

FCC 47 CFR PART 15 SUBPART C

for

MainStream Main Unit Wireless presenter

Model: MUV1, MUV2, MUV3, MUV4, MUV5, MUV6

Brand: MainStream

Test Report Number: C180524Z01-RP1-3

Issued Date: June 12, 2018 Issued for Certus Eiger Ltd.

814, Houston Center, Mody Road, TST East, Kowloon, Hong Kong

Issued by: **Compliance Certification Services (Shenzhen) Inc.** No.10-1 Mingkeda Logistics park, No.18, Huanguan South Rd., Guan Lan Town, Baoan District, Shenzhen, China TEL: 86-755-28055000 FAX: 86-755-28055221 E-Mail: service@ccssz.com

Certificate Number: 2861.01

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services (Shenzhen) Inc. This document may be altered or revised by Compliance Certification Services (Shenzhen) Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF, A2LA, NVLAP, NIST or any government agencies. The test results in the report only apply to the tested sample.

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	June 12, 2018	Initial Issue	ALL	Sinphy Xie

TABLE OF CONTENTS

1	TEST CERTIFICATION	. 4
2	TEST RESULT SUMMARY	. 5
	EUT DESCRIPTION	
-	TEST METHODOLOGY	-
•	4.1. DESCRIPTION OF TEST MODES	-
5	SETUP OF EQUIPMENT UNDER TEST	
Ŭ	5.1. DESCRIPTION OF SUPPORT UNITS	
	5.2. CONFIGURATION OF SYSTEM UNDER TEST	
6	FACILITIES AND ACCREDITATIONS	
•	6.1. FACILITIES	
	6.2. ACCREDITATIONS	
	6.3. MEASUREMENT UNCERTAINTY.	
7	FCC PART 15.247 REQUIREMENTS	
-	7.1. POWER LINE CONDUCTED EMISSIONS MEASUREMENT	
	7.2. SPURIOUS EMISSIONS MEASUREMENT.	
	7.3. 6dB BANDWIDTH MEASUREMENT	55
	7.4. ANTENNA GAIN	63
	7.5. PEAK OUTPUT POWER	64
	7.6. BAND EDGES MEASUREMENT	66
	7.7. PEAK POWER SPECTRAL DENSITY MEASUREMENT	83

1 TEST CERTIFICATION

Product	MainStream Main Unit Wireless presenter
Model	MUV1, MUV2, MUV3, MUV4, MUV5, MUV6
Brand	MainStream
Tested	May 24~ June 12, 2018
Applicant	Certus Eiger Ltd. 814, Houston Center, Mody Road, TST East, Kowloon, Hong Kong
Manufacturer	Certus Eiger Ltd. 814, Houston Center, Mody Road, TST East, Kowloon, Hong Kong

APPLICABLE STANDARDS						
Standard	Test Type	Standard	Test Type			
15.207(a)	Power Line Conducted Emissions	15.247(d) 15.209(a)	 Spurious Emissions Conducted Measurement Radiated Emissions 			
15.247(a)(2)	6dB Bandwidth Measurement	15.247(b)(3) 15.247(b)(4)	Peak Power Measurement			
15.247(d)	Band Edges Measurement	15.247(e)	Peak Power Spectral Density			

We hereby certify that:

The above equipment was tested by Compliance Certification Services (Shenzhen) Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in **ANSI C63.10: 2013** and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 15.207, 15.209, 15.247.

The test results of this report relate only to the tested sample EUT identified in this report.

Approved by:

Eve. Work

Reviewed by:

Nancy

Eve Wang Supervisor of EMC Dept. Compliance Certification Services (Shenzhen) Inc.

Nancy Fu Supervisor of Report Dept. Compliance Certification Services (Shenzhen) Inc.

2 TEST RESULT SUMMARY

	APPLICABLE STANDARDS						
Standard Test Type			Remark				
15.247(a)(2)	6dB Bandwidth Measurement	Pass	Meet the requirement of limit.				
15.247(b)(3) 15.247(b)(4)	Peak Power Measurement	Pass	Meet the requirement of limit.				
15.247(d)	Band Edges Measurement	Pass	Meet the requirement of limit.				
15.247(e)	Peak Power Spectral Density	Pass	Meet the requirement of limit.				
15.247(d) 15.209(a)	 Spurious Emissions Conducted Measurement Radiated Emissions 	Pass	Meet the requirement of limit.				
15.207(a)	Power line Conducted Emissions	Pass	Meet the requirement of limit.				

Note: 1. The statements of test result on the above are decided by the request of test standard only; the measurement uncertainties are not factored into this compliance determination.

2. The information of measurement uncertainty is available upon the customer's request.

3 EUT DESCRIPTION

Product	MainStream Main Unit Wireless presenter			
Model Number	MUV1, MUV2, MUV3, MUV4, MUV5, MUV6			
Brand	MainStream			
Model Discrepancy	hey are identical to each other except for market designation for marketing urpose.			
Identify Number	C180524Z01-RP1-3			
Received Date	May 25, 2018			
Power Supply	DC5V supplied by the adapter			
Adapter Specification	Adapter 1: Moso Power Supply Technology Co., Ltd. Model: MSA-C2000IC5.0-12W-US Input: 100-240Vac 50/60Hz 0.5A max. Output: 5.0Vdc 2A DC cable: Unshielded, 1.20m(with a core) Adapter 2: Shenzhen TEKA Technology Co.,Ltd. MODEL: TEKA012-0502000XX INPUT: 100-240Vac 50/60Hz 0.35A MAX OUTPUT: 5Vdc 2A DC cable: Unshielded, 1.20m(with a core)			
HDMI Cable	Shielded, 1.50m			
Transmit Power	er IEEE 802.11b mode: 16.62dBm IEEE 802.11g mode: 22.90dBm IEEE 802.11n HT20 MHz mode: 22.11dBm IEEE 802.11n HT40 MHz mode: 20.30dBm			
Modulation Technique	IEEE 802.11b mode: DSSS(CCK,QPSK, BPSK) IEEE 802.11g mode: OFDM (BPSK/QPSK/16QAM/64QAM) IEEE 802.11n HT20 MHz mode: OFDM (BPSK/QPSK/16QAM/64QAM) IEEE 802.11n HT40 MHz mode: OFDM (BPSK/QPSK/16QAM/64QAM)			
Transmit Data Rate	IEEE 802.11b: 11Mbps(CCK) with fall back rates of 5.5/2/1Mbps IEEE 802.11g: 54Mbps with fall back rates of 48/36/24/18/12/9 /6Mbps IEEE 802.11n HT20: 65Mbps with fall back rates of 65/58.5/52/ 39/26/19.5/13/6.5Mbps IEEE 802.11n HT40: 135Mbps with fall back rates of 135/121.5/108/ 81/54/40.5/27/13.5Mbps			
Number of Channels	IEEE 802.11b mode: 11 Channels IEEE 802.11g mode: 11 Channels IEEE 802.11n HT20 MHz mode: 11 Channels IEEE 802.11n HT40 MHz mode: 7 Channels			
Antenna Specification	Internal antenna with 2dBi gain (Max)			
Channels Spacing	IEEE 802.11b/g ,802.11n HT20/HT40 : 5MHz			
Temperature Range	0°C ~ +45°C			
Hardware Version	1.7			
Software Version	4.9			

This report shall not be reproduced except in full, without the written approval of Compliance Certification Services (Shenzhen) Inc.

- **Note:** 1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.
 - 2. This submittal(s) (test report) is intended for FCC ID: <u>2APYB-9C1D3E</u> filing to comply with Section 15.207, 15.209 and 15.247 of the FCC Part 15, Subpart C Rules.

4 TEST METHODOLOGY

4.1. DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition.

Used the "RFTestTool-com.ampak.rftesttool-1.0-1.apk" software to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Test Item	Test mode	Worse mode
Conducted	Mode 1: Normal (AC120V/60Hz)	\square
Emission	Mode 2: Normal (AC240V/50Hz)	\bowtie
Radiated Emission	Mode 1: Continuously Transmitting	\boxtimes

After verification, all tests were carried out with the worst case test modes as shown below except radiated spurious emission below 1GHz, which worst case was in normal link mode only, and power line conducted emission below 30MHz, which worst case was in normal link mode.

IEEE802.11b mode: Channel Low (2412MHz), Channel Mid (2437MHz) and Channel High (2462MHz) with 1Mbps data rate were chosen for full testing.

IEEE802.11g mode: Channel Low (2412MHz), Channel Mid (2437MHz) and Channel High (2462MHz) with 6Mbps data rate were chosen for full testing.

IEEE 802.11n HT20 MHz mode: Channel Low (2412MHz), Channel Mid (2437MHz) and Channel High (2462MHz) with 6.5Mbps data rate were chosen for full testing.

IEEE 802.11n HT40 MHz mode: Channel Low (2422MHz), Channel Mid (2437MHz) and Channel High (2452MHz) with 13.5Mbps data rate were chosen for full testing.

5 SETUP OF EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

No.	Equipment	Model No.	Serial No.	FCC ID	Brand	Data Cable	Power Cord
1	Monitor	P2317H	CN-02J06R-7426 1-727-3A88-A00	N/A	DELL	Shielded 1.50m	Unshielded 1.50m
2	Keyboard	PR1101V	539130-001	N/A	DELL	Shielded 1.50m	N/A
3	Mouse	WB365PA#AB 2	2HTJMB101178-3 17	N/A	DELL	Shielded 1.45m	N/A

Note:

Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

5.2. CONFIGURATION OF SYSTEM UNDER TEST

See test photographs attached in Appendix II for the actual connections between EUT and support equipment.

5.3. TEST INSTRUMENTS

Conducted Emission Test Site							
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration		
EMI TEST RECEIVER	ROHDE&SCHWARZ	ESCI	100783	01/27/2018	01/26/2019		
LISN(EUT)	ROHDE&SCHWARZ	ENV216	101543-WX	01/27/2018	01/26/2019		
LISN	EMCO	3825/2	8901-1459	01/27/2018	01/26/2019		
Temp. / Humidity Meter	VICTOR	HTC-1	N/A	01/29/2018	01/28/2019		
Test S/W	FARAD	EZ-EMC/ CCS-3A1-CE					

Radiated Emission Test Site 966 (2)								
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration			
Spectrum Analyzer	Agilent	N9010A	MY52221469	01/27/2018	01/26/2019			
EMI TEST RECEIVER	ROHDE&SCHWARZ	ESCI	100783	01/27/2018	01/26/2019			
Amplifier	EMEC	EM330	060661	01/27/2018	01/26/2019			
High Noise Amplifier	Agilent	8449B	3008A01838	01/27/2018	01/26/2019			
Loop Antenna	COM-POWER	AL-130	121044	01/30/2018	01/29/2019			
Bilog Antenna	SCHAFFNER	CBL6143	5082	02/21/2018	02/20/2019			
Horn Antenna	SCHWARZBECK	BBHA9120	D286	01/27/2018	01/26/2019			
Board-Band Horn Antenna	Schwarzbeck	BBHA 9170	9170-497	01/24/2018	01/23/2019			
Turn Table	N/A	N/A	N/A	N.C.R	N.C.R			
Antenna Tower	SUNOL	TLT2	N/A	N.C.R	N.C.R			
Controller	Sunol Sciences	SC104V	022310-1	N.C.R	N.C.R			
Controller	СТ	N/A	N/A	N.C.R	N.C.R			
Temp. / Humidity Meter	Anymetre	JR913	N/A	01/29/2018	01/28/2019			
Test S/W	FARAD		LZ-RF / CCS	S-SZ-3A2				

Antenna Conducted Spurious Emission							
Name of Equipment Manufacturer Model Number Serial Number Last Due Calibration Calibration Calibration Calibration Calibration							
Spectrum Analyzer	Agilent	N9010A	MY52221469	01/27/2018	01/26/2019		

6dB Bandwidth							
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration		
Spectrum Analyzer	Agilent	N9010A	MY52221469	01/27/2018	01/26/2019		

Antenna Gain						
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration	
Spectrum Analyzer	Agilent	N9010A	MY52221469	01/27/2018	01/26/2019	

Peak Output Power							
Name of Equipment Manufacturer Model Number Serial Num				Last Calibration	Due Calibration		
Power Meter	Anritsu	ML2495A	1204003	01/27/2018	01/26/2019		
Power Sensor	Anritsu	MA2411B	1126150	01/27/2018	01/26/2019		

Band edges						
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration	
Spectrum Analyzer	Agilent	N9010A	MY52221469	01/27/2018	01/26/2019	

Peak Power Spectral Density						
Name of Equipment	Serial Number	Last Calibration	Due Calibration			
Spectrum Analyzer	Agilent	N9010A	MY52221469	01/27/2018	01/26/2019	

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. N.C.R = No Calibration Request.

6 FACILITIES AND ACCREDITATIONS

6.1. FACILITIES

All measurement facilities used to collect the measurement data are located at No.10-1 Mingkeda Logistics park, No.18, Huanguan South Rd., Guan Lan Town, Baoan District, Shenzhen, China

The sites are constructed in conformance with the requirements of ANSI C63.10, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

6.2. ACCREDITATIONS

Our laboratories are accredited and approved by the following accreditation body according to ISO/IEC 17025.

USA	A2LA
China	CNAS

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

USA	FCC
Japan	VCCI (C-4815,R-4320,T-2317, G-10624)
Canada	INDUSTRY CANADA

Copies of granted accreditation certificates are available for downloading from our web site, <u>http://www.ccssz.com</u>

6.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Parameter	Uncertainty
Radiated Emission, 30 to 200 MHz Test Site : 966(2)	+/-3.6880dB
Radiated Emission, 200 to 1000 MHz Test Site : 966(2)	+/-3.6695dB
Radiated Emission, 1 to 8 GHz	+/-5.1782dB
Radiated Emission, 8 to 18 GHz	+/-5.2173dB
Conducted Emissions	+/-3.6836dB
Band Width	178kHz
Peak Output Power MU	+/-1.906dB
Band Edge MU	+/-0.182dB
Channel Separation MU	416.178Hz
Duty Cycle MU	0.054ms
Frequency Stability MU	226Hz

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

The measured result is above (below) the specification limit by a margin less than the measurement uncertainty; it is therefore not possible to state compliance based on the 95% level of confidence. However, the result indicates that compliance (non-compliance) is more probable than non-compliance) with the specification limit.

7 FCC PART 15.247 REQUIREMENTS

7.1. POWER LINE CONDUCTED EMISSIONS MEASUREMENT

7.1.1. LIMITS OF CONDUCTED EMISSIONS MEASUREMENT

According to §15.207(a), except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

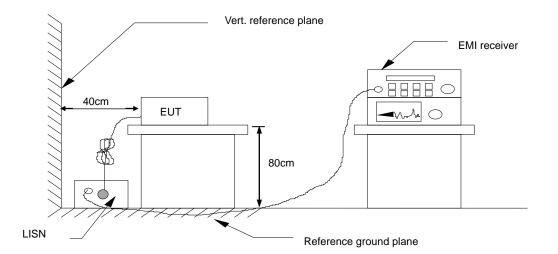
Frequency Range	Limits (dBµV)				
(MHz)	Quasi-peak	Average			
0.15 to 0.50	66 to 56*	56 to 46*			
0.50 to 5	56	46			
5 to 30	60	50			

NOTE:

(1) The lower limit shall apply at the transition frequencies.

(2) The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

(3) All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.



7.1.2. TEST PROCEDURES (please refer to measurement standard)

- The EUT and Support equipment, if needed, was placed on a non-conducted table, which is 0.8m above the ground plane and 0.4m away from the conducted wall.
- The test equipment EUT installed received AC main power, through a Line Impedance Stabilization Network (LISN), which supplied power source and was grounded to the ground plane. All support equipment power received from a second LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- The EUT test program was started. Emissions were measured on each current carrying line of the EUT using an EMI Test Receiver connected to the LISN powering the EUT.
- The frequency range from 150 kHz to 30 MHz was searched. The test data of the worst-case condition(s) was recorded. Emission levels under limit 20dB were not recorded.

7.1.3. TEST SETUP

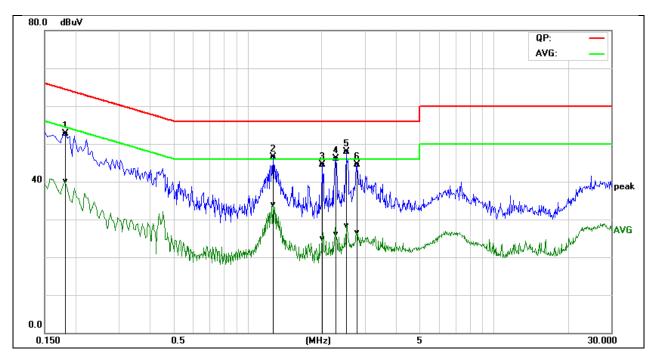
For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

7.1.4. DATA SAMPLE

	equency (MHz)		Average Reading (dBuV)		QuasiPeak Result (dBuV)	Average Result (dBuV)	QuasiPeak Limit (dBuV)	Average Limit (dBuV)	QuasiPeak Margin (dB)	Margin	Remark (Pass/Fail)
Х	.XXXX	32.69	25.65	11.52	44.21	37.17	65.78	55.79	-21.57	-18.62	Pass

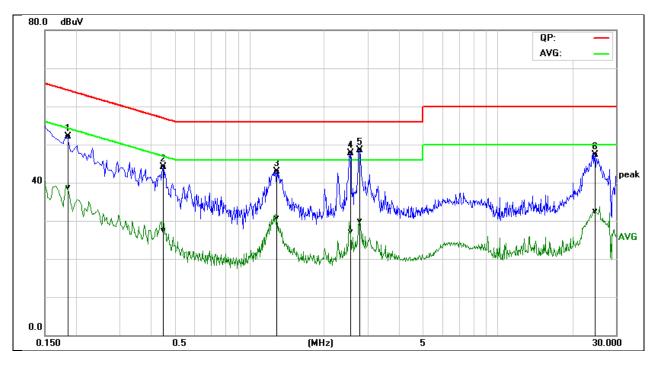
Factor = Insertion loss of LISN + Cable Loss

Result = Quasi-peak Reading/ Average Reading + Factor


Limit = Limit stated in standard

Margin = Result (dBuV) – Limit (dBuV)

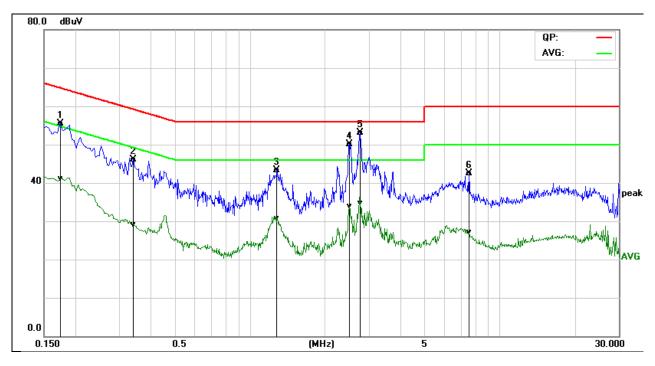
7.1.5. TEST RESULTS


Model No.	MUV1	RBW,VBW	9 kHz
Environmental Conditions	22°C, 45% RH	Test Mode	Mode 1
Tested by	Luja Huang	Line	L1
Test Date	May 30, 2018	Test Voltage	AC 120V/60Hz

Frequency (MHz)	QuasiPeak Reading (dBuV)	Average Reading (dBuV)		QuasiPeak Result (dBuV)	Average Result (dBuV)	QuasiPeak Limit (dBuV)	Average Limit (dBuV)	QuasiPeak Margin (dB)	Average Margin (dB)	Remark (Pass/Fail)
0.1819	33.10	20.42	19.63	52.73	40.05	64.39	54.40	-11.66	-14.35	Pass
1.2740	26.98	14.23	19.60	46.58	33.83	56.00	46.00	-9.42	-12.17	Pass
2.0220	24.69	5.25	19.72	44.41	24.97	56.00	46.00	-11.59	-21.03	Pass
2.2940	26.39	6.38	19.72	46.11	26.10	56.00	46.00	-9.89	-19.90	Pass
2.5260	28.12	8.65	19.72	47.84	28.37	56.00	46.00	-8.16	-17.63	Pass
2.7940	24.79	6.69	19.72	44.51	26.41	56.00	46.00	-11.49	-19.59	Pass

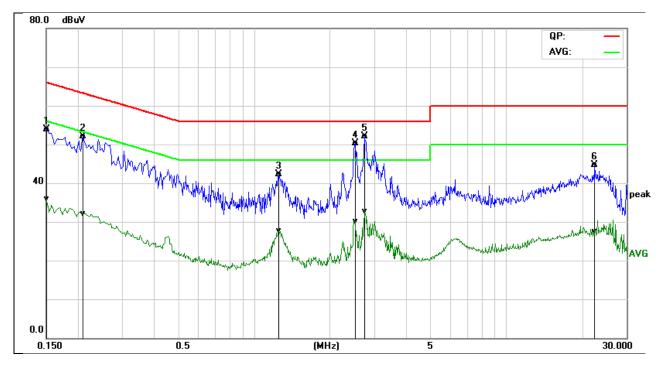
REMARKS: L1 = Line One (Live Line)

Model No.	MUV1	RBW,VBW	9 kHz
Environmental Conditions	22°C, 45% RH	Test Mode	Mode 1
Tested by	Luja Huang	Line	L2
Test Date	May 30, 2018	Test Voltage	AC 120V/60Hz



Fraguanay	QuasiPeak	Average	Correction	QuasiPeak	Average	QuasiPeak	Average	QuasiPeak	Average	Remark
Frequency (MHz)	Reading	Reading	Factor	Result	Result	Limit	Limit	Margin	Margin	
(=)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	(Pass/Fail)
0.1860	32.59	19.13	19.53	52.12	38.66	64.21	54.21	-12.09	-15.55	Pass
0.4500	24.64	8.06	19.53	44.17	27.59	56.87	46.88	-12.70	-19.29	Pass
1.2940	23.33	11.09	19.60	42.93	30.69	56.00	46.00	-13.07	-15.31	Pass
2.5540	27.95	7.46	19.74	47.69	27.20	56.00	46.00	-8.31	-18.80	Pass
2.7860	28.80	10.24	19.75	48.55	29.99	56.00	46.00	-7.45	-16.01	Pass
24.7460	26.69	11.90	20.62	47.31	32.52	60.00	50.00	-12.69	-17.48	Pass

REMARKS: L2 = Line Two (Neutral Line)


Model No.	MUV1	RBW,VBW	9 kHz
Environmental Conditions	22°C, 45% RH	Test Mode	Mode 2
Tested by	Luja Huang	Line	L1
Test Date	May 30, 2018	Test Voltage	AC 240V/50Hz

Frequency	QuasiPeak	0		QuasiPeak			Average	QuasiPeak	0	Remark
(MHz)	Reading	Reading	Factor	Result	Result	Limit		Margin	Margin	(Pass/Fail)
	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	(
0.1740	35.86	21.38	19.63	55.49	41.01	64.76	54.77	-9.27	-13.76	Pass
0.3420	26.54	9.55	19.59	46.13	29.14	59.15	49.15	-13.02	-20.01	Pass
1.2860	23.65	11.01	19.60	43.25	30.61	56.00	46.00	-12.75	-15.39	Pass
2.5059	30.46	14.15	19.72	50.18	33.87	56.00	46.00	-5.82	-12.13	Pass
2.7780	33.38	15.07	19.72	53.10	34.79	56.00	46.00	-2.90	-11.21	Pass
7.5620	22.53	7.15	19.89	42.42	27.04	60.00	50.00	-17.58	-22.96	Pass

REMARKS: L1 = Line One (Live Line)

Model No.	MUV1	RBW,VBW	9 kHz
Environmental Conditions	22°C, 45% RH	Test Mode	Mode 2
Tested by	Luja Huang	Line	L2
Test Date	May 30, 2018	Test Voltage	AC 240V/50Hz

Frequency	QuasiPeak			QuasiPeak	0		0		0	Remark
(MHz)	Reading	Reading	Factor	Result	Result	Limit	Limit	Margin	Margin	
()	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	(Pass/Fail)
0.1500	34.34	16.47	19.52	53.86	35.99	65.99	56.00	-12.13	-20.01	Pass
0.2100	32.53	12.53	19.54	52.07	32.07	63.20	53.21	-11.13	-21.14	Pass
1.2579	22.66	8.10	19.60	42.26	27.70	56.00	46.00	-13.74	-18.30	Pass
2.5180	30.61	10.42	19.74	50.35	30.16	56.00	46.00	-5.65	-15.84	Pass
2.7460	32.46	12.99	19.74	52.20	32.73	56.00	46.00	-3.80	-13.27	Pass
22.4540	24.37	7.04	20.43	44.80	27.47	60.00	50.00	-15.20	-22.53	Pass

REMARKS: L2 = Line Two (Neutral Line)

Compliance Certification Services (Shenzhen) Inc.

7.2. SPURIOUS EMISSIONS MEASUREMENT

7.2.1. CONDUCTED EMISSIONS MEASUREMENT

7.2.1.1. LIMITS OF CONDUCTED EMISSIONS MEASUREMENT

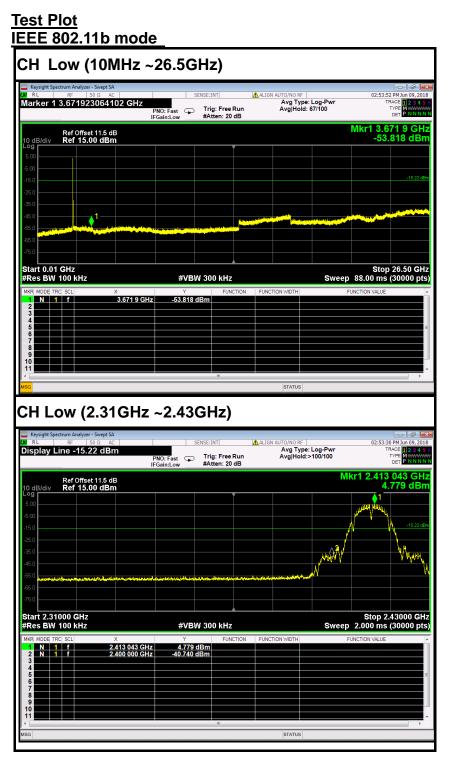
§15.247(d)specifies that in any 100 kHz bandwidth outside of the authorized frequency band, the power shall be attenuated according to the following conditions:

If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to 15.247(b)(3)requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.

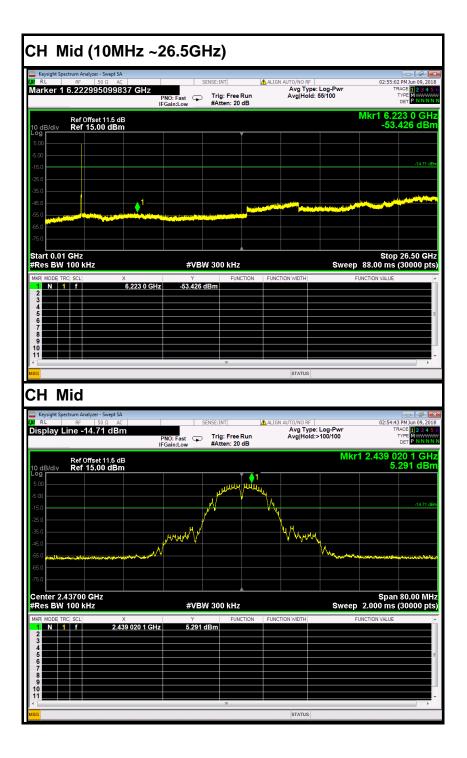
If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to 15.247(b) (3) requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in-band average PSD level.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)).

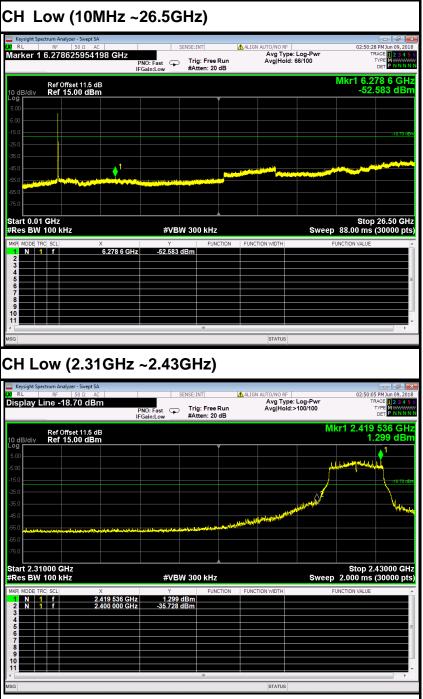
7.2.1.2. TEST PROCEDURE (please refer to measurement standard)


Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.


Measurements are made over the 9 kHz to 26GHz range with the transmitter set to the lowest, middle, and highest channels. No emission found between lowest internal used/generated frequency to 10MHz [,] it is only recorded 10MHz to 26GHz.

7.2.1.3. TEST RESULTS



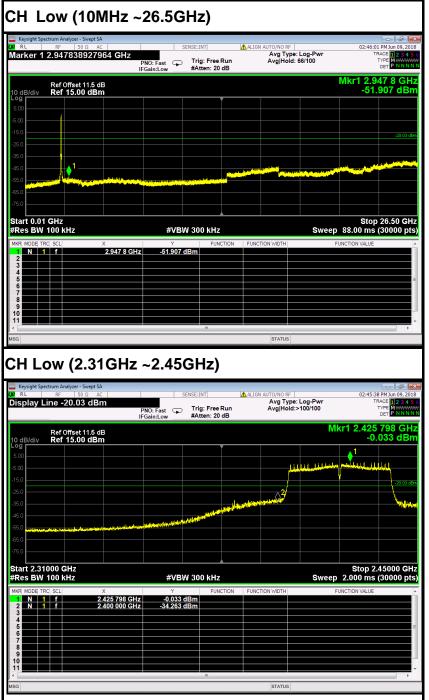
CH High (10MHz ~26.5GHz) ALIGN Avg Type: Log-Pwi Avg|Hold: 61/100 Marker 1 3.176543552647 GHz PNO: Fast Trig: Free Run IFGain:Low #Atten: 20 dB Mkr1 3.176 5 Gi -52.449 dB Ref Offset 11.5 dB Ref 15.00 dBm Stop 26.50 GHz Sweep 88.00 ms (30000 pts) Start 0.01 GHz #Res BW 100 kHz #VBW 300 kHz 3.176 5 GHz -52.449 dB N 1 f CH High (2.45GHz ~2.5GHz) ALIGN :55:42 PM Display Line -14.16 dBm Avg Type: Log-Pwi Avg|Hold:>100/100 PNO: Fast Trig: Free Run IFGain:Low #Atten: 20 dB 500 5 GH 5.837 dBr Ref Offset 11.5 dB Ref 15.00 dBm 1 الماليل المر Munun $\langle \rangle^2$ Start 2.45000 GHz #Res BW 100 kHz Stop 2.50000 GHz Sweep 2.000 ms (30000 pts) #VBW 300 kHz 2.463 500 5 GHz 2.483 500 0 GHz 5.837 di -54.070 di N 1 f STATUS

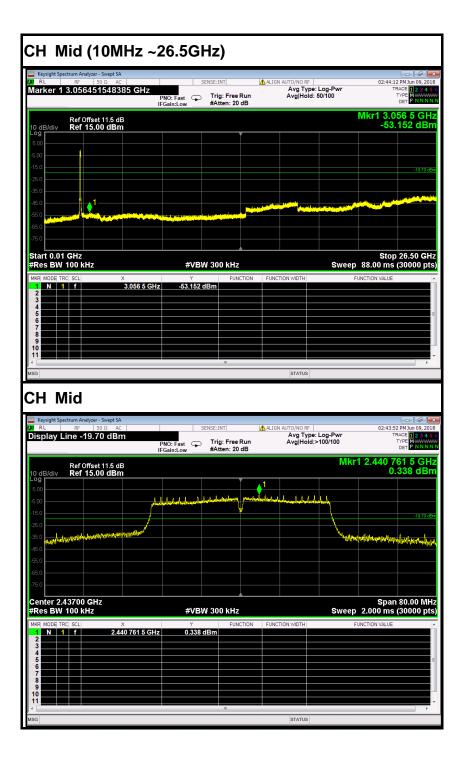
IEEE 802.11g mode

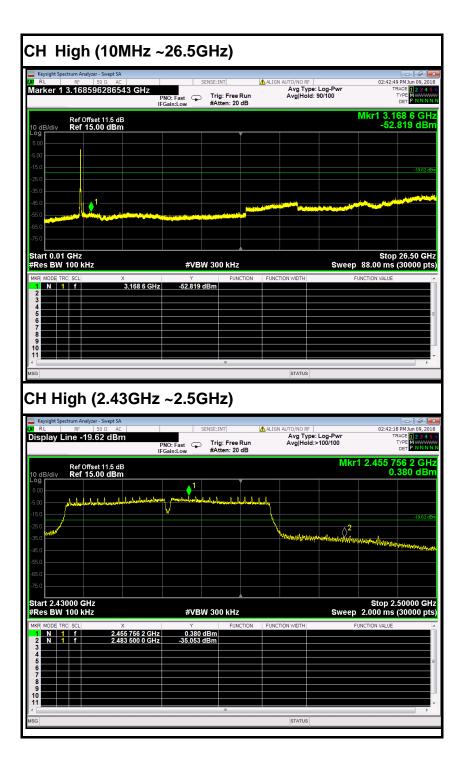
CH Mid (10MHz ~26.5GHz) ALIGN Marker 1 3.298401613387 GHz Avg Type: Log-Pwi Avg|Hold:>100/100 PNO: Fast Trig: Free Run IFGain:Low #Atten: 20 dB Mkr1 3.298 4 GH -53.002 dB Ref Offset 11.5 dB Ref 15.00 dBm ø Stop 26.50 GHz Sweep 88.00 ms (30000 pts) Start 0.01 GHz #Res BW 100 kHz #VBW 300 kHz 3.298 4 GHz -53,002 dB N 1 f CH Mid Avg Type: Log-Pwi Avg|Hold:>100/100 PNO: Fast Trig: Free Run IFGain:Low #Atten: 20 dB Display Line -18.48 dBm Mkr1 2.444 513 6 GF 1.521 dB Ref Offset 11.5 dB Ref 15.00 dBm Center 2.43700 GHz #Res BW 100 kHz Span 80.00 MHz Sweep 2.000 ms (30000 pts) #VBW 300 kHz 2.444 513 6 GHz 1.521 dB f

CH High (10MHz ~26.5GHz) ALIGN Marker 1 3.170362345412 GHz Avg Type: Log-Pwi Avg|Hold: 61/100 PNO: Fast Trig: Free Run IFGain:Low #Atten: 20 dB Mkr1 3.170 4 GF -52.796 dB Ref Offset 11.5 dB Ref 15.00 dBm **?** Stop 26.50 GHz Sweep 88.00 ms (30000 pts) Start 0.01 GHz #Res BW 100 kHz #VBW 300 kHz 3.170 4 GHz -52.796 dB N 1 f CH High (2.45GHz ~2.5GHz) ALIGN 2:52:25 PM Display Line -18.05 dBm Avg Type: Log-Pwi Avg|Hold:>100/100 PNO: Fast Trig: Free Run IFGain:Low #Atten: 20 dB 488 8 GH 1.950 dBr Ref Offset 11.5 dB Ref 15.00 dBm \wedge^2 Start 2.45000 GHz #Res BW 100 kHz Stop 2.50000 GHz Sweep 2.000 ms (30000 pts) #VBW 300 kHz 2.464 488 8 GHz 2.483 500 0 GHz 1.950 di -45.475 di N 1 f STATUS

CH Low (10MHz ~26.5GHz) ALIGN Marker 1 5.372637754592 GHz Avg Type: Log-Pwi Avg|Hold: 65/100 PNO: Fast Trig: Free Run IFGain:Low #Atten: 20 dB kr1 5.372 6 GH -52.336 dBr Ref Offset 11.5 dB Ref 15.00 dBm Stop 26.50 GHz Sweep 88.00 ms (30000 pts) Start 0.01 GHz #Res BW 100 kHz #VBW 300 kHz 5.372 6 GHz -52.336 d Ν f CH Low (2.31GHz ~2.43GHz) ALIG! Display Line -18.54 dBm Avg Type: Log-Pwr Avg|Hold:>100/100 PNO: Fast Free Run IFGain:Low #Atten: 20 dB Ref Offset 11.5 dB Ref 15.00 dBm 461 dB Stop 2.43000 GHz Sweep 2.000 ms (30000 pts) Start 2.31000 GHz #Res BW 100 kHz #VBW 300 kHz 2.414 535 GHz 2.400 000 GHz 1.461 dBn -35.041 dBn STATUS


CH Mid (10MHz ~26.5GHz) ALIGN Marker 1 2.922231074369 GHz Avg Type: Log-Pwi Avg|Hold: 59/100 PNO: Fast Trig: Free Run IFGain:Low #Atten: 20 dB Mkr1 2.922 2 GF -53.110 dB Ref Offset 11.5 dB Ref 15.00 dBm Stop 26.50 GHz Sweep 88.00 ms (30000 pts) Start 0.01 GHz #Res BW 100 kHz #VBW 300 kHz 2.922 2 GHz -53.110 dBr N 1 f CH Mid Keysight Spectrum Analyzer - Swept SA ALIGN 2:47:44 PM Display Line -18.40 dBm Avg Type: Log-Pwr Avg|Hold:>100/100 PNO: Fast IFGain:Low #Atten: 20 dB .444 505 6 GH 1.600 dBn Mkr1 Ref Offset 11.5 dB Ref 15.00 dBm الاسلى ا www.honeyhila.aug Center 2.43700 GHz #Res BW 100 kHz Span 80.00 MHz Sweep 2.000 ms (30000 pts) #VBW 300 kHz ^ 2.444 505 6 GHz 1.600 dB


CH High (10MHz ~26.5GHz) ALIGN Marker 1 3.029960665356 GHz Avg Type: Log-Pwi Avg|Hold: 62/100 PNO: Fast Trig: Free Run IFGain:Low #Atten: 20 dB Mkr1 3.030 0 GF -52.573 dBi Ref Offset 11.5 dB Ref 15.00 dBm Stop 26.50 GHz Sweep 88.00 ms (30000 pts) Start 0.01 GHz #Res BW 100 kHz #VBW 300 kHz 3.030 0 GHz -52.573 dB N 1 f CH High (2.45GHz ~2.5GHz) ALIGN :48:58 PM Display Line -17.66 dBm Avg Type: Log-Pwi Avg|Hold:>100/100 PNO: Fast IFGain:Low Trig: Free Run #Atten: 20 dB Ref Offset 11.5 dB Ref 15.00 dBm 2.337 dBr ۵ MMALL 2 web the Start 2.45000 GHz #Res BW 100 kHz Stop 2.50000 GHz Sweep 2.000 ms (30000 pts) #VBW 300 kHz 2.464 492 1 GHz 2.483 500 0 GHz 2.337 dE -41.902 dE N 1 f STATUS


IEEE 802.11n HT40 MHz mode

Compliance Certification Services (Shenzhen) Inc.

7.2.2. RADIATED EMISSIONS MEASUREMENT

7.2.2.1. LIMITS OF RADIATED EMISSIONS MEASUREMENT

According to §15.209(a), except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (mV/m)	Measurement Distance (m)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100*	3
88-216	150*	3
216-960	200*	3
Above 960	500	3

Remark: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

1. In the emission table above, the tighter limit applies at the band edges.

Frequency (MHz)	Field Strength (µV/m at 3-meter)	Field Strength (dBµV/m at 3-meter)
30-88	100	40
88-216	150	43.5
216-960	200	46
Above 960	500	54

NOTE:(1) The lower limit shall apply at the transition frequencies.

(2) Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.

7.2.2.2. Measuring Instruments and Setting

The following table is the setting of s	pectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/T for Average
RB / VB (Emission in non-restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/T for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP/AVG
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP/AVG
Start ~ Stop Frequency	30MHz~1000MHz / RB 100kHz for QP

7.2.2.3. TEST PROCEDURE (please refer to measurement standard)

1) Sequence of testing 9 kHz to 30 MHz Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.

--- If the EUT is a floor standing device, it is placed on the ground.

--- Auxiliary equipment and cables were positioned to simulate normal operation conditions.

--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

--- The measurement distance is 3 meter.

--- The EUT was set into operation.

Pre measurement:

--- The turntable rotates from 0° to 315° using 45° steps.

--- The antenna height is 0.8 meter.

--- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

--- Identified emissions during the pre measurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).

--- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position,

Compliance Certification Services (Shenzhen) Inc.

correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the pre measurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.

--- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.

--- Auxiliary equipment and cables were positioned to simulate normal operation conditions

--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

--- The measurement distance is 3 meter.

--- The EUT was set into operation.

Pre measurement:

--- The turntable rotates from 0° to 315° using 45° steps.

--- The antenna is polarized vertical and horizontal.

--- The antenna height changes from 1 to 3 meter.

--- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (\pm 45°) and antenna movement between 1 and 4 meter.

--- The final measurement will be done with QP detector with an EMI receiver. --- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1 GHz to 18 GHz Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.

--- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.

--- Auxiliary equipment and cables were positioned to simulate normal operation conditions

--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

--- The measurement distance is 3 meter.

--- The EUT was set into operation.

Pre measurement:

--- The turntable rotates from 0° to 315° using 45° steps.

--- The antenna is polarized vertical and horizontal.

--- The antenna height scan range is 1 meter to 2.5 meter.

--- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks. --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.

--- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector. --- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the pre measurement with marked maximum final measurements and the limit will be stored.

4) Sequence of testing above 18 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.

--- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.

--- Auxiliary equipment and cables were positioned to simulate normal operation conditions

--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

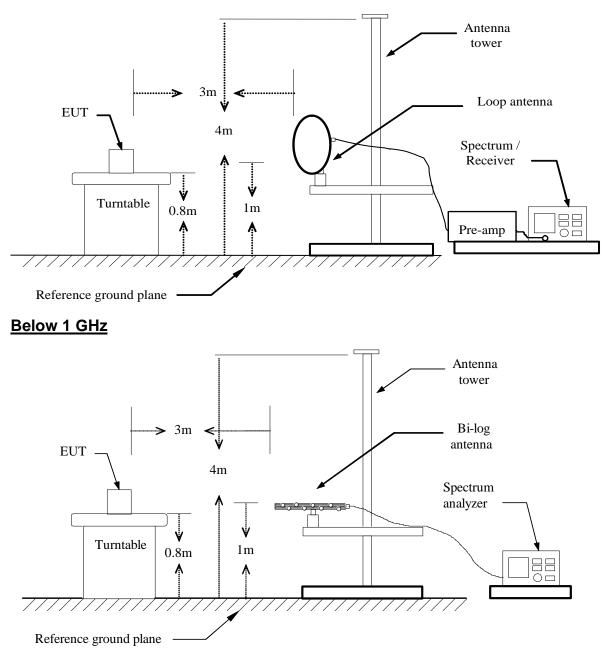
--- The measurement distance is 1 meter.

--- The EUT was set into operation.

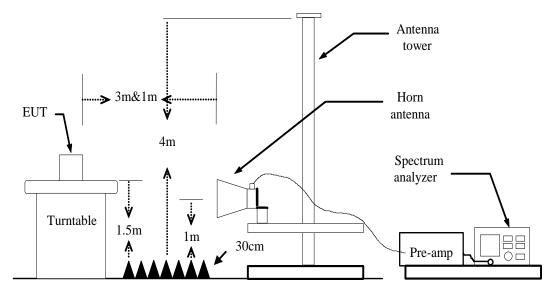
Pre measurement:

--- The antenna is moved spherical over the EUT in different polarisations of the antenna.

Final measurement:


--- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.

--- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.


7.2.2.4. TEST SETUP

Below 30MHz

Above 1 GHz

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

7.2.2.5. DATA SAPLE

Below 1GHz

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark		
XXX.XXXX	36.37	-12.20	24.17	40.00	-15.83	V	QP		
Frequency (MH Reading (dBuV Correct Factor Result (dBuV/m Limit (dBuV/m) Margin (dB) Q.P. Above 1GHz) (dB/m) າ)	= Uncorrec = Antenna = Reading = Limit sta = Result (c	n frequency in cted Analyzer factor + Cabl (dBuV) + Cor ted in standar dBuV/m) – Lin eak Reading	/ Receiver re e loss – Amp r. Factor (dB, d	lifier gain				
Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Factor (dBuV/m) (dBuV/m) (dB) Pole Rem						
XXXX.XXXX	62.09	-11.42	50.67	74.00	-23.33	V	Peak		
XXXX.XXXX	49.78	-11.42	38.36	54.00	-15.64	V	AVG		
Frequency (M Reading (dBu Correction Fa	iV)	 = Emission frequency in MHz = Uncorrected Analyzer / Receiver reading = Antenna factor + Cable loss – Amplifier gain = Reading (dBuV) + Corr. Factor (dB/m) = Limit stated in standard 							

Margin (dB) = Result (dBuV/m) – Limit (dBuV/m)

= Peak Reading = Average Reading

AVG Calculation Formula

Peak

Margin (dB) = Result (dBuV/m) – Limits (dBuV/m) Result (dBuV/m) = Reading (dBuV) + Correction Factor

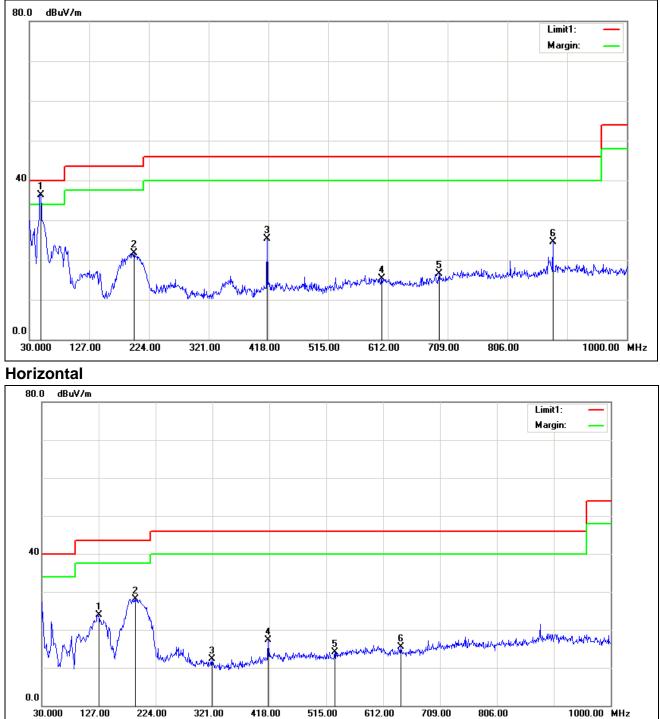
7.2.2.6. TEST RESULTS

Below 1 GHz

Test Mode:	<u>Saber Huang</u>								
Ambient temperature: 24°CRelative humidity: 52% RHDate: June 5, 2018									
Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark		
48.4300	56.73	-20.43	36.30	40.00	-3.70	V	QP		

199.7500	44.38	-22.73	21.65	43.50	-21.85	V	QP
416.0600	40.81	-15.49	25.32	46.00	-20.68	V	QP
602.3000	28.15	-12.81	15.34	46.00	-30.66	V	QP
695.4200	28.49	-12.05	16.44	46.00	-29.56	V	QP
879.7200	34.47	-9.98	24.49	46.00	-21.51	V	QP
			•	•			
127.0000	44.84	-20.87	23.97	43.50	-19.53	Н	QP
190.0500	51.02	-22.86	28.16	43.50	-15.34	Н	QP
320.0300	31.14	-18.93	12.21	46.00	-33.79	Н	QP
416.0600	32.74	-15.49	17.25	46.00	-28.75	Н	QP
529.5500	27.98	-13.90	14.08	46.00	-31.92	Н	QP
642.0700	28.00	-12.48	15.52	46.00	-30.48	Н	QP

Notes:


1. No emission found between lowest internal used/generated frequency to 30MHz.

2. Pre-scan all mode and recorded the worst case results in this report (802.11b (Low Channel)

- 1. Radiated emissions measured in frequency range from 9 kHz to 1GHz were made with an instrument using Quasi-peak detector mode.
- 2. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3. The IF bandwidth of Receiver between 30MHz to 1GHz was 120 kHz.
- 4. Frequency (MHz). = Emission frequency in MHz
 Reading (dBμV/m) = Receiver reading
 Correction Factor (dB) = Antenna factor + Cable loss Amplifier gain
 Limit (dBμV/m) = Limit stated in standard
 Margin (dB) = Measured (dBμV/m) Limits (dBμV/m)
 Antenna Pol e (H/V) = Current carrying line of reading

Vertical

Above 1 GHz

Test Mode: TX / IEEE 802.11b(CH Low)

Ambient temperature: <u>24°C</u> Relative humidity: <u>52% RH</u> Date: <u>June 5, 2018</u>

Tested by: Saber Huang

	•				_		
Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
2899.000	42.97	-1.54	41.43	74.00	-32.57	V	peak
3619.000	42.74	-0.02	42.72	74.00	-31.28	V	peak
4087.000	41.78	1.90	43.68	74.00	-30.32	V	peak
4456.000	41.91	3.20	45.11	74.00	-28.89	V	peak
4825.000	41.09	4.41	45.50	74.00	-28.50	V	peak
5320.000	40.61	5.55	46.16	74.00	-27.84	V	peak
	•	·		·			
1333.000	46.82	-7.30	39.52	74.00	-34.48	Н	Peak
1954.000	52.20	-5.29	46.91	74.00	-27.09	н	Peak
2620.000	45.31	-2.04	43.27	74.00	-30.73	н	Peak
3358.000	42.08	-0.76	41.32	74.00	-32.68	н	Peak
3988.000	42.17	1.54	43.71	74.00	-30.29	н	peak
4591.000	42.51	3.65	46.16	74.00	-27.84	н	peak

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Ambient ter	Ambient temperature: 24°CRelative humidity: 52% RHDate: June 5, 2018									
Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark			
3376.000	42.23	-0.73	41.50	74.00	-32.50	V	Peak			
3727.000	41.42	0.44	41.86	74.00	-32.14	V	Peak			
4222.000	42.60	2.37	44.97	74.00	-29.03	V	Peak			
4582.000	40.39	3.62	44.01	74.00	-29.99	V	Peak			
4987.000	40.82	4.94	45.76	74.00	-28.24	V	Peak			
5194.000	39.28	5.33	44.61	74.00	-29.39	V	Peak			
3376.000	41.37	-0.73	40.64	74.00	-33.36	Н	Peak			
3646.000	41.51	0.10	41.61	74.00	-32.39	Н	Peak			
4051.000	40.61	1.77	42.38	74.00	-31.62	Н	Peak			
4663.000	39.86	3.88	43.74	74.00	-30.26	Н	Peak			
4951.000	40.86	4.82	45.68	74.00	-28.32	Н	Peak			
5455.000	39.64	5.79	45.43	74.00	-28.57	Н	Peak			

Test Mode: TX / IEEE 802.11b (CH Mid)

Tested by: Saber Huang

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Tested by: Saber Huang

reet meae.										
Ambient tem	Ambient temperature: 24°C Relative humidity: 52% RH Date: June 5, 2018									
Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark			
1468.000	44.90	-6.94	37.96	74.00	-36.04	V	Peak			
1639.000	44.06	-6.62	37.44	74.00	-36.56	V	Peak			
2062.000	43.83	-4.66	39.17	74.00	-34.83	V	Peak			
2152.000	44.72	-4.17	40.55	74.00	-33.45	V	Peak			
4780.000	40.69	4.26	44.95	74.00	-29.05	V	Peak			
5383.000	40.46	5.66	46.12	74.00	-27.88	V	Peak			
1630.000	44.37	-6.64	37.73	74.00	-36.27	Н	Peak			
2107.000	44.40	-4.41	39.99	74.00	-34.01	Н	Peak			
3232.000	42.58	-0.97	41.61	74.00	-32.39	Н	Peak			
4186.000	41.87	2.24	44.11	74.00	-29.89	Н	Peak			
4420.000	40.84	3.07	43.91	74.00	-30.09	Н	Peak			
5068.000	40.46	5.10	45.56	74.00	-28.44	Н	Peak			

Test Mode: TX / IEEE 802.11b (CH High)

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

lest Mode:	<u>X / IEEE 80</u>	leste	ed by: <u>Sab</u>	er Huang					
Ambient tem	Ambient temperature: 24°CRelative humidity: 52% RHDate: June 5, 201								
Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark		
1855.000	42.93	-5.92	37.01	74.00	-36.99	V	Peak		
2170.000	44.70	-4.07	40.63	74.00	-33.37	V	Peak		
3331.000	41.81	-0.80	41.01	74.00	-32.99	V	Peak		
4051.000	41.32	1.77	43.09	74.00	-30.91	V	Peak		
4429.000	40.37	3.10	43.47	74.00	-30.53	V	Peak		
5284.000	40.61	5.49	46.10	74.00	-27.90	V	Peak		
	•								
2647.000	43.58	-2.00	41.58	74.00	-32.42	Н	Peak		
3682.000	41.16	0.25	41.41	74.00	-32.59	Н	Peak		
4357.000	40.67	2.85	43.52	74.00	-30.48	Н	Peak		
5455.000	40.61	5.79	46.40	74.00	-27.60	Н	Peak		
6310.000	39.73	6.58	46.31	74.00	-27.69	Н	Peak		
7354.000	39.58	8.39	47.97	74.00	-26.03	Н	Peak		

st Mode: TX / IEEE 802 11a(CH Low)

Tested by: Saber Huang

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- Data of measurement within this frequency range shown " --- " in the table above means the 4. reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) – Average limit (dBuV/m).

Test Mode: 7	<u>X / IEEE 80</u>	Teste	ed by: <u>Sab</u>	<u>er Huang</u>					
Ambient tem	Ambient temperature: <u>24°C</u> Relative humidity: <u>52% RH</u> Date: <u>June 5, 2018</u>								
Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark		
1945.000	47.68	-5.35	42.33	74.00	-31.67	V	Peak		
2809.000	44.26	-1.70	42.56	74.00	-31.44	V	Peak		
3241.000	43.49	-0.96	42.53	74.00	-31.47	V	Peak		
3745.000	42.15	0.51	42.66	74.00	-31.34	V	Peak		
4546.000	41.25	3.50	44.75	74.00	-29.25	V	Peak		
4879.000	41.72	4.59	46.31	74.00	-27.69	V	Peak		
	1			1	1				
2242.000	44.98	-3.67	41.31	74.00	-32.69	Н	Peak		
2656.000	44.79	-1.98	42.81	74.00	-31.19	Н	Peak		
2836.000	43.97	-1.66	42.31	74.00	-31.69	Н	Peak		
3565.000	43.23	-0.25	42.98	74.00	-31.02	Н	Peak		
4087.000	41.89	1.90	43.79	74.00	-30.21	Н	Peak		
4663.000	42.51	3.88	46.39	74.00	-27.61	Н	Peak		

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- Data of measurement within this frequency range shown " --- " in the table above means the 4. reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) – Average limit (dBuV/m).

Test Mode: 7	<u>X / IEEE 80</u>	Teste	ed by: <u>Sab</u>	<u>er Huang</u>			
Ambient tem	perature: 2	<u>tH</u>	Date: June	<u>e 5, 2018</u>			
Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
2260.000	45.63	-3.58	42.05	74.00	-31.95	V	Peak
2593.000	45.17	-2.09	43.08	74.00	-30.92	V	Peak
3340.000	42.99	-0.79	42.20	74.00	-31.80	V	Peak
4123.000	41.48	2.02	43.50	74.00	-30.50	V	Peak
4663.000	40.83	3.88	44.71	74.00	-29.29	V	Peak
5797.000	41.38	5.99	47.37	74.00	-26.63	V	Peak
2125.000	44.20	-4.31	39.89	74.00	-34.11	н	Peak
2530.000	43.76	-2.21	41.55	74.00	-32.45	Н	Peak
3673.000	41.60	0.21	41.81	74.00	-32.19	Н	Peak
4231.000	40.97	2.40	43.37	74.00	-30.63	н	Peak
4924.000	41.88	4.73	46.61	74.00	-27.39	н	Peak
5401.000	40.02	5.69	45.71	74.00	-28.29	Н	Peak

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Test Mode: 1	<u> </u>	Te	sted by: <u>Sabe</u>	er Huang			
Ambient tem	perature:	<u>24°C</u> Re	lative hum	idity: <u>52%</u>	<u>RH</u>	Date: June	<u>s, 2018</u>
Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
2530.000	44.94	-2.21	42.73	74.00	-31.27	V	Peak
3088.000	43.59	-1.21	42.38	74.00	-31.62	V	Peak
3817.000	42.38	0.82	43.20	74.00	-30.80	V	Peak
4087.000	42.32	1.90	44.22	74.00	-29.78	V	Peak
4636.000	42.15	3.79	45.94	74.00	-28.06	V	Peak
4969.000	42.37	4.88	47.25	74.00	-26.75	V	Peak
2143.000	46.15	-4.22	41.93	74.00	-32.07	Н	Peak
2521.000	45.41	-2.22	43.19	74.00	-30.81	н	Peak
2899.000	43.77	-1.54	42.23	74.00	-31.77	н	Peak
3745.000	42.56	0.51	43.07	74.00	-30.93	Н	Peak
4051.000	42.24	1.77	44.01	74.00	-29.99	Н	Peak
5104.000	41.91	5.17	47.08	74.00	-26.92	Н	Peak

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Test Mode:	sted by: <u>Sabe</u>	er Huang							
Ambient temperature: 24°CRelative humidity: 52% RHDate: June 5, 20									
Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark		
3250.000	43.28	-0.94	42.34	74.00	-31.66	V	Peak		
4258.000	40.81	2.50	43.31	74.00	-30.69	V	Peak		
4321.000	42.09	2.72	44.81	74.00	-29.19	V	Peak		
5257.000	39.91	5.44	45.35	74.00	-28.65	V	Peak		
5626.000	40.16	5.92	46.08	74.00	-27.92	V	Peak		
6571.000	39.76	7.01	46.77	74.00	-27.23	V	Peak		
	-								
1756.000	47.39	-6.36	41.03	74.00	-32.97	Н	Peak		
2260.000	44.43	-3.58	40.85	74.00	-33.15	Н	Peak		
4069.000	41.19	1.83	43.02	74.00	-30.98	Н	Peak		
4591.000	40.86	3.65	44.51	74.00	-29.49	Н	Peak		
5527.000	40.35	5.88	46.23	74.00	-27.77	Н	Peak		
6220.000	40.62	6.44	47.06	74.00	-26.94	Н	Peak		

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Test Mode:	TX / EEE 8	Те	Tested by: Saber Huang				
Ambient ten	nperature:	RH	RH Date: June 5, 2018				
Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
2575.000	43.89	-2.12	41.77	74.00	-32.23	V	Peak
2917.000	42.90	-1.51	41.39	74.00	-32.61	V	Peak
3376.000	42.82	-0.73	42.09	74.00	-31.91	V	Peak
4114.000	40.88	1.99	42.87	74.00	-31.13	V	Peak
4465.000	40.46	3.23	43.69	74.00	-30.31	V	Peak
5671.000	40.23	5.94	46.17	74.00	-27.83	V	Peak
	1	I		1		1	
2242.000	43.89	-3.67	40.22	74.00	-33.78	Н	Peak
2638.000	43.28	-2.01	41.27	74.00	-32.73	Н	Peak
3673.000	40.41	0.21	40.62	74.00	-33.38	Н	Peak
3979.000	41.81	1.50	43.31	74.00	-30.69	Н	Peak
4564.000	41.27	3.56	44.83	74.00	-29.17	Н	Peak
5122.000	40.04	5.20	45.24	74.00	-28.76	Н	Peak

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Test Mode: TX / IEEE 802.11n HT40 MHz (CH Low)

Ambient temperature: <u>24°C</u> Relat

Relative humidity: <u>52% RH</u>

Tested by: <u>Saber Huang</u> Date: <u>June 5, 2018</u>

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
2584.000	45.29	-2.11	43.18	74.00	-30.82	V	Peak
3412.000	41.11	-0.67	40.44	74.00	-33.56	V	Peak
3880.000	42.76	1.08	43.84	74.00	-30.16	V	Peak
4357.000	40.30	2.85	43.15	74.00	-30.85	V	Peak
4933.000	41.55	4.76	46.31	74.00	-27.69	V	Peak
5581.000	40.79	5.90	46.69	74.00	-27.31	V	Peak
	•					•	
1747.000	47.22	-6.38	40.84	74.00	-33.16	Н	Peak
2629.000	43.48	-2.03	41.45	74.00	-32.55	Н	Peak
3340.000	42.10	-0.79	41.31	74.00	-32.69	Н	Peak
4240.000	41.38	2.43	43.81	74.00	-30.19	Н	Peak
5041.000	40.48	5.05	45.53	74.00	-28.47	Н	Peak
5932.000	40.35	6.05	46.40	74.00	-27.60	Н	Peak

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Test Mode:	est Mode: <u>TX / IEEE 802.11n HT40 MHz (CH Mid)</u>					sted by: <u>Sabe</u>	er Huang
Ambient ten	nperature:	<u>24°C</u> R	elative hum	nidity: <u>52%</u>	RH	Date: June	<u>e 5, 2018</u>
Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
2647.000	43.95	-2.00	41.95	74.00	-32.05	V	Peak
3844.000	41.75	0.93	42.68	74.00	-31.32	V	Peak
4474.000	41.60	3.26	44.86	74.00	-29.14	V	Peak
4717.000	40.98	4.06	45.04	74.00	-28.96	V	Peak
5131.000	40.59	5.21	45.80	74.00	-28.20	V	Peak
5941.000	39.91	6.06	45.97	74.00	-28.03	V	Peak
	1	Γ		1		T	
1747.000	47.04	-6.38	40.66	74.00	-33.34	Н	Peak
2521.000	44.37	-2.22	42.15	74.00	-31.85	Н	Peak
3394.000	41.90	-0.70	41.20	74.00	-32.80	Н	Peak
3943.000	42.21	1.35	43.56	74.00	-30.44	Н	Peak
4591.000	41.60	3.65	45.25	74.00	-28.75	Н	Peak
5068.000	40.45	5.10	45.55	74.00	-28.45	Н	Peak

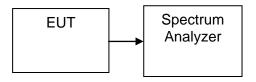
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Test Mode:	est Mode: <u>TX / EEE 802.11n HT40 MHz (CH High)</u>					sted by: <u>Sabe</u>	er Huang
Ambient ten	nperature:	<u>24°C</u> R	elative hum	nidity: <u>52%</u>	RH	Date: June	<u>ə 5, 2018</u>
Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
1747.000	46.49	-6.38	40.11	74.00	-33.89	V	Peak
2521.000	43.76	-2.22	41.54	74.00	-32.46	V	Peak
2971.000	42.90	-1.41	41.49	74.00	-32.51	V	Peak
3970.000	41.34	1.46	42.80	74.00	-31.20	V	Peak
4672.000	40.77	3.91	44.68	74.00	-29.32	V	Peak
5509.000	40.89	5.87	46.76	74.00	-27.24	V	Peak
	1	ſ		1		I	
1747.000	47.76	-6.38	41.38	74.00	-32.62	Н	Peak
2656.000	43.79	-1.98	41.81	74.00	-32.19	Н	Peak
3196.000	41.82	-1.03	40.79	74.00	-33.21	Н	Peak
4501.000	40.34	3.35	43.69	74.00	-30.31	Н	Peak
5140.000	40.17	5.23	45.40	74.00	-28.60	Н	Peak
5716.000	40.49	5.96	46.45	74.00	-27.55	Н	Peak

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

7.3. 6dB BANDWIDTH MEASUREMENT

7.3.1. LIMITS


According to §15.247(a)(2), systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz. The minimum 6 dB bandwidth shall be at least 500 kHz.

7.3.2. TEST PROCEDURES (please refer to measurement standard)

8.2 Option 2:

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \geq 3 RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

7.3.3. TEST SETUP

7.3.4. TEST RESULTS

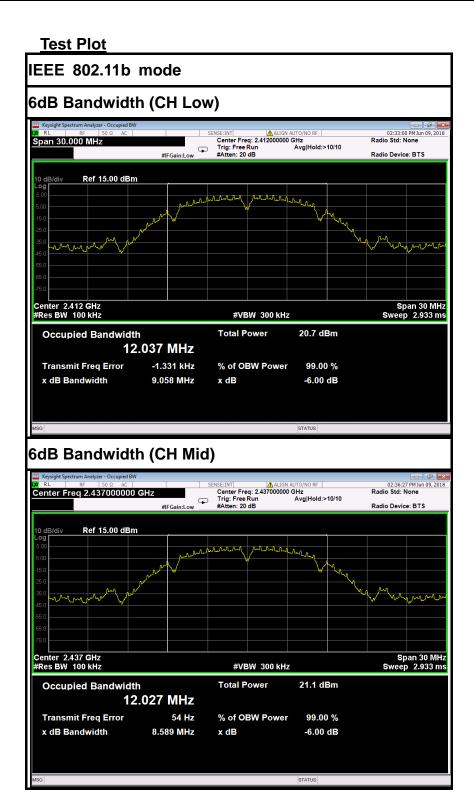
No non-compliance noted **Test Data**

Test mode: IEEE 802.11b

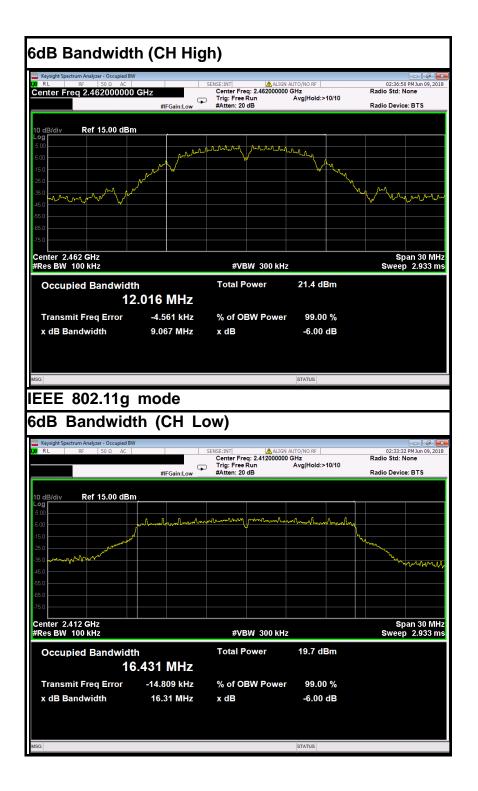
Channel	Frequency (MHz)	Bandwidth (kHz)	Limit (kHz)	Test Result
Low	2412	9058		PASS
Mid	2437	8589	>500	PASS
High	2462	9067		PASS

Test mode: IEEE 802.11g

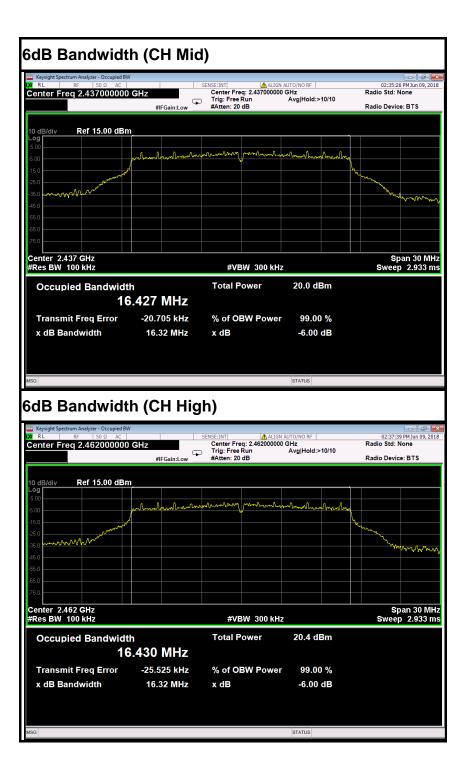
Channel	Frequency (MHz)	Bandwidth (kHz)	Limit (kHz)	Test Result
Low	2412	16310		PASS
Mid	2437	16320	>500	PASS
High	2462	16320		PASS

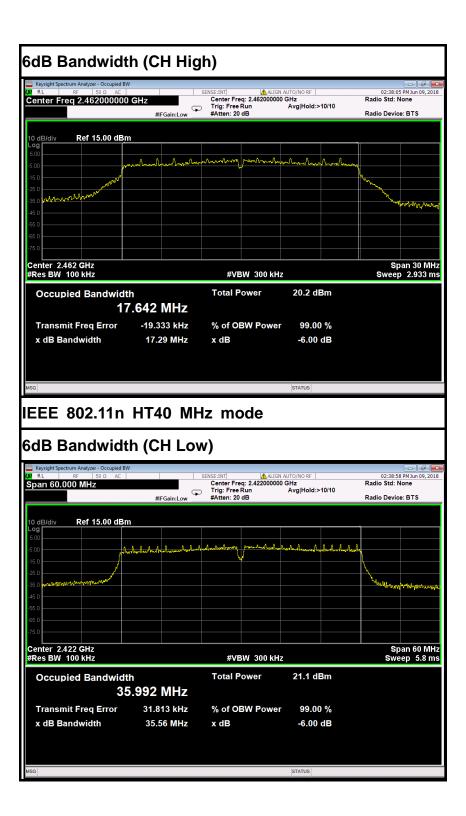

Test mode: IEEE 802.11n HT20 MHz

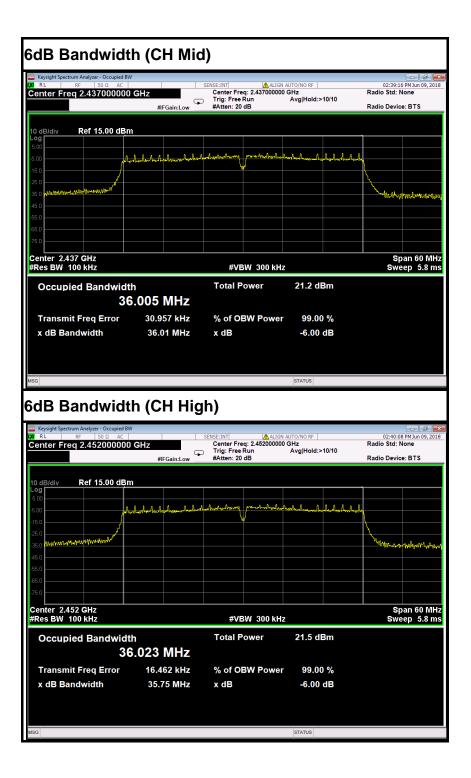
Channel	Frequency (MHz)	Bandwidth (kHz)	Limit (kHz)	Test Result
Low	2412	16910		PASS
Mid	2437	17280	>500	PASS
High	2462	17290		PASS


Test mode: IEEE 802.11n HT40 MHz

Channel	Frequency (MHz)	Bandwidth (kHz)	Limit (kHz)	Test Result
Low	2422	35560		PASS
Mid	2437	36010	>500	PASS
High	2452	35750		PASS







	EEE 802.11n HT20 MHz mode						
6dB Bandwidth (CH L	Low)						
Keysight Spectrum Analyzer - Occupied BW IM RL RF 50 Ω AC Center Freq 2.412000000 GHz #IFGain:Lc	SENSE:INT ALIGN AUTO/NO RF Center Freq: 2.412000000 GHz Trig: Free Run Avg Hold:>10/ #Atten: 20 dB	02:34:32 PM Jun 09, 2018 Radio Std: None 10 Radio Device: BTS					
10 dB/div Ref 15.00 dBm							
5.00	water man man how the man have the second	man					
-15.0		U Connection					
-35.0 - Mr. M.		Www.wathallowww.Wy					
-55.0							
-65.0							
Center 2.412 GHz #Res BW 100 kHz	#VBW 300 kHz	Span 30 MHz Sweep 2.933 ms					
Occupied Bandwidth	Total Power 19.6 dBn	ı					
17.620 MH		,					
Transmit Freq Error -3.095 kF x dB Bandwidth 16.91 MF							
MSG	STATUS						
6dB Bandwidth (CH M	Midi						
•	wid)						
Keysight Spectrum Analyzer - Occupied BW X RL RF 50 Ω AC	SENSE:INT	02:34:54 PM Jun 09, 2018 Radio Std: None					
Keysight Spectrum Analyzer - Occupied BW	SENSE:INT ALIGN AUTO/NO RF Center Freq: 2.437000000 GHz Trig: Free Run Avg Hold:>10/	02:34:54 PM Jun 09, 2018 Radio Std: None					
Keysight Spectrum Analyzer - Occupied BW Ke RL RF 50 Ω AC Center Freq 2.437000000 GHz #FGain:Lc 10 dB/div Ref 15.00 dBm	SENSE:INT ALIGN AUTO/NO RF Center Freq: 2.437000000 GHz Trig: Free Run Avg Hold:>10/	02:34:54 PM Jun 09, 2018 Radio Std: None 10					
Keysight Spectrum Analyzer - Occupied BW Øf RL RF 50 Ω AC Center Freq 2.437000000 GHz #FGain:Lo 10 dB/div Ref 15.00 dBm 6:00	SENSE:INT Center Freq: 2.437000000 GHz Trig: Free Run Avg Hold:>10/ #Atten: 20 dB	02:34:54 PM Jun 09, 2018 Radio Std: None 10					
Keysight Spectrum Analyzer - Occupied BW M RL RF 50 Ω AC Center Freq 2.437000000 GHz #IFGain:LC #IFGain:LC #IFGain:LC 0 dB/div Ref 15.00 dBm 5:00	SENSE:INTI Center Freq: 2.437000000 GHz Trig: Free Run Avg Hold:>10/ #Atten: 20 dB	02:34:54 PM Jun 09, 2018 Radio Std: None 10 Radio Device: BTS					
Keysight Spectrum Analyzer - Occupied BW W RL BF 50 Ω AC Center Freq 2.437000000 GHz #FGain:Lo Ø/0 dB/div Ref 15.00 dBm 500	SENSE:INTI Center Freq: 2.437000000 GHz Trig: Free Run Avg Hold:>10/ #Atten: 20 dB	02:34:54 PMJun 09, 2018 Radio Std: None Radio Device: BTS					
Keysight Spectrum Analyzer - Occupied BW M RL RF 50 Ω ΔC Center Freq 2.437000000 GHz #FGain:LC 0 dB/div Ref 15.00 dBm 5:00	SENSE:INTI Center Freq: 2.437000000 GHz Trig: Free Run Avg Hold:>10/ #Atten: 20 dB	10 Radio Std: None Radio Device: BTS					
Keysight Spectrum Analyzer - Occupied BW W RL RF 50 Ω AC Center Freq 2.437000000 GHz #FGain:Lc 0/0 dL g 0/10 dB/div Ref 15.00 dBm 0/0 dS/div g 5:00 mmm.man.man.man.man.man.man.man.man.man.	SENSE:INTI Center Freq: 2.437000000 GHz Trig: Free Run Avg Hold:>10/ #Atten: 20 dB	Radio Std: None Radio Device: BTS					
Keysight Spectrum Analyzer - Occupied BW Ø R.L RF 50 Ω AC Center Freq 2.437000000 GHz Ø	SENSE:INTI Center Freq: 2.437000000 GHz Trig: Free Run Avg Hold:>10/ #Atten: 20 dB	Radio Std: None Radio Device: BTS					
Keysight Spectrum Analyzer - Occupied BW Ø R.L RF 50 Ω AC Center Freq 2.437000000 GHz #FGain:Lo Ø 60 0 </td <td>SENSE:INT Center Freq: 2.437000000 GHz Tip: Freq Run Avg Hold:>100 #Atten: 20 dB</td> <td>10 Radio Std: None Radio Device: BTS</td>	SENSE:INT Center Freq: 2.437000000 GHz Tip: Freq Run Avg Hold:>100 #Atten: 20 dB	10 Radio Std: None Radio Device: BTS					
Keysight Spectrum Analyzer - Occupied BW W RL BF 50 g. AC Center Freq 2.437000000 GHz #FGain:Lo 0 dB/div Ref 15.00 dBm 0.0 0 0 0 50 0 0 0 50 0 0 0 50 0 0 0 50 0 0 0 50 0 0 0 50 0 0 0 50 0 0 0 60 0 0 0 60 0 0 0 60 0 0 0 610 0 0 0 750 0 0 0 Center 2.437 GHz #Res BW 100 kHz 0 Occupied Bandwidth 17.622 MH	SENSE:INT Center Free; 2.437000000 GHz Center Free; 2.437000000 GHz www.sense:inter Free; 2.43700000 GHz www.sense:inter Free; 2.437000000 GHz Wywyshing: Free Run Wywyshing: Free Run Wywyshing	Radio Std: None Radio Device: BTS Market State					
Keysight Spectrum Analyzer - Occupied BW W RL BF 50 Ω AC Center Freq 2.437000000 GHz #FGain:Lo 0 dB/div Ref 15.00 dBm 0 0 0 0 0 50 0 0 0 0 50 0 0 0 0 50 0 0 0 0 50 0 0 0 0 55 0 0 0 0 0 65 0 0 0 0 0 0 65 0	SENSE:INT ALIGN AUTO/NO RF Center Freq: 2.437000000 GHz Center Freq: 2.43700000 GHz With Freq: 2.0 dB Avg/Hold:>100 www.marketen: 20 dB Avg/Hold:>100 #Atten: 20 dB Avg/Hold:>100 #Atten: 20 dB Avg/Hold:>100 www.marketen: 20 dB Avg/Hold:>100 #VEW 300 kHz Total Power 19.9 dBn Z % of OBW Power 99.00 %	Radio Std: None Radio Device: BTS					
Keysight Spectrum Analyzer - Occupied BW W RL BF 50 g. AC Center Freq 2.437000000 GHz #FGain:Lo 0 dB/div Ref 15.00 dBm 0.0 0 0 0 50 0 0 0 50 0 0 0 50 0 0 0 50 0 0 0 50 0 0 0 50 0 0 0 50 0 0 0 60 0 0 0 60 0 0 0 60 0 0 0 610 0 0 0 750 0 0 0 Center 2.437 GHz #Res BW 100 kHz 0 Occupied Bandwidth 17.622 MH	SENSE:INT ALIGN AUTO/NO RF Center Freq: 2.437000000 GHz Center Freq: 2.43700000 GHz With Freq: 2.0 dB Avg/Hold:>100 www.marketen: 20 dB Avg/Hold:>100 #Atten: 20 dB Avg/Hold:>100 #Atten: 20 dB Avg/Hold:>100 www.marketen: 20 dB Avg/Hold:>100 #VEW 300 kHz Total Power 19.9 dBn Z % of OBW Power 99.00 %	Radio Std: None Radio Device: BTS					
Keysight Spectrum Analyzer - Occupied BW Off RL BF 50 (2) AC Center Freq 2.437000000 GHz #FGain:Lo O dB/div Ref 15.00 dBm Log 500	SENSE:INT ALIGN AUTO/NO RF Center Freq: 2.437000000 GHz Center Freq: 2.43700000 GHz With Freq: 2.0 dB Avg/Hold:>100 www.marketen: 20 dB Avg/Hold:>100 #Atten: 20 dB Avg/Hold:>100 #Atten: 20 dB Avg/Hold:>100 www.marketen: 20 dB Avg/Hold:>100 #VEW 300 kHz Total Power 19.9 dBn Z % of OBW Power 99.00 %	Radio Std: None 10 Radio Device: BTS					

7.4. ANTENNA GAIN

MEASUREMENT

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module. For normal WLAN devices, the DSSS mode is used.

MEASUREMENT PARAMETERS

Measuremen	t parameter
Detector	Peak
Sweep time	Auto
Resolution bandwidth	3 MHz
Video bandwidth	3 MHz
Trace-Mode	Max hold

LIMITS

FCC	IC				
Antenna Gain					
6 dl	Ві				

TEST RESULTS

IEEE 802.11b

T _{nom}	V _{nom}	Lowest channel 2412MHz	Middle channel 2437MHz	Highest channel 2462MHz	
Conducted power [dBm/MHz] Measured with DSSS modulation		5.52	5.49	5.82	
Radiated power [dBm/MHz] Measured with DSSS modulation		6.89	7.02	7.14	
Gain [dBi] Calculated		1.37		1.32	
Measurement und	certainty	± 1.5 dB (cond.) / ± 3 dB (rad.)			

7.5. PEAK OUTPUT POWER

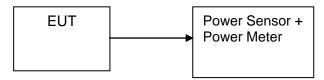
7.5.1. LIMITS

The maximum peak output power of the intentional radiator shall not exceed the following:

- 1. According to §15.247(b)(3), for systems using digital modulation in the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz: 1 Watt.
- 2. According to §15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

7.5.2. TEST PROCEDURES (please refer to measurement standard)

9.1.1 RBW ≥ *DTS* bandwidth


This procedure shall be used when the measurement instrument has available a resolution bandwidth that is greater than the *DTS bandwidth*.

- a) Set the RBW \geq DTS bandwidth.
- b) Set VBW \geq 3 RBW.
- c) Set span ≥ 3 x RBW
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

9.1.3 PKPM1 Peak power meter method

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

7.5.3. TEST SETUP

7.5.4. TEST RESULTS

No non-compliance noted

Test Data

Test mode: IEEE 802.11b

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)	Peak / AVG	Limit (W)	Result
Low	2412	16.33	0.04295			PASS
Mid	2437	16.29	0.04256	Peak	1	PASS
High	2462	16.62	0.04592			PASS
Low	2412	13.69	0.02339			PASS
Mid	2437	13.65	0.02317	AVG	1	PASS
High	2462	13.96	0.02489			PASS

Test mode: IEEE 802.11g

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)	Peak / AVG	Limit (W)	Result
Low	2412	21.75	0.14962			PASS
Mid	2437	22.46	0.17620	Peak	1	PASS
High	2462	22.90	0.19498			PASS
Low	2412	12.87	0.01936			PASS
Mid	2437	13.09	0.02037	AVG	1	PASS
High	2462	13.27	0.02123			PASS

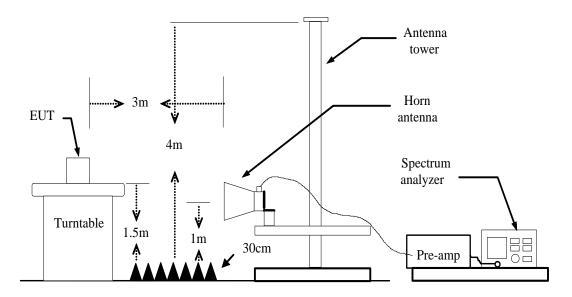
Test mode: IEEE 802.11n HT20 MHz

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)	Peak / AVG	Limit (W)	Result
Low	2412	21.17	0.13092			PASS
Mid	2437	21.50	0.14125	Peak	1	PASS
High	2462	22.11	0.16255			PASS
Low	2412	11.83	0.01524			PASS
Mid	2437	12.33	0.01710	AVG	1	PASS
High	2462	12.29	0.01694			PASS

Test mode: IEEE 802.11n HT40 MHz

Channel	Frequency (MHz)	Output Power (dBm)	r Output Power Pea (W) AV		Limit (W)	Result
Low	2422	19.87	0.09705			PASS
Mid	2437	20.30	0.10715	Peak	1	PASS
High	2452	19.66	0.09247			PASS
Low	2422	11.32	0.01355			PASS
Mid	2437	11.59	0.01442	AVG	1	PASS
High	2452	11.16	0.01306			PASS

7.6. BAND EDGES MEASUREMENT

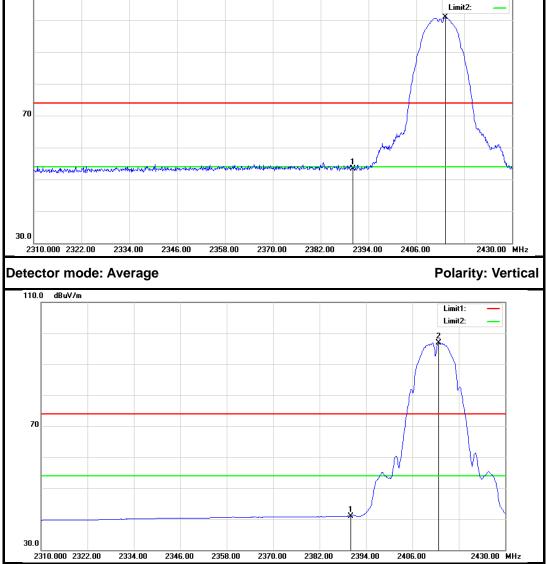

7.6.1. LIMITS

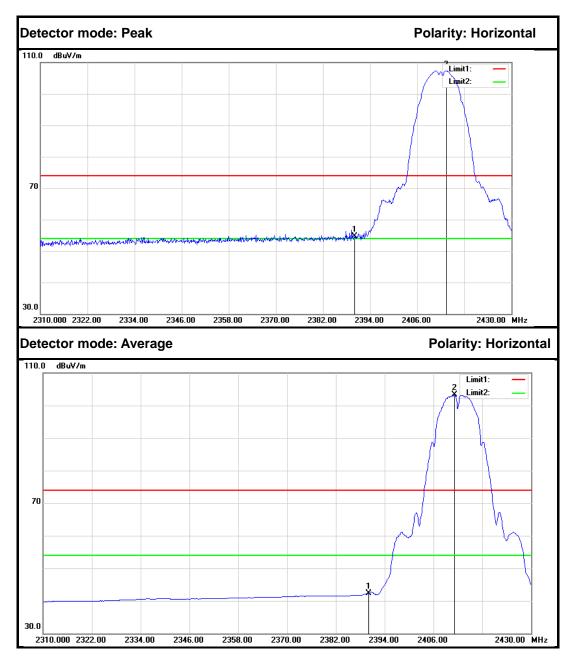
According to §15.247(d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)).

7.6.2. TEST PROCEDURES (please refer to measurement standard)

- 1. The EUT is placed on a turntable, which is 1.5m above the ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
 - (a) PEAK: RBW=1MHz / VBW=3MHz / Sweep=AUTO
 - (b) AVERAGE: RBW=1MHz / VBW=1/T / Sweep=AUTO / Detector=PEAK
- 5. Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.

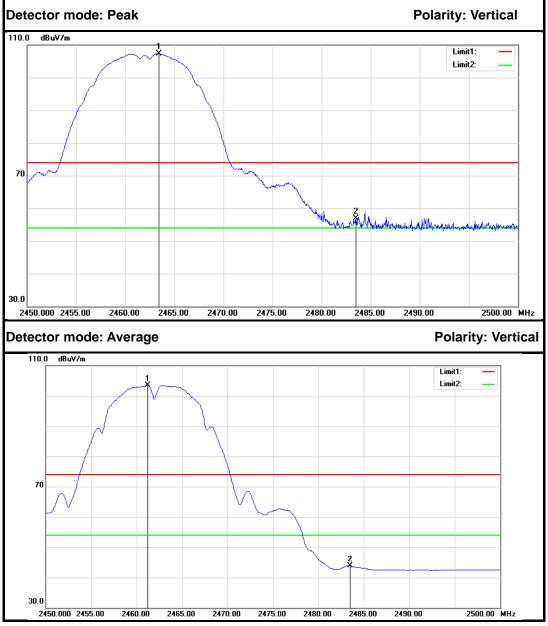
7.6.3. TEST SETUP



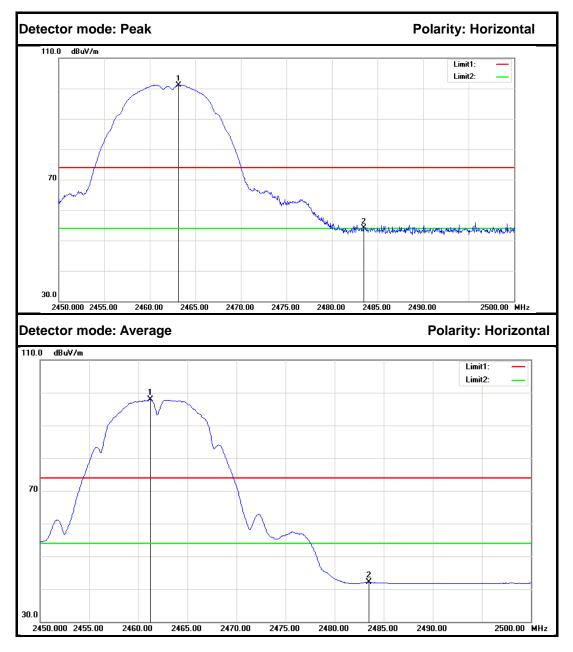

Polarity: Vertical

Limit1:

7.6.4. TEST RESULTS
<u>Test Plot</u>
IEEE 802.11b mode
Band Edges (CH Low)
Detector mode: Peak

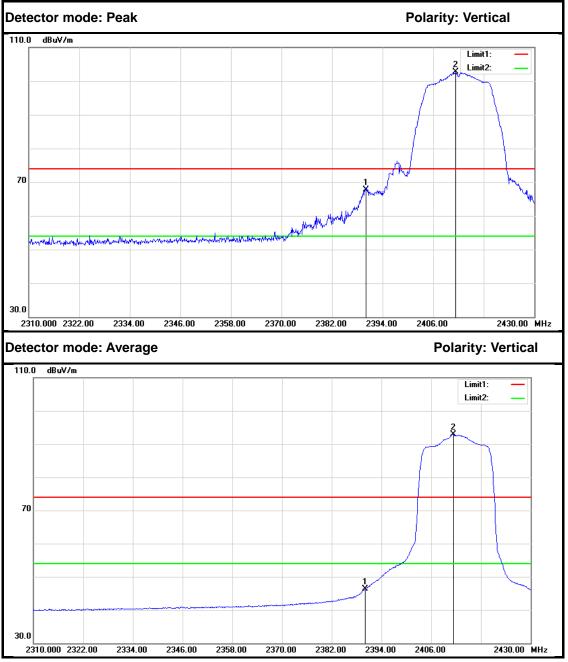

No.	Frequency (MHz)	Reading (dB)	Factor (dB/m)	Result (dB/m)	Limit (dB/m)	Margin (dB)	Remark	Antenna Polar
1.	2390.000	56.06	-2.86	53.20	74.00	-20.80	Peak	Vertical
2.	2413.320	103.54	-2.73	100.81			Peak	Vertical
1.	2390.000	43.85	-2.86	40.99	54.00	-13.01	Average	Vertical
2.	2412.720	99.66	-2.74	96.92			Average	Vertical

No.	Frequency (MHz)	Reading (dB)	Factor (dB/m)	Result (dB/m)	Limit (dB/m)	Margin (dB)	Remark	Antenna Polar
1.	2390.000	57.54	-2.86	54.68	74.00	-19.32	Peak	Horizonta I
2.	2413.440	110.11	-2.73	107.38			Peak	Horizonta I
1.	2390.000	45.19	-2.86	42.33	54.00	-11.67	Average	Horizonta I
2.	2411.160	106.14	-2.75	103.39			Average	Horizonta I

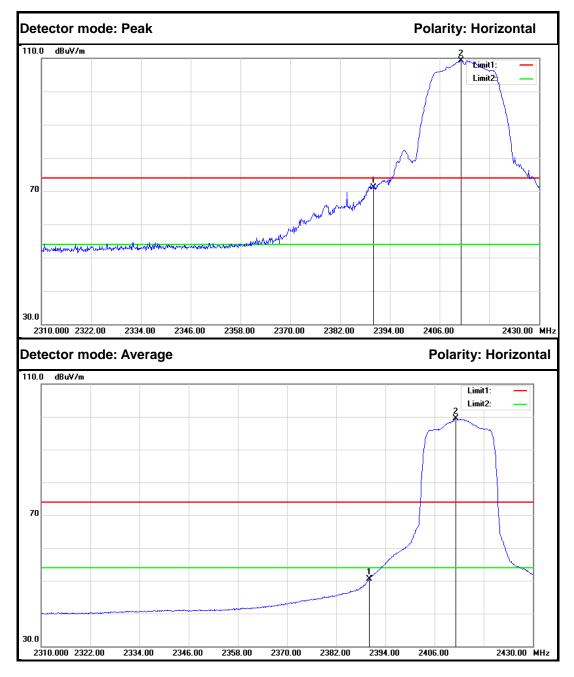


Band Edges (CH High)

No.	Frequency (MHz)	Reading (dB)	Factor (dB/m)	Result (dB/m)	Limit (dB/m)	Margin (dB)	Remark	Antenna Polar
1.	2463.400	109.75	-2.46	107.29			Peak	Vertical
2.	2483.500	59.17	-2.35	56.82	74.00	-17.18	Peak	Vertical
1.	2461.200	105.95	-2.47	103.48			Average	Vertical
2.	2483.500	46.21	-2.35	43.86	54.00	-10.14	Average	Vertical

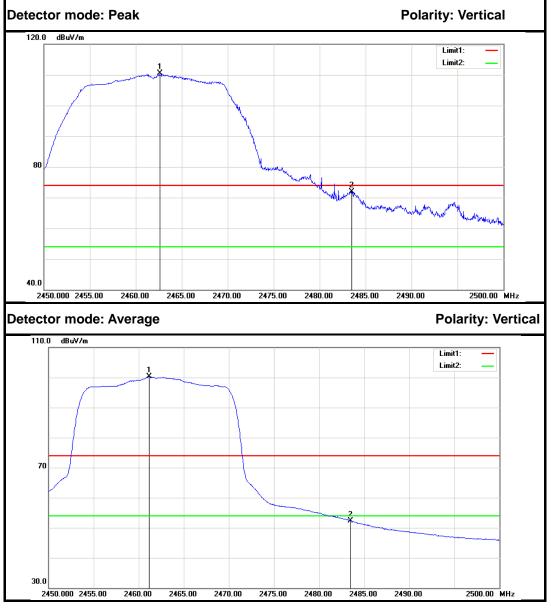


No.	Frequency (MHz)	Reading (dB)	Factor (dB/m)	Result (dB/m)	Limit (dB/m)	Margin (dB)	Remark	Antenna Polar
1.	2463.150	103.54	-2.46	101.08			Peak	Horizontal
2.	2483.500	56.49	-2.35	54.14	74.00	-19.86	Peak	Horizontal
1.	2461.200	100.42	-2.47	97.95			Average	Horizontal
2.	2483.500	44.49	-2.35	42.14	54.00	-11.86	Average	Horizontal

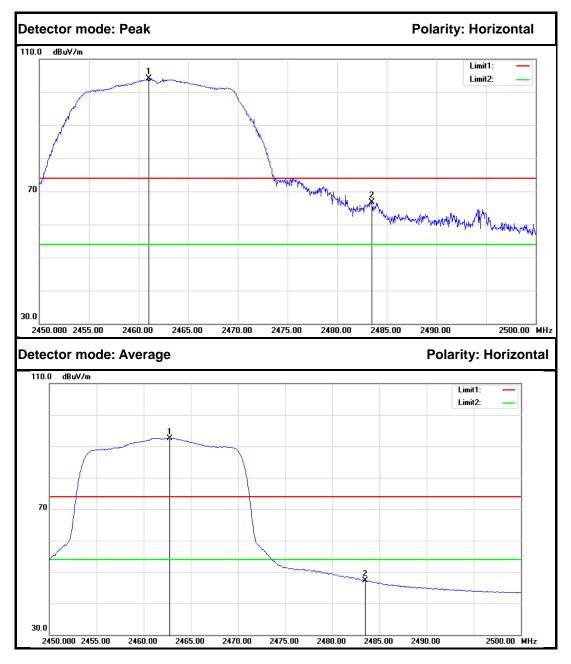


IEEE 802.11g mode Band Edges (CH Low)

No.	Frequency (MHz)	Reading (dB)	Factor (dB/m)	Result (dB/m)	Limit (dB/m)	Margin (dB)	Remark	Antenna Polar
1.	2390.000	70.52	-2.86	67.66	74.00	-6.34	Peak	Vertical
2.	2411.280	105.37	-2.75	102.62			Peak	Vertical
1.	2390.000	49.25	-2.86	46.39	54.00	-7.61	Average	Vertical
2.	2411.280	95.65	-2.75	92.90			Average	Vertical

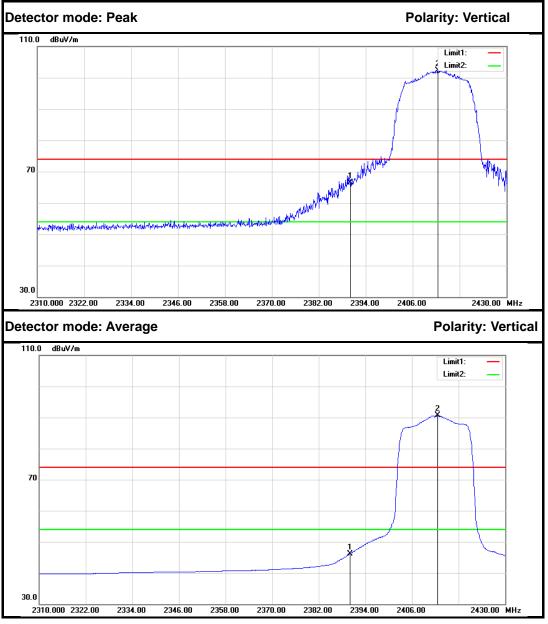


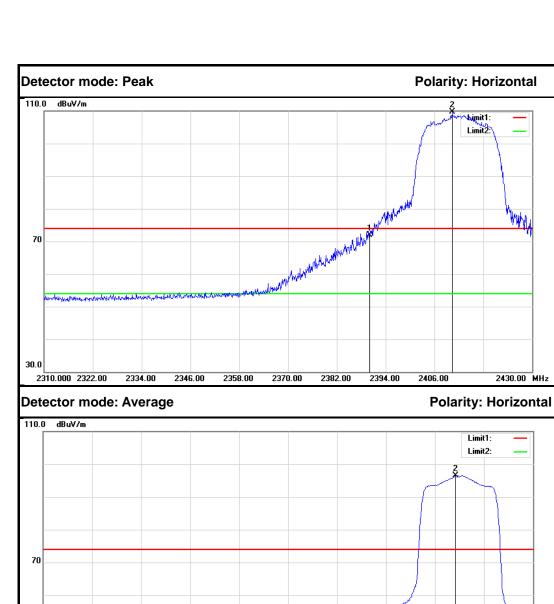
No.	Frequency (MHz)	Reading (dB)	Factor (dB/m)	Result (dB/m)	Limit (dB/m)	Margin (dB)	Remark	Antenna Polar
1.	2390.000	74.01	-2.86	71.15	74.00	-2.85	Peak	Horizonta I
2.	2411.160	112.09	-2.75	109.34			Peak	Horizonta I
1.	2390.000	53.38	-2.86	50.52	54.00	-3.48	Average	Horizonta I
2.	2411.160	102.34	-2.75	99.59			Average	Horizonta I



Band Edges (CH High)

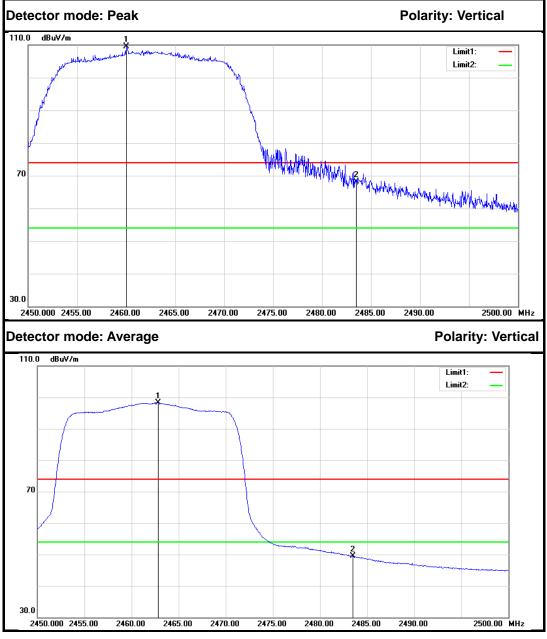
No.	Frequency (MHz)	Reading (dB)	Factor (dB/m)	Result (dB/m)	Limit (dB/m)	Margin (dB)	Remark	Antenna Polar
1.	2462.600	112.93	-2.46	110.47			Peak	Vertical
2.	2483.500	74.23	-2.35	71.88	74.00	-2.12	Peak	Vertical
1.	2461.150	102.76	-2.47	100.29			Average	Vertical
2.	2483.500	54.67	-2.35	52.32	54.00	-1.68	Average	Vertical




No.	Frequency (MHz)	Reading (dB)	Factor (dB/m)	Result (dB/m)	Limit (dB/m)	Margin (dB)	Remark	Antenna Polar
1.	2461.050	106.53	-2.47	104.06			Peak	Horizonta I
2.	2483.500	69.14	-2.35	66.79	74.00	-7.21	Peak	Horizonta I
1.	2462.750	95.06	-2.46	92.60			Average	Horizonta I
2.	2483.500	49.68	-2.35	47.33	54.00	-6.67	Average	Horizonta I

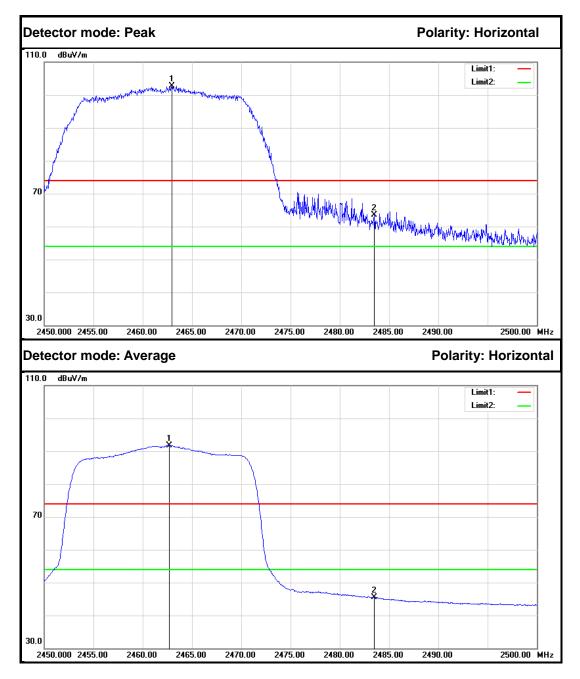
IEEE 802.11n HT20 MHz mode Band Edges (CH Low)

No.	Frequency (MHz)	Reading (dB)	Factor (dB/m)	Result (dB/m)	Limit (dB/m)	Margin (dB)	Remark	Antenna Polar
1.	2390.000	69.31	-2.86	66.45	74.00	-7.55	Peak	Vertical
2.	2412.480	105.13	-2.74	102.39			Peak	Vertical
1.	2390.000	48.96	-2.86	46.10	54.00	-7.90	Average	Vertical
2.	2412.600	93.39	-2.74	90.65			Average	Vertical


Compliance Certification Services (Shenzhen) Inc.

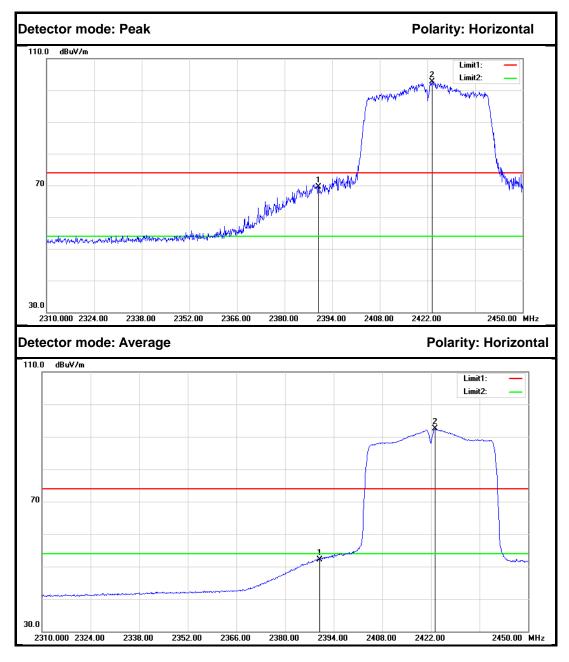
30.0 2310.000 2322.00 2334.00 2346.00 2358.00 2370.00 2382.00 2394.00 2406.00 2430.00 MHz

No.	Frequency (MHz)	Reading (dB)	Factor (dB/m)	Result (dB/m)	Limit (dB/m)	Margin (dB)	Remark	Antenna Polar
1.	2390.000	74.79	-2.86	71.93	74.00	-2.07	Peak	Horizonta I
2.	2410.320	112.52	-2.75	109.77			Peak	Horizonta I
1.	2390.000	52.83	-2.86	49.97	54.00	-4.03	Average	Horizonta I
2.	2411.040	99.29	-2.75	96.54			Average	Horizonta I



Band Edges (CH High)

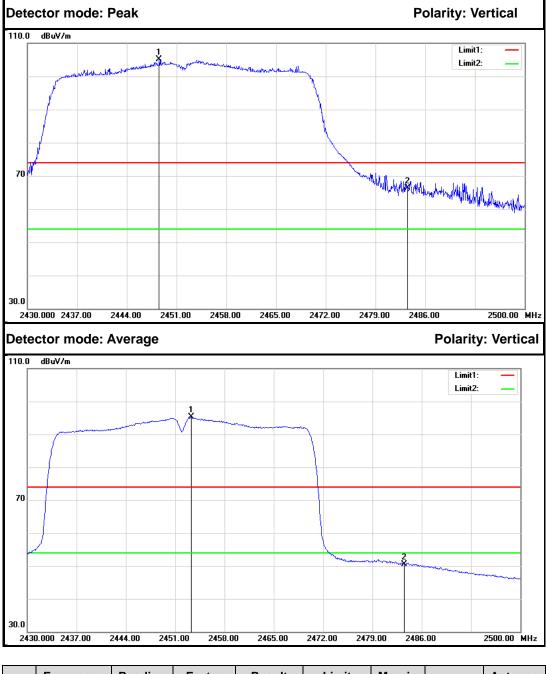
No.	Frequency (MHz)	Reading (dB)	Factor (dB/m)	Result (dB/m)	Limit (dB/m)	Margin (dB)	Remark	Antenna Polar
1.	2460.000	111.92	-2.48	109.44			Peak	Vertical
2.	2483.500	70.49	-2.35	68.14	74.00	-5.86	Peak	Vertical
1.	2462.800	100.82	-2.46	98.36			Average	Vertical
2.	2483.500	51.77	-2.35	49.42	54.00	-4.58	Average	Vertical


No.	Frequency (MHz)	Reading (dB)	Factor (dB/m)	Result (dB/m)	Limit (dB/m)	Margin (dB)	Remark	Antenna Polar
1.	2462.950	105.14	-2.46	102.68			Peak	Horizontal
2.	2483.500	65.78	-2.35	63.43	74.00	-10.57	Peak	Horizontal
1.	2462.700	94.19	-2.46	91.73			Average	Horizontal
2.	2483.500	47.80	-2.35	45.45	54.00	-8.55	Average	Horizontal

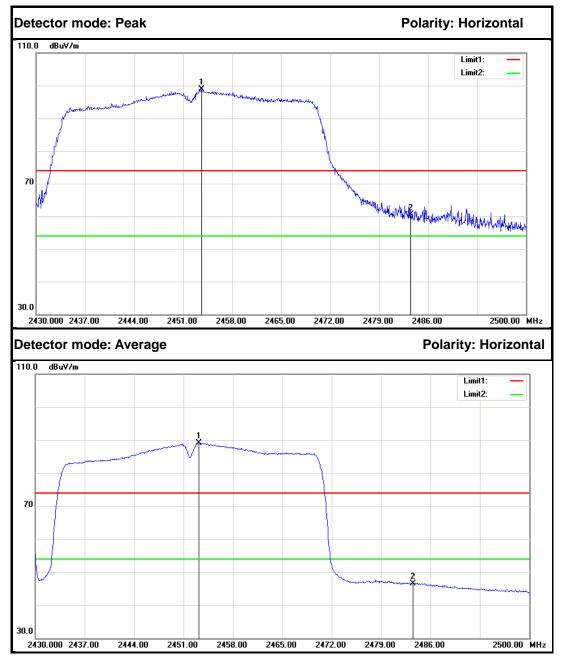
Polarity: Vertical Detector mode: Peak 110.0 dBuV/m Limit1: Limit2: 70 our broken have realized a service of morthagen have been and 30.0 2310.000 2324.00 2450.00 MHz 2338.00 2352.00 2366.00 2380.00 2394.00 2408.00 2422.00 **Detector mode: Average Polarity: Vertical** 110.0 dBuV/m Limit1: Limit2: 3 70 30.0 2310.000 2324.00 2338.00 2352.00 2366.00 2380.00 2394.00 2408.00 2422.00 2450.00 MHz

IEEE 802.11n	HT40 MHz mode
Band Edges	(CH Low)

No.	Frequency (MHz)	Reading (dB)	Factor (dB/m)	Result (dB/m)	Limit (dB/m)	Margin (dB)	Remark	Antenna Polar
1.	2390.000	70.27	-2.86	67.41	74.00	-6.59	Peak	Vertical
2.	2423.820	107.59	-2.68	104.91			Peak	Vertical
1.	2390.000	55.36	-2.86	52.50	54.00	-1.50	Average	Vertical
2.	2423.400	98.01	-2.68	95.33			Average	Vertical



No.	Frequency (MHz)	Reading (dB)	Factor (dB/m)	Result (dB/m)	Limit (dB/m)	Margin (dB)	Remark	Antenna Polar
1.	2390.000	72.27	-2.86	69.41	74.00	-4.59	Peak	Horizontal
2.	2423.400	105.41	-2.68	102.73			Peak	Horizontal
1.	2390.000	54.95	-2.86	52.09	54.00	-1.91	Average	Horizontal
2.	2423.120	95.12	-2.68	92.44			Average	Horizontal



Band Edges (CH High)

No.	Frequency (MHz)	Reading (dB)	Factor (dB/m)	Result (dB/m)	Limit (dB/m)	Margin (dB)	Remark	Antenna Polar
1.	2448.550	107.71	-2.54	105.17			Peak	Vertical
2.	2483.500	68.73	-2.35	66.38	74.00	-7.62	Peak	Vertical
1.	2453.310	97.83	-2.52	95.31			Average	Vertical
2.	2483.500	52.90	-2.35	50.55	54.00	-3.45	Average	Vertical

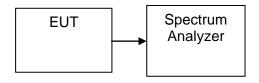
No.	Frequency (MHz)	Reading (dB)	Factor (dB/m)	Result (dB/m)	Limit (dB/m)	Margin (dB)	Remark	Antenna Polar
1.	2453.660	101.40	-2.51	98.89			Peak	Horizonta I
2.	2483.500	62.78	-2.35	60.43	74.00	-13.57	Peak	Horizonta I
1.	2453.170	91.72	-2.52	89.20			Average	Horizonta I
2.	2483.500	48.90	-2.35	46.55	54.00	-7.45	Average	Horizonta I

7.7. PEAK POWER SPECTRAL DENSITY MEASUREMENT

7.7.1. LIMITS

According to §15.247(e), for digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

According to §15.247(f), the digital modulation operation of the hybrid system, with the frequency hopping turned off, shall comply with the power density requirements of paragraph (d) of this section.


7.7.2. TEST PROCEDURES (please refer to measurement standard)

§15.247(e)specifies a conducted power spectral density (PSD) limit of 8 dBm in any 3 kHz band segment within the fundamental EBW during any time interval of continuous transmission. The same method as used to determine the conducted output power shall be used to determine the power spectral density (i.e.,if peak-detected fundamental power was measured then use the peak PSD procedure and if average fundamental power was measured then use the average PSD procedure).

10.2 Method PKPSD (peak PSD)

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: 3 kHz \leq RBW \leq 100 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.7.3. TEST SETUP

7.7.4. TEST RESULTS

No non-compliance noted

<u>Test Data</u> Test mode: IEEE 802.11b

Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Test Result
Low	2412	-7.164		PASS
Mid	2437	-8.545	8	PASS
High	2462	-7.336		PASS

Test mode: IEEE 802.11g

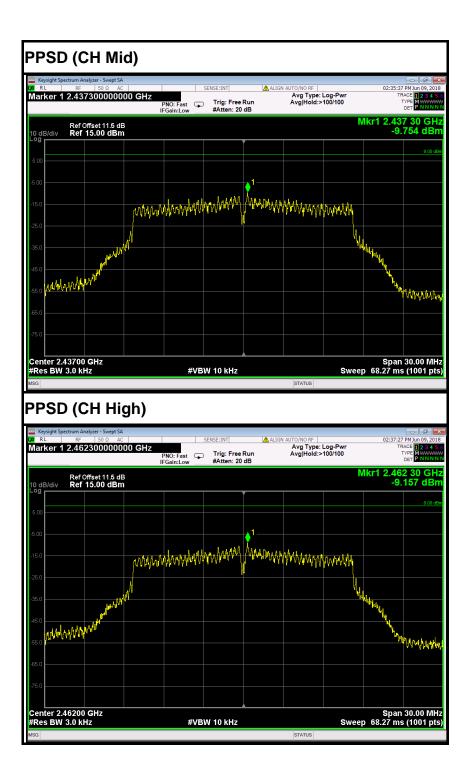
Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Test Result
Low	2412	-10.041		PASS
Mid	2437	-9.754	8	PASS
High	2462	-9.157		PASS

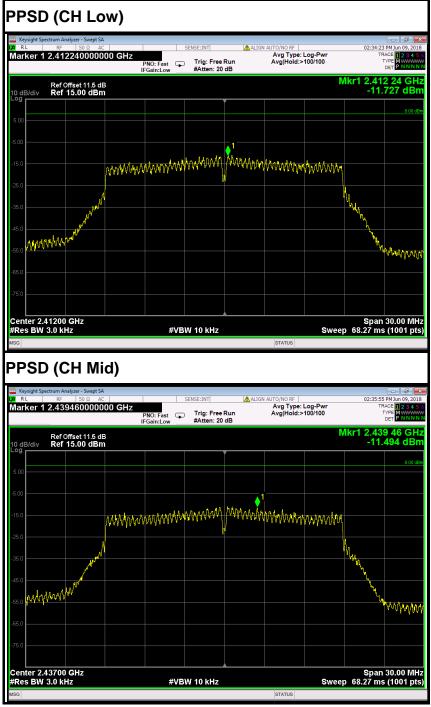
Test mode: IEEE 802.11n HT20 MHz

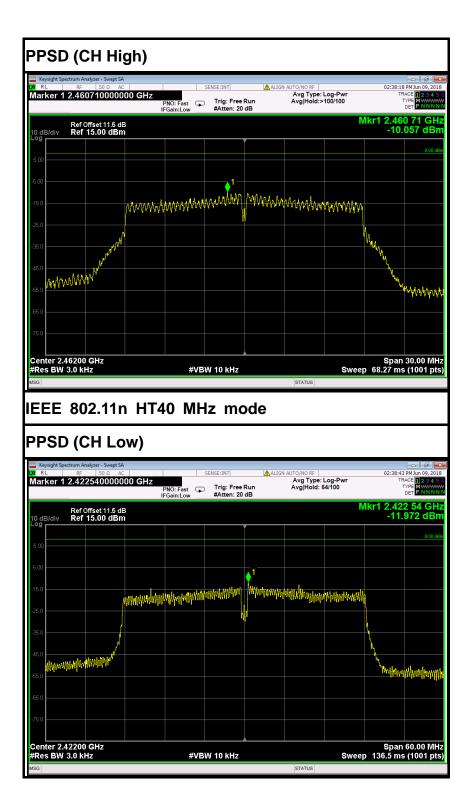
Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Test Result
Low	2412	-11.727		PASS
Mid	2437	-11.494	8	PASS
High	2462	-10.057		PASS

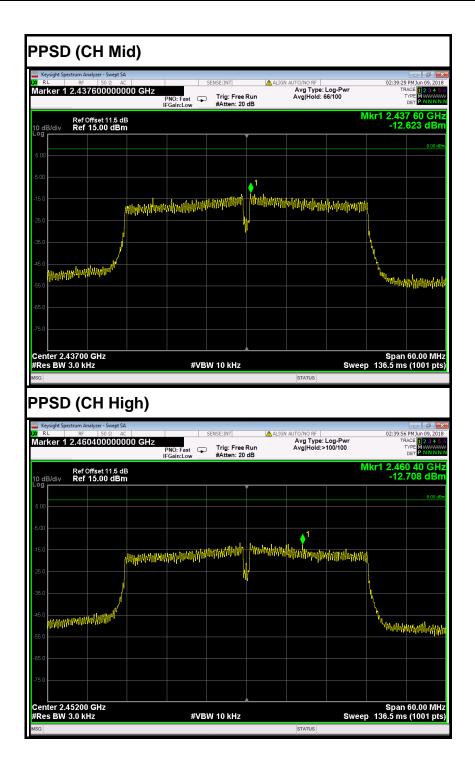
Test mode: IEEE 802.11n HT40 MHz

Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Test Result
Low	2422	-11.972		PASS
Mid	2437	-12.623	8	PASS
High	2452	-12.708		PASS








IEEE 802.11n HT20 MHz mode

