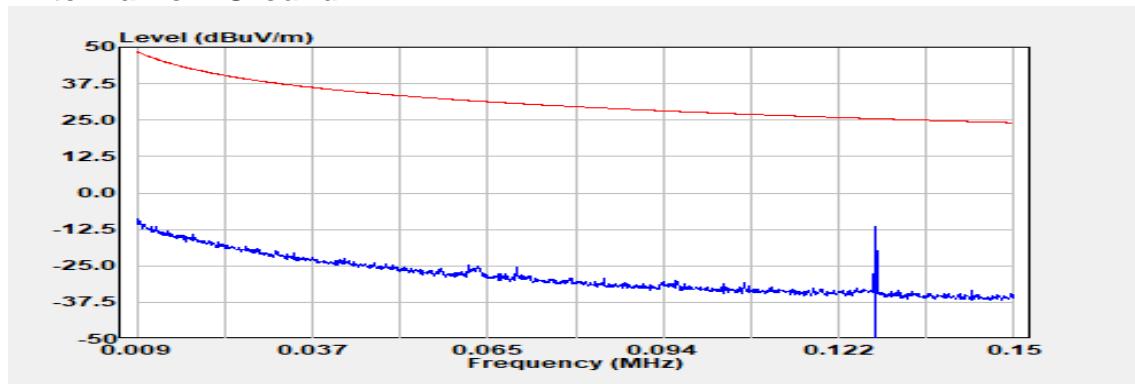
1. The EUT is placed on a turntable, which is 0.8m above ground plane.
2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
3. EUT is set 3m away from the receiving antenna, which is varied from 1m to find out the highest emissions.
4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal, vertical and ground parallel.
6. Set the spectrum analyzer in the following setting as:

Below 1GHz:

Frequency	RBW
9 kHz to 150 kHz	200 Hz to 300Hz
0.15MHz to 30 MHz	9 kHz to 10 kHz

7. Repeat above procedures until the measurements for all frequencies are complete.
8. Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

For 30MHz ~ 1GHz




1. The EUT is placed on a turntable, which is 0.8m above ground plane.
2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
6. Set the spectrum analyzer in the following setting as:
RBW=100kHz / VBW=300kHz / Sweep=AUTO
7. Repeat above procedures until the measurements for all frequencies are complete.

Fundamental Strength**Operation Mode:** Main**Temperature:** 24.6°C**Test Date:** September 11, 2023**Humidity:** 57% RH**Tested by:** Tony Chao

Freq. MHz	Detector Mode PK/QP/AV	Spectrum Read Level @3m dB μ V	Factor @3m dB	Actual FS @3m dB μ V/m	Factor @30m&300m dB	Actual FS @30m&300m dB μ V/m	Limit dB μ V/m	Margin dB	Antenna Pol.
0.127	Peak	52.63	13.80	66.42	-80.00	-13.58	25.47	-39.05	V
0.127	Peak	52.09	13.80	65.89	-80.00	-7.11	25.47	-32.59	H
0.127	Peak	52.64	13.80	66.44	-80.00	-13.56	25.47	-39.04	G

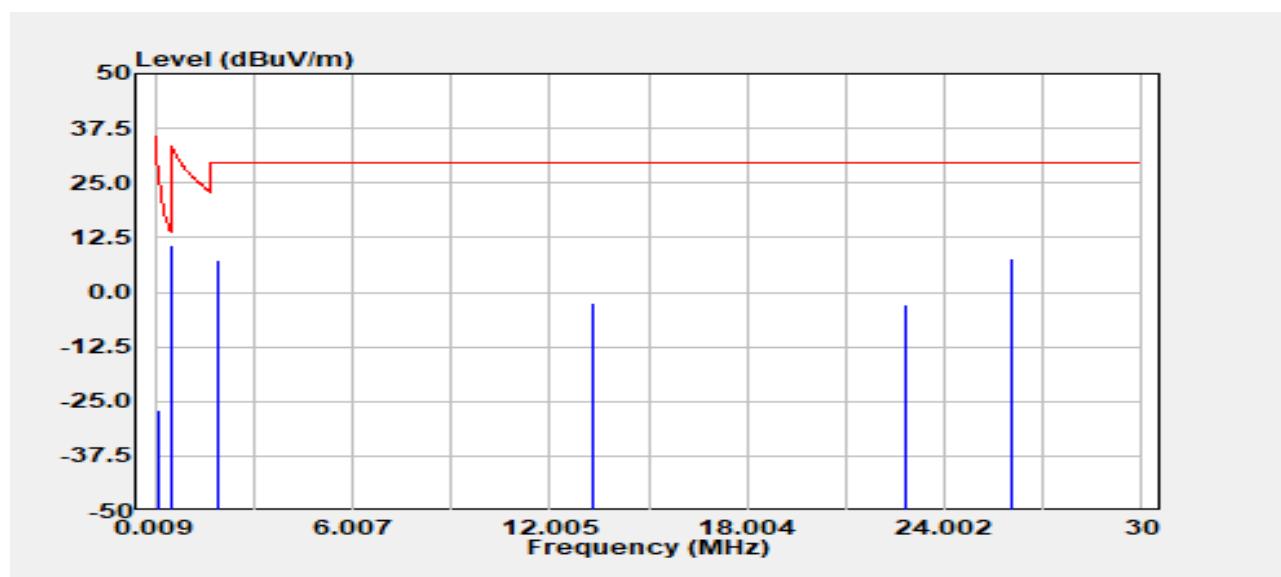
Remark:

1. Factor = Antenna factor + Cable loss + Distance conversion factor
2. Ant. Pol. (V/H/G): V=perpendicular, H=parallel, G=ground-parallel.

Antenna Pol.: Vertical**Antenna Pol.: Horizontal****Antenna Pol.: Ground**

9 kHz – 30MHz

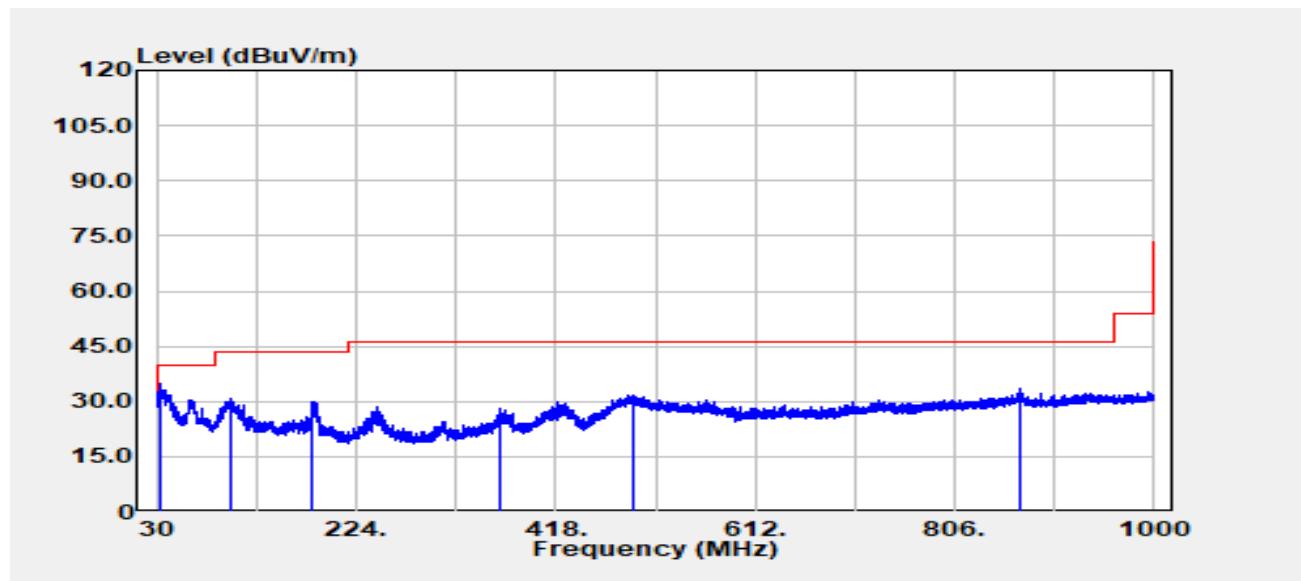
Operation Mode: Charging mode


Antenna Pol.: Horizontal

Temperature: 24.6°C

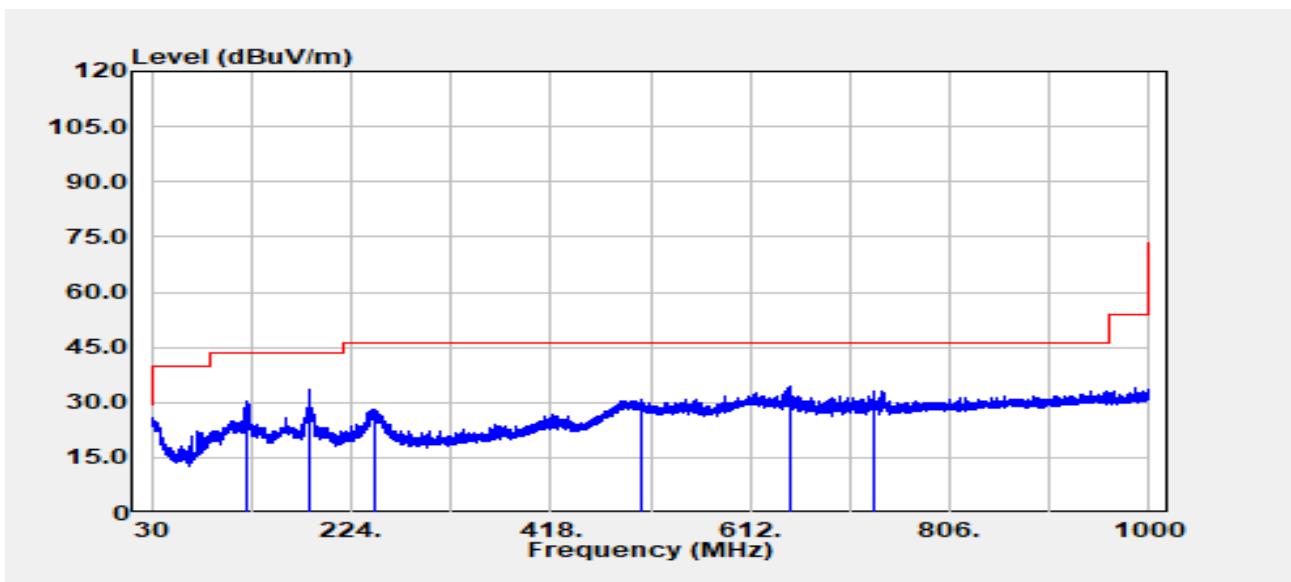
Test Date: September 11, 2023

Humidity: 57% RH


Tested by: Tony Chao

Freq. MHz	Detector Mode PK/QP/AV	Spectrum Read Level @3m dB μ V	Factor @3m dB	Actual FS @3m dB μ V/m	Factor @30m&300m dB	Actual FS @30m&300m dB μ V/m	Limit dB μ V/m	Margin dB
0.140	Peak	39.22	13.90	53.13	-80.00	-26.87	24.66	-51.53
0.548	Peak	36.35	14.47	50.82	-40.00	10.82	32.83	-22.01
1.901	Peak	32.64	14.83	47.47	-40.00	7.47	29.54	-22.07
13.314	Peak	20.81	16.67	37.48	-40.00	-2.52	29.54	-32.06
22.786	Peak	20.79	16.28	37.07	-40.00	-2.93	29.54	-32.47
26.020	Peak	30.57	17.01	47.59	-40.00	7.59	29.54	-21.95

Remark:


1. The frequency bands 9-90 kHz, 110-490 kHz measurements employing an average detector and other below 1GHz measurements employing a CISPR quasi-peak detector.
2. For 9-90kHz, 110kHz-490kHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit.
For other frequencies, the Peak value was under the Quasi-peak limit, therefore the Quasi-peak value compliance with the limit. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit.
3. Factor = Antenna factor + Cable loss + Distance conversion factor
4. Since the Factor included the distance conversion factor, the distance of Actual FS is 300m or 30m. (9kHz~490kHz is 300m, 490kHz~30MHz is 30m) The worst receiver antenna pol. is horizontal.

Below 1 GHz**Operation Mode:** Charging mode**Antenna Pol.:** Vertical**Temperature:** 24.6°C**Test Date:** September 11, 2023**Humidity:** 57% RH**Tested by:** Tony Chao

Freq. (MHz)	Detector Mode (PK/QP/AV)	Spectrum Reading Level (dB μ V)	Factor (dB)	Actual FS (dB μ V/m)	Limit @3m (dB μ V/m)	Margin (dB)
33.638	Peak	39.87	-5.06	34.81	40.00	-5.19
100.931	Peak	43.25	-12.29	30.96	43.50	-12.54
181.684	Peak	41.74	-11.68	30.06	43.50	-13.44
364.044	Peak	35.16	-7.11	28.05	46.00	-17.95
494.388	Peak	35.31	-3.63	31.68	46.00	-14.32
869.778	Peak	30.97	2.31	33.29	46.00	-12.71

Remark:

1. Factor = Antenna factor + Cable loss – Amp gain

Operation Mode: Charging mode**Antenna Pol.:** Horizontal**Temperature:** 24.6°C**Test Date:** September 11, 2023**Humidity:** 57% RH**Tested by:** Tony Chao

Freq. (MHz)	Detector Mode (PK/QP/AV)	Spectrum Reading Level (dB μ V)	Factor (dB)	Actual FS (dB μ V/m)	Limit @3m (dB μ V/m)	Margin (dB)
122.999	Peak	39.37	-9.08	30.29	43.50	-13.21
183.381	Peak	45.28	-11.63	33.65	43.50	-9.85
245.825	Peak	39.08	-10.79	28.29	46.00	-17.71
505.421	Peak	34.57	-3.58	31.00	46.00	-15.00
650.679	Peak	35.27	-0.89	34.38	46.00	-11.62
732.523	Peak	32.94	0.32	33.26	46.00	-12.74

Remark:

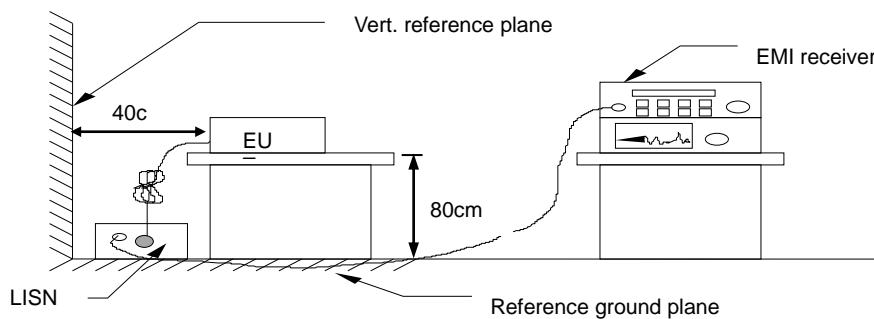
1. Factor = Antenna factor + Cable loss – Amp gain

4.3 AC POWER LINE CONDUCTED EMISSION

4.3.1 Test Limit

According to §15.207(a).

Frequency Range (MHz)	Limits(dB μ V)	
	Quasi-peak	Average
0.15 to 0.50	66 to 56*	56 to 46*
0.50 to 5	56	46
5 to 30	60	50

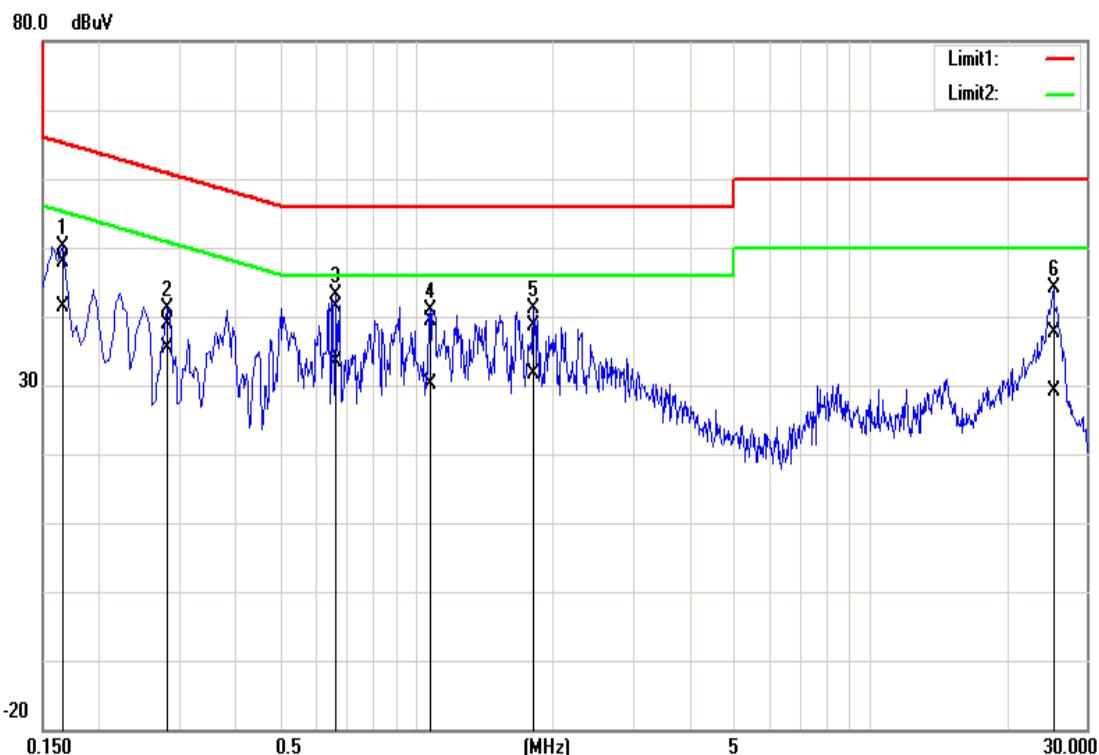

* Decreases with the logarithm of the frequency.

4.3.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 6.2,

1. The EUT was placed on a table, which is 0.8m above ground plane.
2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
3. Repeat above procedures until all frequency measured were complete

4.3.3 Test Setup

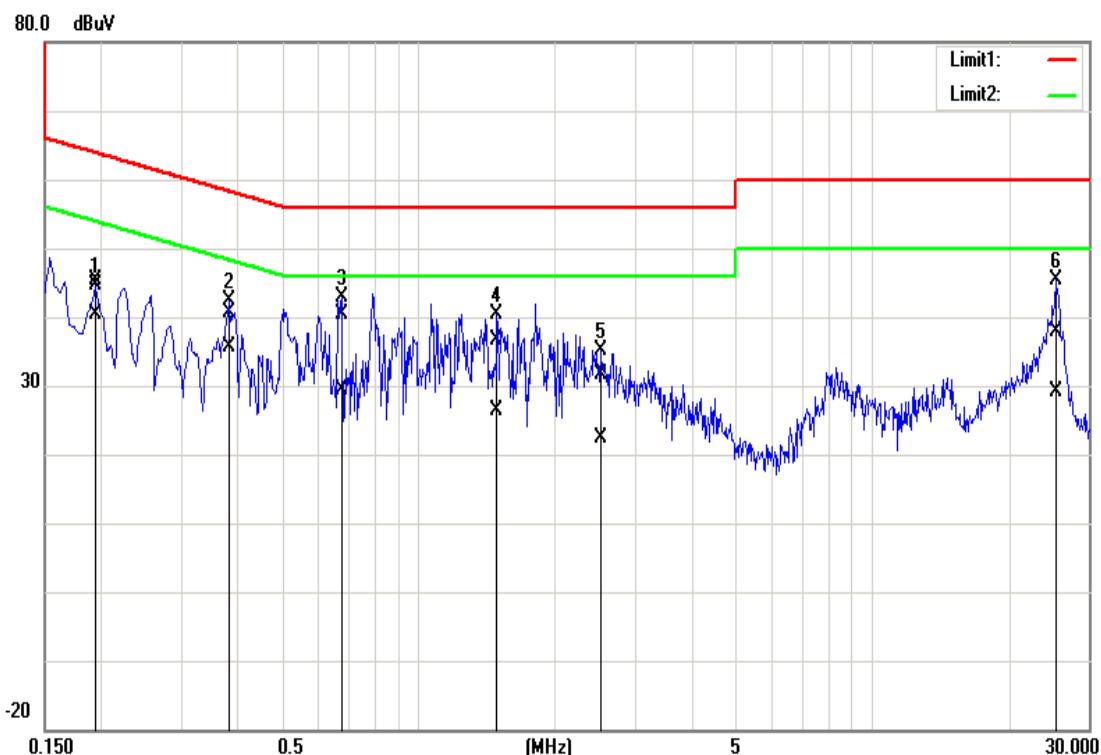


4.3.4 Test Result

Pass.

Test Data

Test Mode:	Mode 1	Temp/Hum	25(°C) / 50%RH
Phase:	Line	Test Date	September 21, 2023
		Test Engineer	Tony Chao



Frequency (MHz)	Quasi Peak reading (dBuV)	Average reading (d uV)	Correction factor (dB)	Quasi Peak result (dBuV)	Average result (dBuV)	Quasi Peak limit (dBuV)	Average limit (dBuV)	Quasi Peak margin (dB)	Average margin (dB)	Remark
0.1660	47.81	41.26	0.15	47.96	41.41	65.16	55.16	-17.20	-13.75	Pass
0.2820	38.65	35.29	0.15	38.80	35.44	60.76	50.76	-21.96	-15.32	Pass
0.6660	41.30	33.16	0.15	41.45	33.31	56.00	46.00	-14.55	-12.69	Pass
1.0740	39.21	29.98	0.16	39.37	30.14	56.00	46.00	-16.63	-15.86	Pass
1.8180	38.33	31.51	0.21	38.54	31.72	56.00	46.00	-17.46	-14.28	Pass
25.3620	37.16	28.42	0.59	37.75	29.01	60.00	50.00	-22.25	-20.99	Pass

Note: 1. Correction factor = LISN loss + Cable loss.

Report No.: TMWK2308002994KR

Test Mode:	Mode 1	Temp/Hum	25(°C) / 50%RH
Phase:	Neutral	Test Date	September 21, 2023
		Test Engineer	Tony Chao

Frequency (MHz)	Quasi Peak reading dBuV	Average reading (dBuV)	Correction factor (dB)	Quasi Peak result (dBuV)	Average result (dBuV)	Quasi Peak limit (dBuV)	Average limit (dBuV)	Quasi Peak margin (dB)	Average margin (dB)	Remark
0.1940	45.28	40.11	0.19	45.47	40.30	63.86	53.86	-18.39	-13.56	Pass
0.3820	40.52	35.40	0.19	40.71	35.59	58.24	48.24	-17.53	-12.65	Pass
0.6780	40.28	29.17	0.19	40.47	29.36	56.00	46.00	-15.53	-16.64	Pass
1.4940	36.44	26.08	0.23	36.67	26.31	56.00	46.00	-19.33	-19.69	Pass
2.5180	31.30	22.21	0.28	31.58	22.49	56.00	46.00	-24.42	-23.51	Pass
25.3780	37.27	28.63	0.57	37.84	29.20	60.00	50.00	-22.16	-20.80	Pass

Note: 1. Correction factor = LISN loss + Cable loss.

4.4 ANTENNA REQUIREMENT

§ 15.203 Antenna requirement.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

Antenna Type	Coil Antenna
---------------------	--------------

Remark:

- 1.The antenna(s) of the EUT are permanently attached and there are no provisions for connection to an external antenna. So the EUT complies with the requirements of §15.203.

- End of Test Report -