

_				Chain	0101	- Chan	111					
🍺 Keysigh	nt Spectrum Analyzer - Sw									- J ×		
KU	RF 50 Ω			SEN	SE:INT		ALIGN AUTO		Oct 31, 2019	Frequency		
Center	r Freq 5.27000			Trig: Free	Dun	#Avg Typ	e:RMS	TYP	E 1 2 3 4 5 6 E A WWWW	Trequency		
		PN	0:Fast 🖵 ain:Low	#Atten: 3				DE	ANNNN			
		10					MIL		7 011-	Auto Tun		
	Ref Offset 1 (IVIN	7 GHz				
	0 dB/div Ref 21.00 dBm -2.27 dBm											
- ^{og} 🗖												
									I	Center Fre		
11.0										5.270000000 GH		
1.00												
1.00										Start Fre		
			mannen	and a start and a start and a start a	1 million	money						
9.00		++				+				5.220000000 GH		
			[1						
19.0						}						
10.0										Stop Fre		
										5.320000000 GH		
29.0		1 1										
		monneended										
39.0		and a start and a start					<u> </u>			CF Ste		
	Laborer president and the						aluan nucleo	and the second way	ches.	10.000000 MH		
- r	Mar"								Varahman	<u>Auto</u> Ma		
49.0												
										Eren Offe		
59.0										Freq Offs		
										01		
69.0												
_ Ļ_												
	5.27000 GHz					_		Span 1	00.0 MHz			
#Res B	SW 1.0 MHz		#VBW	3.0 MHz		Sweep	(#Swp) 1	.000 ms (1001 pts)			
ISG							STATUS					
								1				

Channel 54 – Chain A

Channel 62 – Chain A

				Chann		Chan				
ight Spec		rept SA								
				SEI	SE:INT		ALIGN AUTO			Frequency
er Fr	eq 5.31000	00000 GH	z	Tains From	. D	#Avg Typ	e:RMS	TRAC	E 1 2 3 4 5 6	rrequency
		PN IFC	IO: Fast 🖵 Gain:Low					DE	ANNNN	
/div							M	(r1 5.312 -3.(27 GHz 58 dBm	Auto Tune
										Center Freq
										5.310000000 GHz
					 1					
					9					Start Freq
			perman	mund	/ ~~~	mound				5.26000000 GHz
			/							
										Stop Freq
										5.360000000 GHz
			1							5.36000000 GH2
		and the second								05 04
	Mangalanth	and the second second					1			CF Step 10.000000 MHz
www.	- And the second se						Manundan	horyshallouting	When the state	Auto Man
-										
										Freq Offset
										0 Hz
BW 1	.0 MHz		#VBW	3.0 MHz		Sweep	(#Swp) 1	.000 ms (1001 pts)	
							STATU	5		
	rdiv	Ref Offset 1 rdiv Ref 21.00 (er Freq 5.31000000 GH	RF 50 0 AC er Freq 5.31000000 GHz PROSENT Ref Offset 1 dB Ref 21.00 dBm	RF 50.0 AC SEP er Freq 5.310000000 GHz Trig: Free PND: Fast PND: Fast Trig: Free Idiv Ref Offset 1 dB Ref 21.00 dBm	RF 50 Ω AC SENSE:INT er Freq 5.310000000 GHz Trig: Free Run IFGain:Low Trig: Free Run #Atten: 30 dB rdiv Ref Offset 1 dB Ref 21.00 dBm 1 idiv Image: Action of the second secon	RF 50.Ω AC SENSE.INT er Freq 5.310000000 GHz IFGain:Low Trig: Free Run #Atten: 30 dB #Avg Typ rdiv Ref Offset 1 dB Ref 21.00 dBm Image: Comparison of the set of the	RF 50.0. AC SENSE:INT ALIGN AUTO er Freq 5.310000000 GHz PNO: Fast PNO: Free Run #Atten: 30 dB #Avg Type: RMS Ref Offset 1 dB MI Ref 21.00 dBm Image: Auto Pho: Fast Pho	RF 50.0 AC SENSE.INT ALIGN AUTO 10:40:45 AM er Freq 5.310000000 GHz IFGain:Low Trig: Free Run #Atten: 30 dB #Avg Type: RMS Trace Type: RMS Ref Offset 1 dB rdiv Ref 21.00 dBm -3.5 -3.5 Idiv Idiv Idiv Idiv Idiv -3.5 Idiv Ref 21.00 dBm -3.5 -3.5 -3.5 Idiv Idiv Idiv Idiv Idiv Idiv Ref Offset 1 dB rdiv Idiv Idiv Idiv Idiv -3.5 Idiv Idiv Idiv Idiv Idiv Idiv Idiv Idiv Idiv Idiv Idiv Idiv Idiv Idiv Idiv Idiv Idiv Idiv Idiv Idiv Idiv Idiv Idiv Idiv Idiv Idiv Idiv Idiv Idiv Idiv Idiv Idiv Idiv Idiv Idiv Idiv Idiv Idiv Idiv Idiv<	RF S0.0 AC SENSE:INT ALIGN AUTO 10:40:45 ANOCT 31, 2015 er Freq 5.310000000 GHz PNO: Fast IFGain:Low Trig: Free Run #Atten: 30 dB #Avg Type: RMS Trace[12:3:4:56 TVPE: ANNNNN Ref Offset 1 dB rdiv Ref 21.00 dBm -3.58 dBm -3.58 dBm Idiv Image: Annotation of the sense s

🎉 Keysight Sp	ectrum Analyzer - Swep									
× Center F	RF 50 Ω req 5.510000			SEN Trig: Free	Run	#Avg Typ	ALIGN AUTO	TRAC	M Oct 31, 2019 DE 1 2 3 4 5 6 PE A WWWW	Frequency
10 dB/div	Ref Offset 1 dE Ref 21.00 dE	IFGa	D: Fast 😱 ain:Low	#Atten: 3	Auto Tun					
- og 11.0										Center Fre 5.510000000 GH
9.00					*					Start Fre 5.460000000 GH
29.0										Stop Fre 5.56000000 G⊢
39.0 ——							Villenam	-		CF Ste 10.000000 MH <u>Auto</u> Ma
49.0 59.0									and the second sec	Freq Offso 0 ⊦
69.0										
#Res BW	51000 GHz 1.0 MHz		#VBW	3.0 MHz		Sweep	/	.000 ms (00.0 MHz (1001 pts)	
SG							STATUS	6		

Channel 102 – Chain A

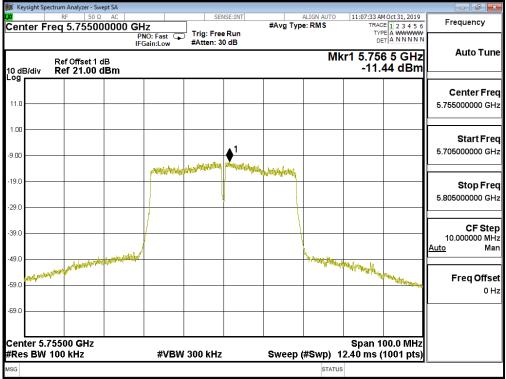
Channel 118 – Chain A

🎉 Key	/sight Spectrum Analyzer - Swe	pt SA			10 01				
₩ Cen	RF 50 Ω ter Freq 5.59000	AC 0000 GHz		SENSE:INT	#Avg Typ	ALIGN AUTO	10:45:37 AM TRACE	Oct 31, 2019 1 2 3 4 5 6 A WWWWW	Frequency
10 dE	Ref Offset 1 d 3/div Ref 21.00 d	IFGain B		ten: 30 dB	М	DET kr1 5.588	ANNNNN	Auto Tune	
Log 11.0									Center Freq 5.590000000 GHz
1.00 -9.00			- and the second second						Start Freq 5.540000000 GHz
-19.0 -29.0									Stop Freq 5.640000000 GHz
-39.0	with the second s	all and a second se				Workson	and the start when	and many	CF Step 10.000000 MHz <u>Auto</u> Man
-59.0									Freq Offset 0 Hz
-69.0									
	ter 5.59000 GHz s BW 1.0 MHz		#VBW 3.0	MHz	Sweep	(#Swp)	Span 10 1.000 ms (1		
MSG						STATU	IS		

Keysight Spectr	um Analyzer - Swe	ent SA		0		- Cha				
enter Fre	RF 50 Ω	AC 0000 GH	Z IO: Fast 😱	7	NSE:INT	#Avg Typ	ALIGN AUTO e: RMS	TRAC	E 1 2 3 4 5 6	Frequency
	Ref Offset 1 d Ref 21.00 d	IFO	ain:Low	#Atten: 3			1 2 GHz 58 dBm	Auto Tun		
11.0										Center Fre 5.670000000 G⊦
9.00					1	-				Start Fre 5.620000000 GH
29.0										Stop Fre 5.720000000 GH
19.0	er and the second	-					And and a second	-	the for the last and the second	CF Ste 10.000000 Mi <u>Auto</u> Mi
i9.0										Freq Offs 01
69.0										
Center 5.67 #Res BW 1.			#VBW	/ 3.0 MHz		Sweep		.000 ms (00.0 MHz 1001 pts)	
ISG							STATUS	5		

Channel 134 – Chain A

Channel 142 – Chain A-Band3


Agilent Spect	rum Analyzer - S	wept SA								
<mark>w</mark> ⊥ Center F	RF 50 Freq 5.7100	00000 GH	z 10: Fast G		SE:INT	#Avg Ty	ALIGNAUTO pe: RMS	TRAC	MNov 07, 2019 E 1 2 3 4 5 6 PE A WWWWW	Frequency
10 dB/div	Ref Offset 1 Ref 21.00	IF0	io: Fast G Gain:Low	#Atten: 30			Mkr2 5.712 6 GF -3.37 dB			Auto Tune
Log 11.0 1.00				marine	↓ ²					Center Freq 5.710000000 GHz
-19.0 -29.0 -39.0	and the second						manging			Start Freq 5.66000000 GHz
-49.0 -59.0 -69.0										Stop Freq 5.760000000 GHz
Center 5. #Res BW		×	#VB\	N 3.0 MHz	F		(#Swp) 1	.000 ms (00.0 MHz 1001 pts)	CF Step 10.000000 MHz <u>Auto</u> Man
1 N	1 f 1 f	5.725 (5.712 (0 GHz 5 GHz	-6.52 dE -3.37 dE	3m				E	Freq Offset 0 Hz
7 8 9 10 11									v	
MSG								3		

Agilent	Spectru		alyzer - Swe											
الا Cent	er Fr	RF eq		00000 GH	Iz			#Avg Ty	ALIGN AUTO pe: RMS	TRA	MNov 07, 2019 E 1 2 3 4 5 6 PE A WWWWW	Frequency		
10 dE	Ref Offset 1 dB Mkr2 5.727 5 GHz 0 dB/div -14.81 dBm													
Log 11.0 1.00								1	2			Center Freq 5.710000000 GHz		
-19.0 - -29.0 - -39.0 -					promite	nter for an and a second second	unnialiteireire	toolar and the state of the sta	\			Start Freq 5.660000000 GHz		
-49.0 -59.0 -69.0	limicat Wind	, 1994 1	_{and and an and a lateral states}	éster Neddareste					^N urbedolitione <mark>e</mark> n	a ten dastreffest _{in b} er finnen	Raff Carbon Alberta	Stop Freq 5.760000000 GHz		
#Res	er 5.7 8 BW	100			#VE	BW 300 kHz		· ·	(#Swp)	12.40 ms (00.0 MHz 1001 pts)	CF Step 10.000000 MHz <u>Auto</u> Man		
1 2 3 4 5 6	N 1 N 1	f		5.725 5.727		-15.33 d -14.81 d	Bm					Freq Offset 0 Hz		
7 8 9 10 11 <											v			
MSG									K STATU	IS				

Channel 142 – Chain A-Band4

Channel 151 – Chain A

					0	паппе	1107	Chai						
🊺 Key	ysight Spec	trum Analyzer - Swe	pt SA											
LXI		RF 50 Ω	AC		SEN	NSE:INT		ALIGN AUTO		M Oct 31, 2019	Frequency			
Cen	ter Fr	eq 5.79500	0000 GH	z]		#Avg Typ	e:RMS	TRA	CE 1 2 3 4 5 6	Frequency			
			PN	IO: Fast 🛛 🕞	Trig: Free				TY	PE A WWWWW ET A N N N N N				
			IFG	ain:Low	#Atten: 3	0 dB			D	EIJA INININI				
								М	kr1 5 79	5.6 GHz	Auto Tune			
	Ref Offset 1 dB Mkr1 5.795 6 GHz 0 dB/div Ref 21.00 dBm -11.83 dBm													
	3/div	Ref 21.00 d	IBm						-11.	83 UBM				
Log														
											Center Freq			
11.0														
11.0											5.795000000 GHz			
1.00														
											Start Freg			
						. 1								
-9.00						≜ 1			_		5.745000000 GHz			
					Constation and	Annay Paris United and								
				phylocial and the second	Malifestate	and a summarie with	puter and the second							
-19.0						(+		Stop Freq			
						8	1				5.845000000 GHz			
-29.0							1		-					
				1			1							
20.0				ł							CF Step			
-39.0								1			10.000000 MHz			
								¥.			Auto Man			
-49.0		nunliundungunnda	States and shell					h		West miles have been sub-r				
-40.0		Americanon	The Understanding					Mar Walk	mander 1					
	L. Jacobilli	WWWWWWWW P							of a double line of the line o		Freq Offset			
-59.0	application .	·							_	and the state of t	Frequise			
										a state	0 Hz			
-69.0														
		0500 011-				1	1	1	-					
		9500 GHz					_			00.0 MHz				
#Re	s BW ′	100 kHz		#VBW	300 kHz		Sweep	(#Swp)	12.40 ms ((1001 pts)				
MSG								STATU	21		P			
Dem								STAIL						

Channel 159 – Chain A

Channel	38 –	Chain B	

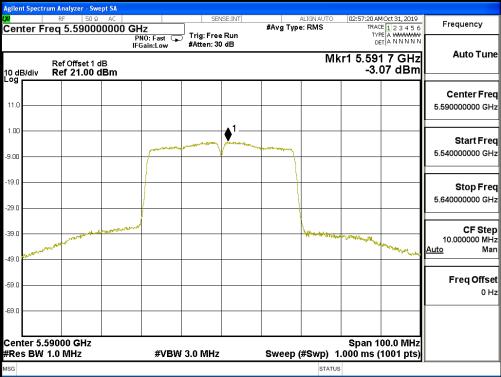
Agilent Spect	rum Analyzer - Swe									
🗶 Center F	RF 50 Ω Freq 5.19000		z	1	ISE:INT	#Avg Typ	ALIGN AUTO e: RMS	TRAC	4Oct 31, 2019 E 1 2 3 4 5 6	Frequency
	Ref Offset 1 o	PN IFG	– IO: Fast 🕞 Jain:Low	Trig: Free #Atten: 30			M	⊳ kr1 5.19	a NNNN 2 3 GHz	Auto Tune
10 dB/div Log	Ref 21.00 c							-6.	07 dBm	
11.0										Center Freq 5.190000000 GHz
1.00 -9.00			- providenti sere	allow the second second	• ¹	The second second				Start Freq 5.140000000 GHz
-19.0										Stop Freq 5.24000000 GHz
-39.0	and the second s	anner								CF Step 10.000000 MHz Auto Man
-49.0	a garen an						American	and the second have	Adrew Reduced	Freq Offset
-69.0										0 Hz
#Res BW	.19000 GHz 1.0 MHz		#VBW	3.0 MHz		Sweep	,	1.000 ms (00.0 MHz 1001 pts)	
MSG							STATU	s		

Channel 46 – Chain B

Agilent Spect	rum Analyzer - Swe	ept SA								
KN Center F	RF 50 Ω req 5.23000	0000 GH	Z 10: Fast 🔾]		#Avg Typ	ALIGN AUTO e: RMS	TRAC	4Oct 31, 2019 E 1 2 3 4 5 6 E A WWWWW	Frequency
10 dB/div	IFGain:Low #Atten: 30 dB DETIA Ref Offset 1 dB Mkr1 5.232 4 10 dB/div Ref 21.00 dBm -3.14									
11.0										Center Freq 5.230000000 GHz
1.00 -9.00				www.	1					Start Freq 5.180000000 GHz
-19.0										Stop Freq 5.280000000 GHz
-39.0	reform hereiterriterriterriterriterriterriterri	And and a second se					www.lan	ndersk-Mlow-MMayh	My low low may	CF Step 10.000000 MHz <u>Auto</u> Man
-59.0										Freq Offset 0 Hz
-69.0 Center 5.1 #Res BW	23000 GHz		#\/D\\	3.0 MHz		Sween	(#\$\u0)	Span 1 .000 ms (00.0 MHz	
MSG			#VDVV	3.0 IVINZ		oweep	(#SWP) STATU:	, ,	1001 pts)	

Agilen	t Spectru	ım Analyzer - Sw									
Cen	ter Fr	RF 50 Ω eq 5.27000	00000 GH	z	1	VSE:INT	#Avg Typ	ALIGN AUTO e: RMS	TRAC	4Oct 31, 2019 E 1 2 3 4 5 6	Frequency
		Ref Offset 1	PI IFC dB	NO: Fast 🕞 Gain:Low	Trig: Free #Atten: 30			Mk	r1 5.27		Auto Tune
10 dE Log	3/div	Ref 21.00	dBm	1	1	1		1	-2.4	44 dBm	
11.0											Center Freq 5.270000000 GHz
1.00 -9.00				(maker holdsman,		↓ ¹	- and the second se				Start Freq 5.220000000 GHz
-19.0 -29.0											Stop Freq 5.320000000 GHz
-39.0	Aquelanter	and the second	AND						money	mananana	CF Step 10.000000 MHz <u>Auto</u> Man
-59.0											Freq Offset 0 Hz
-69.0 Cen	ter 5.2	7000 GHz							Span 1	00.0 MHz	
	s BW '	1.0 MHz		#VBW	3.0 MHz		Sweep	,	, ,	1001 pts)	
MSG								STATUS			

Channel 62 – Chain B


Agilen	t Spectrum i	Analyzer - Sw	ept SA								
<mark>⊯</mark> Cen		RF 50 Ω	00000 GH	z	SEM		#Avg Typ	ALIGNAUTO e: RMS	TRAC	Oct 31, 2019 1 2 3 4 5 6 E A WWWWW	Frequency
10 dE		ef Offset 1 (ef 21.00 (dB	IO: Fast 🕞 iain:Low	#Atten: 30			М	⊳⊧ kr1 5.312	ANNNNN	Auto Tune
Log 11.0											Center Freq 5.310000000 GHz
1.00 -9.00					and a start of the	1					Start Freq 5.260000000 GHz
-19.0											Stop Freq 5.36000000 GHz
-39.0	and the second second	- and the second	and the second descent					1 Marin Marina	halpellannan	WWWWWWWWWW	CF Step 10.000000 MHz <u>Auto</u> Man
-59.0											Freq Offset 0 Hz
	ter 5.310 s BW 1.0			#\/B\M	3.0 MHz		Sween	(#Swn) /	Span 10 1.000 ms (1	00.0 MHz	
MSG		111112			0.0 10112		oweep	(#OWP) STATU	,	100 i pt3)	

gnen	ropectru	RF	<mark>zer - Swe</mark> 50 Ω	AC		SEN	ISE:INT		ALIGN AUTO	02:54:57 A	MOct 31, 2019	
en	ter Fr	eq 5.	51000	0000 G	Hz			#Avg Typ		TRA	CE 1 2 3 4 5 6	Frequency
			fset 1 d	B	'NO: Fast ⊂ Gain:Low	#Atten: 30			M	kr1 5.51	1 9 GHz 38 dBm	Auto Tu
0 dE	3/div	Ref 2	1.00 d	Bm	1	1			1	-5.		
11.0												Center Fr 5.510000000 G
1.00 9.00					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		•1	Marrie and a				Start Fr 5.460000000 G
19.0							*					Stop Fr 5.560000000 G
29.0 19.0				New Blackson March	 							CF St 10.000000 M
9.0	and and a start of the start of	-Alexandra	enventer	-					Marrhan	malah Milling		<u>Auto</u> N
59.0	W									 	a and a construction	Freq Offs 0
9.0												
		1000 (1.0 MF			#VB	N 3.0 MHz	ı	Sweep	(#Swp)	Span 1 1.000 ms (00.0 MHz (1001 pts)	
SG									STAT	us		

Channel 102 – Chain B

Channel 118 – Chain B

	NO: Fast 😱 Trig: Free Run	ALIGN AUTO #Avg Type: RMS	03:00:06 AM Oct 31, 2019 TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A N N N N N	Frequency
Ref Offset 1 dB D dB/div Ref 21.00 dBm	Gain:Low #Atten: 30 dB	M	(r1 5.673 9 GHz -3.40 dBm	8.44 T.m.
og 11.0				Center Freq 5.670000000 GHz
.00		1		Start Freq 5.620000000 GHz
9.0				Stop Freq 5.720000000 GHz
9.0			and the second and a share a second and a second as	CF Step 10.000000 MHz <u>Auto</u> Man
9.0				Freq Offset 0 Hz
9.0				

Channel 142 – Chain B-Band3

Dr					
🚺 Keysight Spectrum Analyzer - Swej					
LXI RF 50 Ω		SENSE:INT	ALIGN AUTO	04:39:59 AM Nov 09, 2019	Frequency
Center Freq 5.71000	0000 GHz	Trig: Free Run	#Avg Type: RMS	TRACE 1 2 3 4 5 6 TYPE A WWWW	
	PNO: Fast 🖵	#Atten: 30 dB		DET A NNNNN	
	IFGall.LOW	#rtten. oo ab			Auto Tune
Ref Offset 1 d	R		Mk	r2 5.712 1 GHz	
10 dB/div Ref 21.00 d				-1.52 dBm	
Log					
11.0					Center Freq
		▲ ²	1		
1.00					5.710000000 GHz
-9.00		r v			
40.0	1				
-19.0	1				Start Freq
-29.0					5.660000000 GHz
-39.0	e market		N		
-39.0			ant amount	and a second and a	
-49.0				and the second second second	
-59.0					Stop Freq
-58.5					5.76000000 GHz
-69.0					
Center 5.71000 GHz				Span 100.0 MHz	CF Step
#Res BW 1.0 MHz	#VBW	3.0 MHz	Sweep (#Swp) 1	.000 ms (1001 pts)	10.000000 MHz
			• • • • •	,	<u>Auto</u> Man
MKR MODE TRC SCL	X		INCTION FUNCTION WIDTH	FUNCTION VALUE	
1 N 1 f 2 N 1 f	5.725 0 GHz 5.712 1 GHz	-4.43 dBm -1.52 dBm			
3	5.712 T GHZ	-1.52 0.011			Freq Offset
4					0 Hz
5				E	0112
6					
7 8					
9					
10					
11				-	
•				•	
MSG			STATUS		<u>t</u>
			onatod		

🍺 к	eysight	Spect		Analyzer - S																			×
ι <mark>χι</mark> Cei	nter	Fre	RF eq (50 5.710	AC 000 C	SHz	2	_	Tria	SEN	NSE:IN		#A	vg Ty		IGN AUTO RMS)	04:40:18 TF	ACE	lov 09, 21 1 2 3 4 A WWW	56	Frequenc	ÿ
10 0	dB/div			Offset /): Fast iin:Lov		#Atte							M	lkr	2 5.7	DET 25	ANNN		Auto	Tune
Log 11.1 1.0	0 0													²								Center 5.71000000	
-19.(-29.(-39.(philan	an lange and an and an	almore da	1	Pergedage	ad free different	(Afticker)	Indiana da la								Start 5.66000000	
-49.(-59.(-69.(nen ander S	in 146	_{-en} turian ^{en} t	 olad ^{ist} or ^{an} inth										- ^	49WD-Avienda		and a grant of the second s	1.000 E.	san ng	_	Stop 5.76000000	
#R	nter es B	W 1	00		×		#V	вw	300	kHz		FUN		<u> </u>		Swp)		Span .40 ms	: (10			CF 10.000000 <u>Auto</u>	Step MH: Mar
1 3 4 5 6 7 8 9	N	1	f		5.72		GHz GHz		-12.8												E	Freq O	offsel 0 Hz
10 11 1									m							1				•	•		
MSG																STAT	rus						

Channel 142 – Chain B-Band4

Channel 151 – Chain B

Agilent Spectrum Analyzer - Swept SA								
Center Freq 5.755000000	GHz	SENSE:INT	ALIGN / #Avg Type: RM	S TRAC	Oct 31, 2019	Frequency		
Ref Offset 1 dB 10 dB/div Ref 21.00 dBm	PNO: Fast	Trig: Free Run ≇Atten: 30 dB		™r1 5.752	5 GHz 8 dBm	Auto Tune		
						Center Fred 5.755000000 GHz		
-9.00		1				Start Free 5.705000000 GH		
-19.0	pityUnityUnity pity in the	halhilarinijaan 	white the second s			Stop Fre 5.805000000 GH		
39.0	hyber			4.84		CF St e 10.000000 MH <u>Auto</u> Ma		
-49.0				Aga Bing pit manha hurring an	aller Maddinger of Persons	Freq Offse 0 H		
-69.0								
Center 5.75500 GHz #Res BW 100 kHz	#VBW 3	00 kHz	• •	Span 10 7p) 12.40 ms (* status	00.0 MHz 1001 pts)			

					-						
Agiler	t Spectru	m Analyzer - Swe									
LXI		RF 50 Ω	AC		SEM	VSE:INT		ALIGN AUTO		4Oct 31, 2019	Frequency
Cen	ter Fre	eq 5.79500	00000 GH	z		_	#Avg Typ	e: RMS		E123456	Frequency
		-	PN	10: Fast 🕞	Trig: Free					PEAWWWW TANNNN	
			IFG	iain:Low	#Atten: 30	J dB					A
		D. 600						M	kr1 5.79	56GHz	Auto Tune
		Ref Offset 1 c Ref 21.00 c							-12	59 dBm	
10 di Log	3/div	Ref 21.00 C	ıвт						-12.		
3											
											Center Freq
11.0											5.795000000 GHz
1.00											
1.00											
									1		Start Freq
-9.00						⊾ 1					5.745000000 GHz
					. Autolia	Interfacile in an			1		
				phylophylicity	and supering the second second	handrushnjinjishipushi	not sharp in the hole		1		
-19.0							and a second sec	+			Stop Freq
									1		
-29.0					1	М					5.845000000 GHz
-29.0				1							
				}			1				
-39.0				<u> </u>			· · · · ·				CF Step
											10.000000 MHz
		What was a full map to stude	un aluanin altali								<u>Auto</u> Man
-49.0		Autor And	deducer to					NH SHOWING	where a		
	aluerterity	WWW							and an work of the second		
-59.0	and the second								ing manual and	muhahahaha	Freq Offset
-09.0											0 Hz
									1		
-69.0		_								L	
									1		
									1		
Con	tor 5 7	9500 GHz						1	Snap 4	00.0 MHz	
				41 (D14)	300 kHz		0	(#0			
#ке	5 BW 1	00 kHz		#VBW	JUU KHZ		Sweep	(#swp)	12.40 ms (1001 pts)	
MSG								STATI	s		

Channel 159 – Chain B

Product	:	Humly Room Display One
Test Item	:	Peak Power Spectral Density
Test Mode	:	Mode 4: Transmit (802.11ac80)

Channel Number	Frequency (MHz)	Chain	PPSD (dBm)	Total PPSD (dBm)	Required Limit (dBm)	Result
42	5210	А	-11.430	-8.420	11	Pass
42	5210	В	-11.200	-8.190	11	Pass
50	5200	А	-8.000	-4.990	11	Pass
58	5290	В	-8.040	-5.030	11	Pass
100	5520	А	-9.120	-6.110	11	Pass
106	5530	В	-8.790	-5.780	11	Pass
100	5(10	А	-6.320	-3.310	11	Pass
122	5610	В	-7.000	-3.990	11	Pass
120	5690	А	-6.360	-3.350	11	Pass
138	(Band3)	В	-7.230	-4.220	11	Pass

Channel Number	Frequency (MHz)	Chain	PPSD (dBm)	BWCF (dB)	Total PPSD (dBm)	Required Limit (dBm)	Result
120	5690	А	-19.190	6.98	-9.200	<30	Pass
138	(Band4)	В	-19.530	6.98	-9.540	<30	Pass
155	5775	А	-15.340	6.98	-5.350	<30	Pass
155	5775	В	-15.950	6.98	-5.960	<30	Pass

Note 1: The quantity 10*log 2 (two antennas) is added to the spectrum peak value according to document 662911 D01.

Frequency	09:45:33 AM Oct 31, 2019 TRACE 1 2 3 4 5 6 TYPE A WWWW DET A NNNNN	ALIGN AUTO #Avg Type: RMS]	GHz PNO: Fast G	50 Ω AC 5.21000000	ter Freq	<mark>«</mark> Cen
Auto Tu	r1 5.212 2 GHz -11.43 dBm	Mł			in Guineow	Offset 1 dB 7 21.00 dB m		
Center Fr 5.210000000 G								og 11.0
Start Fr 5.160000000 G			↓ ¹	Linnengeneng				1.00 9.00
Stop Fr 5.26000000 G								9.0 9.0
CF Ste 10.000000 M Auto M							/	19.0
Freq Offs 0							and	19.0 19.0
								i9.0
	Span 100.0 MHz .000 ms (1001 pts)	Sweep (#Swp) 1	1	/ 3.0 MHz	#VBW		ter 5.210 s BW 1.0	

Channel 42 – Chain A

Channel 58 – Chain A


🎉 Keysight S	Spectrum Analyzer - Swept SA					
.x. Center	RF 50 Ω AC	GHz	SENSE:INT	ALIGN AUTO #Avg Type: RMS	09:56:04 AM Oct 31, 2019 TRACE 1 2 3 4 5 6	Frequency
o on non		PNO: Fast IFGain:Low	Trig: Free Run #Atten: 30 dB	M	TYPE A WWWW DET A NNNN kr1 5.291 6 GHz	Auto Tune
10 dB/div Log	Ref Offset 1 dB Ref 21.00 dBm				-8.00 dBm	
						Center Freq
11.0						5.290000000 GHz
1.00			▲ 1			Start Fred
-9.00		man		and a second and a	anenny	5.240000000 GHz
-19.0						Stop Fred
-29.0						5.340000000 GHz
-39.0						CF Step 10.000000 MH
-49.0	new line				hanne	<u>Auto</u> Mar
-59.0						Freq Offse
						0 H:
-69.0						
	5.29000 GHz N 1.0 MHz	#VBW	3.0 MHz	Sweep (#Swp)	Span 100.0 MHz 1.000 ms (1001 pts)	
MSG				STATU		

🎉 Keysight Spect	trum Analyzer - Swept S					
enter Fre	RF 50 Ω A eq 5.5300000		SENSE:INT	ALIGN AUTO #Avg Type: RMS	09:58:23 AM Oct 31, 2019 TRACE 1 2 3 4 5 6 TYPE A WWWW	Frequency
0 dB/div	Ref Offset 1 dB Ref 21.00 dBr	IFGain:Low	#Atten: 30 dB	М	tr1 5.538 3 GHz -9.12 dBm	Auto Tur
11.0						Center Fre 5.530000000 GH
1.00		No. 20 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -		A work of a star and		Start Fre 5.48000000 GF
9.0						Stop Fr 5.58000000 GI
9.0 	~				homewar	CF Ste 10.000000 M <u>Auto</u> M
9.0						Freq Offs 0
enter 5.53					Span 100.0 MHz	
-69.0 Center 5.53 #Res BW 1		#VBW	3.0 MHz	Sweep (#Swp)	1.000 ms (1001 pts)	

Channel 106 – Chain A

Channel 122 – Chain A

🎉 Keysight Sp		alyzer - Swept SA								
w Center F	_R , req 5.	50 Ω AC			NSE:INT	#Avg Ty	ALIGN AUTO	TRAC	M Oct 31, 2019 E 1 2 3 4 5 6 E A WWWW	Frequency
10 dB/div		offset 1 dB 21.00 dBm	IFGain:Lo				Mł	r2 5.687	7 9 GHz 36 dBm	Auto Tune
Log 11.0 1.00				•	2			1		Center Freq 5.690000000 GHz
-19.0 -29.0 -39.0										Start Freq 5.640000000 GHz
-49.0 -59.0 -69.0										Stop Freq 5.740000000 GHz
Center 5 #Res BW	/ 1.0 M	Hz	#	VBW 3.0 MH) (#Swp) 1	.000 ms (00.0 MHz 1001 pts)	CF Step 10.000000 MHz <u>Auto</u> Mar
	1 f 1 f		5.725 0 GHz 5.687 9 GHz		Bm			PONCHA		Freq Offset 0 Hz
9 10 11 4 MSG				m			STATUS	5		

Channel 138 – Chain A-Band3

Channel 138 - Chain A-Band4

🊺 Key	/sight Spec	trum /	Analyzer - Swe	ept SA											
<mark>یر</mark> Cen	ter Fr	_{RF} eq :		00000 G			SENSE		#Avg T	ALIGN AU Type: RMS	TO 10:03	TRACE	Oct 31, 2019	5	Frequency
10 dE	3/div		Offset 1 of f 21.00 of	u B	PNO: Fast FGain:Low		en: 30 d				Mkr2 5. -	DET		1	Auto Tune
Log 11.0 1.00														5	Center Freq .690000000 GHz
-19.0 -29.0 -39.0			n ^{isoh} ijanmohi	n	an provinsion		Mahan Ma	istiji otrjetaje		from the state of				5	Start Freq .640000000 GHz
-49.0 -59.0 -69.0	plados de grafición	WELLER A											Madinda Sugaria	5	Stop Freq .74000000 GHz
#Re	ter 5.6 s BW '	100	kHz	X	#V	BW 300	kHz	EUN		p (#Swp)) 12.40 n	ns (1)0.0 MHz 001 pts) NVALUE		CF Step 10.000000 MHz <u>:0 Man</u>
1 2 3 4 5 6	N 1 N 1	f		5.72	5 0 GHz 7 5 GHz		50 dBm 19 dBm						=		Freq Offset 0 Hz
7 8 9 10 11							11								
MSG										ST	ATUS				

🔰 Keysight Spectrum	n Analyzer - Swej	pt SA			<u>ci 155</u>					
Zenter Freq	F 50 Ω			1	ISE:INT	#Avg Typ	ALIGN AUTO e: RMS	TRAC	M Oct 31, 2019 CE 1 2 3 4 5 6 PE A WWWW	Frequency
	f Offset 1 d ef 21.00 d	IFG	IO: Fast 🖵 ain:Low	#Atten: 30			Mł	r1 5.77	7 5 GHz 34 dBm	Auto Tun
11.0										Center Fre 5.775000000 GH
.00					● ¹					Start Fr 5.725000000 G
9.0	Anger and a second s	eta fizia (potrate org	and a second	ubhhaitclaughtinn	มตรีขึ้นเป็ญไปสูงไม่เร็ม 	erhotelen ferhoor	nyuqtiliyingi tuliyingi ya	noniu _n lad _i n		Stop Fr 5.825000000 G
9.0										CF St 10.000000 M <u>Auto</u> M
9.0									and the second s	Freq Offs 0
9.0										
enter 5.775 Res BW 100			#VBW	300 kHz		Sweep	(#Swp) 1	Span 1 2.40 ms (00.0 MHz (1001 pts)	
SG							STATUS	3		

Channel 155 – Chain A

00 GHz PNO: Fast		ALIGNAUTO #Avg Type: RMS	01:57:16 AM Oct 31, 2019 TRACE 1 2 3 4 5 6 TYPE A WWWW DET A N N N N N	Frequency
)		MI	kr1 5.212 1 GHz -11.20 dBm	Auto Tur
				Center Fre 5.210000000 GH
	1			Start Fre 5.160000000 GH
				Stop Fre 5.26000000 GH
				CF Ste 10.000000 Mi <u>Auto</u> Mi
			Mumm	Freq Offs 0 I
			Span 100.0 MHz	
	DO GHZ PNO: Fast IFGain:Low #A	DO GHZ PNO: Fast IFGain:Low Atten: 30 dB	20 GHz #Avg Type: RMS PN0: Fast Trig: Free Run #Atten: 30 dB MI	DO GHZ PNO: Fast IFGain:Low Trig: Free Run #Atten: 30 dB Trig: Free Run #Atten: 30 dB Mkr1 5.212 1 GHZ -11.20 dBm -11.20 dBm -11

Channel 42 – Chain B

Channel 58 – Chain B

Agilent Spect	trum Analyzer - Swept SA					
<mark>W</mark> Center F	RF 50 Ω AC		SENSE:INT	ALIGNAUTO #Avg Type: RMS	02:07:46 AM Oct 31, 2019 TRACE 1 2 3 4 5 6	Frequency
	164 3.2900000	PNO: Fast IFGain:Low	Trig: Free Run #Atten: 30 dB		TYPE A WWWWW DET A N N N N N	.
10 dB/div Log	Ref Offset 1 dB Ref 21.00 dBm			Mł	(r1 5.292 6 GHz -8.04 dBm	Auto Tune
11.0						Center Freq
						5.290000000 GHz
1.00			♦ ¹			Start Freq 5.240000000 GHz
-9.00	mana			and the state of t	man	5.24000000 GH2
-19.0						Stop Freq 5.34000000 GHz
-29.0						
-39.0	A. J. M. J.				- Wienorg	CF Step 10.000000 MHz <u>Auto</u> Man
-59.0						Freq Offset
-69.0						
Center 5 #Res BW	29000 GHz 1.0 MHz	#VBW	3.0 MHz	Sweep (#Swp) 1	Span 100.0 MHz .000 ms (1001 pts)	
MSG				STATUS	3	

	RF 50 Ω AC		SENSE:INT	ALIGNAUTO #Avg Type: RMS	02:10:05 AM Oct 31, 2019 TRACE 1 2 3 4 5 6	Frequency
enter Fred	q 5.53000000	PNO: Fast 🖵 IFGain:Low	Trig: Free Run #Atten: 30 dB	HAY TYPE. AND	TYPE A WWWWW DET A N N N N N	
	tef Offset 1 dB tef 21.00 dBm	IFGain:Low	#Atten: 50 db	М	kr1 5.536 5 GHz -8.79 dBm	Auto Tun
11.0						Center Fre 5.530000000 GH
.00		An and the second second		1		Start Fre 5.480000000 GH
29.0						Stop Fre 5.58000000 GH
19.0						CF Ste 10.000000 MH <u>Auto</u> Ma
59.0						Freq Offs 0 H
enter 5.530					Span 100.0 MHz	
Res BW 1.0) MHz	#VBW	3.0 MHz	Sweep (#Swp)	1.000 ms (1001 pts)	

Channel 106 – Chain B

Channel 122 – Chain B

Agilent Spec	trum Analyzer - Swep								
Center	RF 50 Ω Freq 5.610000	AC DOOD GHz PNO: Fast		E:INT	#Avg Type: R	IN AUTO	TRAC	10ct 31, 2019 E 1 2 3 4 5 6 E A WWWWW	Frequency
10 dB/div	Ref Offset 1 dE Ref 21.00 dI	IFGain:Low				Mk	r1 5.612	2 1 GHz 00 dBm	Auto Tune
11.0									Center Freq 5.610000000 GHz
-9.00		there and the second state of the second state	mantener	∮ ¹	the second	od-geores	- man and		Start Freq 5.560000000 GHz
-19.0									Stop Freq 5.660000000 GHz
-39.0	~~~~						}	humanown	CF Step 10.000000 MHz <u>Auto</u> Mar
-59.0									Freq Offset 0 Hz
-69.0	.61000 GHz						Span 1	00.0 MHz	
	1.0 MHz	#VI	BW 3.0 MHz		Sweep (#S	SWP) 1.			

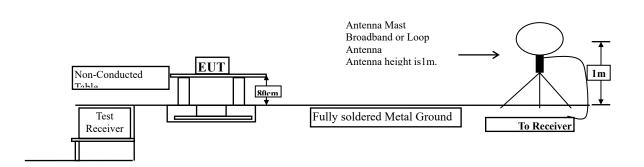
Agile	nt Spe	ctrur		alyzer - Swe	ept SA									
⊮ Cer	nter	Fre	RF Pq		AC 10000 GH			SEN	VSE:INT	#A	ALIGN AUTO e: RMS	TRA	MOct 31, 2019 CE 1 2 3 4 5 6 PE A WWWWW	Frequency
10 d	B/div			Offset 1 of	dB	NO: Fast Gain:Low		Atten: 30			 Mł	r2 5.69	2 6 GHz 23 dBm	Auto Tune
Log 11.0 1.00									◆ ²	A				Center Freq 5.690000000 GHz
-19.0 -29.0 -39.0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	/										memor	Start Freq 5.64000000 GHz
-49.0 -59.0 -69.0														Stop Freq 5.740000000 GHz
#Re		W 1	.0 1		×	#V	BW 3.	0 MHz		SW	 (#Swp) 1	.000 ms (00.0 MHz 1001 pts)	CF Step 10.000000 MHz <u>Auto</u> Man
1 2 3 4 5 6 7 8 9 10 11	N	1	f		5.725	0 GHz 6 GHz		<u>11.06 dE</u>						Freq Offset 0 Hz
MSG											STATU	s		<u> </u>

Channel 138 – Chain B-Band3

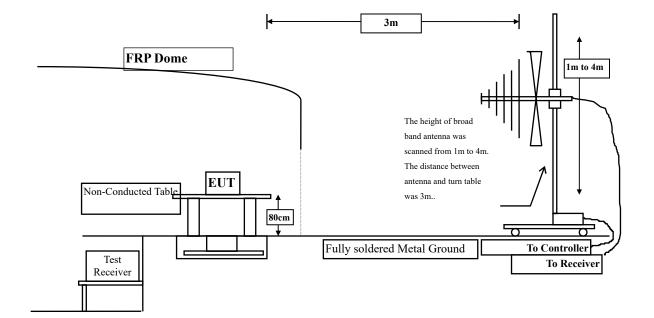
Channel 138 – Chain B-Band4

Agilen	t Spectr		alyzer - Sv	vept SA									
<mark>IXI</mark> Cen	tor Fr	RF	50 s 5.6900				SEr	ISE:INT	#Ava	ALIGNAUTO Type: RMS		MOct 31, 2019 CE 1 2 3 4 5 6	Frequency
Cen		Uq	5.0300	00000	PNO	:Fast 🖵 n:Low	Trig: Free #Atten: 30				Th	PE A WWWWWW ET A N N N N N	Auto Turo
10 di	3/div		[*] Offset 1 f 21.00							N	18r2 5.72 -19.	7 4 GHz 53 dBm	Auto Tune
Log 11.0									_				Center Freq
1.00 -9.00												 	5.69000000 GHz
-19.0			- Confilmentation	unger tradiscopy of	enintature e	<mark>ensightende</mark> nst	nin heteletten ette	mistagende	elling and provident of the	an and a start of the			Start Freq
-29.0 -39.0													5.640000000 GHz
-49.0 -59.0	planet provide	had a for the second							-			HUMBER	Stop Freq
-69.0									_				5.740000000 GHz
	ter 5.0 s BW		0 GHz kHz			#VBW	300 kHz		Swee	ep (#Swp)		00.0 MHz (1001 pts)	CF Step 10.000000 MHz
MKR 1	MODE TF	ic sci f		×	.725 0 (21.1-	Y -19.74 di		INCTION	FUNCTION WIDT	H FUNCTI	ON VALUE	<u>Auto</u> Man
2 3 4	N 1	f			.727 4 (-19.53 di						Freq Offset
5 6												=	0 Hz
7 8 9		-				_							
10 11 <												<u> </u>	
MSG										STAT	บร		

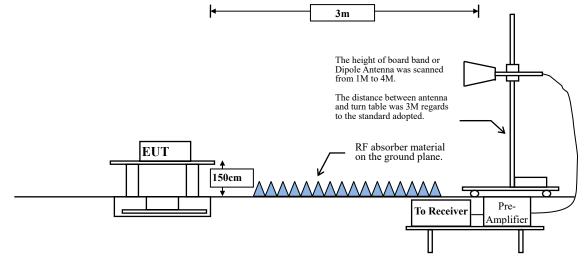
				mann	.1 155 -	Cna				
Agilent Spec	trum Analyzer -	Swept SA								
u		DΩ AC		SEN	ISE:INT		ALIGN AUTO		MOct 31, 2019	En anno an a
Center	Freq 5.775	000000 GI	-Iz]	_	#Avg Ty	pe: RMS	TRA	CE 1 2 3 4 5 6	Frequency
	•	F	'NO: Fast 🗔	Trig: Free #Atten: 30					PEAWWWWW	
		IF	Gain:Low	#Atten: 30) dB					Auto Tu
	Ref Offset	1 48					M		3 7 GHz	
I0 dB/div	Ref 21.0							-15.	95 dBm	
og			1							
									- I	Center Fr
11.0										5.775000000 G
										5.775000000 G
1.00									1	
									- I	Start Fr
9.00										5.725000000 G
					▲	1			- I	
			La havaalee	a kataliwi shahan	kin kulo ula ana	an Idea	mundulanuimui		- I	
19.0	philippin	pedia wanakati yanaka	MANU CARACTERIA	Personal and the second second	istes is durationisti	and the second	mwantehalini	Merken and		Stop Fr
					í l					5.825000000 G
29.0										
									- I	
9.0									- I	CF St
19.0	/									10.000000 N
	1									<u>Auto</u> N
9.0	nuthennor	-								
WHIMPI	linated of								A AMERICAN AND A A	
59.0									a to show 10	Freq Offs
									- I	0
9.0										
								<u> </u>		
	5.77500 GHz	:				_			00.0 MHz	
Res BV	V 100 kHz		#VBW	300 kHz		Sweep	(#Swp) ′	12.40 ms	(1001 pts)	
SG							STATU	s		


Channel 155 – Chain A

5. Radiated Emission


5.1. Test Setup

Radiated Emission Under 30MHz


3m

Radiated Emission Below 1GHz

`Radiated Emission Above 1GHz

5.2. Limits

•

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209(a) Limits							
Frequency MHz	Field strength	Measurement distance					
	(microvolts/meter)	(meter)					
0.009-0.490	2400/F(kHz)	300					
0.490-1.705	24000/F(kHz)	30					
1.705-30	30	30					
30-88	100	3					
88-216	150	3					
216-960	200	3					
Above 960	500	3					

Remarks: E field strength $(dB\mu V/m) = 20 \log E$ field strength (uV/m)

5.3. Test Procedure

The EUT was setup according to ANSI C63.10, 2013 and tested according to FCC KDB-789033 test procedure for compliance to FCC 47CFR 15. 407 requirements.

Measuring the frequency range below 1GHz, the EUT is placed on a turn table which is 0.8 meter above ground, when measuring the frequency range above 1GHz, the EUT is placed on a turn table which is 1.5 meter above ground.

The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10: 2013 on radiated measurement.

The resolution bandwidth below 30MHz setting on the field strength meter is 9kHz and 30MHz~1GHz is 120kHz and above 1GHz is 1MHz.

Radiated emission measurements below 30MHz are made using Loop Antenna and 30MHz~1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement.

The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna. The worst radiated emission is measured in the Open Area Test Site on the Final Measurement.

The measurement frequency range form 9kHz - 10th Harmonic of fundamental was investigated.

RBW and VBW Parameter setting:

According to KDB 789033 section II.G.5 Procedure for Unwanted Maximum Emissions Measurements above 1000 MHz.

RBW = 1MHz. $VBW \ge 3MHz.$

According to KDB 789033 section II.G.6 Procedures for Average Unwanted Emissions Measurements above 1000 MHz.

RBW = 1MHz.

VBW = 10Hz, when duty cycle \ge 98 %

VBW \geq 1/T, when duty cycle < 98 %

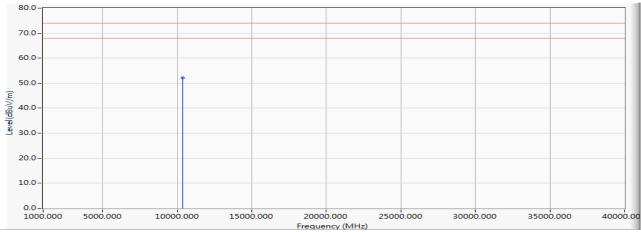
(T refers to the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.)

5GHz band	Duty Cycle	Т	1/T	VBW
	(%)	(ms)	(Hz)	(Hz)
802.11a	93.26	1.3954	717	1000
802.11n20	85.19	0.6667	1500	2000
802.11n40	69.77	0.3130	3194	5000
802.11ac80	68.85	0.2922	3423	5000

Note: Duty Cycle Refer to Section 8

5.4. Uncertainty

- ± 4.08 dB above 1GHz
- ± 4.22 dB below 1GHz

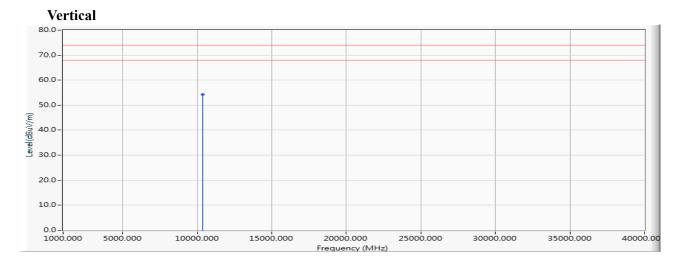


5.5. Test Result of Radiated Emission

Product	:	Humly Room Display One
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/11/04
Test Mode	:	Mode 5: Transmit (802.11a+NFC) (5180MHz)

Horizontal

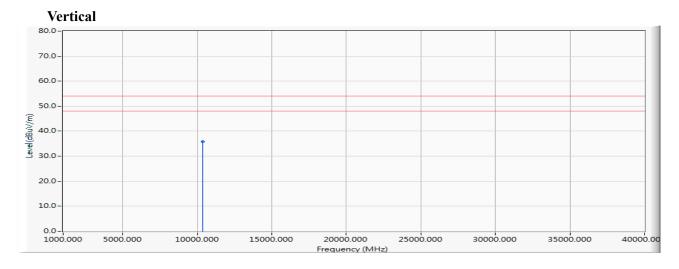
•



		Frequency	Correct Factor Reading Level Meas		Measure Level	re Level Margin		Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	10360.000	-11.583	63.780	52.197	-21.803	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

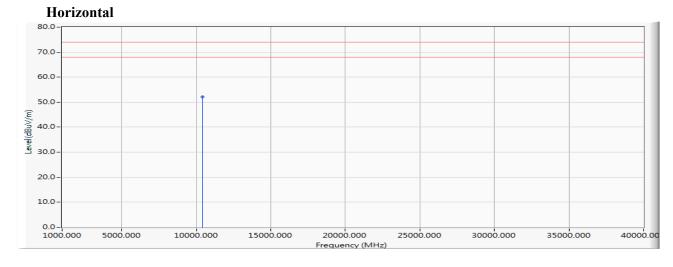
Product	:	Humly Room Display One
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/11/04
Test Mode	:	Mode 5: Transmit (802.11a+NFC) (5180MHz)



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	10360.000	-11.583	65.940	54.357	-19.643	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

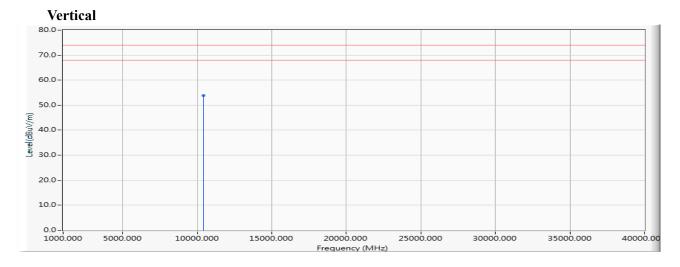
Product	:	Humly Room Display One
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/11/04
Test Mode	:	Mode 5: Transmit (802.11a+NFC) (5180MHz)



	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Detector Type
1 *	10360.000	. ,			. ,	(* * * Y	AVERAGE

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	:	Humly Room Display One
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/11/04
Test Mode	:	Mode 5: Transmit (802.11a+NFC) (5200MHz)

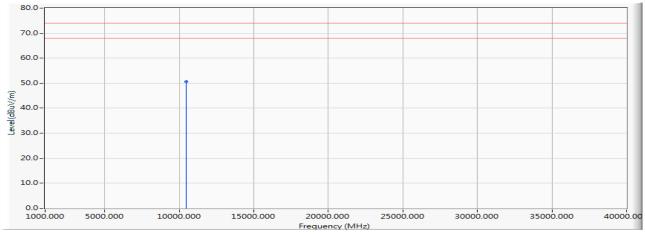


		Frequency	Frequency Correct Factor		Reading Level Measure Level		Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	10400.000	-11.964	64.070	52.107	-21.893	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	:	Humly Room Display One
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/11/04
Test Mode	:	Mode 5: Transmit (802.11a+NFC) (5200MHz)

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	10400.000	-11.964	65.840	53.877	-20.123	74.000	PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	:	Humly Room Display One
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/11/04
Test Mode	:	Mode 5: Transmit (802.11a+NFC) (5240MHz)

Horizontal

•

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	10480.000	-12.725	63.420	50.695	-23.305	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

5000.000

•

Product	:	Humly Room Display One
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/11/04
Test Mode	:	Mode 5: Transmit (802.11a+NFC) (5240MHz)

Vertical 80.0 70.0 60.0 50.0 Level(dBuV/m) 40.0 30.0 20.0 10.0 0.0-

15000.000

Frequency **Correct Factor Reading Level** Measure Level Margin Limit Detector Type (MHz) (dB) (dBuV) (dBuV/m) (dB) (dBuV/m) 10480.000 -12.725 65.220 52.495 -21.505 74.000 1 PEAK

20000.000

Frequency (MHz)

25000.000

30000.000

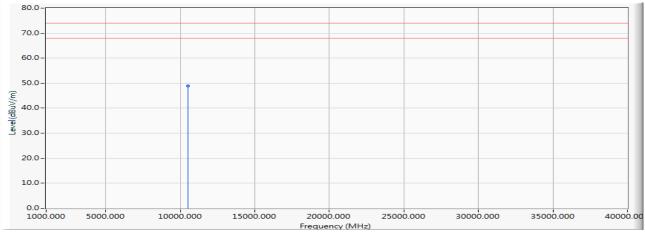
35000.000

40000.00

Note:

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.

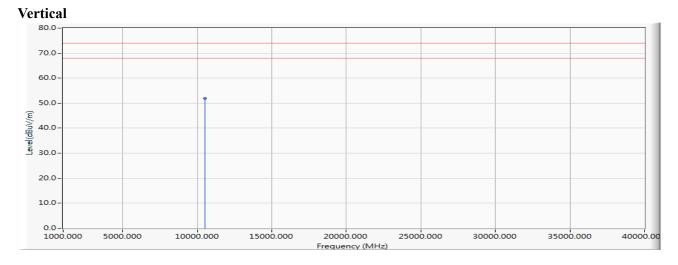
10000.000


Measurement Level = Reading Level + Correct Factor 3.

Product	:	Humly Room Display One
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/11/04
Test Mode	:	Mode 5: Transmit (802.11a+NFC) (5260MHz)

Horizontal

•

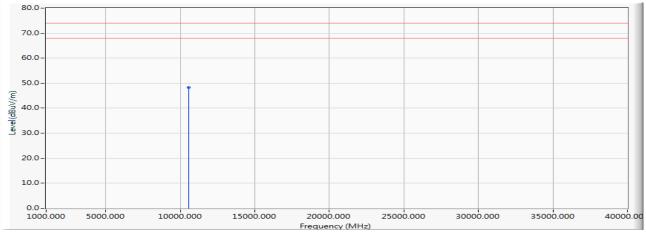


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	10520.000	-13.063	62.050	48.987	-25.013	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	:	Humly Room Display One
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/11/04
Test Mode	:	Mode 5: Transmit (802.11a+NFC) (5260MHz)

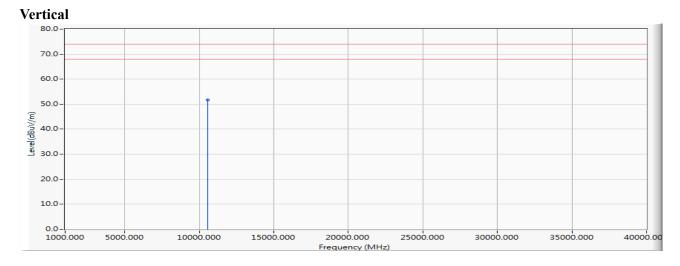
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	10520.000	-13.063	64.990	51.927	-22.073	74.000	PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	:	Humly Room Display One
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/11/04
Test Mode	:	Mode 5: Transmit (802.11a+NFC) (5280MHz)

Horizontal

•

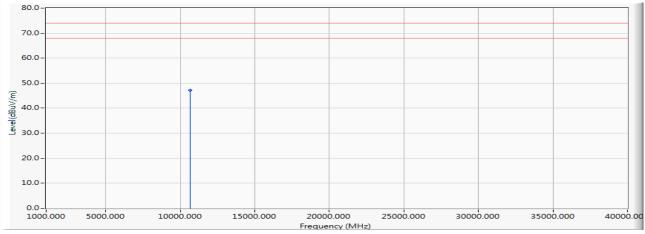


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	10560.000	-13.356	61.510	48.154	-25.846	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	:	Humly Room Display One
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/11/04
Test Mode	:	Mode 5: Transmit (802.11a+NFC) (5280MHz)

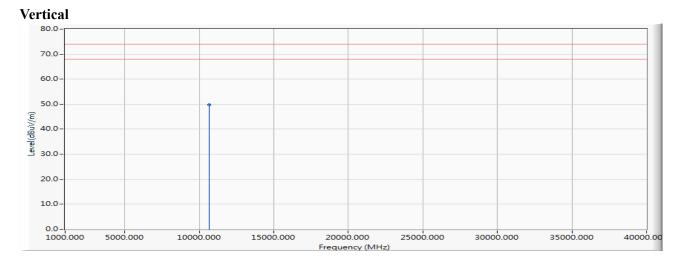
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	10560.000	-13.356	64.940	51.584	-22.416	74.000	PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	:	Humly Room Display One
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/11/04
Test Mode	:	Mode 5: Transmit (802.11a+NFC) (5320MHz)

Horizontal

•

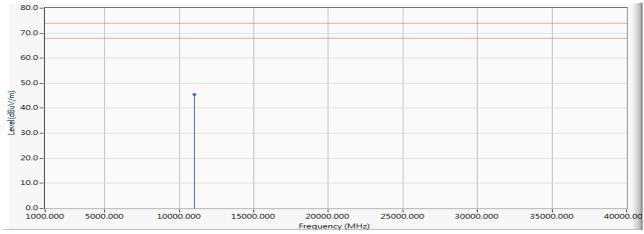


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	10640.000	-13.984	61.140	47.156	-26.844	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	:	Humly Room Display One
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/11/04
Test Mode	:	Mode 5: Transmit (802.11a+NFC) (5320MHz)

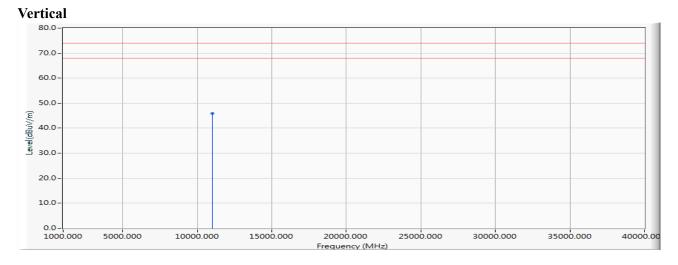
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	10640.000	-13.984	63.820	49.836	-24.164	74.000	PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product:Humly Room Display OneTest Item:Harmonic Radiated Emission DataTest Date:2019/11/04Test Mode:Mode 5: Transmit (802.11a+NFC) (5500MHz)

Horizontal

•

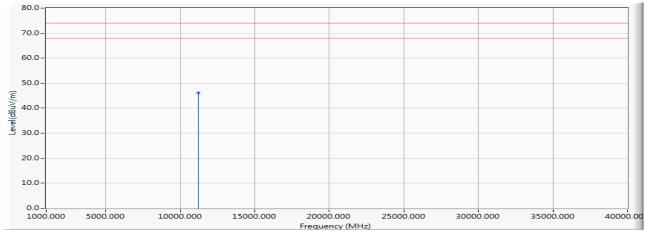


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	11000.000	-12.506	57.900	45.393	-28.607	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	:	Humly Room Display One
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/11/04
Test Mode	:	Mode 5: Transmit (802.11a+NFC) (5500MHz)

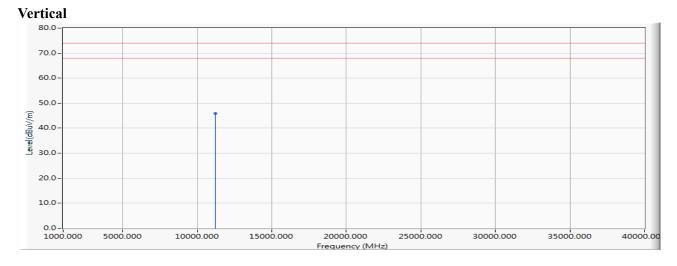
		Frequency	Correct Factor	tor Reading Level Measure Level		Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	11000.000	-12.506	58.510	46.003	-27.997	74.000	PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product:Humly Room Display OneTest Item:Harmonic Radiated Emission DataTest Date:2019/11/04Test Mode:Mode 5: Transmit (802.11a+NFC) (5600MHz)

Horizontal

•

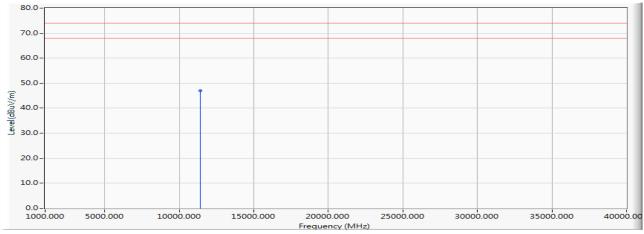


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	11200.000	-10.592	56.800	46.208	-27.792	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	:	Humly Room Display One
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/11/04
Test Mode	:	Mode 5: Transmit (802.11a+NFC) (5600MHz)

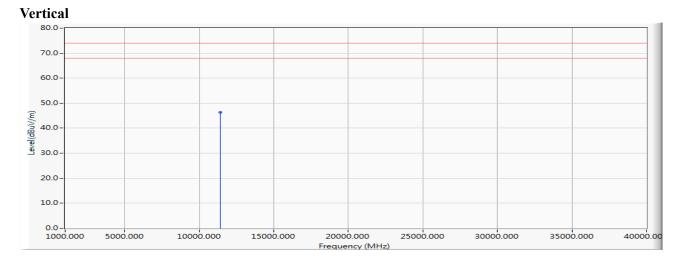
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	11200.000	-10.592	56.400	45.808	-28.192	74.000	PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product:Humly Room Display OneTest Item:Harmonic Radiated Emission DataTest Date:2019/11/04Test Mode:Mode 5: Transmit (802.11a+NFC) (5700MHz)

Horizontal

•

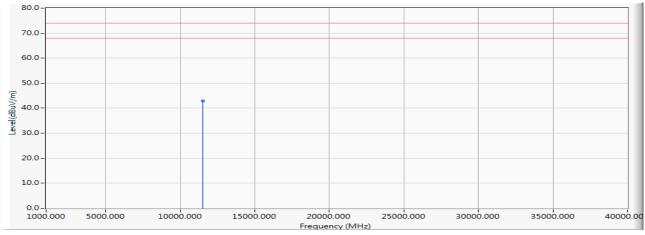


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	11400.000	-11.233	58.140	46.908	-27.092	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	:	Humly Room Display One
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/11/04
Test Mode	:	Mode 5: Transmit (802.11a+NFC) (5700MHz)

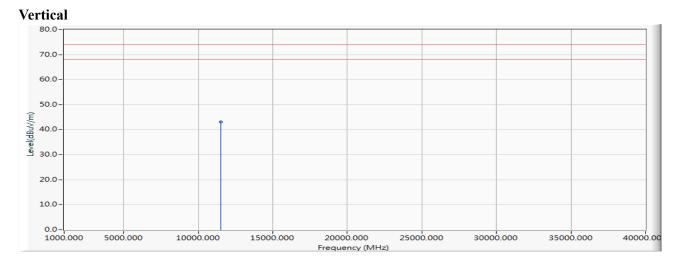
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	11400.000	-11.233	57.520	46.288	-27.712	74.000	PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	:	Humly Room Display One
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/11/04
Test Mode	:	Mode 5: Transmit (802.11a+NFC) (5745MHz)

Horizontal

•

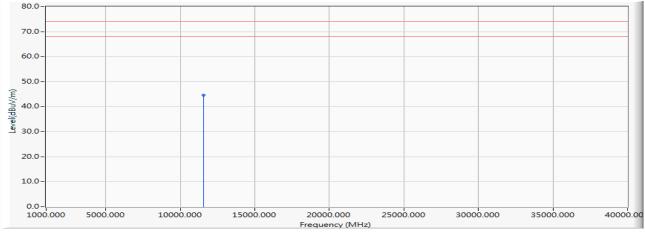

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	11490.000	-11.855	54.770	42.916	-31.084	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

.

Product:Humly Room Display OneTest Item:Harmonic Radiated Emission DataTest Date:2019/11/04Test Mode:Mode 5: Transmit (802.11a+NFC) (5745MHz)

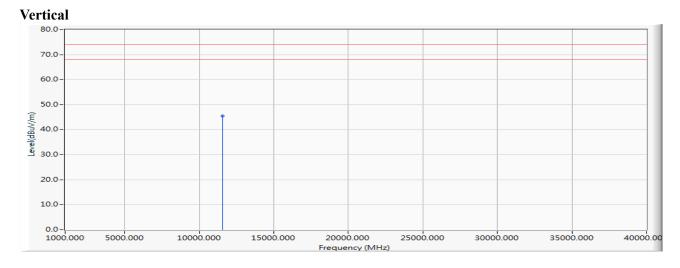
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	11490.000	-11.855	54.970	43.116	-30.884	74.000	PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/11/04
- Test Mode : Mode 5: Transmit (802.11a+NFC) (5785MHz)

Horizontal

.


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	11570.000	-11.508	56.190	44.683	-29.317	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

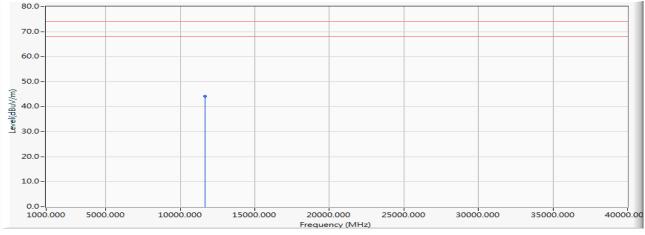
.

Product:Humly Room Display OneTest Item:Harmonic Radiated Emission DataTest Date:2019/11/04Test Mode:Mode 5: Transmit (802.11a+NFC) (5785MHz)

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	11570.000	-11.508	57.040	45.533	-28.467	74.000	PEAK

Note:

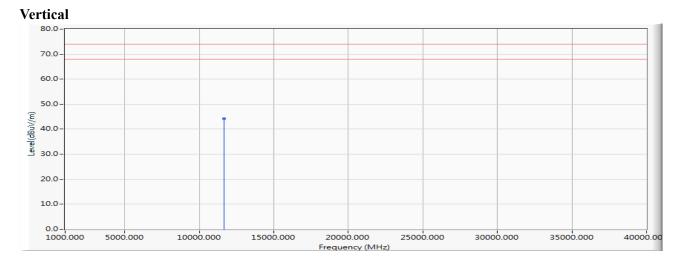
1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.


- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/11/04
- Test Mode : Mode 5: Transmit (802.11a+NFC) (5825MHz)

Horizontal

.

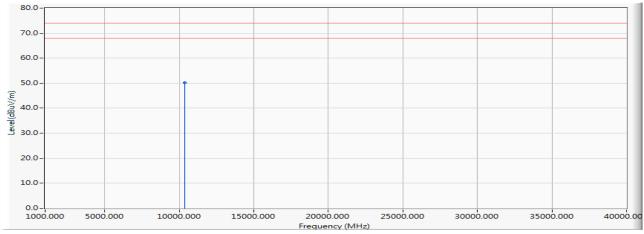


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	11650.000	-10.977	55.260	44.283	-29.717	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	:	Humly Room Display One
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/11/04
Test Mode	:	Mode 5: Transmit (802.11a+NFC) (5825MHz)

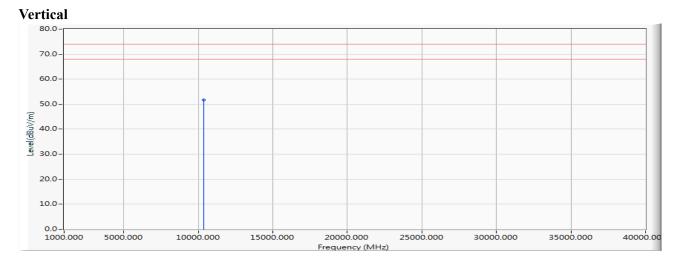
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	11650.000	-10.977	55.160	44.183	-29.817	74.000	PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product:Humly Room Display OneTest Item:Harmonic Radiated Emission DataTest Date:2019/11/04Test Mode:Mode 6: Transmit (802.11n20+NFC) (5180MHz)

Horizontal

•

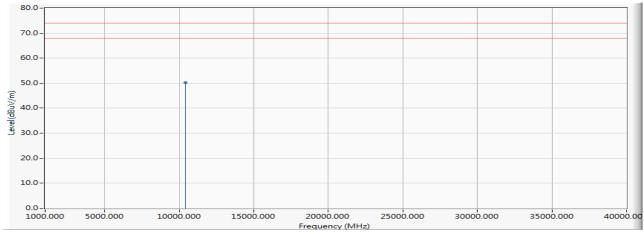


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	10360.000	-11.583	61.680	50.097	-23.903	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product:Humly Room Display OneTest Item:Harmonic Radiated Emission DataTest Date:2019/11/04Test Mode:Mode 6: Transmit (802.11n20+NFC) (5180MHz)

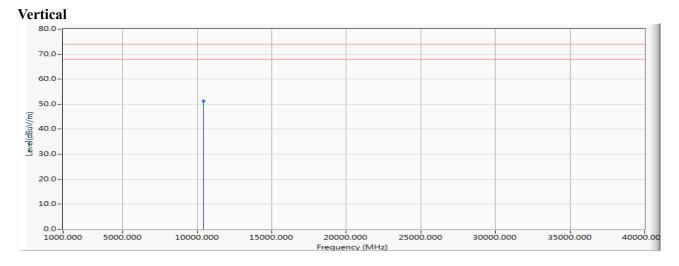
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	10360.000	-11.583	63.220	51.637	-22.363	74.000	PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product:Humly Room Display OneTest Item:Harmonic Radiated Emission DataTest Date:2019/11/04Test Mode:Mode 6: Transmit (802.11n20+NFC) (5200MHz)

Horizontal

•

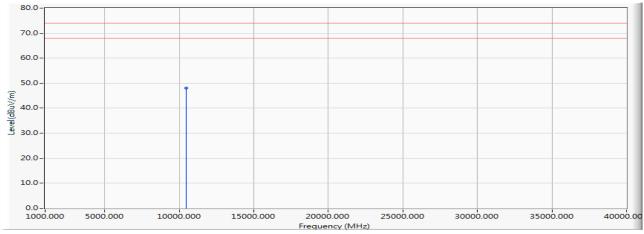


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	10400.000	-11.964	62.190	50.227	-23.773	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product:Humly Room Display OneTest Item:Harmonic Radiated Emission DataTest Date:2019/11/04Test Mode:Mode 6: Transmit (802.11n20+NFC) (5200MHz)

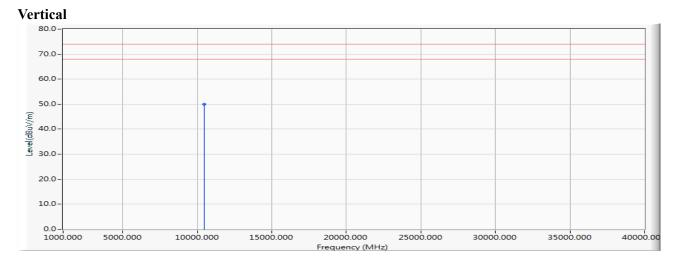
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	10400.000	-11.964	63.200	51.237	-22.763	74.000	PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product:Humly Room Display OneTest Item:Harmonic Radiated Emission DataTest Date:2019/11/04Test Mode:Mode 6: Transmit (802.11n20+NFC) (5240MHz)

Horizontal

•

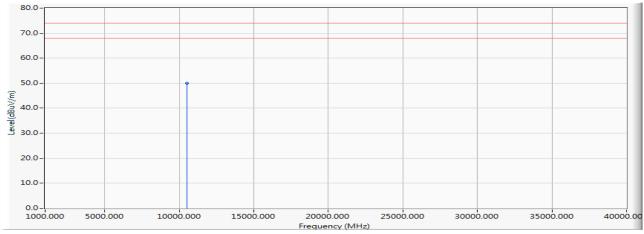


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	10480.000	-12.725	60.740	48.015	-25.985	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product:Humly Room Display OneTest Item:Harmonic Radiated Emission DataTest Date:2019/11/04Test Mode:Mode 6: Transmit (802.11n20+NFC) (5240MHz)

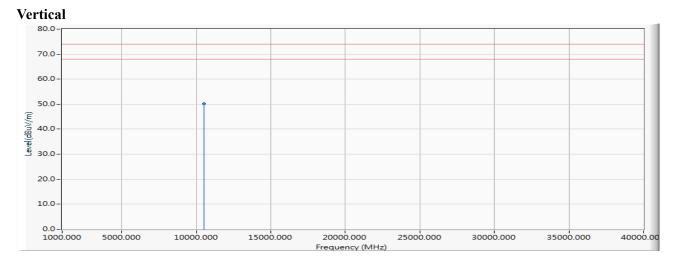
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	10480.000	-12.725	62.720	49.995	-24.005	74.000	PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product:Humly Room Display OneTest Item:Harmonic Radiated Emission DataTest Date:2019/11/04Test Mode:Mode 6: Transmit (802.11n20+NFC) (5260MHz)

Horizontal

•

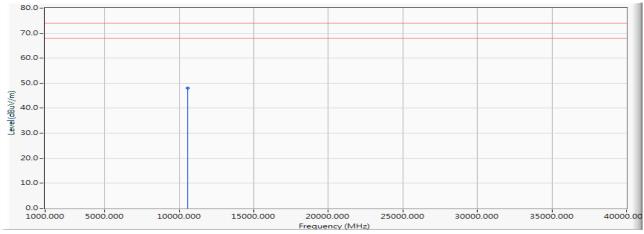


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	10520.000	-13.063	63.100	50.037	-23.963	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product:Humly Room Display OneTest Item:Harmonic Radiated Emission DataTest Date:2019/11/04Test Mode:Mode 6: Transmit (802.11n20+NFC) (5260MHz)

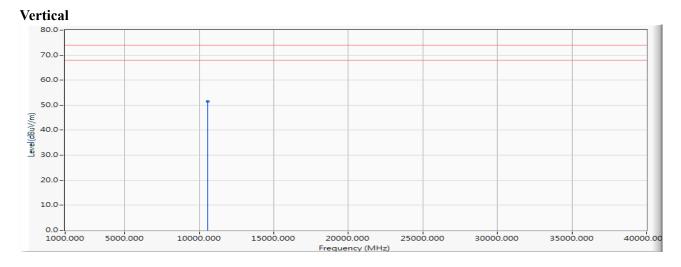
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	10520.000	-13.063	63.260	50.197	-23.803	74.000	PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product:Humly Room Display OneTest Item:Harmonic Radiated Emission DataTest Date:2019/11/04Test Mode:Mode 6: Transmit (802.11n20+NFC) (5280MHz)

Horizontal

•

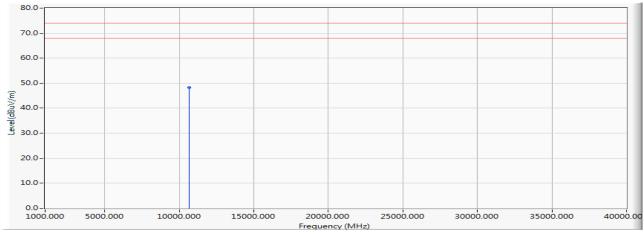


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	10560.000	-13.356	61.464	48.108	-25.892	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product:Humly Room Display OneTest Item:Harmonic Radiated Emission DataTest Date:2019/11/04Test Mode:Mode 6: Transmit (802.11n20+NFC) (5300MHz)

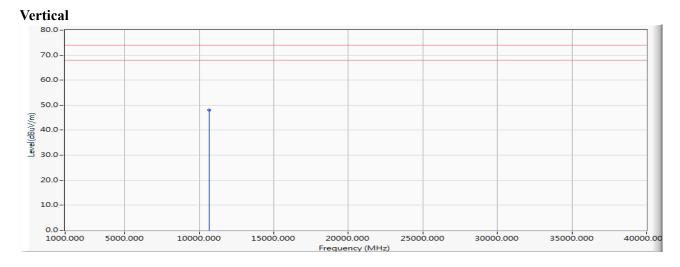
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	10560.000	-13.356	64.881	51.525	-22.475	74.000	PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product:Humly Room Display OneTest Item:Harmonic Radiated Emission DataTest Date:2019/11/04Test Mode:Mode 6: Transmit (802.11n20+NFC) (5320MHz)

Horizontal

•

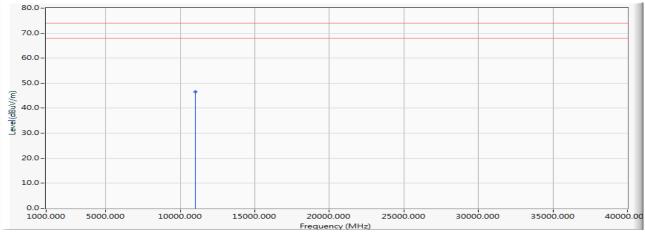

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	10640.000	-13.984	62.290	48.306	-25.694	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

`

Product:Humly Room Display OneTest Item:Harmonic Radiated Emission DataTest Date:2019/11/04Test Mode:Mode 6: Transmit (802.11n20+NFC) (5320MHz)

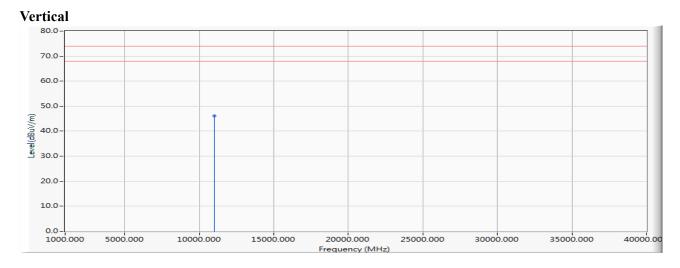
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	10640.000	-13.984	61.990	48.006	-25.994	74.000	PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product:Humly Room Display OneTest Item:Harmonic Radiated Emission DataTest Date:2019/11/04Test Mode:Mode 6: Transmit (802.11n20+NFC) (5500MHz)

Horizontal

•

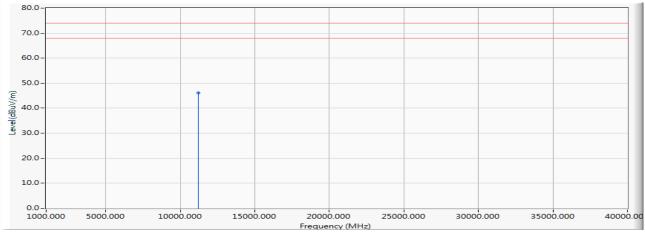


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	11000.000	-12.506	58.950	46.443	-27.557	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product:Humly Room Display OneTest Item:Harmonic Radiated Emission DataTest Date:2019/11/04Test Mode:Mode 6: Transmit (802.11n20+NFC) (5500MHz)

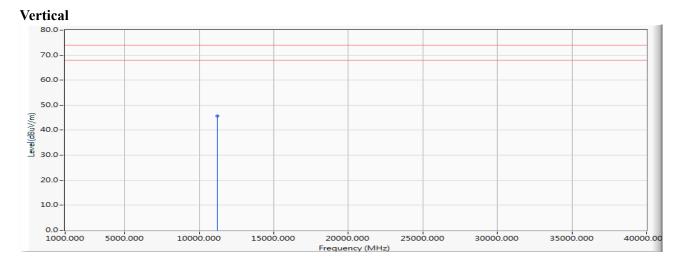
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	11000.000	-12.506	58.580	46.073	-27.927	74.000	PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product:Humly Room Display OneTest Item:Harmonic Radiated Emission DataTest Date:2019/11/04Test Mode:Mode 6: Transmit (802.11n20+NFC) (5600MHz)

Horizontal

•

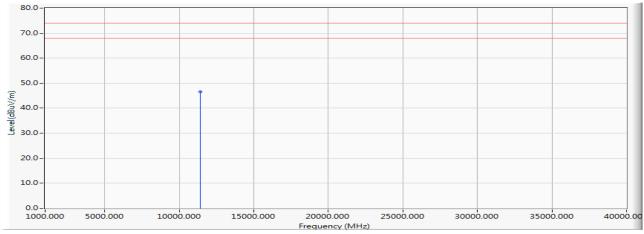


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	11200.000	-10.592	56.720	46.128	-27.872	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product:Humly Room Display OneTest Item:Harmonic Radiated Emission DataTest Date:2019/11/04Test Mode:Mode 6: Transmit (802.11n20+NFC) (5600MHz)

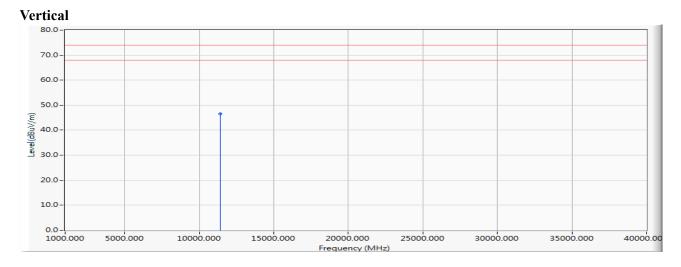
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	11200.000	-10.592	56.220	45.628	-28.372	74.000	PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product:Humly Room Display OneTest Item:Harmonic Radiated Emission DataTest Date:2019/11/04Test Mode:Mode 6: Transmit (802.11n20+NFC) (5700MHz)

Horizontal

•

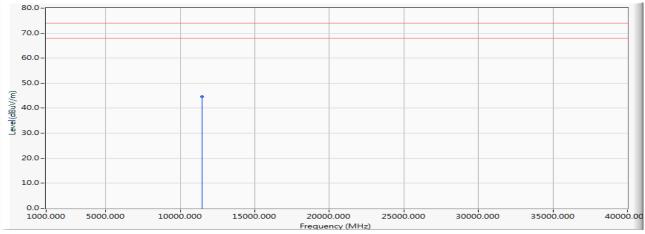


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	11400.000	-11.233	57.880	46.648	-27.352	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product:Humly Room Display OneTest Item:Harmonic Radiated Emission DataTest Date:2019/11/04Test Mode:Mode 6: Transmit (802.11n20+NFC) (5700MHz)

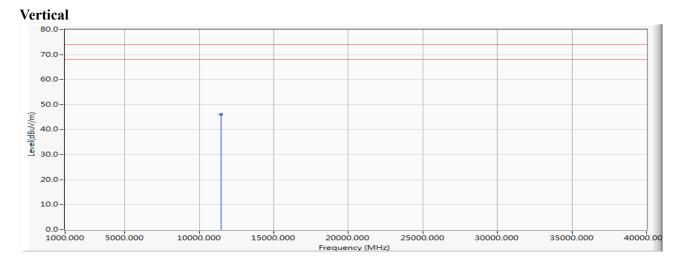
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	11400.000	-11.233	57.730	46.498	-27.502	74.000	PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product:Humly Room Display OneTest Item:Harmonic Radiated Emission DataTest Date:2019/11/04Test Mode:Mode 6: Transmit (802.11n20+NFC) (5720MHz)

Horizontal

•

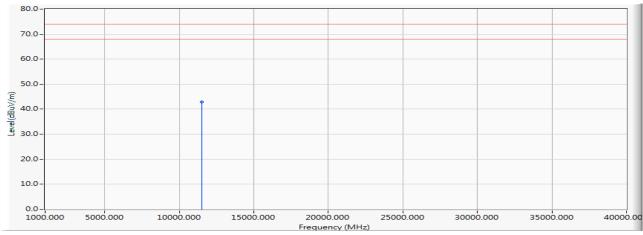

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	11440.000	-11.512	56.200	44.688	-29.312	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

.

- Product : Humly Room Display One Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/11/04
- Test Mode : Mode 6: Transmit (802.11n20+NFC) (5720MHz)

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	11440.000	-11.512	57.640	46.128	-27.872	74.000	PEAK

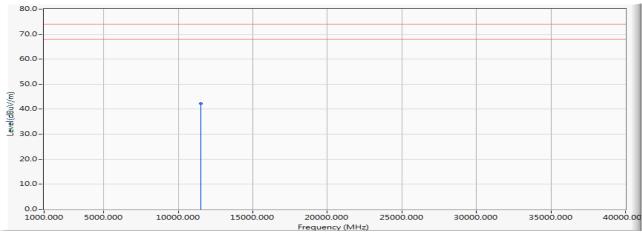

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product:Humly Room Display OneTest Item:Harmonic Radiated Emission DataTest Date:2019/11/04Test Mode:Mode 6: Transmit (802.11n20+NFC) (5745MHz)

Horizontal

.

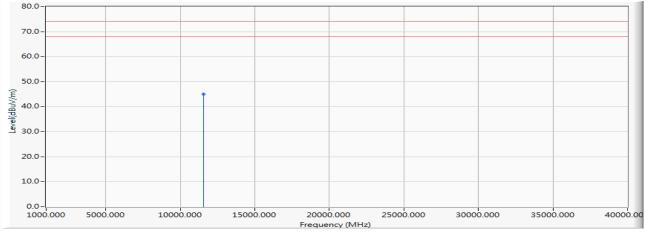
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	11490.000	-11.855	54.850	42.996	-31.004	74.000	PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product:Humly Room Display OneTest Item:Harmonic Radiated Emission DataTest Date:2019/11/04Test Mode:Mode 6: Transmit (802.11n20+NFC) (5745MHz)

Vertical

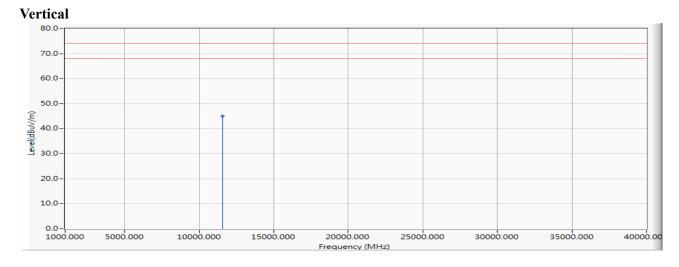
.


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	11490.000	-11.855	54.000	42.146	-31.854	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/11/04
- Test Mode : Mode 6: Transmit (802.11n20+NFC) (5785MHz)

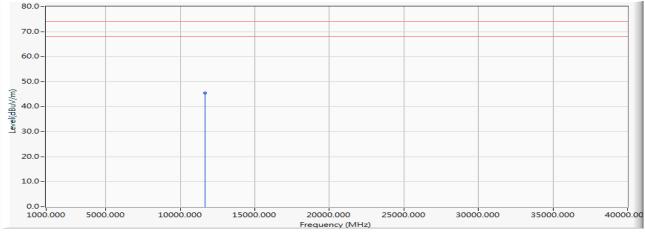
.


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	11570.000	-11.508	56.570	45.063	-28.937	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

.

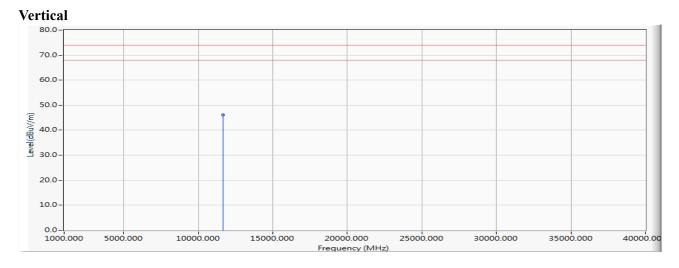
- Product:Humly Room Display OneTest Item:Harmonic Radiated Emission DataTest Date:2019/11/04
- Test Mode : Mode 6: Transmit (802.11n20+NFC) (5785MHz)


		Frequency	Correct Factor	Reading Level Measure Level		Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	11570.000	-11.508	56.570	45.063	-28.937	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/11/04
- Test Mode : Mode 6: Transmit (802.11n20+NFC) (5825MHz)

.

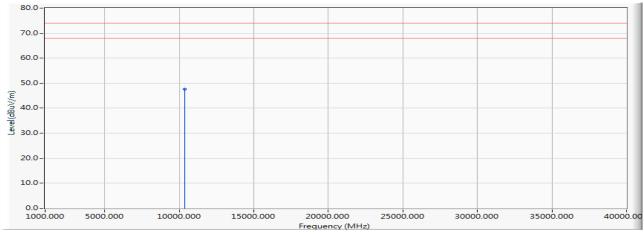


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	11650.000	-10.977	56.340	45.363	-28.637	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product:Humly Room Display OneTest Item:Harmonic Radiated Emission DataTest Date:2019/11/04Test Mode:Mode 6: Transmit (802.11n20+NFC) (5825MHz)

		Frequency	Correct Factor	Reading Level	ing Level Measure Level		Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	11650.000	-10.977	57.010	46.033	-27.967	74.000	PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product:Humly Room Display OneTest Item:Harmonic Radiated Emission DataTest Date:2019/11/04Test Mode:Mode 7: Transmit (802.11n40+NFC) (5190MHz)

Horizontal

•

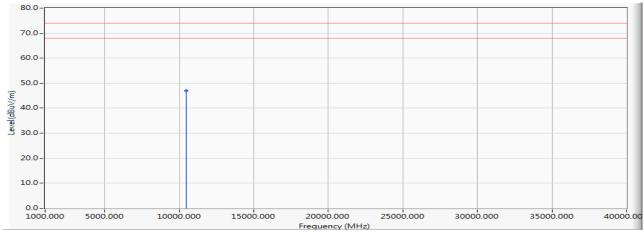
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	10380.000	-11.773	59.450	47.677	-26.323	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	:	Humly Room Display One
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/11/04
Test Mode	:	Mode 7: Transmit (802.11n40+NFC) (5190MHz)

Vertical 80.0 70.0 60.0 50.0 Level(dBuV/m) 40.0 30.0 20.0-10.0 0.0-5000.000 10000.000 15000.000 20000.000 25000.000 30000.000 35000.000 40000.00 Frequency (MHz)

	Frequency Correct Factor		Reading Level	Measure Level	Margin	Limit	Detector Type
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1 *	10380.000	-11.773	59.040	47.267	-26.733	74.000	PEAK

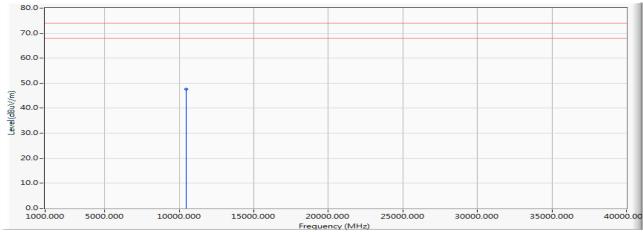

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product:Humly Room Display OneTest Item:Harmonic Radiated Emission DataTest Date:2019/11/04Test Mode:Mode 7: Transmit (802.11n40+NFC) (5230MHz)

Horizontal

•

		Frequency Correct Factor		Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	10460.000	-12.534	59.470	46.936	-27.064	74.000	PEAK

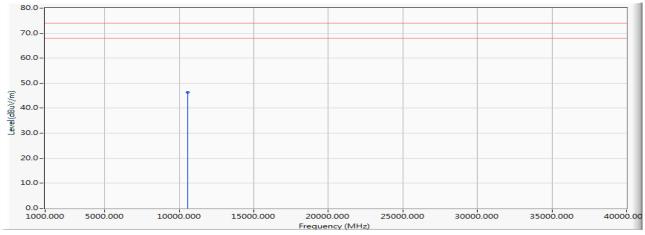

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	:	Humly Room Display One
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/11/04
Test Mode	:	Mode 7: Transmit (802.11n40+NFC) (5230MHz)

Vertical

•

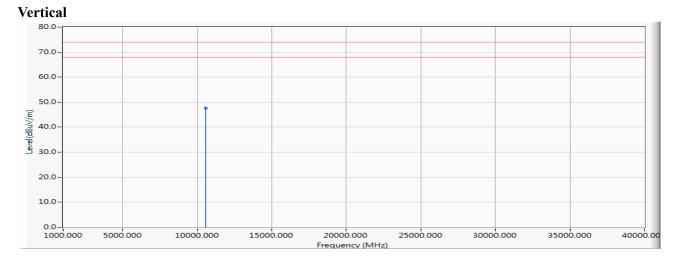
		Frequency	Correct Factor	Reading Level Measure Level		Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	10460.000	-12.534	60.130	47.596	-26.404	74.000	PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product:Humly Room Display OneTest Item:Harmonic Radiated Emission DataTest Date:2019/11/04Test Mode:Mode 7: Transmit (802.11n40+NFC) (5270MHz)

Horizontal

•

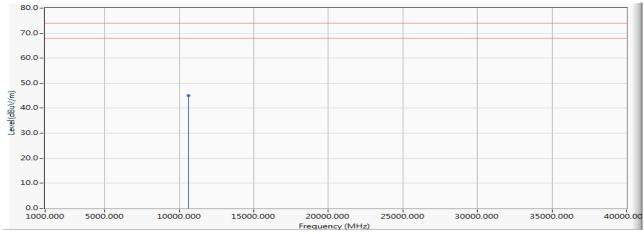


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	10540.000	-13.210	59.580	46.370	-27.630	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	:	Humly Room Display One
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/11/04
Test Mode	:	Mode 7: Transmit (802.11n40+NFC) (5270MHz)

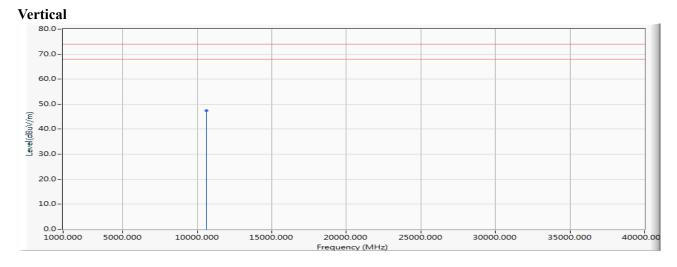
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	10540.000	-13.210	60.730	47.520	-26.480	74.000	PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product:Humly Room Display OneTest Item:Harmonic Radiated Emission DataTest Date:2019/11/04Test Mode:Mode 7: Transmit (802.11n40+NFC) (5310MHz)

Horizontal

•

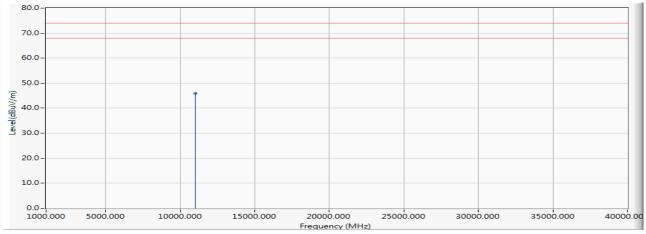


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	10620.000	-13.817	58.790	44.973	-29.027	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product:Humly Room Display OneTest Item:Harmonic Radiated Emission DataTest Date:2019/11/04Test Mode:Mode 7: Transmit (802.11n40+NFC) (5310MHz)

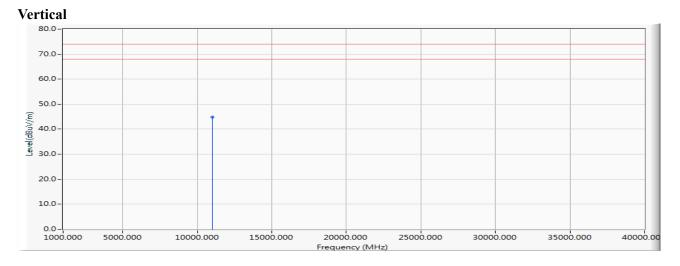
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	10620.000	-13.817	61.110	47.293	-26.707	74.000	PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product:Humly Room Display OneTest Item:Harmonic Radiated Emission DataTest Date:2019/11/04Test Mode:Mode 7: Transmit (802.11n40+NFC) (5510MHz)

Horizontal

•

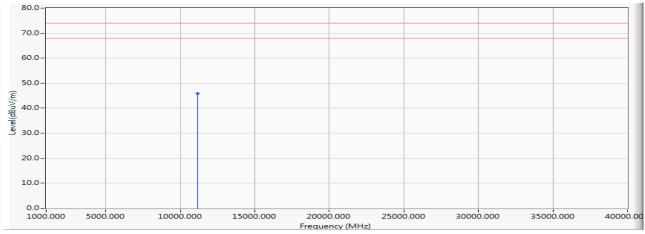


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	11020.000	-12.322	58.250	45.927	-28.073	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product:Humly Room Display OneTest Item:Harmonic Radiated Emission DataTest Date:2019/11/04Test Mode:Mode 7: Transmit (802.11n40+NFC) (5510MHz)

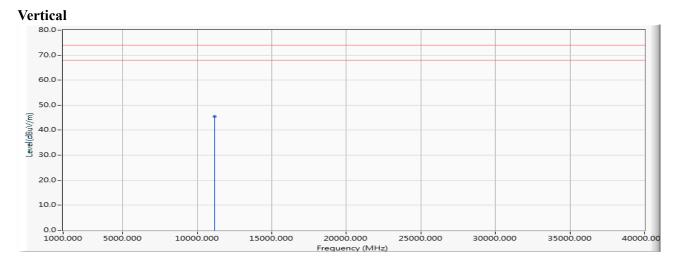
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	11020.000	-12.322	57.180	44.857	-29.143	74.000	PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product:Humly Room Display OneTest Item:Harmonic Radiated Emission DataTest Date:2019/11/04Test Mode:Mode 7: Transmit (802.11n40+NFC) (5590MHz)

Horizontal

•

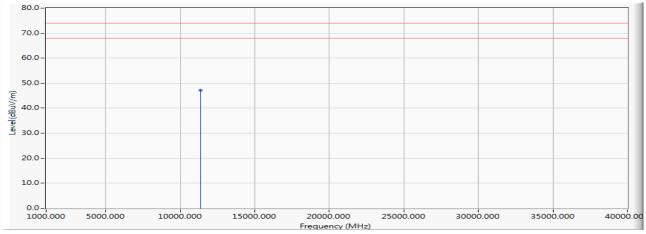


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	11180.000	-10.793	56.700	45.907	-28.093	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product:Humly Room Display OneTest Item:Harmonic Radiated Emission DataTest Date:2019/11/04Test Mode:Mode 7: Transmit (802.11n40+NFC) (5590MHz)

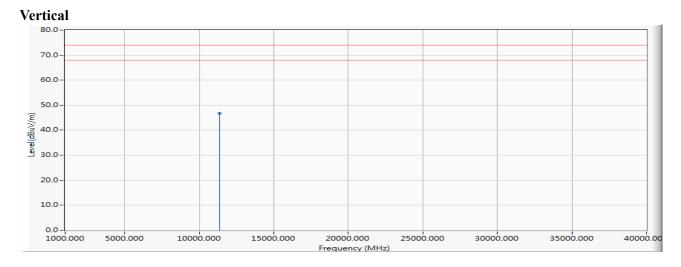
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	11180.000	-10.793	56.240	45.447	-28.553	74.000	PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product:Humly Room Display OneTest Item:Harmonic Radiated Emission DataTest Date:2019/11/04Test Mode:Mode 7: Transmit (802.11n40+NFC) (5670MHz)

Horizontal

•

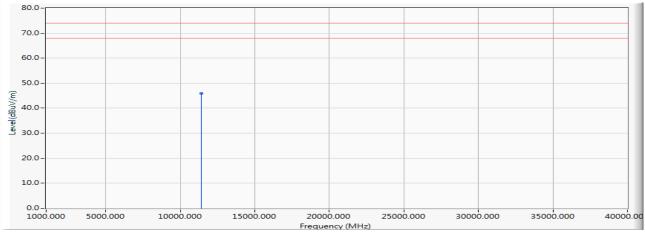


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	11340.000	-10.815	58.080	47.264	-26.736	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product:Humly Room Display OneTest Item:Harmonic Radiated Emission DataTest Date:2019/11/04Test Mode:Mode 7: Transmit (802.11n40+NFC) (5670MHz)

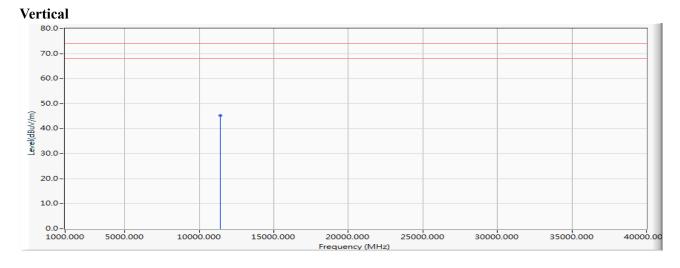
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	11340.000	-10.815	57.660	46.844	-27.156	74.000	PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product:Humly Room Display OneTest Item:Harmonic Radiated Emission DataTest Date:2019/11/04Test Mode:Mode 7: Transmit (802.11n40+NFC) (5710MHz)

Horizontal

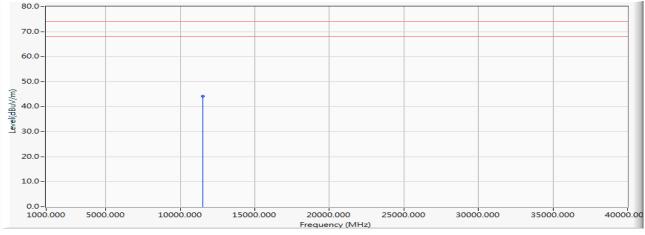
•


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	11420.000	-11.372	57.360	45.988	-28.012	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

.

- Product:Humly Room Display OneTest Item:Harmonic Radiated Emission DataTest Date:2019/11/04
- Test Mode : Mode 7: Transmit (802.11n40+NFC) (5710MHz)


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	11420.000	-11.372	56.580	45.208	-28.792	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/11/04
- Test Mode : Mode 7: Transmit (802.11n40+NFC) (5755MHz)

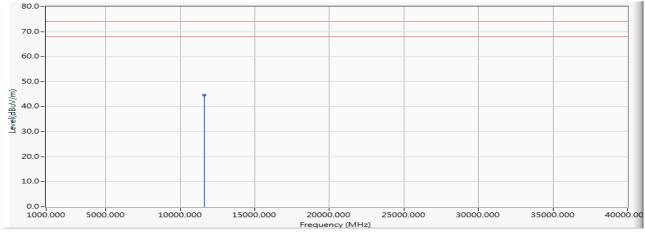
.


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	11510.000	-11.869	56.040	44.171	-29.829	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

.

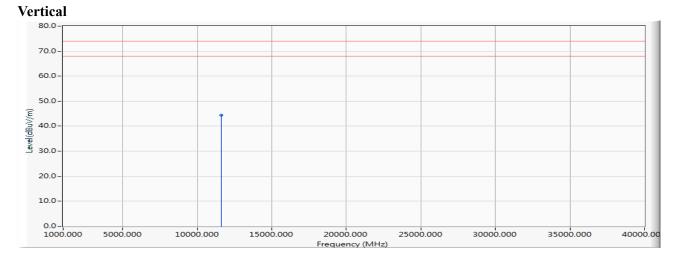
- Product:Humly Room Display OneTest Item:Harmonic Radiated Emission DataTest Date:2019/11/04
- Test Mode : Mode 7: Transmit (802.11n40+NFC) (5755MHz)


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	11510.000	-11.869	56.360	44.491	-29.509	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/11/04
- Test Mode : Mode 7: Transmit (802.11n40+NFC) (5795MHz)

.

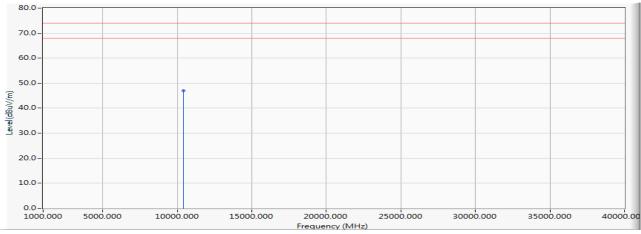


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	11590.000	-11.389	56.040	44.651	-29.349	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	:	Humly Room Display One
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/11/04
Test Mode	:	Mode 7: Transmit (802.11n40+NFC) (5795MHz)

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	11590.000	-11.389	55.690	44.301	-29.699	74.000	PEAK

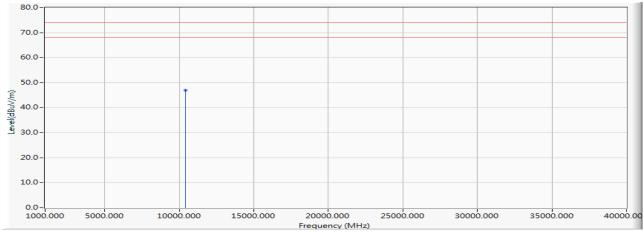

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product:Humly Room Display OneTest Item:Harmonic Radiated Emission DataTest Date:2019/11/04Test Mode:Mode 8: Transmit (802.11ac80+NFC) (5210MHz)

Horizontal

.

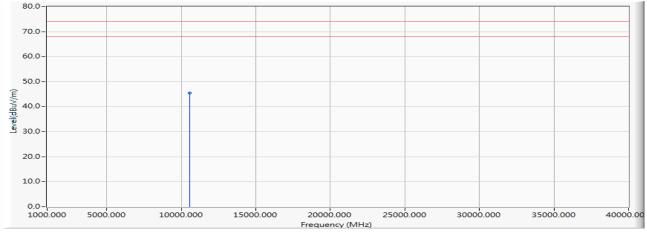
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	10420.000	-12.154	59.020	46.866	-27.134	74.000	PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product:Humly Room Display OneTest Item:Harmonic Radiated Emission DataTest Date:2019/11/04
- Test Mode : Mode 8: Transmit (802.11ac80+NFC) (5210MHz)

Vertical

.

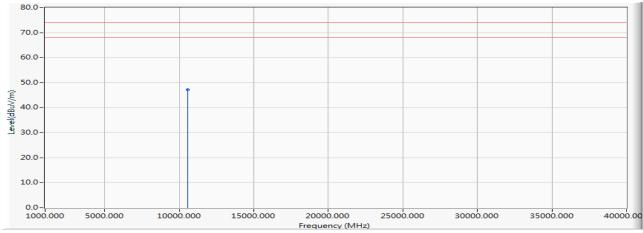

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	10420.000	-12.154	59.140	46.986	-27.014	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/11/04
- Test Mode : Mode 8: Transmit (802.11ac80+NFC) (5290MHz)

.

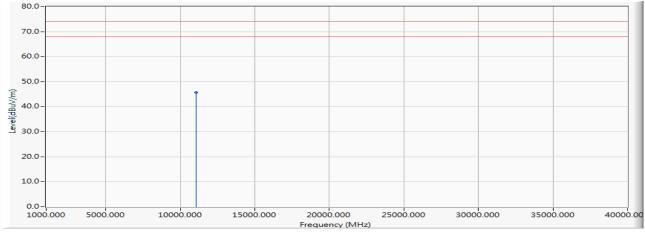
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	10580.000	-13.503	59.020	45.517	-28.483	74.000	PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product:Humly Room Display OneTest Item:Harmonic Radiated Emission Data
- Test Date : 2019/11/04
- Test Mode : Mode 8: Transmit (802.11ac80+NFC) (5290MHz)

Vertical

.

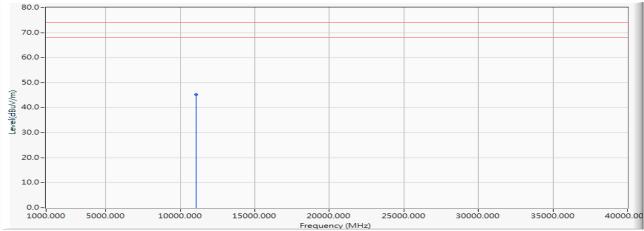

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	10580.000	-13.503	60.670	47.167	-26.833	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/11/04
- Test Mode : Mode 8: Transmit (802.11ac80+NFC) (5530MHz)

.

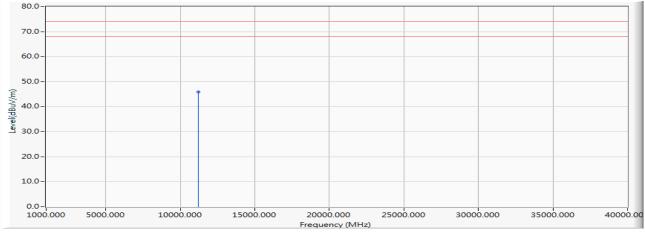
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	11060.000	-11.960	57.670	45.711	-28.289	74.000	PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	:	Humly Room Display One
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/11/04
Test Mode	:	Mode 8: Transmit (802.11ac80+NFC) (5530MHz)

Vertical

•

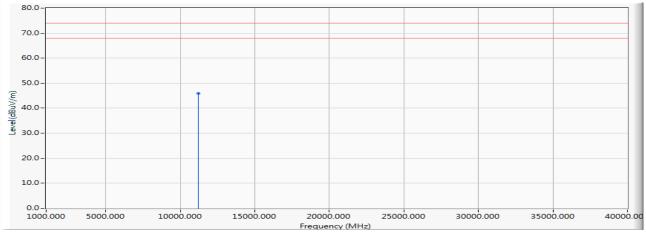

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	11060.000	-11.960	57.182	45.223	-28.777	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/11/04
- Test Mode : Mode 8: Transmit (802.11ac80+NFC) (5610MHz)

.

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	11220.000	-10.410	56.360	45.950	-28.050	74.000	PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product:Humly Room Display OneTest Item:Harmonic Radiated Emission DataTest Date:2019/11/04Test Mode:Mode 8: Transmit (802.11ac80+NFC) (5610MHz)

Vertical

`

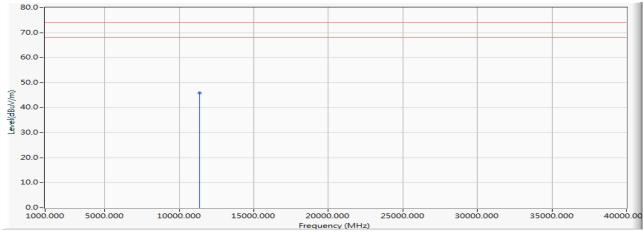
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	11220.000	-10.410	56.330	45.920	-28.080	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/11/04
- Test Mode : Mode 8: Transmit (802.11ac80+NFC) (5690MHz)

.

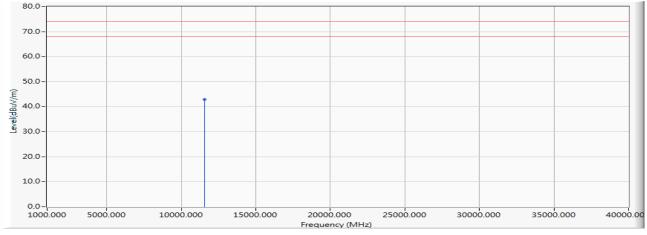
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	11380.000	-11.094	56.740	45.647	-28.353	74.000	PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product:Humly Room Display OneTest Item:Harmonic Radiated Emission DataTest Date:2019/11/04
- Test Mode : Mode 8: Transmit (802.11ac80+NFC) (5690MHz)

Vertical

.

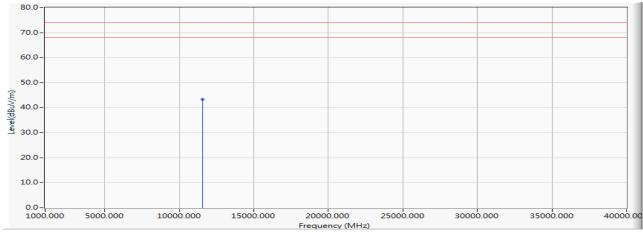

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	11380.000	-11.094	57.010	45.917	-28.083	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/11/04
- Test Mode : Mode 8: Transmit (802.11ac80+NFC) (5775MHz)

.

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	11550.000	-11.629	54.420	42.792	-31.208	74.000	PEAK

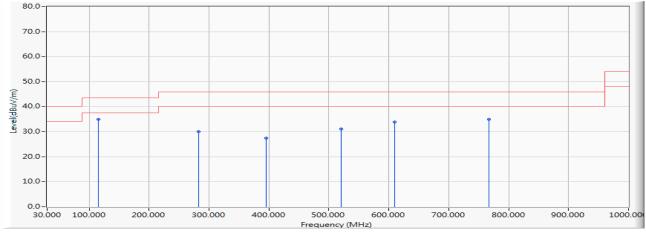

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product:Humly Room Display OneTest Item:Harmonic Radiated Emission DataTest Date:2019/11/04Test Mode:Mode 8: Transmit (802.11ac80+NFC) (5775MHz)

Vertical

.

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	11550.000	-11.629	54.880	43.252	-30.748	74.000	PEAK

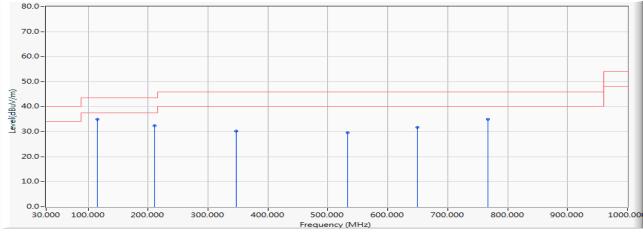

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product:Humly Room Display OneTest Item:General Radiated EmissionTest Date:2019/11/02Test Mode:Mode 5: Transmit (802.11a+NFC) (5200MHz)

Horizontal

.

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	115.754	-16.870	51.866	34.996	-8.504	43.500	QUASIPEAK
2		283.043	-17.887	47.980	30.093	-15.907	46.000	QUASIPEAK
3		395.507	-13.316	40.668	27.352	-18.648	46.000	QUASIPEAK
4		520.623	-11.251	42.246	30.995	-15.005	46.000	QUASIPEAK
5		609.188	-7.280	41.200	33.920	-12.080	46.000	QUASIPEAK
6		766.638	-8.013	42.957	34.944	-11.056	46.000	QUASIPEAK

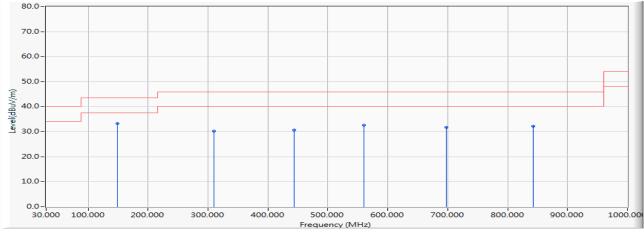

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product:Humly Room Display OneTest Item:General Radiated EmissionTest Date:2019/11/02Test Mode:Mode 5: Transmit (802.11a+NFC) (5200MHz)

Vertical

.

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	115.754	-16.870	51.866	34.996	-8.504	43.500	QUASIPEAK
2		211.348	-18.197	50.565	32.367	-11.133	43.500	QUASIPEAK
3		347.710	-13.454	43.636	30.182	-15.818	46.000	QUASIPEAK
4		533.275	-11.335	40.902	29.567	-16.433	46.000	QUASIPEAK
5		649.957	-9.372	41.012	31.641	-14.359	46.000	QUASIPEAK
6		766.638	-8.013	42.957	34.944	-11.056	46.000	QUASIPEAK


- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product:Humly Room Display OneTest Item:General Radiated EmissionTest Date:2019/11/02Test Mode:Mode 5: Transmit (802.11a+NFC) (5280MHz)

Horizontal

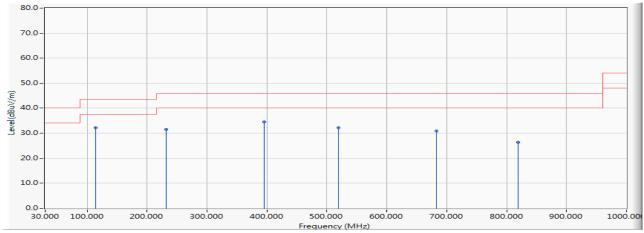
.


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	149.493	-19.726	52.922	33.196	-10.304	43.500	QUASIPEAK
2		309.754	-14.376	44.659	30.282	-15.718	46.000	QUASIPEAK
3		443.304	-9.888	40.563	30.676	-15.324	46.000	QUASIPEAK
4		559.986	-10.503	43.205	32.702	-13.298	46.000	QUASIPEAK
5		697.754	-9.188	40.844	31.655	-14.345	46.000	QUASIPEAK
6		842.551	-8.336	40.613	32.277	-13.723	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : General Radiated Emission
- Test Date : 2019/11/02
- Test Mode : Mode 5: Transmit (802.11a+NFC) (5280MHz)

.

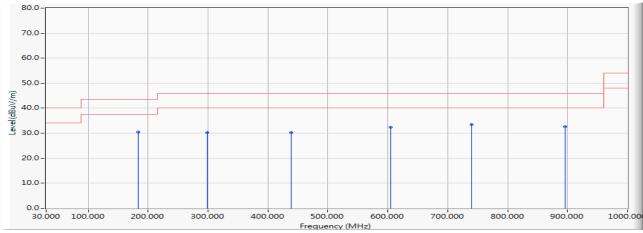

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		127.000	-16.313	40.619	24.306	-19.194	43.500	QUASIPEAK
2		219.783	-18.087	37.125	19.038	-26.962	46.000	QUASIPEAK
3		520.623	-11.251	41.189	29.938	-16.062	46.000	QUASIPEAK
4	*	649.957	-9.372	40.824	31.453	-14.547	46.000	QUASIPEAK
5		780.696	-8.577	38.922	30.345	-15.655	46.000	QUASIPEAK
6		910.029	-10.072	39.050	28.978	-17.022	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	:	Humly Room Display One
Test Item	:	General Radiated Emission
Test Date	:	2019/11/02
Test Mode	:	Mode 5: Transmit (802.11a+NFC) (5600MHz)

•

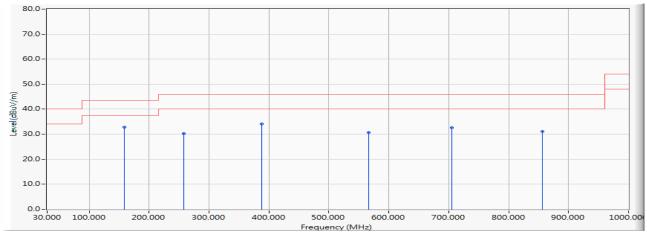
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	114.348	-16.854	48.976	32.122	-11.378	43.500	QUASIPEAK
2		232.435	-17.845	49.393	31.547	-14.453	46.000	QUASIPEAK
3		395.507	-13.316	47.743	34.427	-11.573	46.000	QUASIPEAK
4		519.217	-11.232	43.481	32.250	-13.750	46.000	QUASIPEAK
5		682.290	-9.266	40.230	30.963	-15.037	46.000	QUASIPEAK
6		818.652	-9.029	35.375	26.346	-19.654	46.000	QUASIPEAK


- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product:Humly Room Display OneTest Item:General Radiated EmissionTest Date:2019/11/02Test Mode:Mode 5: Transmit (802.11a+NFC) (5600MHz)

Vertical

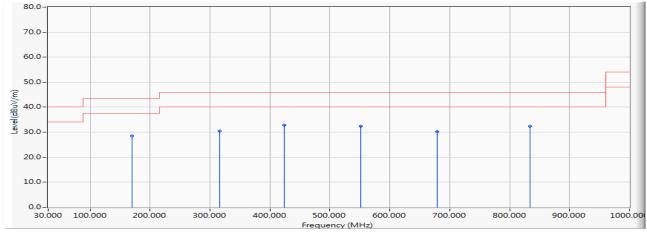
.


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		183.232	-19.126	49.481	30.355	-13.145	43.500	QUASIPEAK
2		298.507	-15.054	45.336	30.282	-15.718	46.000	QUASIPEAK
3		439.087	-9.871	40.113	30.242	-15.758	46.000	QUASIPEAK
4		604.971	-6.961	39.323	32.362	-13.638	46.000	QUASIPEAK
5	*	739.928	-5.534	39.012	33.479	-12.521	46.000	QUASIPEAK
6		895.971	-9.586	42.214	32.628	-13.372	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	:	Humly Room Display One
Test Item	:	General Radiated Emission
Test Date	:	2019/11/02
Test Mode	:	Mode 6: Transmit (802.11n20+NFC) (5785MHz)

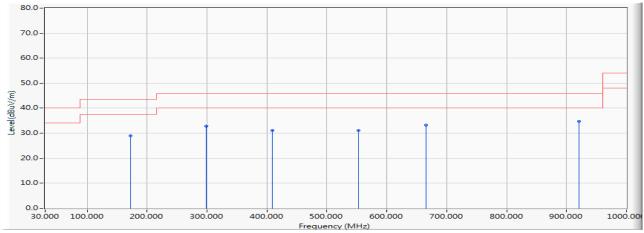
•


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	159.333	-20.698	53.480	32.782	-10.718	43.500	QUASIPEAK
2		257.739	-18.119	48.327	30.207	-15.793	46.000	QUASIPEAK
3		388.478	-12.729	46.807	34.078	-11.922	46.000	QUASIPEAK
4		567.014	-9.475	40.177	30.702	-15.298	46.000	QUASIPEAK
5		704.783	-9.122	41.624	32.502	-13.498	46.000	QUASIPEAK
6		856.609	-8.385	39.429	31.044	-14.956	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : General Radiated Emission
- Test Date : 2019/11/02
- Test Mode : Mode 6: Transmit (802.11n20+NFC) (5785MHz)

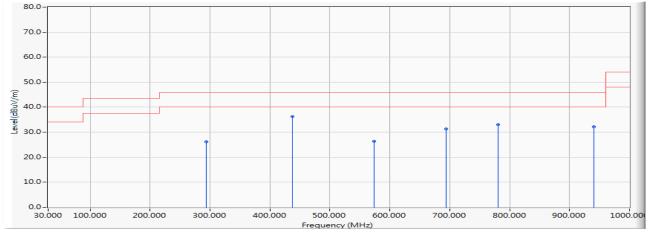
.


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		170.580	-20.172	48.788	28.615	-14.885	43.500	QUASIPEAK
2		316.783	-14.139	44.642	30.503	-15.497	46.000	QUASIPEAK
3	*	423.623	-11.855	44.750	32.895	-13.105	46.000	QUASIPEAK
4		551.551	-10.902	43.189	32.287	-13.713	46.000	QUASIPEAK
5		679.478	-9.295	39.434	30.140	-15.860	46.000	QUASIPEAK
6		834.116	-8.589	40.997	32.408	-13.592	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	:	Humly Room Display One
Test Item	:	General Radiated Emission
Test Date	:	2019/11/02
Test Mode	:	Mode 6: Transmit (802.11n20+NFC) (5200MHz)

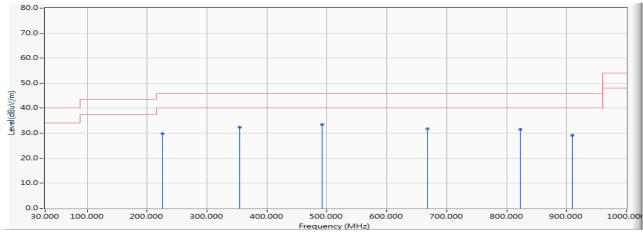
•


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		171.986	-20.044	49.081	29.038	-14.462	43.500	QUASIPEAK
2		298.507	-15.054	47.907	32.853	-13.147	46.000	QUASIPEAK
3		409.565	-13.041	44.122	31.081	-14.919	46.000	QUASIPEAK
4		552.957	-10.834	41.880	31.046	-14.954	46.000	QUASIPEAK
5		665.420	-9.856	43.010	33.154	-12.846	46.000	QUASIPEAK
6	*	921.275	-10.212	44.962	34.749	-11.251	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : General Radiated Emission
- Test Date : 2019/11/02
- Test Mode : Mode 6: Transmit (802.11n20+NFC) (5200MHz)

.

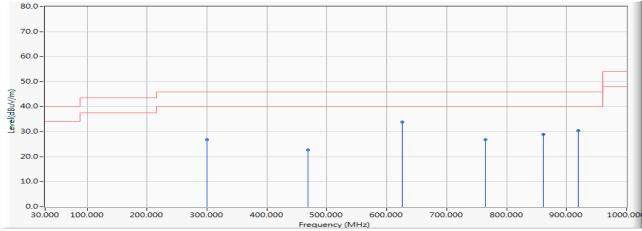

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		294.290	-16.050	42.153	26.103	-19.897	46.000	QUASIPEAK
2	*	437.681	-10.051	46.220	36.169	-9.831	46.000	QUASIPEAK
3		574.043	-8.406	34.730	26.324	-19.676	46.000	QUASIPEAK
4		693.536	-9.218	40.514	31.296	-14.704	46.000	QUASIPEAK
5		780.696	-8.577	41.675	33.098	-12.902	46.000	QUASIPEAK
6		940.957	-8.787	40.924	32.137	-13.863	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	:	Humly Room Display One
Test Item	:	General Radiated Emission
Test Date	:	2019/11/02
Test Mode	:	Mode 6: Transmit (802.11n20+NFC) (5280MHz)

•

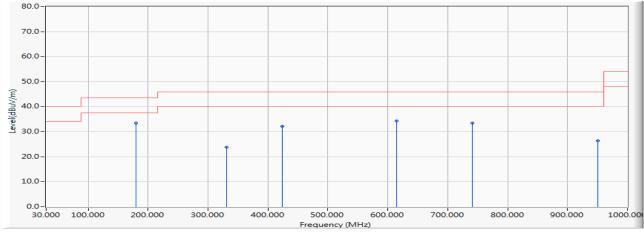
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		225.406	-17.797	47.525	29.728	-16.272	46.000	QUASIPEAK
2		354.739	-13.025	45.458	32.433	-13.567	46.000	QUASIPEAK
3	*	492.507	-11.335	44.898	33.563	-12.437	46.000	QUASIPEAK
4		668.232	-9.743	41.379	31.636	-14.364	46.000	QUASIPEAK
5		822.870	-8.940	40.540	31.600	-14.400	46.000	QUASIPEAK
6		910.029	-10.072	39.137	29.065	-16.935	46.000	QUASIPEAK


- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product:Humly Room Display OneTest Item:General Radiated EmissionTest Date:2019/11/02Test Mode:Mode 6: Transmit (802.11n20+NFC) (5280MHz)

Vertical

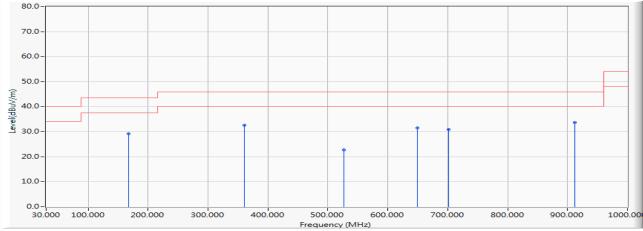
.


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		299.913	-14.753	41.539	26.785	-19.215	46.000	QUASIPEAK
2		468.609	-11.218	33.996	22.778	-23.222	46.000	QUASIPEAK
3	*	626.058	-8.324	42.135	33.811	-12.189	46.000	QUASIPEAK
4		765.232	-7.956	34.837	26.881	-19.119	46.000	QUASIPEAK
5		860.826	-8.415	37.411	28.996	-17.004	46.000	QUASIPEAK
6		919.870	-10.289	40.730	30.441	-15.559	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : General Radiated Emission
- Test Date : 2019/11/02
- Test Mode : Mode 6: Transmit (802.11n20+NFC) (5600MHz)

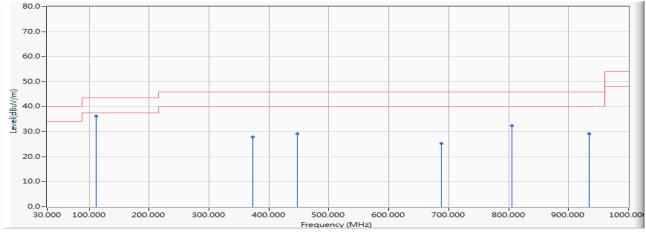
.


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	180.420	-19.273	52.809	33.537	-9.963	43.500	QUASIPEAK
2		330.841	-14.005	37.769	23.763	-22.237	46.000	QUASIPEAK
3		423.623	-11.855	44.055	32.200	-13.800	46.000	QUASIPEAK
4		614.812	-7.689	41.921	34.232	-11.768	46.000	QUASIPEAK
5		741.333	-5.658	39.204	33.545	-12.455	46.000	QUASIPEAK
6		950.797	-8.603	34.961	26.359	-19.641	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product:Humly Room Display OneTest Item:General Radiated EmissionTest Date:2019/11/02
- Test Mode : Mode 6: Transmit (802.11n20+NFC) (5600MHz)

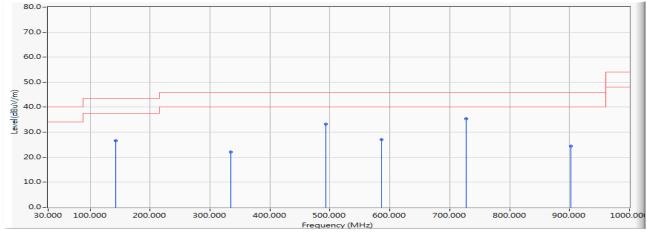
.


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		167.768	-20.344	49.478	29.134	-14.366	43.500	QUASIPEAK
2		360.362	-12.701	45.333	32.632	-13.368	46.000	QUASIPEAK
3		526.246	-11.281	34.039	22.758	-23.242	46.000	QUASIPEAK
4		649.957	-9.372	40.840	31.469	-14.531	46.000	QUASIPEAK
5		701.971	-9.140	40.104	30.965	-15.035	46.000	QUASIPEAK
6	*	911.435	-10.107	43.707	33.600	-12.400	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product:Humly Room Display OneTest Item:General Radiated Emission
- Test Date : 2019/11/02
- Test Mode : Mode 6: Transmit (802.11n20+NFC) (5720MHz)

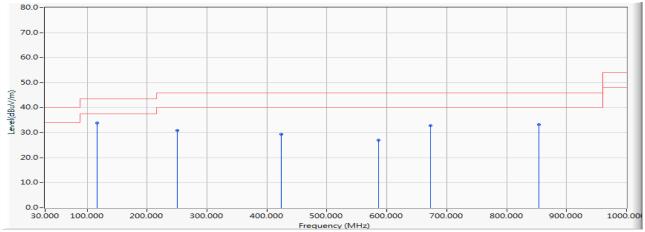
.


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	111.536	-16.821	53.039	36.218	-7.282	43.500	QUASIPEAK
2		373.014	-12.268	40.215	27.948	-18.052	46.000	QUASIPEAK
3		447.522	-10.058	39.177	29.120	-16.880	46.000	QUASIPEAK
4		687.913	-9.243	34.496	25.253	-20.747	46.000	QUASIPEAK
5		806.000	-8.955	41.234	32.279	-13.721	46.000	QUASIPEAK
6		933.928	-9.239	38.413	29.174	-16.826	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : General Radiated Emission
- Test Date : 2019/11/02
- Test Mode : Mode 6: Transmit (802.11n20+NFC) (5720MHz)

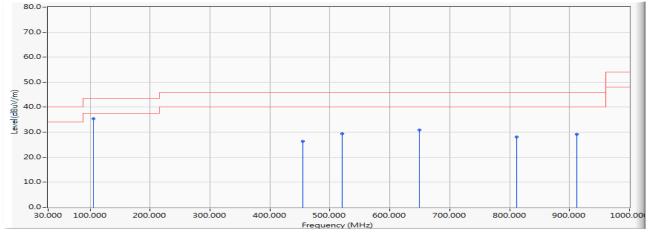
.


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		142.464	-18.164	44.825	26.660	-16.840	43.500	QUASIPEAK
2		335.058	-13.974	36.025	22.050	-23.950	46.000	QUASIPEAK
3		493.913	-11.247	44.491	33.245	-12.755	46.000	QUASIPEAK
4		586.696	-7.204	34.301	27.097	-18.903	46.000	QUASIPEAK
5	*	727.275	-7.705	43.095	35.390	-10.610	46.000	QUASIPEAK
6		901.594	-9.863	34.415	24.551	-21.449	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	:	Humly Room Display One
Test Item	:	General Radiated Emission
Test Date	:	2019/11/02
Test Mode	:	Mode 6: Transmit (802.11n20+NFC) (5785MHz)

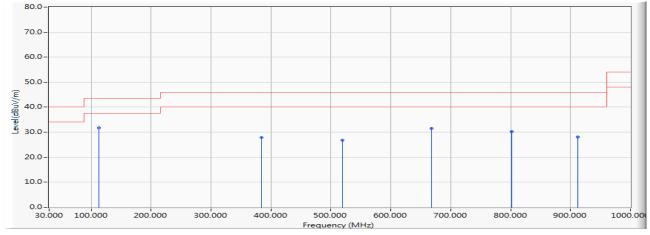
•


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	117.159	-16.886	50.801	33.915	-9.585	43.500	QUASIPEAK
2		250.710	-17.940	48.911	30.970	-15.030	46.000	QUASIPEAK
3		423.623	-11.855	41.255	29.400	-16.600	46.000	QUASIPEAK
4		586.696	-7.204	34.127	26.923	-19.077	46.000	QUASIPEAK
5		672.449	-9.577	42.444	32.867	-13.133	46.000	QUASIPEAK
6		853.797	-8.366	41.647	33.280	-12.720	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : General Radiated Emission
- Test Date : 2019/11/02
- Test Mode : Mode 6: Transmit (802.11n20+NFC) (5785MHz)

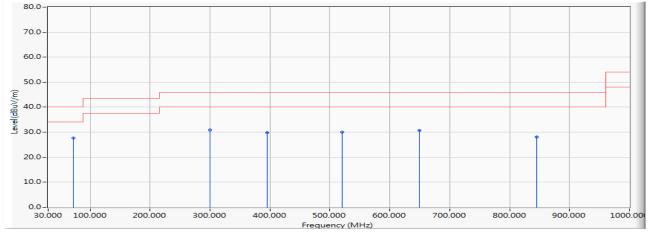
.


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	105.913	-16.485	51.950	35.464	-8.036	43.500	QUASIPEAK
2		454.551	-10.307	36.632	26.325	-19.675	46.000	QUASIPEAK
3		520.623	-11.251	40.643	29.392	-16.608	46.000	QUASIPEAK
4		649.957	-9.372	40.352	30.981	-15.019	46.000	QUASIPEAK
5		811.623	-8.953	37.120	28.167	-17.833	46.000	QUASIPEAK
6		911.435	-10.107	39.368	29.261	-16.739	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : General Radiated Emission
- Test Date : 2019/11/02
- Test Mode : Mode 7: Transmit (802.11n40+NFC) (5230MHz)

.

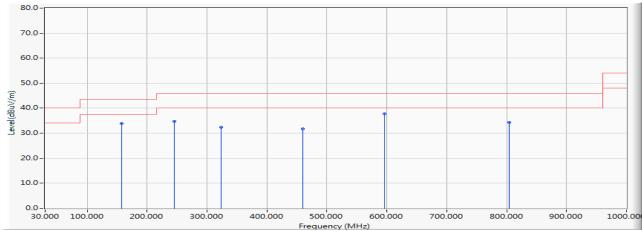

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	112.942	-16.836	48.475	31.638	-11.862	43.500	QUASIPEAK
2		384.261	-12.381	40.238	27.858	-18.142	46.000	QUASIPEAK
3		519.217	-11.232	38.109	26.878	-19.122	46.000	QUASIPEAK
4		668.232	-9.743	41.230	31.487	-14.513	46.000	QUASIPEAK
5		801.783	-8.937	39.196	30.259	-15.741	46.000	QUASIPEAK
6		911.435	-10.107	38.282	28.175	-17.825	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : General Radiated Emission
- Test Date : 2019/11/02
- Test Mode : Mode 7: Transmit (802.11n40+NFC) (5230MHz)

.

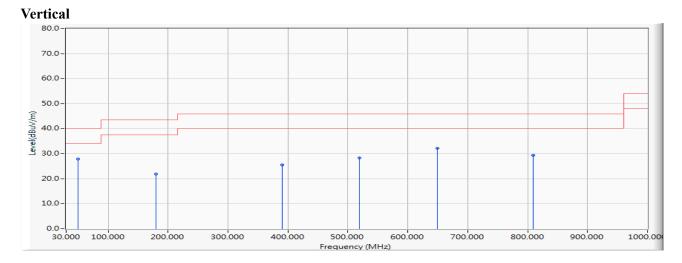
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	72.174	-20.617	48.184	27.567	-12.433	40.000	QUASIPEAK
2		299.913	-14.753	45.600	30.846	-15.154	46.000	QUASIPEAK
3		395.507	-13.316	43.216	29.900	-16.100	46.000	QUASIPEAK
4		520.623	-11.251	41.197	29.946	-16.054	46.000	QUASIPEAK
5		649.957	-9.372	40.016	30.645	-15.355	46.000	QUASIPEAK
6		845.362	-8.301	36.445	28.144	-17.856	46.000	QUASIPEAK


- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product:Humly Room Display OneTest Item:General Radiated EmissionTest Date:2019/11/02Test Mode:Mode 7: Transmit (802.11n40+NFC) (5310MHz)

Horizontal

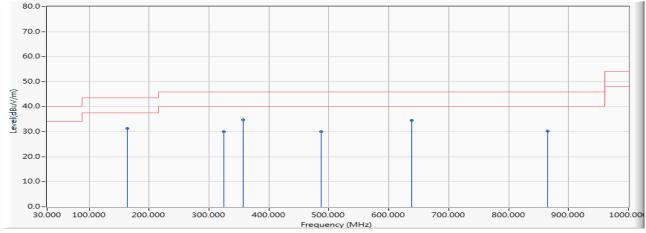
.


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		157.928	-20.566	54.497	33.930	-9.570	43.500	QUASIPEAK
2		245.087	-18.247	52.930	34.682	-11.318	46.000	QUASIPEAK
3		323.812	-14.026	46.361	32.335	-13.665	46.000	QUASIPEAK
4		460.174	-10.529	42.375	31.847	-14.153	46.000	QUASIPEAK
5	*	596.536	-6.759	44.448	37.689	-8.311	46.000	QUASIPEAK
6		804.594	-8.951	43.269	34.318	-11.682	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

.

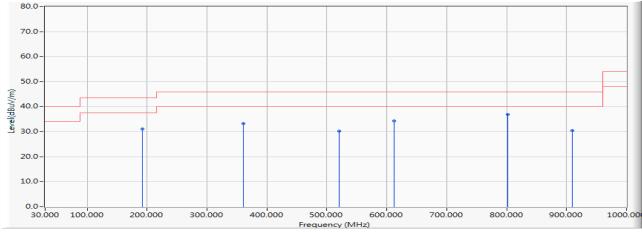
Product:Humly Room Display OneTest Item:General Radiated EmissionTest Date:2019/11/02Test Mode:Mode 7: Transmit (802.11n40+NFC) (5310MHz)


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	49.681	-17.989	45.933	27.944	-12.056	40.000	QUASIPEAK
2		180.420	-19.273	41.252	21.980	-21.520	43.500	QUASIPEAK
3		389.884	-12.845	38.402	25.557	-20.443	46.000	QUASIPEAK
4		519.217	-11.232	39.478	28.247	-17.753	46.000	QUASIPEAK
5		649.957	-9.372	41.471	32.100	-13.900	46.000	QUASIPEAK
6		808.812	-8.946	38.255	29.309	-16.691	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One Test Item General Radiated Emission
 - :
- Test Date 2019/11/02 :
- Test Mode Mode 7: Transmit (802.11n40+NFC) (5590MHz) :

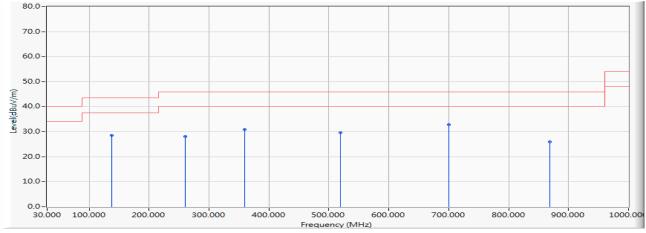
.


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		163.551	-20.566	51.911	31.345	-12.155	43.500	QUASIPEAK
2		325.217	-14.021	43.982	29.961	-16.039	46.000	QUASIPEAK
3	*	357.551	-12.856	47.660	34.804	-11.196	46.000	QUASIPEAK
4		486.884	-11.701	41.759	30.058	-15.942	46.000	QUASIPEAK
5		638.710	-8.780	43.345	34.564	-11.436	46.000	QUASIPEAK
6		865.043	-8.419	38.644	30.225	-15.775	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- " * ", means this data is the worst emission level. 2.
- 3. Measurement Level = Reading Level + Correct Factor

- Product:Humly Room Display OneTest Item:General Radiated EmissionTest Date:2019/11/02
- Test Mode : Mode 7: Transmit (802.11n40+NFC) (5590MHz)

.

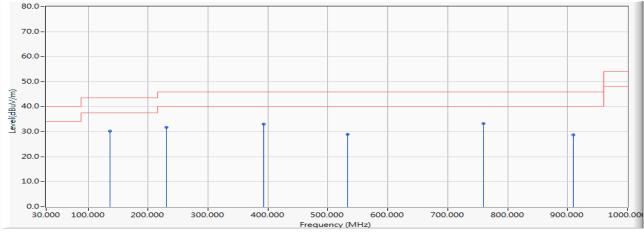

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		191.667	-18.644	49.747	31.103	-12.397	43.500	QUASIPEAK
2		360.362	-12.701	45.963	33.262	-12.738	46.000	QUASIPEAK
3		520.623	-11.251	41.503	30.252	-15.748	46.000	QUASIPEAK
4		612.000	-7.488	41.877	34.389	-11.611	46.000	QUASIPEAK
5	*	801.783	-8.937	45.881	36.944	-9.056	46.000	QUASIPEAK
6		910.029	-10.072	40.544	30.472	-15.528	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product:Humly Room Display OneTest Item:General Radiated EmissionTest Date:2019/11/02
- Test Mode : Mode 7: Transmit (802.11n40+NFC) (5710MHz)

.

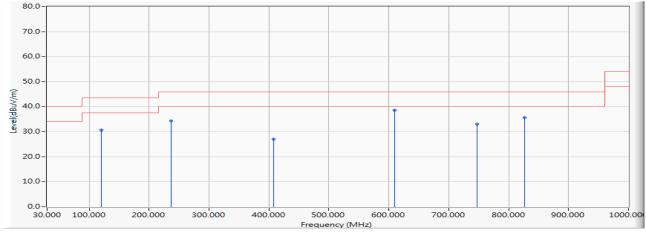
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		138.246	-17.345	45.847	28.502	-14.998	43.500	QUASIPEAK
2		260.551	-18.193	46.360	28.167	-17.833	46.000	QUASIPEAK
3		358.957	-12.773	43.657	30.884	-15.116	46.000	QUASIPEAK
4		519.217	-11.232	40.773	29.542	-16.458	46.000	QUASIPEAK
5	*	700.565	-9.152	41.981	32.829	-13.171	46.000	QUASIPEAK
6		869.261	-8.418	34.418	26.000	-20.000	46.000	QUASIPEAK


- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product:Humly Room Display OneTest Item:General Radiated EmissionTest Date:2019/11/02Test Mode:Mode 7: Transmit (802.11n40+NFC) (5710MHz)

Vertical

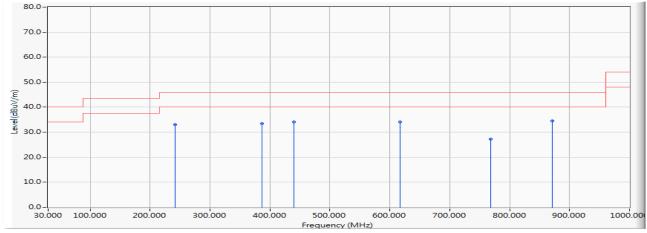
.


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		136.841	-17.128	47.290	30.163	-13.337	43.500	QUASIPEAK
2		231.029	-17.721	49.393	31.672	-14.328	46.000	QUASIPEAK
3		392.696	-13.081	46.058	32.977	-13.023	46.000	QUASIPEAK
4		533.275	-11.335	40.222	28.887	-17.113	46.000	QUASIPEAK
5	*	759.609	-7.692	41.034	33.342	-12.658	46.000	QUASIPEAK
6		910.029	-10.072	38.743	28.671	-17.329	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product:Humly Room Display OneTest Item:General Radiated EmissionTest Date:2019/11/02
- Test Mode : Mode 7: Transmit (802.11n40+NFC) (5795MHz)

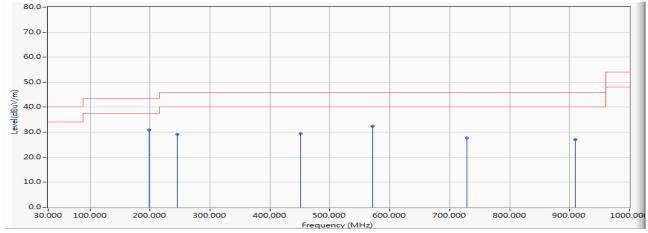
.


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		119.971	-16.904	47.621	30.718	-12.782	43.500	QUASIPEAK
2		236.652	-18.238	52.627	34.389	-11.611	46.000	QUASIPEAK
3		408.159	-13.136	40.194	27.057	-18.943	46.000	QUASIPEAK
4	*	609.188	-7.280	45.853	38.573	-7.427	46.000	QUASIPEAK
5		746.957	-6.271	39.335	33.065	-12.935	46.000	QUASIPEAK
6		827.087	-8.796	44.467	35.671	-10.329	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : General Radiated Emission
- Test Date : 2019/11/02
- Test Mode : Mode 7: Transmit (802.11n40+NFC) (5795MHz)

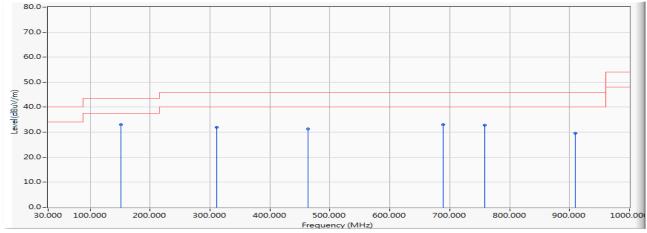
.


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		242.275	-18.433	51.539	33.106	-12.894	46.000	QUASIPEAK
2		387.072	-12.612	46.093	33.481	-12.519	46.000	QUASIPEAK
3		440.493	-9.775	43.911	34.137	-11.863	46.000	QUASIPEAK
4		617.623	-7.903	42.065	34.162	-11.838	46.000	QUASIPEAK
5		768.043	-8.069	35.385	27.316	-18.684	46.000	QUASIPEAK
6	*	870.667	-8.416	43.004	34.588	-11.412	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	:	Humly Room Display One
Test Item	:	General Radiated Emission
Test Date	:	2019/11/02
Test Mode	:	Mode 8: Transmit (802.11ac80+NFC) (5210MHz)

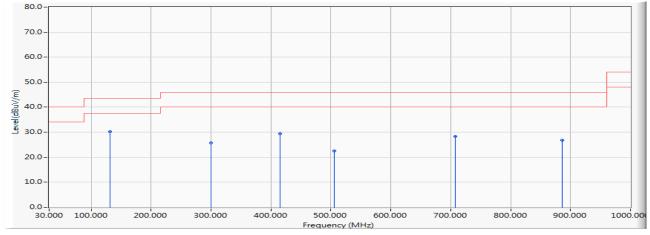
•


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	198.696	-18.217	49.081	30.863	-12.637	43.500	QUASIPEAK
2		245.087	-18.247	47.353	29.105	-16.895	46.000	QUASIPEAK
3		451.739	-10.216	39.547	29.331	-16.669	46.000	QUASIPEAK
4		571.232	-8.834	41.163	32.329	-13.671	46.000	QUASIPEAK
5		728.681	-7.463	35.190	27.727	-18.273	46.000	QUASIPEAK
6		910.029	-10.072	37.049	26.977	-19.023	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : General Radiated Emission
- Test Date : 2019/11/02
- Test Mode : Mode 8: Transmit (802.11ac80+NFC) (5210MHz)

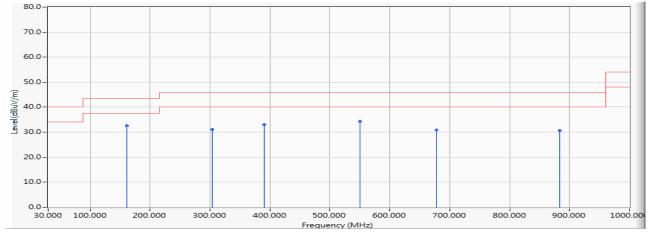
.


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	150.899	-19.926	52.951	33.024	-10.476	43.500	QUASIPEAK
2		311.159	-14.328	46.241	31.913	-14.087	46.000	QUASIPEAK
3		462.986	-10.745	42.044	31.299	-14.701	46.000	QUASIPEAK
4		689.319	-9.230	42.171	32.940	-13.060	46.000	QUASIPEAK
5		758.203	-7.536	40.310	32.775	-13.225	46.000	QUASIPEAK
6		910.029	-10.072	39.579	29.507	-16.493	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : General Radiated Emission
- Test Date : 2019/11/02
- Test Mode : Mode 8: Transmit (802.11ac80+NFC) (5290MHz)

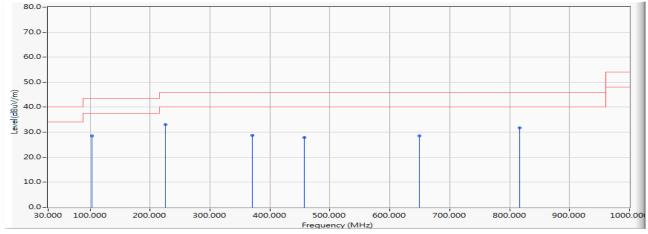
.


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	131.217	-16.243	46.410	30.167	-13.333	43.500	QUASIPEAK
2		299.913	-14.753	40.564	25.810	-20.190	46.000	QUASIPEAK
3		415.188	-12.655	41.961	29.307	-16.693	46.000	QUASIPEAK
4		505.159	-10.946	33.450	22.504	-23.496	46.000	QUASIPEAK
5		707.594	-9.088	37.352	28.264	-17.736	46.000	QUASIPEAK
6		886.130	-8.834	35.548	26.715	-19.285	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : General Radiated Emission
- Test Date : 2019/11/02
- Test Mode : Mode 8: Transmit (802.11ac80+NFC) (5290MHz)

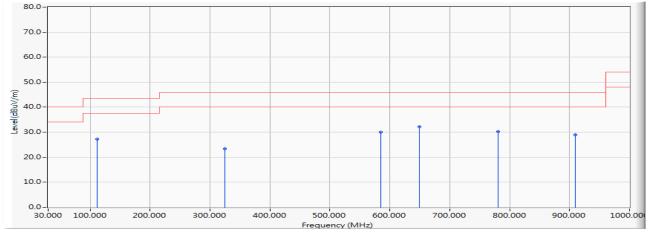
.


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	160.739	-20.719	53.364	32.645	-10.855	43.500	QUASIPEAK
2		304.130	-14.569	45.735	31.167	-14.833	46.000	QUASIPEAK
3		389.884	-12.845	45.933	33.088	-12.912	46.000	QUASIPEAK
4		550.145	-10.963	45.298	34.334	-11.666	46.000	QUASIPEAK
5		678.072	-9.353	40.309	30.957	-15.043	46.000	QUASIPEAK
6		883.319	-8.633	39.339	30.706	-15.294	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : General Radiated Emission
- Test Date : 2019/11/02
- Test Mode : Mode 8: Transmit (802.11ac80+NFC) (5530MHz)

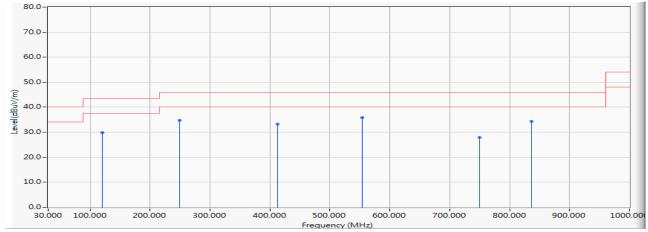
.


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		103.101	-16.269	44.876	28.607	-14.893	43.500	QUASIPEAK
2	*	225.406	-17.797	50.811	33.014	-12.986	46.000	QUASIPEAK
3		370.203	-12.363	41.060	28.696	-17.304	46.000	QUASIPEAK
4		457.362	-10.408	38.285	27.877	-18.123	46.000	QUASIPEAK
5		649.957	-9.372	37.882	28.511	-17.489	46.000	QUASIPEAK
6		817.246	-9.022	40.731	31.710	-14.290	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : General Radiated Emission
- Test Date : 2019/11/02
- Test Mode : Mode 8: Transmit (802.11ac80+NFC) (5530MHz)

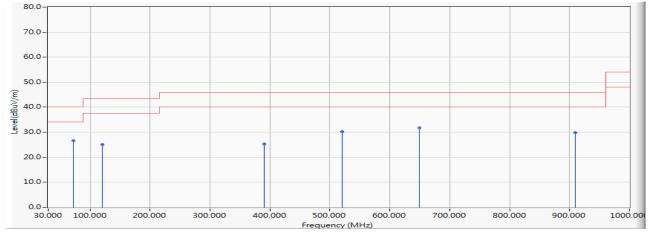
.


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		111.536	-16.821	43.959	27.138	-16.362	43.500	QUASIPEAK
2		325.217	-14.021	37.296	23.275	-22.725	46.000	QUASIPEAK
3		585.290	-7.267	37.226	29.959	-16.041	46.000	QUASIPEAK
4	*	649.957	-9.372	41.600	32.229	-13.771	46.000	QUASIPEAK
5		780.696	-8.577	38.783	30.206	-15.794	46.000	QUASIPEAK
6		910.029	-10.072	39.077	29.005	-16.995	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	:	Humly Room Display One
Test Item	:	General Radiated Emission
Test Date	:	2019/11/02
Test Mode	:	Mode 8: Transmit (802.11ac80+NFC) (5775MHz)

•


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		119.971	-16.904	46.800	29.897	-13.603	43.500	QUASIPEAK
2		249.304	-17.969	52.629	34.660	-11.340	46.000	QUASIPEAK
3		412.377	-12.848	46.095	33.247	-12.753	46.000	QUASIPEAK
4	*	554.362	-10.768	46.649	35.881	-10.119	46.000	QUASIPEAK
5		749.768	-6.569	34.404	27.835	-18.165	46.000	QUASIPEAK
6		836.928	-8.499	42.738	34.239	-11.761	46.000	QUASIPEAK

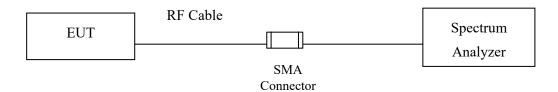
- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : General Radiated Emission
- Test Date : 2019/11/02
- Test Mode : Mode 8: Transmit (802.11ac80+NFC) (5775MHz)

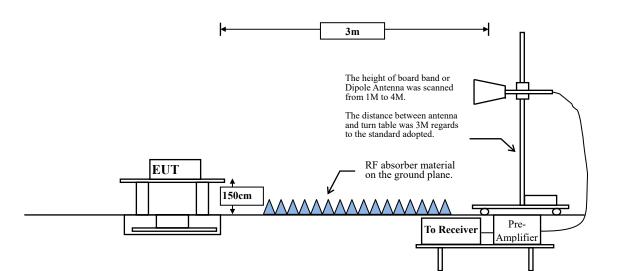
.

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	72.174	-20.617	47.187	26.570	-13.430	40.000	QUASIPEAK
2		119.971	-16.904	41.997	25.094	-18.406	43.500	QUASIPEAK
3		389.884	-12.845	38.050	25.205	-20.795	46.000	QUASIPEAK
4		520.623	-11.251	41.599	30.348	-15.652	46.000	QUASIPEAK
5		649.957	-9.372	41.189	31.818	-14.182	46.000	QUASIPEAK
6		910.029	-10.072	39.947	29.875	-16.125	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor



6. Band Edge


`

6.1. Test Setup

RF Conducted Measurement:

RF Radiated Measurement:

6.2. Limits

The provisions of Section 15.205 of this part apply to intentional radiators operating under this section.

Radiated emissions which fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209:

FCC Part 15	5 Subpart C Paragraph 1	5.209 Limits		
Frequency MHz	uV/m @3m	dBµV/m@3m		
30-88	100	40		
88-216	150	43.5		
216-960	200	46		
Above 960	500	54		

Remarks : 1. RF Voltage $(dB\mu V) = 20 \log RF$ Voltage (uV)

2. In the Above Table, the tighter limit applies at the band edges.

3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

6.3. Test Procedure

The EUT is placed on a turn table which is 1.5 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.10:2013 on radiated measurement.

The bandwidth below 1GHz setting on the field strength meter is 120 kHz, above 1GHz are 1 MHz. The EUT was setup to ANSI C63.10, 2013; tested to UNII test procedure of FCC KDB-789033 for compliance to FCC 47CFR Subpart E requirements.

RBW and VBW Parameter setting:

According to KDB 789033 section II.G.5 Procedure for Unwanted Maximum Emissions Measurements above 1000 MHz.

RBW = 1MHz. $VBW \ge 3MHz.$

According to KDB 789033 section II.G.6 Procedures for Average Unwanted Emissions Measurements above 1000 MHz.

RBW = 1MHz.

VBW = 10Hz, when duty cycle \ge 98 %

VBW \geq 1/T, when duty cycle < 98 %

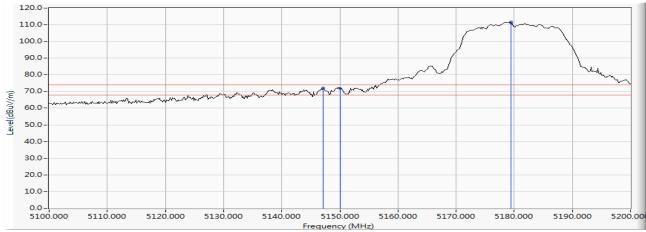
(T refers to the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.)

5GHz band	Duty Cycle	Т	1/T	VBW
	(%)	(ms)	(Hz)	(Hz)
802.11a	93.26	1.3954	717	1000
802.11n20	85.19	0.6667	1500	2000
802.11n40	69.77	0.3130	3194	5000
802.11ac80	68.85	0.2922	3423	5000

Note: Duty Cycle Refer to Section 8

6.4. Uncertainty

- ± 4.08 dB above 1GHz
- ± 4.22 dB below 1GHz

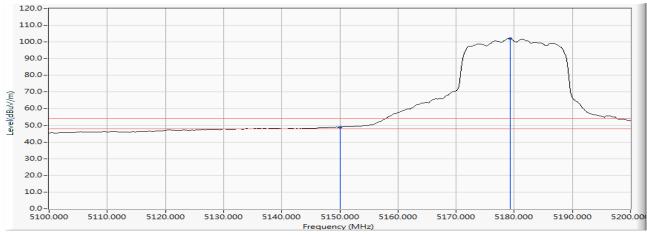


6.5. Test Result of Band Edge

Product	:	Humly Room Display One
Test Item	:	Band Edge Data
Test Date	:	2019/10/30
Test Mode	:	Mode 5: Transmit (802.11a+NFC)-Channel 36

Horizontal

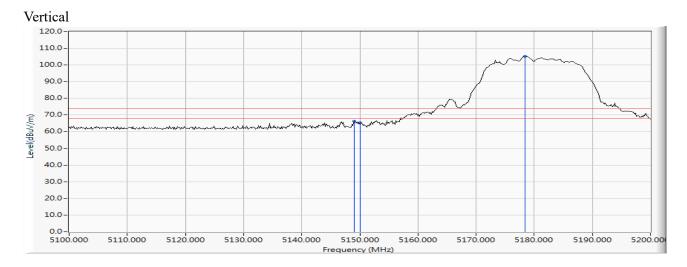
,


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5147.101	18.582	53.469	72.052	-1.948	74.000	PEAK
2		5150.000	18.569	53.170	71.740	-2.260	74.000	PEAK
3	*	5179.420	18.417	93.084	111.502			PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 5: Transmit (802.11a+NFC)-Channel 36

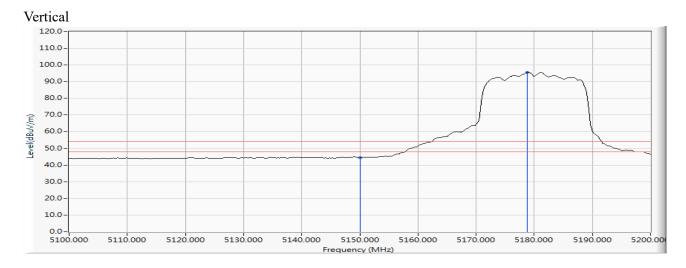
.


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5150.000	18.569	30.386	48.956	-5.044	54.000	AVERAGE
2	*	5179.275	18.419	83.616	102.034			AVERAGE

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

.

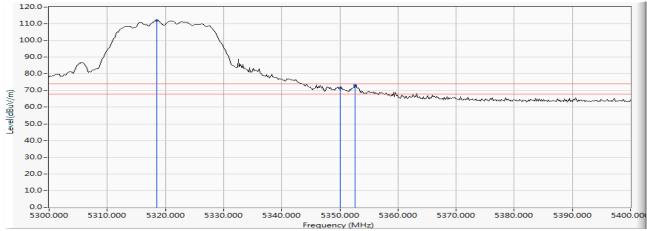
- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 5: Transmit (802.11a+NFC)-Channel 36


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5148.986	18.575	47.754	66.329	-7.671	74.000	PEAK
2		5150.000	18.569	46.884	65.454	-8.546	74.000	PEAK
3	*	5178.406	18.424	86.826	105.249			PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

.

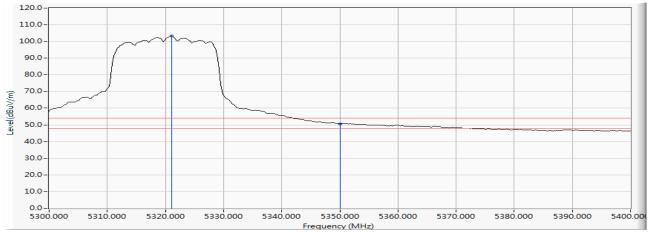
- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 5: Transmit (802.11a+NFC)-Channel 36


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5150.000	18.569	25.931	44.501	-9.499	54.000	PEAK
2	*	5178.841	18.421	77.033	95.454			PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product : Humly Room Display One					
Test Item	:	Band Edge Data			
Test Date	:	2019/10/30			
Test Mode	:	Mode 5: Transmit (802.11a+NFC) -Channel 64			

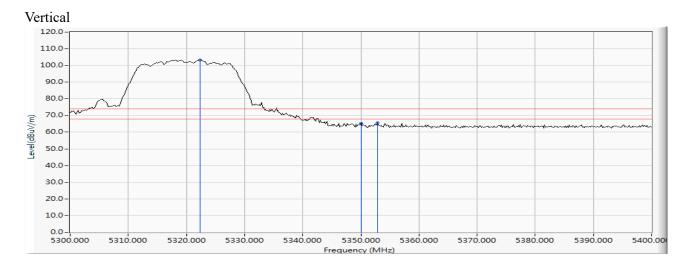
•


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5318.551	18.612	93.319	111.931			PEAK
2		5350.000	18.823	52.657	71.480	-2.520	74.000	PEAK
3		5352.609	18.839	54.097	72.936	-1.064	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 5: Transmit (802.11a+NFC) -Channel 64

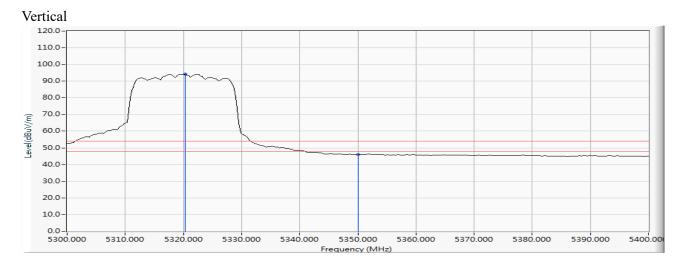
•


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5321.014	18.629	84.567	103.196			AVERAGE
2		5350.000	18.823	31.836	50.659	-3.341	54.000	AVERAGE

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

,

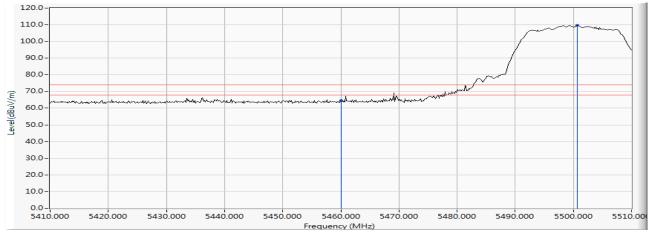
- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 5: Transmit (802.11a+NFC) -Channel 64


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5322.319	18.638	84.574	103.212			PEAK
2		5350.000	18.823	46.610	65.433	-8.567	74.000	PEAK
3		5352.899	18.840	46.760	65.600	-8.400	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

`

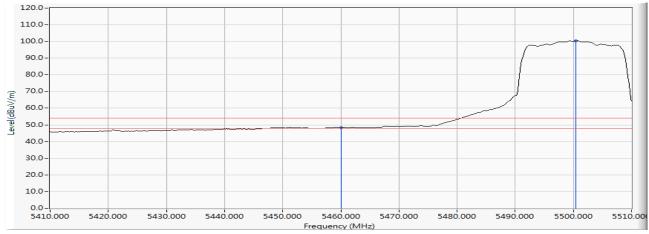
- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 5: Transmit (802.11a+NFC) -Channel 64


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5320.290	18.624	75.529	94.153			AVERAGE
2		5350.000	18.823	27.112	45.935	-8.065	54.000	AVERAGE

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 5: Transmit (802.11a+NFC) -Channel 100

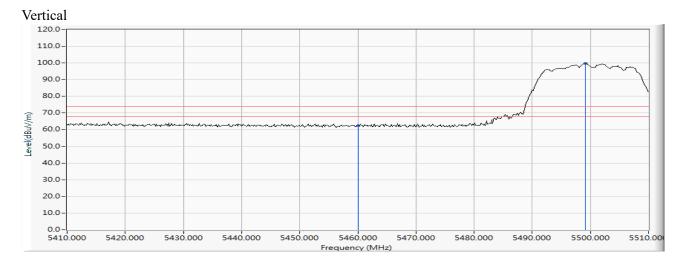
,


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5460.000	19.376	45.443	64.819	-9.181	74.000	PEAK
2	*	5500.725	19.610	89.977	109.586			PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 5: Transmit (802.11a+NFC) -Channel 100

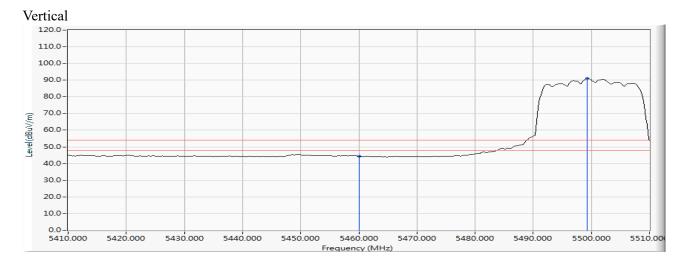
•


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5460.000	19.376	28.937	48.313	-5.687	54.000	AVERAGE
2	*	5500.435	19.609	80.828	100.436			AVERAGE

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

`

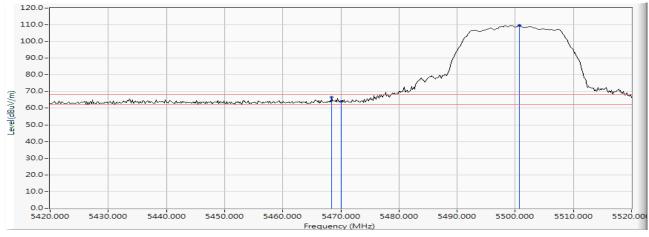
- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 5: Transmit (802.11a+NFC) -Channel 100


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5460.000	19.376	42.902	62.278	-11.722	74.000	PEAK
2	*	5499.130	19.604	80.245	99.849			PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

.

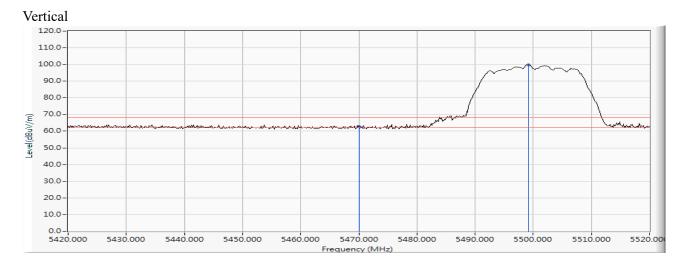
- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 5: Transmit (802.11a+NFC) -Channel 100


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5460.000	19.376	24.898	44.274	-9.726	54.000	AVERAGE
2	*	5499.275	19.604	71.457	91.061			AVERAGE

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 5: Transmit (802.11a+NFC) -Channel 100

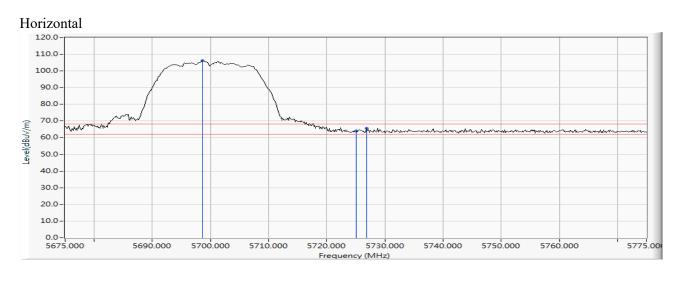
.


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5468.406	19.432	47.066	66.498	-1.722	68.220	PEAK
2		5470.000	19.443	44.529	63.972	-4.248	68.220	PEAK
3	*	5500.725	19.610	89.946	109.555			PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

,

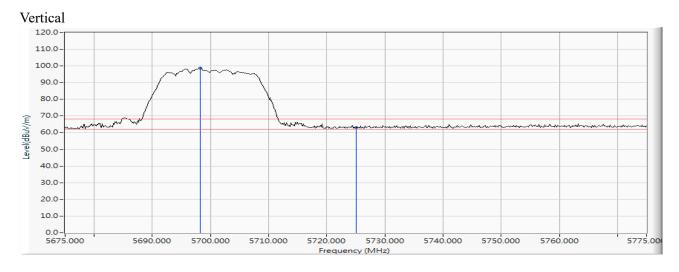
- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 5: Transmit (802.11a+NFC) -Channel 100


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5470.000	19.443	43.394	62.837	-5.383	68.220	PEAK
2	*	5499.130	19.604	80.274	99.878			PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

`

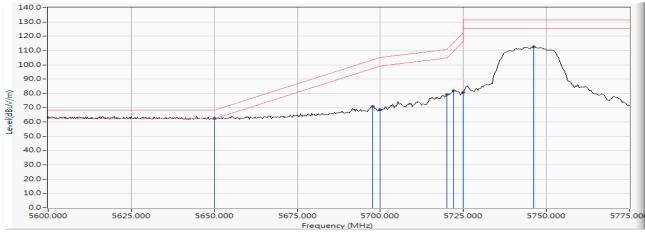
- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 5: Transmit (802.11a+NFC) -Channel 140


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5698.623	19.170	86.862	106.033			PEAK
2		5725.000	19.147	44.857	64.004	-4.216	68.220	PEAK
3		5726.884	19.145	46.504	65.649	-2.571	68.220	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

.

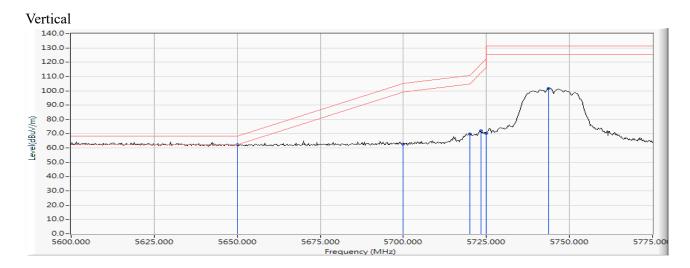
- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 5: Transmit (802.11a+NFC) -Channel 140


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5698.188	19.171	79.454	98.625			PEAK
2		5725.000	19.147	43.932	63.079	-5.141	68.220	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 5: Transmit (802.11a+NFC)-Channel 149

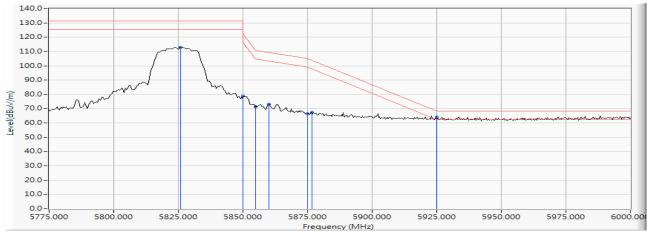
.



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5650.000	19.214	43.646	62.860	-5.360	68.220	PEAK
2		5697.645	19.171	51.796	70.968	-32.490	103.458	PEAK
3		5700.000	19.169	49.419	68.588	-36.612	105.200	PEAK
4		5720.000	19.151	59.883	79.034	-31.766	110.800	PEAK
5		5721.993	19.150	62.608	81.757	-33.587	115.344	PEAK
6		5725.000	19.147	61.523	80.670	-41.530	122.200	PEAK
7		5746.087	19.139	93.370	112.509	-18.691	131.200	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

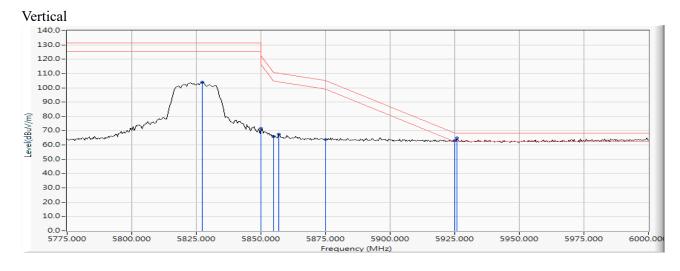
- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 5: Transmit (802.11a+NFC)-Channel 149


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5650.000	19.214	42.915	62.129	-6.091	68.220	PEAK
2		5700.000	19.169	43.498	62.667	-42.533	105.200	PEAK
3		5720.000	19.151	50.758	69.909	-40.891	110.800	PEAK
4		5723.261	19.149	52.733	71.881	-46.354	118.235	PEAK
5		5725.000	19.147	51.202	70.349	-51.851	122.200	PEAK
6		5743.804	19.133	82.450	101.583	-29.617	131.200	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	:	Humly Room Display One
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Date	:	2019/10/30
Test Mode	:	Mode 5: Transmit (802.11a+NFC)-Channel 165

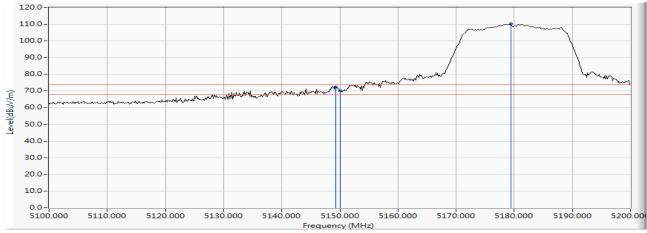
•


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5825.870	19.514	93.555	113.070	-18.130	131.200	PEAK
2		5850.000	19.632	59.151	78.783	-43.417	122.200	PEAK
3		5855.000	19.651	51.704	71.355	-39.445	110.800	PEAK
4		5860.109	19.670	53.586	73.256	-36.113	109.369	PEAK
5		5875.000	19.718	46.768	66.486	-38.714	105.200	PEAK
6		5876.739	19.722	48.003	67.726	-36.188	103.914	PEAK
7	*	5925.000	19.875	44.175	64.050	-4.170	68.220	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

•

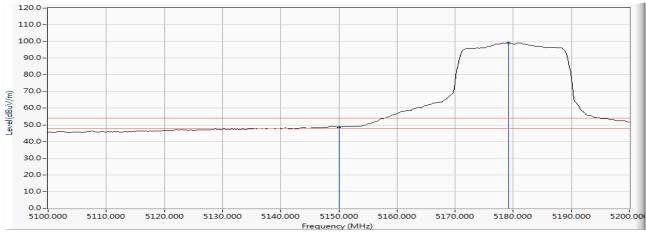
Product	:	Humly Room Display One
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Date	:	2019/10/30
Test Mode	:	Mode 5: Transmit (802.11a+NFC)-Channel 165


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5827.174	19.523	84.322	103.844	-27.356	131.200	PEAK
2		5850.000	19.632	52.197	71.829	-50.371	122.200	PEAK
3		5855.000	19.651	46.271	65.922	-44.878	110.800	PEAK
4		5856.848	19.658	47.753	67.411	-42.872	110.283	PEAK
5		5875.000	19.718	44.020	63.738	-41.462	105.200	PEAK
6		5925.000	19.875	43.035	62.910	-5.310	68.220	PEAK
7	*	5925.978	19.878	45.027	64.905	-3.315	68.220	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 6: Transmit (802.11n20+NFC) -Channel 36

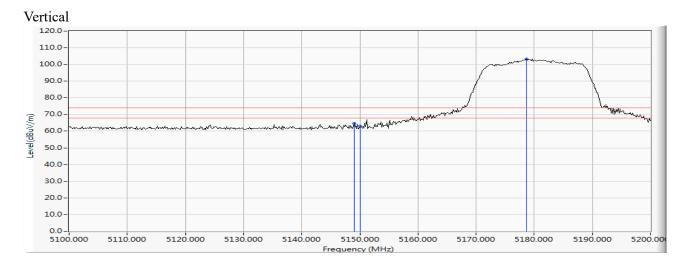
.


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5149.275	18.574	53.872	72.446	-1.554	74.000	PEAK
2		5150.000	18.569	51.627	70.197	-3.803	74.000	PEAK
3	*	5179.420	18.417	91.899	110.317			PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 6: Transmit (802.11n20+NFC) -Channel 36

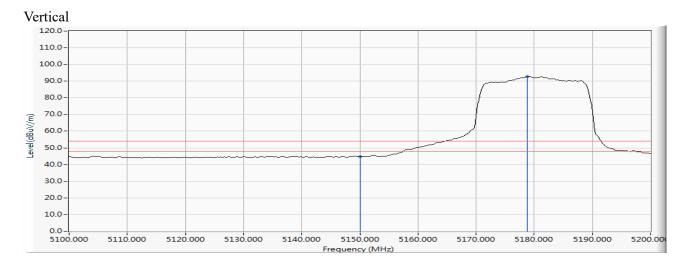
.



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5150.000	18.569	30.103	48.673	-5.327	54.000	AVERAGE
2	*	5179.130	18.419	80.814	99.233			AVERAGE

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

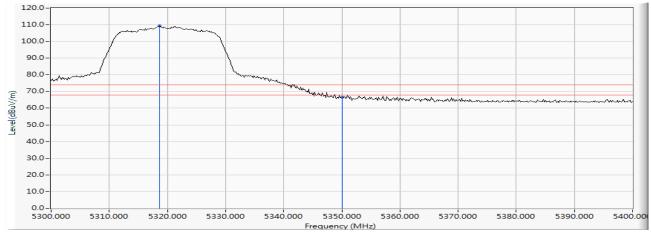
- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 6: Transmit (802.11n20+NFC) -Channel 36


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5148.985	18.575	46.211	64.786	-9.214	74.000	PEAK
2		5150.000	18.569	44.456	63.026	-10.974	74.000	PEAK
3	*	5178.696	18.421	84.753	103.174			PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

.

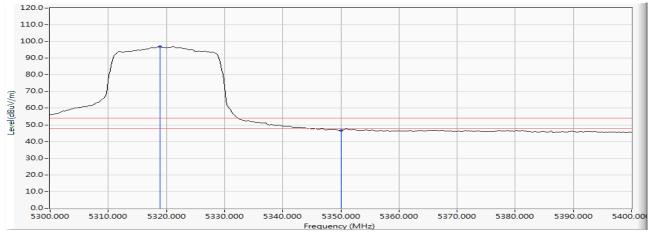
- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 6: Transmit (802.11n20+NFC) -Channel 36



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5150.000	18.569	26.221	44.791	-9.209	54.000	AVERAGE
2	*	5178.841	18.421	74.354	92.775			AVERAGE

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

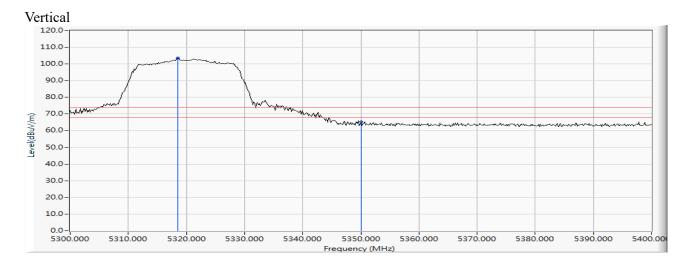
- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 6: Transmit (802.11n20+NFC) -Channel 64


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5318.696	18.613	90.610	109.223			PEAK
2		5350.000	18.823	47.916	66.739	-7.261	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 6: Transmit (802.11n20+NFC) -Channel 64

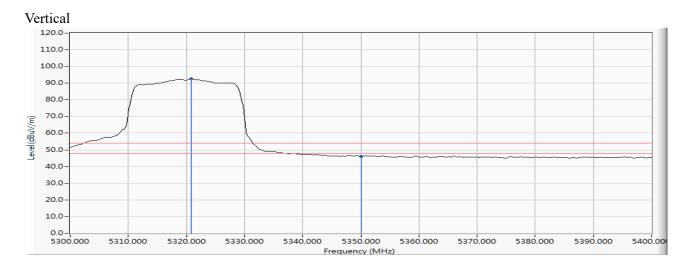
`


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5318.841	18.614	78.235	96.849			AVERAGE
2		5350.000	18.823	27.897	46.720	-7.280	54.000	AVERAGE

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

,

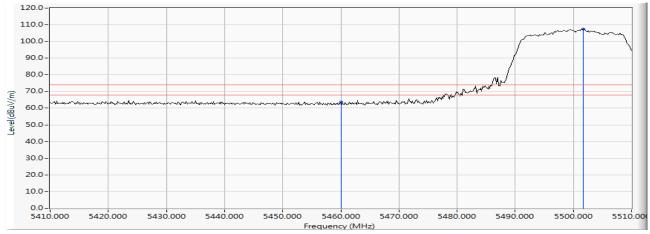
- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 6: Transmit (802.11n20+NFC) -Channel 64


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5318.551	18.612	84.851	103.463			PEAK
2		5350.000	18.823	46.350	65.173	-8.827	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

•

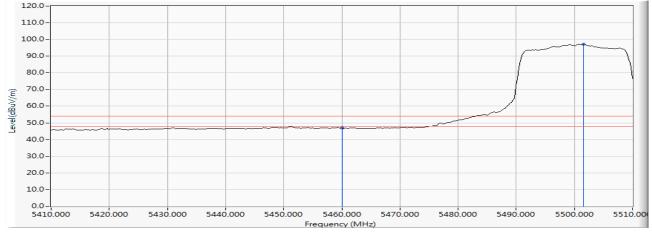
- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 6: Transmit (802.11n20+NFC) -Channel 64


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5320.870	18.628	74.065	92.693			AVERAGE
2		5350.000	18.823	27.157	45.980	-8.020	54.000	AVERAGE

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 6: Transmit (802.11n20+NFC) -Channel 100

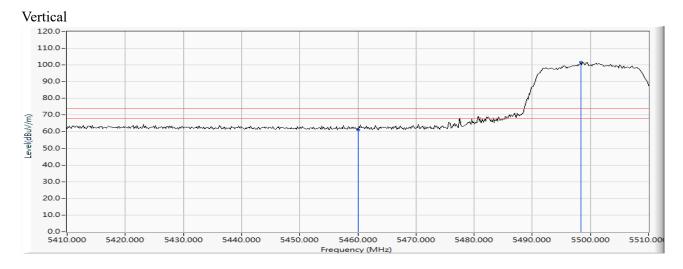
,


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5460.000	19.376	44.315	63.691	-10.309	74.000	PEAK
2	*	5501.739	19.613	87.757	107.370			PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 6: Transmit (802.11n20+NFC) -Channel 100

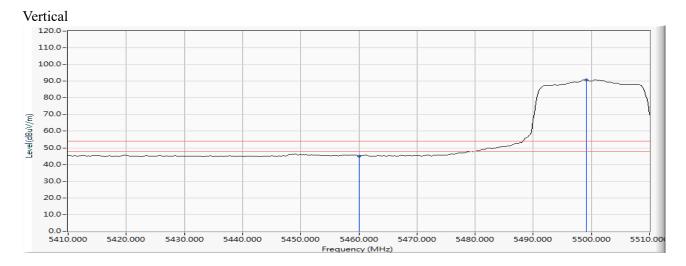
.


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5460.000	19.376	27.514	46.890	-7.110	54.000	AVERAGE
2	*	5501.594	19.612	77.507	97.119			AVERAGE

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

.

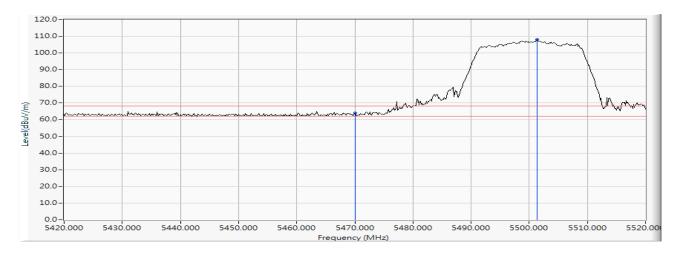
- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 6: Transmit (802.11n20+NFC) -Channel 100


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5460.000	19.376	41.705	61.081	-12.919	74.000	PEAK
2	*	5498.406	19.601	82.013	101.614			PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

`

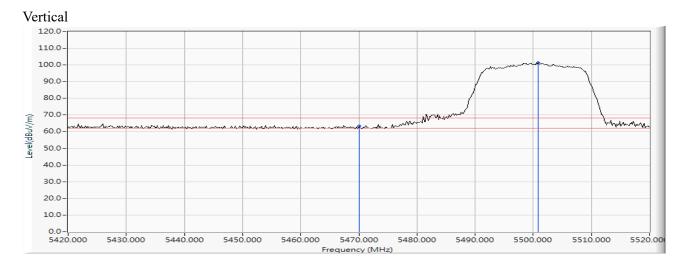
- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 6: Transmit (802.11n20+NFC) -Channel 100


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5460.000	19.376	25.762	45.138	-8.862	54.000	AVERAGE
2	*	5499.130	19.604	71.144	90.748			AVERAGE

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 6: Transmit (802.11n20+NFC) -Channel 100

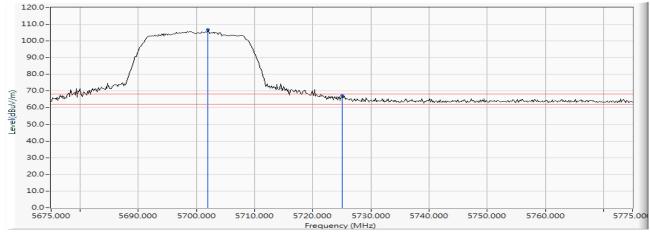
,


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5470.000	19.443	44.624	64.067	-4.153	68.220	PEAK
2	*	5501.304	19.611	88.329	107.940			PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

.

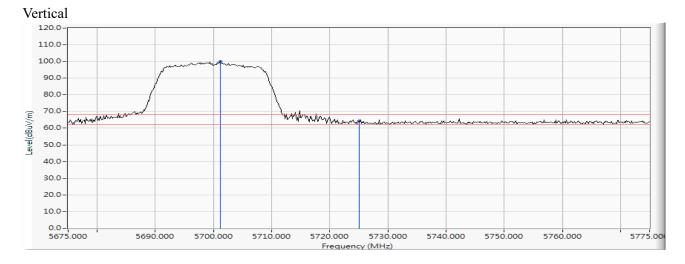
- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 6: Transmit (802.11n20+NFC) -Channel 100


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5470.000	19.443	43.835	63.278	-4.942	68.220	PEAK
2	*	5500.870	19.609	81.709	101.319			PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 6: Transmit (802.11n20+NFC) -Channel 140

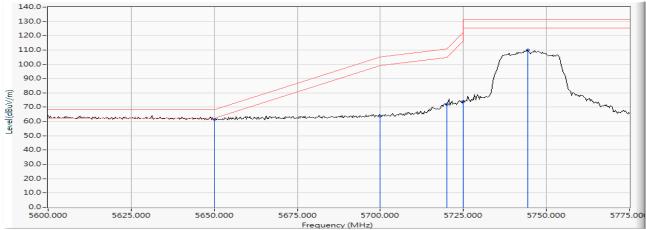
.


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5701.957	19.168	87.734	106.902			PEAK
2		5725.000	19.147	48.045	67.192	-1.028	68.220	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

`

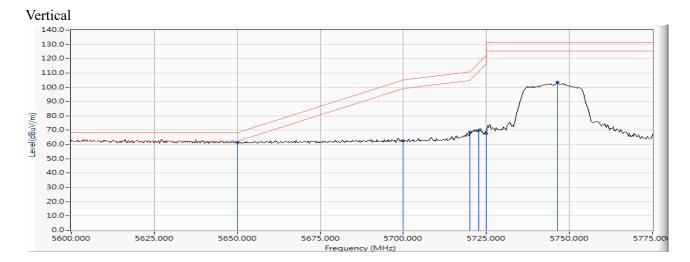
- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 6: Transmit (802.11n20+NFC) -Channel 140


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5701.232	19.168	80.828	99.996			PEAK
2		5725.000	19.147	45.273	64.420	-3.800	68.220	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	:	Humly Room Display One
Test Item	:	Band Edge Data
Test Date	:	2019/10/30
Test Mode	:	Mode 6: Transmit (802.11n20+NFC) -Channel 149

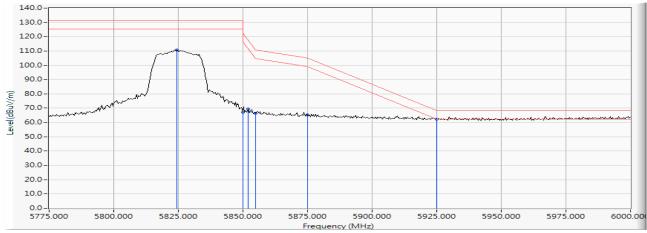
`


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5650.000	19.214	42.438	61.652	-6.568	68.220	PEAK
2		5700.000	19.169	44.710	63.879	-41.321	105.200	PEAK
3		5720.000	19.151	52.941	72.092	-38.708	110.800	PEAK
4		5725.000	19.147	54.786	73.933	-48.267	122.200	PEAK
5		5744.312	19.134	90.743	109.877	-21.323	131.200	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

.

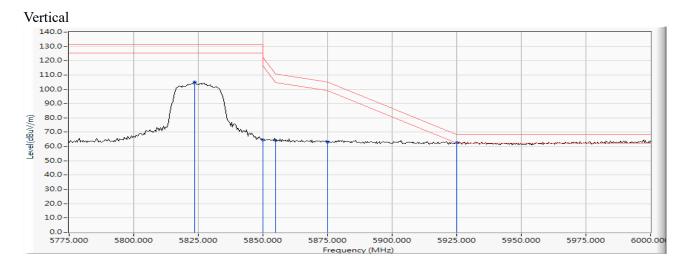
- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 6: Transmit (802.11n20+NFC) -Channel 149


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5650.000	19.214	41.969	61.183	-7.037	68.220	PEAK
2		5700.000	19.169	43.476	62.645	-42.555	105.200	PEAK
3		5720.000	19.151	49.662	68.813	-41.987	110.800	PEAK
4		5722.754	19.149	50.810	69.959	-47.120	117.079	PEAK
5		5725.000	19.147	48.577	67.724	-54.476	122.200	PEAK
6		5746.341	19.140	84.488	103.628	-27.572	131.200	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 6: Transmit (802.11n20+NFC) -Channel 165

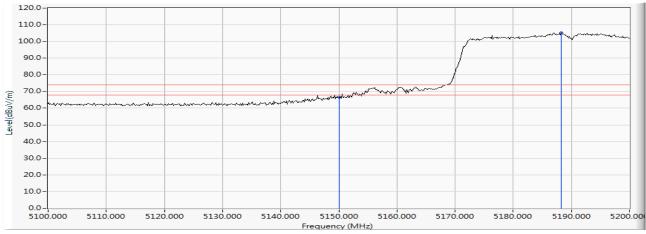
.



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5824.565	19.508	91.257	110.765	-20.435	131.200	PEAK
2		5850.000	19.632	47.712	67.344	-54.856	122.200	PEAK
3		5851.957	19.640	49.858	69.498	-48.240	117.738	PEAK
4		5855.000	19.651	46.963	66.614	-44.186	110.800	PEAK
5		5875.000	19.718	45.684	65.402	-39.798	105.200	PEAK
6	*	5925.000	19.875	42.310	62.185	-6.035	68.220	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

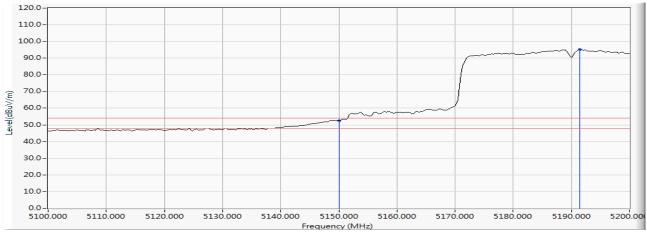
- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 6: Transmit (802.11n20+NFC) -Channel 165


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5823.587	19.503	85.513	105.016	-26.184	131.200	PEAK
2		5850.000	19.632	44.811	64.443	-57.757	122.200	PEAK
3		5855.000	19.651	44.617	64.268	-46.532	110.800	PEAK
4		5875.000	19.718	43.496	63.214	-41.986	105.200	PEAK
5	*	5925.000	19.875	42.635	62.510	-5.710	68.220	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 7: Transmit (802.11n40+NFC) -Channel 38

.

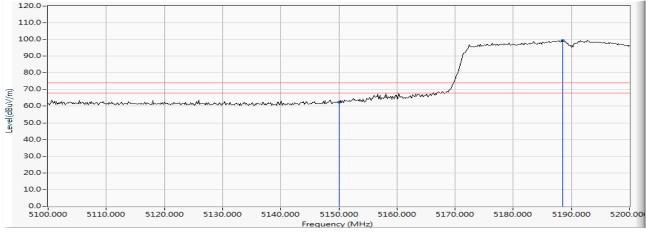

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5150.000	18.569	48.028	66.598	-7.402	74.000	PEAK
2	*	5188.261	18.372	86.893	105.264			PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 7: Transmit (802.11n40+NFC) -Channel 38

.

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5150.000	18.569	34.010	52.580	-1.420	54.000	AVERAGE
2	*	5191.449	18.355	76.736	95.090			AVERAGE

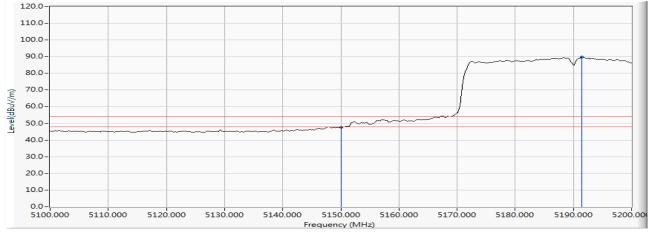

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 7: Transmit (802.11n40+NFC) -Channel 38

Vertical

`

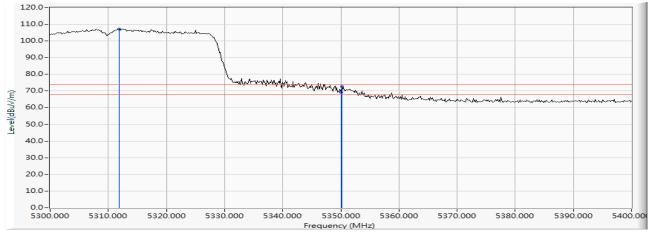
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5150.000	18.569	43.775	62.345	-11.655	74.000	PEAK
2	*	5188.551	18.369	81.040	99.409			PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 7: Transmit (802.11n40+NFC) -Channel 38

Vertical

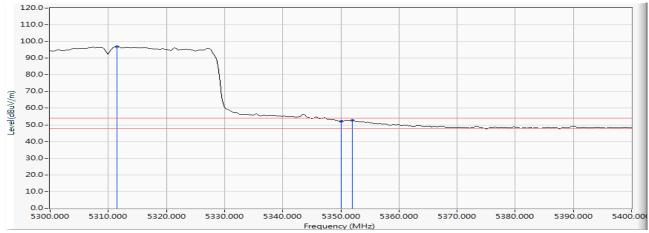
.


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5150.000	18.569	29.004	47.574	-6.426	54.000	AVERAGE
2	*	5191.449	18.355	71.333	89.687			AVERAGE

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 7: Transmit (802.11n40+NFC) -Channel 62

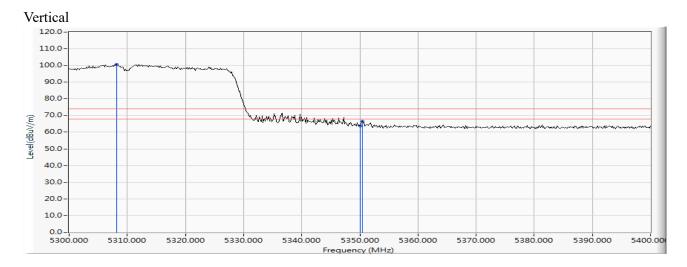
.


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5311.884	18.566	88.719	107.285			PEAK
2		5350.000	18.823	50.291	69.114	-4.886	74.000	PEAK
3		5350.145	18.823	53.929	72.753	-1.247	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 7: Transmit (802.11n40+NFC) -Channel 62

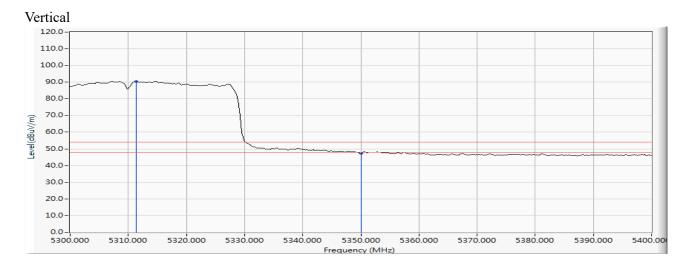
•


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5311.449	18.564	78.338	96.901			AVERAGE
2		5350.000	18.823	33.201	52.024	-1.976	54.000	AVERAGE
3		5352.029	18.836	34.039	52.875	-1.125	54.000	AVERAGE

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

`

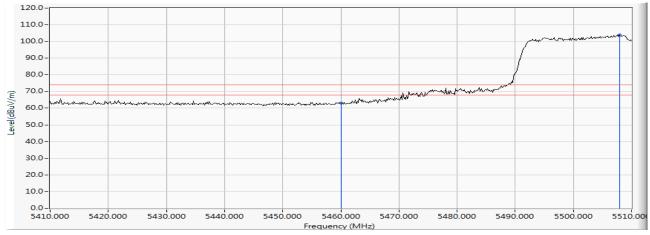
- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 7: Transmit (802.11n40+NFC) -Channel 62


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5308.116	18.541	82.242	100.783			PEAK
2		5350.000	18.823	44.908	63.731	-10.269	74.000	PEAK
3		5350.435	18.825	47.644	66.470	-7.530	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

`

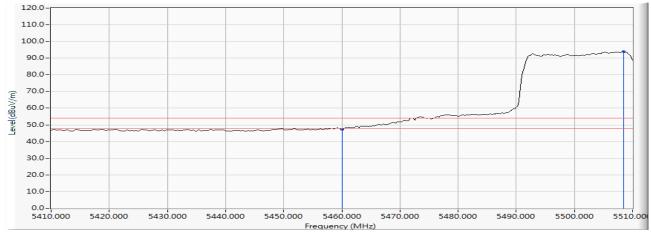
- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 7: Transmit (802.11n40+NFC) -Channel 62


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5311.304	18.563	71.929	90.491			AVERAGE
2		5350.000	18.823	28.566	47.389	-6.611	54.000	AVERAGE

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 7: Transmit (802.11n40+NFC) -Channel 102

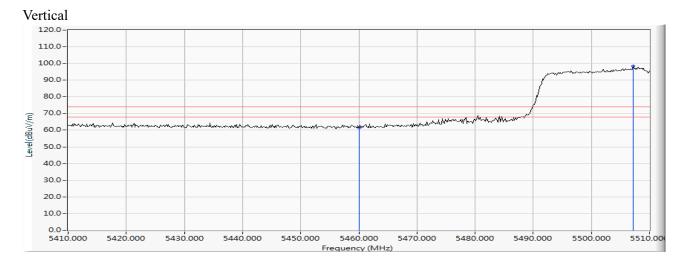
,


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5460.000	19.376	43.800	63.176	-10.824	74.000	PEAK
2	*	5507.971	19.609	84.405	104.014			PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 7: Transmit (802.11n40+NFC) -Channel 102

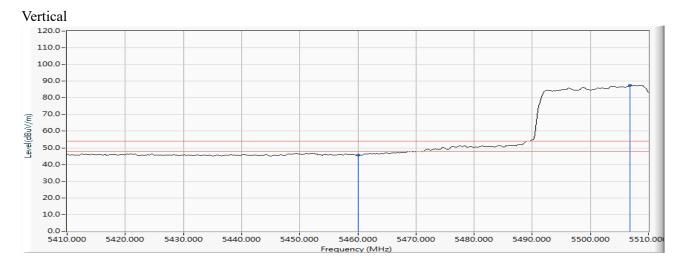
`


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5460.000	19.376	28.043	47.419	-6.581	54.000	AVERAGE
2	*	5508.406	19.606	74.338	93.945			AVERAGE

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

,

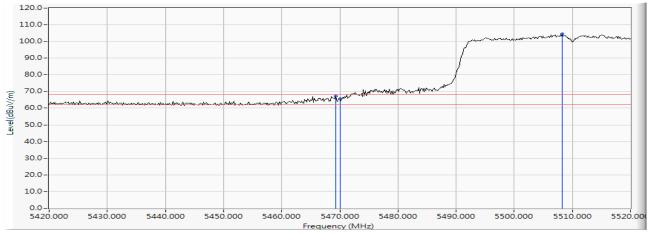
- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 7: Transmit (802.11n40+NFC) -Channel 102


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5460.000	19.376	42.103	61.479	-12.521	74.000	PEAK
2	*	5507.246	19.613	78.909	98.522			PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

`

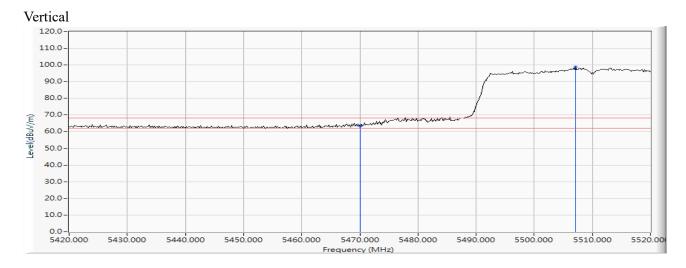
- Product:Humly Room Display OneTest Item:Band Edge Data
- Test Item:Dand Edge DataTest Date:2019/10/30Test Mode:Mode 7: Transmit (802.11n40+NFC) -Channel 102


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5460.000	19.376	26.274	45.650	-8.350	54.000	AVERAGE
2	*	5506.812	19.614	67.959	87.574			AVERAGE

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 7: Transmit (802.11n40+NFC) -Channel 102

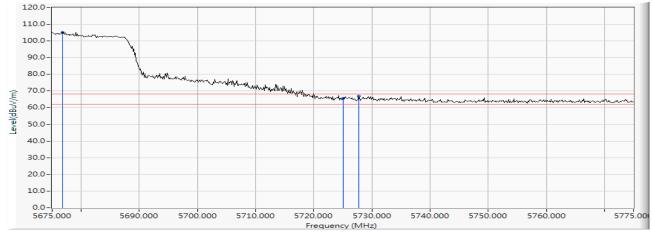
•


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5469.275	19.438	47.751	67.189	-1.031	68.220	PEAK
2		5470.000	19.443	46.027	65.470	-2.750	68.220	PEAK
3	*	5508.261	19.607	84.978	104.586			PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

.

- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 7: Transmit (802.11n40+NFC) -Channel 102

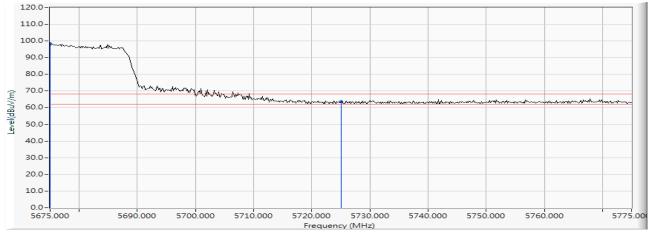

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5470.000	19.443	44.083	63.526	-4.694	68.220	PEAK
2	*	5507.101	19.613	79.114	98.727			PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 7: Transmit (802.11n40+NFC) -Channel 134

.

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5676.739	19.191	86.083	105.274			PEAK
2		5725.000	19.147	46.494	65.641	-2.579	68.220	PEAK
3		5727.754	19.145	47.899	67.043	-1.177	68.220	PEAK

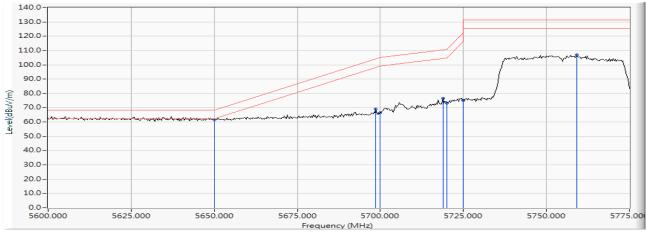

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 7: Transmit (802.11n40+NFC) -Channel 134

Vertical

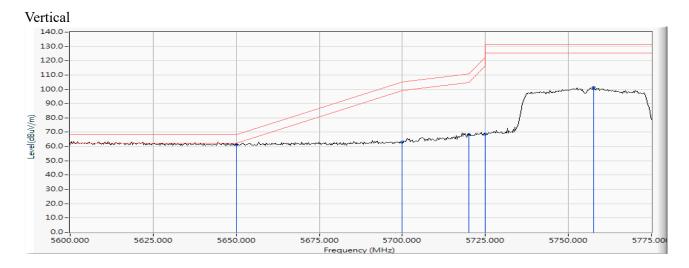
.

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5675.000	19.192	79.161	98.353			PEAK
2		5725.000	19.147	44.539	63.686	-4.534	68.220	PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	:	Humly Room Display One
Test Item	:	Band Edge Data
Test Date	:	2019/10/30
Test Mode	:	Mode 7: Transmit (802.11n40+NFC) -Channel 151

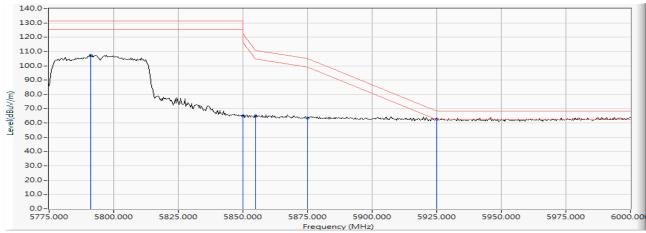
•


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5650.000	19.214	42.437	61.651	-6.569	68.220	PEAK
2		5698.659	19.170	49.709	68.880	-35.328	104.208	PEAK
3		5700.000	19.169	47.257	66.426	-38.774	105.200	PEAK
4		5718.949	19.153	57.404	76.556	-33.950	110.506	PEAK
5		5720.000	19.151	54.019	73.170	-37.630	110.800	PEAK
6		5725.000	19.147	56.083	75.230	-46.970	122.200	PEAK
7		5759.022	19.174	87.673	106.847	-24.353	131.200	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

.

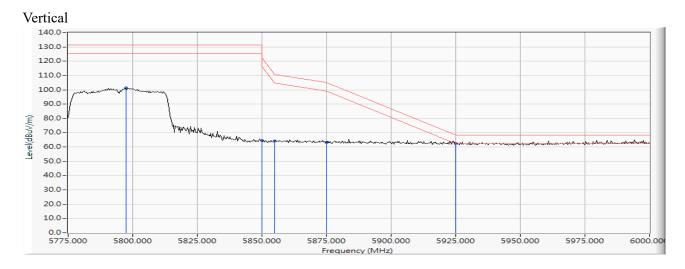
- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 7: Transmit (802.11n40+NFC) -Channel 151


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5650.000	19.214	42.044	61.258	-6.962	68.220	PEAK
2		5700.000	19.169	43.804	62.973	-42.227	105.200	PEAK
3		5720.000	19.151	49.003	68.154	-42.646	110.800	PEAK
4		5725.000	19.147	49.528	68.675	-53.525	122.200	PEAK
5		5757.500	19.170	82.010	101.180	-30.020	131.200	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	:	Humly Room Display One
Test Item	:	Band Edge Data
Test Date	:	2019/10/30
Test Mode	:	Mode 7: Transmit (802.11n40+NFC) -Channel 159

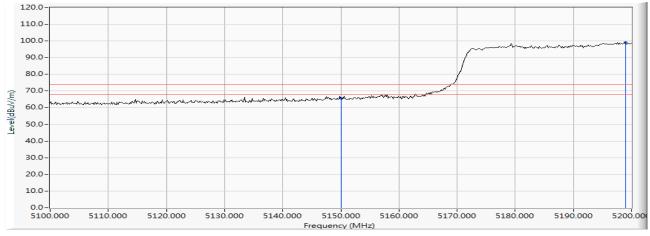
•


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5790.978	19.336	88.056	107.392	-23.808	131.200	PEAK
2		5850.000	19.632	45.152	64.784	-57.416	122.200	PEAK
3		5855.000	19.651	45.172	64.823	-45.977	110.800	PEAK
4		5875.000	19.718	43.834	63.552	-41.648	105.200	PEAK
5	*	5925.000	19.875	42.879	62.754	-5.466	68.220	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

.

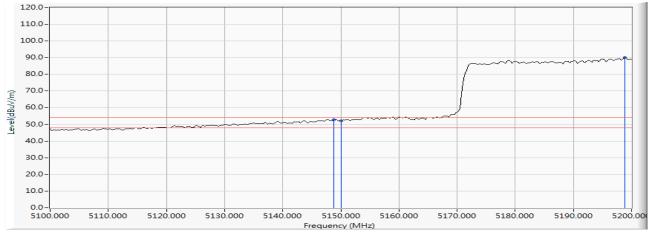
- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 7: Transmit (802.11n40+NFC) -Channel 159


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5797.500	19.369	81.877	101.246	-29.954	131.200	PEAK
2		5850.000	19.632	44.903	64.535	-57.665	122.200	PEAK
3		5855.000	19.651	44.579	64.230	-46.570	110.800	PEAK
4		5875.000	19.718	43.432	63.150	-42.050	105.200	PEAK
5	*	5925.000	19.875	42.342	62.217	-6.003	68.220	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 8: Transmit (802.11ac80+NFC) -Channel 42

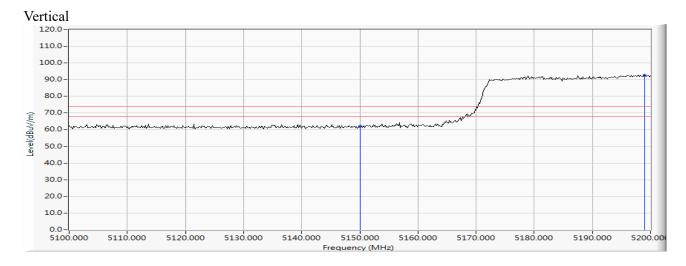
.


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5150.000	18.569	47.108	65.678	-8.322	74.000	PEAK
2	*	5198.986	18.314	80.751	99.066			PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 8: Transmit (802.11ac80+NFC) -Channel 42

`

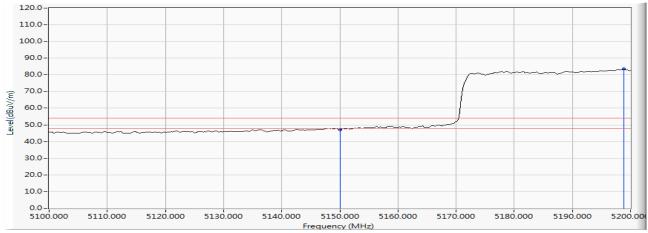

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5148.841	18.575	34.274	52.850	-1.150	54.000	AVERAGE
2		5150.000	18.569	33.565	52.135	-1.865	54.000	AVERAGE
3	*	5198.841	18.315	71.629	89.944			AVERAGE

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

`

- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 8: Transmit (802.11ac80+NFC) -Channel 42

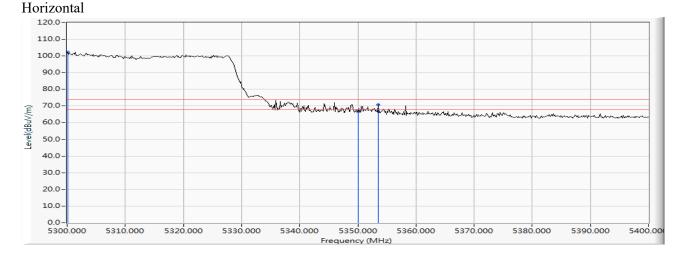
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5150.000	18.569	43.474	62.044	-11.956	74.000	PEAK
2	*	5198.986	18.314	74.485	92.800			PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 8: Transmit (802.11ac80+NFC) -Channel 42

Vertical

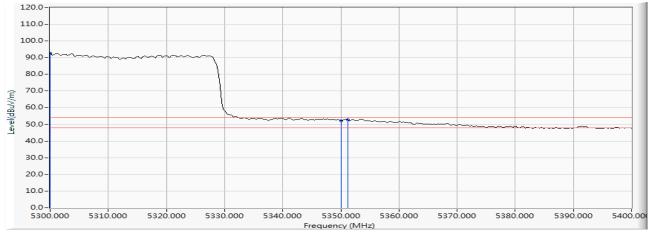
.


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5150.000	18.569	28.325	46.895	-7.105	54.000	AVERAGE
2	*	5198.841	18.315	65.177	83.492			AVERAGE

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

.

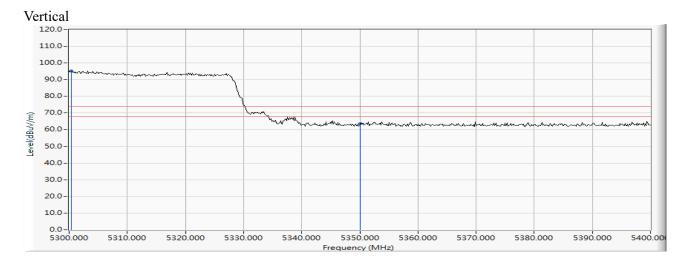
- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 8: Transmit (802.11ac80+NFC) -Channel 58


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5300.145	18.485	83.917	102.402			PEAK
2		5350.000	18.823	47.645	66.468	-7.532	74.000	PEAK
3		5353.478	18.843	52.061	70.904	-3.096	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 8: Transmit (802.11ac80+NFC) -Channel 58

•

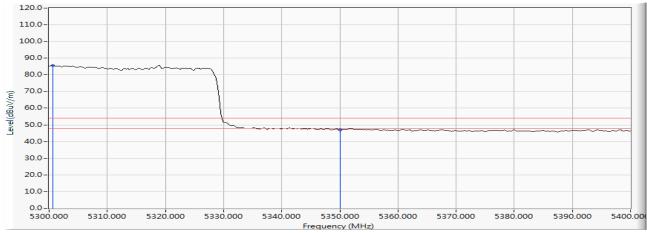

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5300.000	18.484	74.305	92.789			AVERAGE
2		5350.000	18.823	33.227	52.050	-1.950	54.000	AVERAGE
3		5351.159	18.830	33.959	52.789	-1.211	54.000	AVERAGE

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

`

- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 8: Transmit (802.11ac80+NFC) -Channel 58

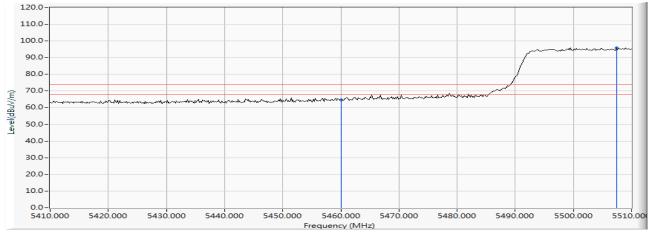
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5300.435	18.488	76.886	95.374			PEAK
2		5350.000	18.823	44.760	63.583	-10.417	74.000	PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 8: Transmit (802.11ac80+NFC) -Channel 58

Vertical

.

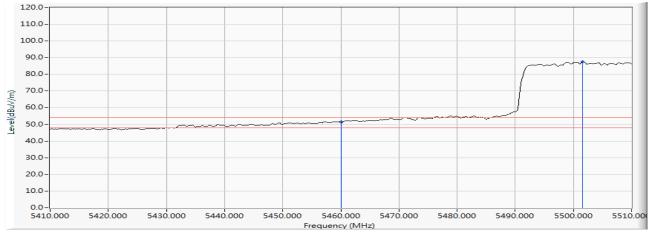

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5300.580	18.488	67.062	85.551			AVERAGE
2		5350.000	18.823	28.306	47.129	-6.871	54.000	AVERAGE

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 8: Transmit (802.11ac80+NFC) -Channel 106

.

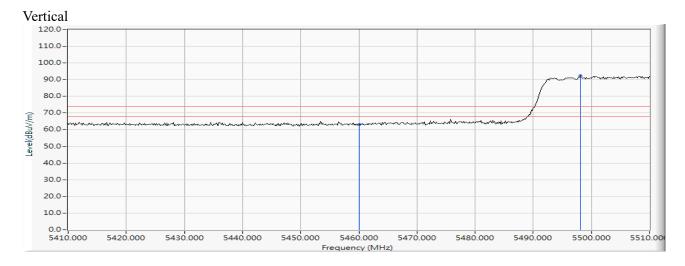
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5460.000	19.376	45.300	64.676	-9.324	74.000	PEAK
2	*	5507.391	19.612	76.363	95.975			PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 8: Transmit (802.11ac80+NFC) -Channel 106

Horizontal

•



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5460.000	19.376	31.953	51.329	-2.671	54.000	AVERAGE
2	*	5501.594	19.612	67.757	87.369			AVERAGE

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 8: Transmit (802.11ac80+NFC) -Channel 106

	Frequency		equency Correct Factor R		Reading Level Measure Level		Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5460.000	19.376	43.628	63.004	-10.996	74.000	PEAK
2	*	5498.116	19.600	72.704	92.304			PEAK

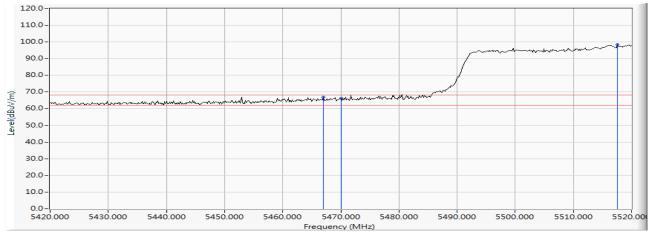
- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 8: Transmit (802.11ac80+NFC) -Channel 106

Vertical

.

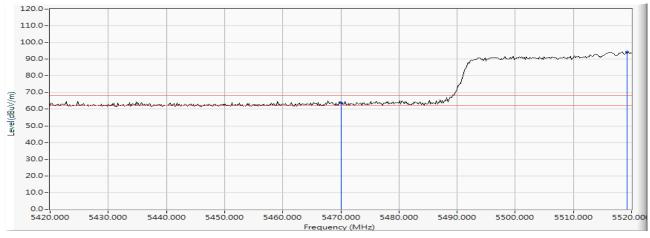
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5460.000	19.376	28.660	48.036	-5.964	54.000	AVERAGE
2	*	5509.420	19.602	63.735	83.337			AVERAGE


- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 8: Transmit (802.11ac80+NFC) -Channel 106

Horizontal

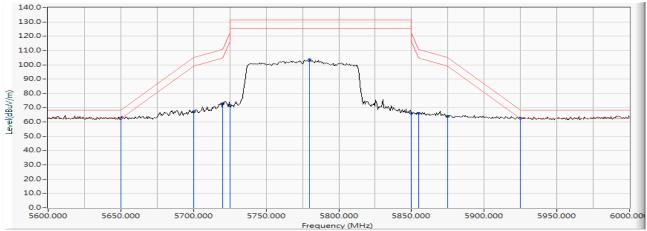
.


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5466.957	19.423	47.451	66.874	-1.346	68.220	PEAK
2		5470.000	19.443	46.771	66.214	-2.006	68.220	PEAK
3	*	5517.536	19.562	78.832	98.394			PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 8: Transmit (802.11ac80+NFC) -Channel 106

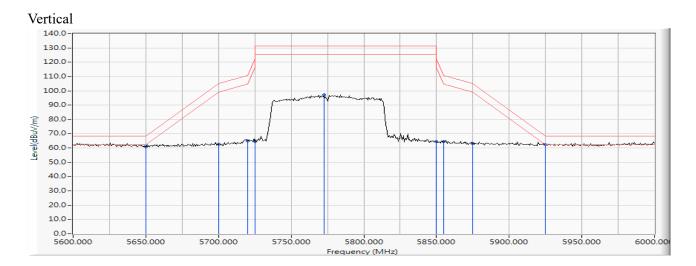
Vertical


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5470.000	19.443	44.212	63.655	-4.565	68.220	PEAK
2	*	5519.275	19.553	74.736	94.289			PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

- Product:Humly Room Display OneTest Item:Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 8: Transmit (802.11ac80+NFC)-Channel 155

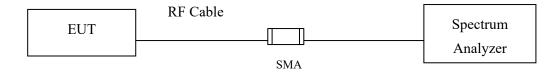
Horizontal


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5650.000	19.214	43.282	62.496	-5.724	68.220	PEAK
2		5700.000	19.169	47.907	67.076	-38.124	105.200	PEAK
3		5720.000	19.151	53.628	72.779	-38.021	110.800	PEAK
4		5725.000	19.147	52.412	71.559	-50.641	122.200	PEAK
5		5779.710	19.278	84.146	103.424	-27.776	131.200	PEAK
6		5850.000	19.632	46.574	66.206	-55.994	122.200	PEAK
7		5855.000	19.651	46.355	66.006	-44.794	110.800	PEAK
8		5875.000	19.718	44.087	63.805	-41.395	105.200	PEAK
9	*	5925.000	19.875	42.919	62.794	-5.426	68.220	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

,

- Product : Humly Room Display One
- Test Item : Band Edge Data
- Test Date : 2019/10/30
- Test Mode : Mode 8: Transmit (802.11ac80+NFC)-Channel 155


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5650.000	19.214	41.498	60.712	-7.508	68.220	PEAK
2		5700.000	19.169	43.380	62.549	-42.651	105.200	PEAK
3		5720.000	19.151	45.835	64.986	-45.814	110.800	PEAK
4		5725.000	19.147	45.562	64.709	-57.491	122.200	PEAK
5		5772.754	19.242	77.975	97.217	-33.983	131.200	PEAK
6		5850.000	19.632	44.773	64.405	-57.795	122.200	PEAK
7		5855.000	19.651	44.735	64.386	-46.414	110.800	PEAK
8		5875.000	19.718	43.479	63.197	-42.003	105.200	PEAK
9	*	5925.000	19.875	42.420	62.295	-5.925	68.220	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

7. Occupied Bandwidth

7.1. Test Setup

•

7.2. Limits

For the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz

7.3. .Test Procedure

The EUT was setup to ANSI C63.10, 2013; tested to UNII test procedure of FCC KDB-789033 for compliance to FCC 47CFR Subpart E requirements.

7.4. Uncertainty

± 681.6Hz

7.5. Test Result of Occupied Bandwidth

Product	:	Humly Room Display One
Test Item	:	Occupied Bandwidth Data
Test Mode	:	Mode 1: Transmit (802.11a) (5745MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
149	5745.00	16400	>500	Pass

									nalyzer - Sw		ysight S	l Ke
Frequency	E 1 2 3 4 5 6	TRAD	ALIGN AUTO e: Log-Pwr	Avg Ty	INSE:INT		IZ NO: Fast G	0000 G	50 g	req (ter l	en
Auto Tu	PNNNNN					#Atten: 3	Gain:Low	IF				
Auto Tu	80 GHz 92 dBm		Mkr						Offset 1 21.00		B/div	0 d'
Center Fr					-							og 11.0
5.745000000 G	-4.53 dBm			and and a start of the start of	V.	- July Jak				_		1.00
				- VICINIA V	1	<u> </u>				-		.00
Start Fr				- h	-					-	⊢	9.0
5.720000000 G		Autor .	M. W. W. W.		-			an a	much		\vdash	9.0
	thur an area	STUDIANS.							Rei In. :	والمكافع الم	hur	9.0
Stop Fr												9.0 9.0
5.770000000 G												9.0
										7440	L	
CF St 5.000000 M	0.00 MHz 1001 pts)	span 5 .800 ms ((#Swp) 4.	Sweep	z	/ 300 kHz	#VB\		0 GHz kHz	100		
Auto M	IN VALUE	FUNCTR	CTION WOTH	CTION F		Y		x		RC SCL		KR[
					IBm	1.47 d -4.92 d		5.746 2			N	1
Freq Offs 0					IBm	-5.47 d	0 GHz	5.753 2		1 1	N	3 4
										-	_	5 6
												7 8
												9
												1
			STATUS									a

Figure Channel 149: (Chain A)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
149	5745.00	16400	>500	Pass

Figure Channel 149: (Chain B)

		8			````		
gilent Spectrum Ana	yzer - Swept SA		SENSE:INT		ALIGNAUTO	03:01:47 AMOct 31.2	
	.745000000 GH	IZ	Trig: Free Run	Avg Typ	e: Log-Pwr	TRACE 1 2 3 4	5 6 Frequency
			#Atten: 30 dB			DET P NNN	Auto Tur
	Offset 1 dB 21.00 dBm				MKR	2 5.736 80 GI -5.14 dB	
11.0		~1					Center Fre
1.00		\$2	handred radianed	whenhall 3		-4.90	5.745000000 GH
9.0		لى ل					
9.0	to a reminiply to down in the	r			A Station of the second	million and an	5.720000000 G
9.0	NO-11-11-1					an any and an and a state	m9
9.0							Stop Fr
9.0							5.770000000 G
enter 5.74500 Res BW 100 F		#VBW 3	00 64-	Swaan	(#Cum) 4	Span 50.00 M 800 ms (1001 p	
(IN MODE THE SEL	×	#08003	Y I	FUNCTION FU	<u> </u>	FUNCTION VALUE	5.000000 M Auto M
1 N 1 F 2 N 1 F	6.737 6 5.736 8	0 GHz	1.10 dBm -5.14 dBm				
3 N 1 F 4	5.753 2	0 GHz	-5.72 dBm				Freq Offs 01
6 7							
9							
0							
G					STATUS		

Product	:	Humly Room Display One
Test Item	:	Occupied Bandwidth Data
Test Mode	:	Mode 1: Transmit (802.11a) (5785MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
157	5785.00	16400	>500	Pass

		Analyzer - Swept									
Center	Freq	50 Q 5.785000	AC	z		SE:INT	Avg Ty	ALIGN AUTO pe: Log-Pwr	TRA	M Oct 31, 2019 CE 1 2 3 4 5 6 PE M	Frequency
				O: Fast 🕞 ain:Low	#Atten: 30				D	ETPNNNNN	Auto Tu
0 dB/di		Offset 1 dE						Mk		80 GHz 23 dBm	
11.0											Contra F
1.00				A2 ()			~3	:			Center F 5.785000000
				Andre	- monther fronter	much	- W			-4.94 dBm	0.70000000
				1							
9.0			1	p1				w.			Start F
29.0		Aprese Male	winn					Samo	www.		5.760000000
	Att which									why why why	
19.0											Stop F
59.0											5.810000000
9.0											
~~~~											
enter	5.7850									0.00 MHz	CF S
enter	5.7850 W 100			#VBV	V 300 kHz		Sweep	(#Swp) 4		0.00 MHz (1001 pts)	5.000000
enter Res B	W 100	kHz	×		¥			(#Swp) 4	1.800 ms (		5.000000 M
enter Res B	W 100	kHz	5.778 75	GHz	Y 1.06 dE	3m		• • • •	1.800 ms (	(1001 pts)	5.000000 M <u>Auto</u> M
enter Res B 1 N 2 N 3 N	W 100	kHz		GHz	¥	3m 3m		• • • •	1.800 ms (	(1001 pts)	5.000000 M Auto Freq Off
enter Res B 1 N 2 N 3 N 4	W 100	kHz	5.778 75 5.776 80	GHz	1.06 dE -5.23 dE	3m 3m		• • • •	1.800 ms (	(1001 pts)	5.000000 M Auto Freq Off
Center Res B 1 N 2 N 3 N 4 5	W 100	kHz	5.778 75 5.776 80	GHz	1.06 dE -5.23 dE	3m 3m		• • • •	1.800 ms (	(1001 pts)	5.000000 M Auto Freq Off
Center Res B 1 N 2 N 3 N 4 5 6 7 8	W 100	kHz	5.778 75 5.776 80	GHz	1.06 dE -5.23 dE	3m 3m		• • • •	1.800 ms (	(1001 pts)	5.000000 M Auto Freq Off
enter Res B 1 N 2 N 3 N 4 5 6 6 7 7 8 9 0	W 100	kHz	5.778 75 5.776 80	GHz	1.06 dE -5.23 dE	3m 3m		• • • •	1.800 ms (	(1001 pts)	5.000000 M Auto Freq Off
Center Res B 1 N 2 N 3 N 4 5 6 7	W 100	kHz	5.778 75 5.776 80	GHz	1.06 dE -5.23 dE	3m 3m		• • • •	1.800 ms (	(1001 pts)	CF Si 5.000000 M <u>Auto</u> M Freq Off 0

# Figure Channel 157: (Chain A)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
157	5785.00	16450	>500	Pass

## Figure Channel 157: (Chain B)

	AC AC	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	03:03:41 AMOct 31, 2019 TRACE 1 2 3 4 5 6	Frequency
enter Freq 5.7850	PNO: Fast G IFGain:Low	Trig: Free Run #Atten: 30 dB	Avg Type. Log-Fwr	DET P N N N N	
Ref Offset 1 0 dB/div Ref 21.00			Mkr	2 5.776 75 GHz -6.46 dBm	Auto Tun
og 11.0 3.00	*2	1		-5.70 dBn	Center Fre 5.785000000 GH
9.0 9.0 9.0	Westween Alexand		And	Wine What was a set of a second second	Start Fre 5.760000000 GH
19.0 19.0 19.0					Stop Fre 5.810000000 GF
enter 5.78500 GHz Res BW 100 kHz	#VB\	V 300 kHz	Sweep (#Swp) 4	Span 50.00 MHz .800 ms (1001 pts)	CF Ste 5.000000 MH Auto Ma
1 N 1 f 2 N 1 f 3 N 1 f 4 5 6	5.780 00 GHz 5.776 75 GHz 5.793 20 GHz	0.30 dBm -6.46 dBm -5.92 dBm		PORCHUN WILDE	Freq Offs 0 F
7 8 9 0 1				,*	
				,	



Product	:	Humly Room Display One
Test Item	:	Occupied Bandwidth Data
Test Mode	:	Mode 1: Transmit (802.11a) (5825MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
165	5825.00	16400	>500	Pass

Frequency	4Nov 07, 2019 2 1 2 3 4 5 6 MWWWWWW T P N N N N N	TRAC	LIGNAUTO		Run	Trig: Free	10: Fast 🕞			Freq	nter	en
Auto Tu	05 GHz 09 dBm	2 5.817	Mkr		dB	#Atten: 30	iain:Low	1B	f Offset 1 ef 21.00		IB/div	0.4
Center F 5.825000000 0	-5.41 dBn			wed §3	2 ¹	mangolar	<b>∳</b> ²					.og 11.0 1.00 9.00
Start Fi 5.80000000 0		tan Manathan	hand and a comparison of the					analogi danan	willian Int	dan	_	19.0 29.0 39.0
Stop Fr 5.85000000 0												19.0 19.0 19.0
CF Si 5.000000 N Auto M	0.00 MHz 1001 pts)	Span 5 .800 ms (		Sweep (	- David	300 kHz	#VBW	×		5.825 W 100	es Bl	Re
Freq Off 0		PONCIL			3m 3m	0.59 de -6.09 de -6.38 de	5 GHz	5.826 3 5.817 0 5.833 2		1 f 1 f 1 f	N N N	1 2 3 4 5
												6 7 8 9 0
	<u> </u>		<b>E</b> status	-					-			-

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
165	5825.00	16400	>500	Pass

## Figure Channel 165: (Chain B)

ysight Spectrum Analyzer - Swept SA					
RF 50 Q AC		SENSE:INT	ALIGN AU Avg Type: Log-P		
ter Freq 5.82500000	PNO: Fast Tri	a: Free Run	Avg Type: Log-P	TYPE M WWW	w
	IFGain:Low #At	ten: 30 dB		DET P NNNN	
			N	1kr2 5.816 80 GH	Auto Tun
Ref Offset 1 dB B/div Ref 21.00 dBm				-4.95 dBr	
		1			Center Fre
		water market with	3		5.825000000 GH
	- Andrew M	duar and a second	- Yeller Y	-4.21 di	in
					1
					Start Fre
	WINT -		- Hora		5,80000000 GH
mondante development			b	harry with a party and a series of	_
				and the second second	
					Stop Fre
					5.850000000 GH
				0	
ter 5.82500 GHz s BW 100 kHz	#VBW 300		Curson /#Cum	Span 50.00 MH ) 4.800 ms (1001 pts	Z CF Ste 5.000000 MH
S DW 100 KHZ	#VDW 300	KHZ	Sweep (#Swp	) 4.800 ms (1001 pts	Auto Ma
MODE TRC SCL X			NCTION FUNCTION W	IDTH FUNCTION VALUE	
N 1 f 5.8 N 1 f 5.8	26 25 GHz 1 316 80 GHz -4	.79 dBm .95 dBm			
		.86 dBm			Freq Offse
					0 H
					1
					*
			51	TATUS	



Product	:	Humly Room Display One
Test Item	:	Occupied Bandwidth Data
Test Mode	:	Mode 2: Transmit (802.11n20) (5745MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
149	5745.00	17600	>500	Pass

E Keysight Spec	trum Analyzer - Sw									
enter Fr	eq 5.74500	AC		1	SE:INT		ALIGN AUTO	TRAC	E 1 2 3 4 5 6	Frequency
		PNO: IFGair	Fast 😱 h:Low	Trig: Free #Atten: 30				DE		Auto Tur
0 dB/div	Ref Offset 1 o						Mkr	2 5.736 -5.7	20 GHz 73 dBm	Auto Tu
og 11.0					_1					Center Fre
.00			2	e halimba	()'	03			-5.60 dBm	5.745000000 G
.00			and and the state			- Alandary			-5.60 dbii	
9.0						- X				Start Fr
9.0		- Aller					W. Lin			5.72000000 G
9.0 9.0	barby the farments							Was of Life on L	Moders	
9.0										Stop Fr
9.0										5.770000000 G
enter 5.7	4500 GHz							Span 5	0.00 MHz	CF St
Res BW			#VBW	300 kHz		Sweep	#Swp) 4	.800 ms (*		5.000000 M
38 MODE TR	SCL	× 5.746 25 0	l.l.a	0.40 dE		TION FU	CTION WOTH	FUNCTIO	N VALUE	<u>Auto</u> M
2 N 1 3 N 1	f	5.736 20 0	Hz	-5.73 dE	Bm	_			_	Freq Offs
4 5		8.783 80 6		-0.98 02	sm.					0
6						_			1	
8					_	_			_	
0										
ų –			-		-				•	
G							STATUS			

#### Figure Channel 149: (Chain A)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
149	5745.00	17700	>500	Pass

# Figure Channel 149: (Chain B)

Frequency	4Oct 31, 2019		ALIGNAUTO		VSE:INT	SB		Ω AC				
Frequency	E 123456 MWWWWW FT P NNNNN	TYE	: Log-Pwr	Avg Type		Trig: Fre	Hz PNO: Fast G FGain:Low		5.745	Fred	nter	en
Auto Tu		Mkr2 5.736 15 GHz -7.36 dBm						1 dB	ef Offset ef 21.0		B/div	0 4
Center Fr												.og 11.0
5.745000000 0	-5.61 dBn			aled 3	antreak march	-	2 and					1.00
				ľ								3.00 19.0
Start Fr 5.720000000 G			Level and				4—	1.1			$\vdash$	29.0
	how the childrent	Wieles any	- Samon					performationt	a for the second second	Mary	Hall	39.0 19.0
Stop Fr 5.770000000 0									-			59.0
												69.0
CF St 5.000000 N	0.00 MHz 1001 pts)		#Swp) 4.	Sweep (		/ 300 kHz	#VBV		00 GH 0 kHz			
<u>Auto</u> N	IN WALUE	FUNCTIO	CTION WIDTH	CTION FUN		y 0,39 d	25 GHz	× 5 746	CL .	TAC 1	MODE	<b>1</b>
Freq Off					3m	-7.36 d -8.14 d	15 GHz 85 GHz	5.736	f		NN	23
0	_			_	_				-	$\vdash$	_	4 5 6
											_	7 8
	_				_				-	$\vdash$	_	9 10 11
	>										_	



Product	:	Humly Room Display One
Test Item	:	Occupied Bandwidth Data
Test Mode	:	Mode 2: Transmit (802.11n20) (5785MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
157	5785.00	17450	>500	Pass

								Analyzer - Si		rsight Sp	Ke Ke
Frequency	TRACE 1 2 3 4 5 6	ALIGN AUTO pe: Log-Pwr	Avg T	SENSE:1		GHz	00000	50 f	rea (	ter F	:en
	DET P NNNNN			ig: Free Ru tten: 30 dE	, P	PNO: Fast IFGain:Lov					
Auto Tu	5.776 15 GHz -7.05 dBm	Mkr2 5.776 15 GHz -7.05 dBm						Offset 1 21.00		B/div	0 di
Comton Fr								21.00			og 11.0
Center Fr 5.785000000 G		3				▲ ²					1.00
	-5.11 dBn		er hand a hand a	dard and the state	فأنبات	9-1					00.8
Start Fr					_		_				9.0
5,760000000 G		A	_		_	1			_		9.0
	Appropriation of the state of t	"White por			_	~	n stanks	the state of the s	-	-u Ao	19.0
Stop Fr		-	_			_			-		9.0
5.810000000 G									-	-	9.0
					-		-		-		9.0
CF St	Span 50.00 MHz							0 GHz			
5.000000 M Auto N	00 ms (1001 pts)	(#Swp) 4.	Swee	) kHz	BW :	#\		kHz	100	s BW	Re
	FUNCTION VALUE	UNCTION WIDTH	FUNCTION	v 0.89 dBm		6 25 GHz	X 5.78		RC SCL	MODE T	1
Freq Offs				7.05 dBm 5.36 dBm		6 15 GHz	5,77		1	N	23
0				5.36 UBIII		13 00 GHZ	0.75		-		4
										-	6
											7 8
											9
										-	11
1		STATUS									IG

#### Figure Channel 157: (Chain A)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
157	5785.00	17700	>500	Pass

#### Figure Channel 157: (Chain B)

RF Center Freq 5.	50 Ω AC 785000000 GHz PN0: Fas IFGain:Lor	Trig: Free Run #Atten: 30 dB	ALIGNAUTO Avg Type: Log-Pwr	03:13:03 AM Oct 31, 2019 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency Auto Tur	
	ffset 1 dB 21.00 dBm		Mkr2 5.776 15 GHz -6.70 dBm			
11.0 1.00 9.00	\$ ² ,5	elmerter and	mulule 3	-5.72 dBn	Center Fre 5.785000000 GH	
19.0 29.0 39.0 <mark>UKANATA</mark>	planter of the property of the second s		W. W. Walkenich	Mandard and Manual	Start Fre 5.760000000 Gi	
49.0 59.0 69.0					Stop Fre 5.810000000 Gi	
center 5.78500 Res BW 100 kl	Hz #\		Sweep (#Swp) 4.	Span 50.00 MHz 800 ms (1001 pts) FUNCTION VALUE	CF Sto 5.000000 M <u>Auto</u> M	
1         N         1         f           2         N         1         f           3         N         1         f           4	5.706 30 GHz 5.776 15 GHz 5.793 85 GHz	0.28 dBm -6.70 dBm -7.39 dBm			Freq Offs 0	



Product	:	Humly Room Display One
Test Item	:	Occupied Bandwidth Data
Test Mode	:	Mode 2: Transmit (802.11n20) (5825MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
165	5825.00	17650	>500	Pass

Keysight Spectrum An								
optor Frog 6	50 Q AC 825000000 GH	Ja.	SENSE:		ALIGN AUTO ype: Log-Pwr	11:03:25 AM C	1 2 3 4 5 6	Frequency
enter Freq 5.	P	NO: Fast 😱 Gain:Low	Trig: Free R #Atten: 30 d	un	Jpc. Log-1 III	TYPE	PNNNN	
dB/div Ref	)ffset 1 dB 21.00 dBm				Mkr	2 5.816 1 -6.7	5 GHz 6 dBm	Auto Tu
29 1.0								Center Fr
00		<b>♦</b> ²		0'	_3			5.825000000 G
00		اساليت	- marine harding	mon the fail when the	¥		-5.41 dBn	0.020000000
0.0		1			Y			
	1				N.			Start Fr
	uslow anterior				Manah	aller marking		5.80000000 G
10 POMARINA MAR							H-willinia	
3.0								Stop Fr
9.0								5.850000000 G
9.0								
enter 5.82500				-		Span 50.		CF St
Res BW 100 k	Hz	#VBW	300 kHz	Swee	ep (#Swp) 4	.800 ms (10		5.000000 M Auto M
38 MODE TRC SCL	× 5.827 5	O CHa	0.59 dBm		FUNCTION WOTH	FUNCTION	VALUE	
2 N 1 f	5.816 1	5 GHz	-6.76 dBm					Freq Offs
3 N 1 1	5.833 8	0 GHz	-5.67 dBm					riegona
5								
7								
9								
0								
					STATU			

#### Figure Channel 165: (Chain A)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
165	5825.00	17650	>500	Pass

## Figure Channel 165: (Chain B)

enter Freq 5.825	0 Q AC 0000000 GHz PN0: Fast G IFGain:Low	Trig: Free Run #Atten: 30 dB	ALIGNAUTO Avg Type: Log-Pwr	03:15:08 AM Oct 31, 2019 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency
Ref Offset 0 dB/div Ref 21.0			Mkr	2 5.816 15 GHz -6.46 dBm	Auto Tur
-og 11.0 1.00 9.00	2 Solute	land when be grade and	rember 1. J	-6.16 dBm	Center Fr 5.825000000 Gi
19.0 29.0 39.0 <mark>whytingt (11/4/14/14/14/14/14/14/14/14/14/14/14/14</mark>	A CONTRACT		Whank	North Antonia Martin	Start Fr 5.80000000 G
49.0 59.0 69.0					<b>Stop Fr</b> 5.85000000 G
enter 5.82500 GHz Res BW 100 kHz	#VBV	V 300 kHz	,	Span 50.00 MHz 800 ms (1001 pts)	CF Ste 5.000000 M Auto M
MODE         FRC         SCL           1         N         1         f           2         N         1         f           3         N         1         f           4         -         -         -           5         -         -         -           6         -         -         -	6.826 25 GHz 5.816 15 GHz 5.833 80 GHz	-0.16 dBm -6.46 dBm -6.49 dBm	FUNCTION WIDTH	FUNCTION WALVE	Freq Offs 0
7 8 9 10 11					



Product	:	Humly Room Display One
Test Item	:	Occupied Bandwidth Data
Test Mode	:	Mode 3: Transmit (802.11n40) (5755MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
151	5755.00	36300	>500	Pass

Keysight Sp	ectrum Analyzer - Sw									
enter F	req 5.7550	00000 GHz			SE:INT	Avg Typ	ALIGN AUTO e: Log-Pwr	TRAC	M Oct 31, 2019 2E 1 2 3 4 5 6 PE M WWWW	Frequency
		PNO: IFGain		Trig: Free #Atten: 30	dB			D	ET P NNNNN	Auto Tur
0 dB/div	Ref Offset 1 Ref 21.00						MH		67 GHz 78 dBm	Auto Tu
0g										Center Fr
.00		<u> </u>		1			3			5.755000000 G
.00		• •	2uul	Mohildin	mille	uuq.			-8.11 dBn	
9.0						$\left  \right $				Start Fr
9.0		in mound					he days a			5.705000000 G
9.0 9.0 9.0	new addinged							the share have	Mun	
3.0										Stop Fr
9.0										5.805000000 G
enter 5	75500 GHz							Spap 1	00.0 MHz	CF St
	100 kHz		#VBW 3	800 kHz		Sweep	(#Swp) 9	.600 ms (		10.000000 M
R MODE T	RC SCL	× 5.746 3 G	No.	-2.11 dE		TION	NCTION WOTH	FUNCTI	ON VALUE	Auto M
2 N 1		5.736 7 G	Hz	-10.78 dE -8.52 dE	m	_				Freg Offs
4		0.77300	n2	-0.02 UE	311					0
5 5 7					_	_			1	
8			_						_	
0			-		_	-				
			-		-				•	
G							STATU	s		

#### Figure Channel 151: (Chain A)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
151	5755.00	35800	>500	Pass

# Figure Channel 151: (Chain B)

lantar 7	RF	50 Ω AC		19	ISE: INT	Ava T-	ALIGNAUTO e: Log-Pwr		MOct 31, 2019	Frequency
Senter F	req 5.73		IZ 10: Fast G jain:Low	Trig: Free #Atten: 30		Avg Typ	e. Log-Fwr	TY	ET P NNNNN	
Ref Offset 1 dB 0 dB/div Ref 21.00 dBm							3 8 GHz 14 dBm	Auto Tun		
og 11.0										Center Fr
1.00				1						5,755000000 G
			مثل الم	and delightre	millional	م م الما معالية ما	<b>`</b>		-8.26 dBm	0.100000000
19.0										
29.0			1							Start Fr
39.0	1.	. Identified and	Y				L			5.705000000 G
SS.U	An and the	adar the pathological and					autoid study	the states of th	Chlum .	
									- and a star	Stop Fr
-59.0										5.805000000 G
-69.0										
Center 5.						-			00.0 MHz	CF St
≇Res BW	100 kH	z	#VB\	N 300 kHz		Sweep	(#Swp) 9	.600 ms (	1001 pts)	10.000000 M
HKR MODE TI		×		Y		CTION FU	NCTION WIDTH	FUNCTIO	N WILLIE	Auto M
1 N 1	1	5.750 5.736	B GHZ	-2.26 di -9.14 di	3m 3m					
3 N 1	f	5.772	6 GHz	-9.76 di	3m					Freq Offs
6										0
6					_					
8					_					
9										
10										
10					_				~	



Product	:	Humly Room Display One
Test Item	:	Occupied Bandwidth Data
Test Mode	:	Mode 3: Transmit (802.11n40) (5795MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
159	5795.00	36500	>500	Pass

Key	sight S			zer - Sw															
en	ter		۶.7	<u>50 ຄ</u> 9500	AC	0 GH		_	1	NSE:1		Avg		LIGN AUTO		AM Oct 31 4CE 1 2 3 VPE MW	456	Frequency	у
						PI IFC	IO: Fast Jain:Low	φ	#Atten: 3					Mk	r2 5.77	DET P N N	NNN	Auto T	Fui
0 dE	3/div			set 1 (												.37 d			_
1.0								_	- 1							-	_	Center	Fr
.00					-		<b>▲</b> 2	A.1	01	-	MU	.0.0	0				26 dBm	5.795000000	) G
00. 9.0							Mar-4	100-0					Y				20 024		-
9.0													1					5.745000000	
9.0		ياري ا	. elst	الالتابير	www	hallow		-		-			_	<u>Ukonensajen</u>	retentet.	mel.	_	0.74000000	_
9.0	nordal.S	ered at	-		-			+		$\vdash$			_			PROP	<b>1</b>	Stop F	Fr
9.0 9.0																		5.845000000	) G
		5.795	00.0												0	100.01			_
		V 10					#V	вW	300 kHz			Swee	ep (	#Swp) 9	Span .600 ms	(1001	pts)	CF 5 10.000000	) N
	AODE N	TRC S			x	. 796	3 GHz		Y -2.26 dl	2.00	FUNC	TION	FUN	CTION WIDTH	FUNCT	TION VALU		Auto	N
2	N	11				5.776	7 GHz		-10.37 di -8.86 di	Зm		_	_				=1	Freq Of	m
4	-	-	-							-							_	· ·	0
6 7													_						-
8 9			+														=1		
0								_									-		
6			-							-			-	STATUS	3		,		_

## Figure Channel 159: (Chain A)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
159	5795.00	36300	>500	Pass

## Figure Channel 159: (Chain B)

Center Freq 5.79	5000000 GHz PN0: Fast IFGain:Low	Trig: Free Run #Atten: 30 dB	ALIGNAUTO Avg Type: Log-Pwr	03:21:07 AMOct 31, 2019 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency		
Ref Offse 10 dB/div Ref 21.0			Mkr2 5.776 7 GHz -11.51 dBm				
-og 11.0 9.00	\$2.0000	1	h he	-0.59 dDn	Center Fre 5.795000000 GH		
19.0 29.0 39.0				enter the second	Start Fre 5.745000000 GH		
49.0					Stop Fre 5.845000000 GH		
Center 5.79500 GH Res BW 100 kHz		V 300 kHz	Sweep (#Swp) 9.	Span 100.0 MHz 600 ms (1001 pts)	CF Ste 10.000000 MH Auto Ma		
1         N         1         f           2         N         1         f           3         N         1         f           4	6.790 0 GHz 5.776 7 GHz 5.813 0 GHz	-2.59 dBm -11.51 dBm -9.83 dBm			Freq Offs 0 H		
9 10 11				×			



Product	:	Humly Room Display One
Test Item	:	Occupied Bandwidth Data
Test Mode	:	Mode 4: Transmit (802.11ac80) (5775MHz)

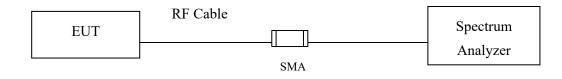
Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
155	5775.00	75800	>500	Pass

									n Analyzer - S		E Key
Frequency	HOct 31, 2019	TRAC	LIGN AUTO	Avg Type	ISE:INT	1	lz	00000 GH	5.7750		en:
Auto Tu		DE			eRun 0 dB	#Atten: 3	NO: Fast Gain:Low	PN			
Auto Tu	7 0 GHz 79 dBm		Mk						ef Offset 1 ef 21.00		0 de
Contro Fr											og 11.0
Center Fr 5.775000000 G						1					1.00
	-11-72-dBm		3	Maria ang	ana mu	multun					9.00
Start Fr											9.0
5.675000000 G							1				9.0
			hubberry					Mary Mary	- Colorest		9.0
Stop Fr	Water Alice	- Unig geting- and J								and the second s	19.0
5.875000000 G											9.0
											9.0
CF St 20.000000 M	00.0 MHz 1001 pts)	Span 2 9.13 ms (	#Swp) 19	Sweep (		300 kHz	#VBW			er 5.77 BW 10	
Auto N	N VALUE			TION FUI	FUN	Y		×	U	ODE TRC S	KR I
					3m 3m	-5.72 dt -11.79 dt	2 GHz	5.766 2		N 1 N 1	1
Freq Offs						-12.26 dE		5.812 8			
					_				-		5
	_								-		78
					-				-	===	9
	-										1
	•			_	_	**			_	_	-

# Figure Channel 155: (Chain A)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
155	5775.00	75800	>500	Pass

## Figure Channel 155: (Chain B)


Center F	req 5.7750	00000 GH	Z 0: Fast 🕞		Run dB	Avg Typ	ALIGNAUTO pe: Log-Pwr	TRAC	4Oct 31, 2019 2 1 2 3 4 5 6 MWWWWW T P NNNNN	Frequency
10 dB/div	Ref Offset 1 Ref 21.00						Mk	r2 5.737 -12.	7 0 GHz 59 dBm	Auto Tur
11.0										Center Fre
1.00			_	1						5.775000000 G
9.00			2	mun	مى بولىلايىت		3		-12.26 dBm	
19.0		-								Start Fr
29.0							-			5.675000000 Gi
39.0	and management	annorth					Master	1.		
-49.0 <b></b>	apple and a property of						and the second s	hamang	and worked a	01 E
-59.0		-								Stop Fr 5.875000000 G
-69.0										0.070000000
	7750 GHz 100 kHz		#VBW	/ 300 kHz		Sweep	(#Swp) 1		00.0 MHz 1001 pts)	CF Ste 20.000000 Mi
MKR MODE T	AC SCL	×		Y 6 OS 4D		TION F	UNCTION WIDTH	FUNCTIO	IN WALUE	Auto Ma
	1	5.766 2 5.737 (	GHz	-6.26 dB -12.59 dB	m	_				
2 N 1	f	5.8128	GHz	-13.10 dB	m					Freq Offs 01
2 N 1 3 N 1					_					
3 N 1 4 5										1
3 N 1 4 6 7					_					
3 N 1 6 6 7 8 9									_	
3 N 1 4 6 7 8									=	



## 8. Duty Cycle

•

## 8.1. Test Setup



#### 8.2. Test Procedure

The EUT was setup according to ANSI C63.10 2013; tested according to test procedure of KDB789033 for compliance to FCC 47CFR 15.407 requirements.

## 8.3. Uncertainty

± 2.31msec



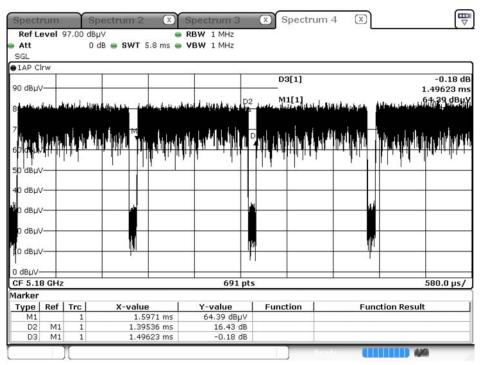
#### 8.4. Test Result of Duty Cycle

Product	:	Humly Room Display One
Test Item	:	Duty Cycle
Test Mode	:	Transmit

Duty Cycle Formula:

Duty Cycle = Ton / (Ton + Toff)

Duty Factor = 10 Log (1/Duty Cycle)


#### Results:

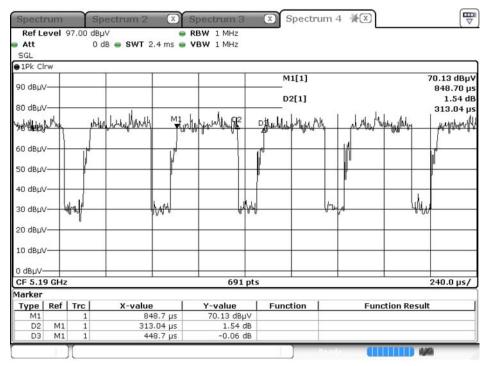
`

5GHz band	Ton	Ton + Toff	Duty Cycle	Duty Factor
	(ms)	(ms)	(%)	(dB)
802.11a	1.3954	1.4962	93.26	0.30
802.11n20	0.6667	0.7826	85.19	0.70
802.11n40	0.3130	0.4487	69.77	1.56
802.11ac80	0.2922	0.4244	68.85	1.62



802.11a




802.11n20

	ЭX								
110 dBL MM./ 100 dBL	-	ment	engelisterite	ht M1	Harring B2D3	D3[1]	niderarbulahlifundy	the way water	0.28 di 82.61 µ 61 dBu( 5942 m
90 dBh/	-	_							
80 dBµ\		_	<u> </u>						₩_
70 dвµ\	-	_							
60 dBµ\ 50 dBµ\		J.A		ulu				N	Wey .
40 dBµ\									
30 dBµ\	-		_	-					
20 dBµ\									
CF 5.1	3 GHz	<u></u>			691 pt:	5		50	0.0 µs/
1arker	Ref	Trol	X-valu		Y-value	Function	1 5	nction Result	
Type M1	Kei	1		5942 ms	102.61 dBµV	Function	Fu	Iction Result	
D2	M1	1		66.67 µs	-0.71 dB				

Date: 10.JAN.2007 07:18:11



802.11n40



802.11ac80

Spect		97.00	Spectru	IIII Z	×	(	Bectrum		X	Spectr	uni -	+	*			
Att	6461		1.0.1	SWT 2	4 ms		BW 1 MH									
SGL																
1Pk Cl	rw		-			_	1	-		0[1]						-3.90 di
90 dBµ\	/		_					_		03[1]						-3.90 a 424.35 μ
									P	41[1]						66.86 dBµ
30 dBh/	/			-		_		-			2					893.91 µ
70149.4				1	. 1	41.			1	11			le de la			سلباذ والس
70/dBu\	indulter	My	poli	harden	Jy -	ph	Lithurtra	-RA	DBM	Antho	ry	Ŋ	hum	MAN		million
ab dBh	/	_	-ull		+ 1	-		<u> </u>	1						-	<u> </u>
-U			_NI			Pl .			H			₩	J			
50 dBµ\		+				-		-	1	1						
40 dBµ\	,															
		1.			LT.											
30 dBµ\		hal	₩		plays	-		կիս	1	+	- W	Ŵ-			flow	
			~													
20 dBµ\																
10 dBµ\	/															
10 000																
D dBµV-	_		_			_		_			-					
CF 5.2	1 GHz	ÿ					6	91 pts								240.0 µs/
larker																
Туре	Ref		X	value			Y-value		Fun	ction			Fund	tion F	Result	t
M1 D2	M1	1			.91 μs .17 μs		66.86 c									
D2	M1	1			.35 µs	-	-3.9					_				



# 9. EMI Reduction Method During Compliance Testing

No modification was made during testing.