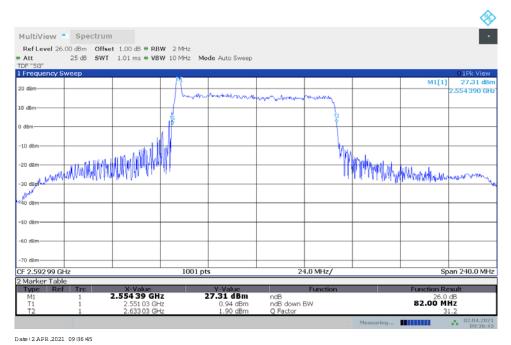


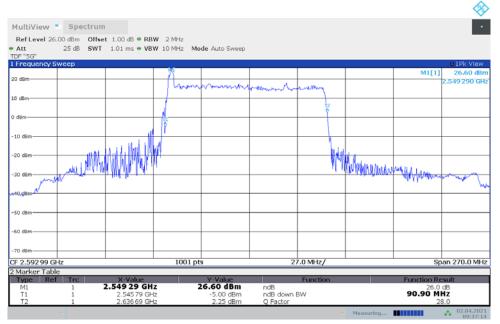
LTE Band 2+NR n41 n41,80MHz(-26dBc)


Frequency (MHz)	Emission Bandwidth (-26dBc) (MHz)	
	DFT-s-pi/2 BPSK	DFT-s-QPSK
2592.99	81.760	82.000

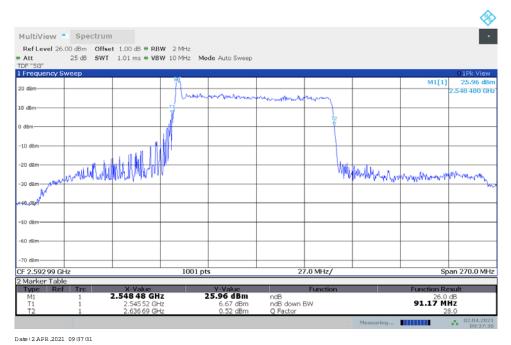
n41,80MHz Bandwidth,DFT-s-pi/2 BPSK (-26dBc BW)

Date:2APR.2021 09:36:29

n41,80MHz Bandwidth,DFT-s-QPSK (-26dBc BW)



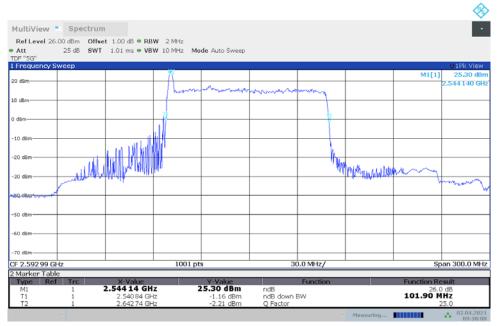
LTE Band 2+NR n41 n41,90MHz(-26dBc)


Frequency (MHz)	Emission Bandwidth (-26dBc) (MHz)	
	DFT-s-pi/2 BPSK	DFT-s-QPSK
2592.99	90.900	91.170

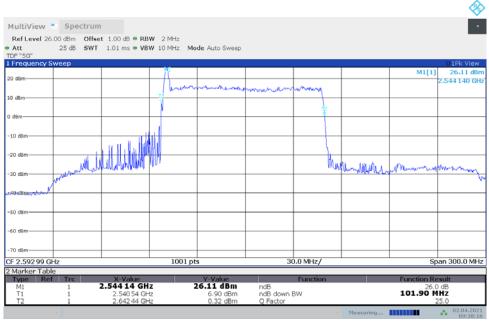
n41,90MHz Bandwidth,DFT-s-pi/2 BPSK (-26dBc BW)

Date:2APR.2021 09:37:15

n41,90MHz Bandwidth,DFT-s-QPSK (-26dBc BW)



LTE Band 2+NR n41 n41,100MHz(-26dBc)


Frequency (MHz)	Emission Bandwidth (-26dBc) (MHz)	
	DFT-s-pi/2 BPSK	DFT-s-QPSK
2592.99	101.900	101.900

n41,100MHz Bandwidth,DFT-s-pi/2 BPSK (-26dBc BW)

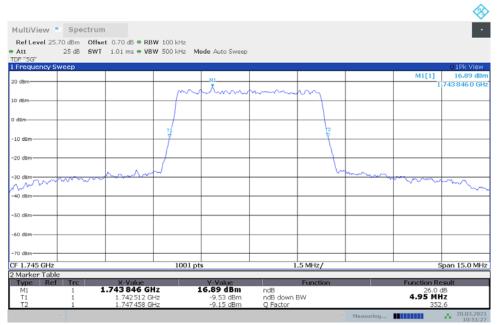
Date:2APR.2021 09:38:00

n41,100MHz Bandwidth,DFT-s-QPSK (-26dBc BW)

Date:2APR.2021 09:38:16

NR n66

n66, 5MHz (-26dBc)

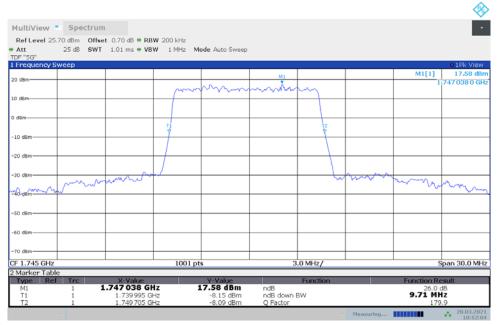

Frequency (MHz)	Emission Bandwidth (-26dBc) (MHz)	
	DFT-s-pi/2 BPSK	DFT-s-QPSK
1745.0	4.915	4.945

n66, 5MHz Bandwidth,DFT-s-pi/2 BPSK (-26dBc BW)

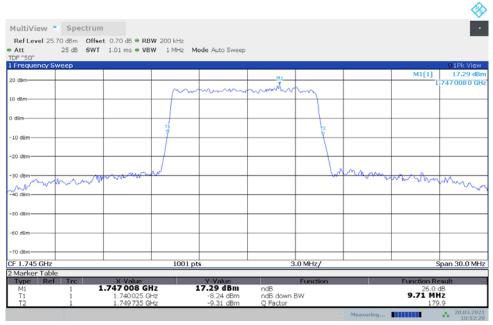
Date:20 MAR.2021 10:51:12

n66, 5MHz Bandwidth,DFT-s-QPSK (-26dBc BW)

Date:20 MAR.2021 10:51:27



n66, 10MHz (-26dBc)

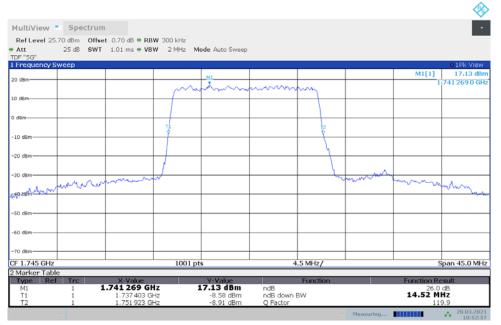

	Emission Bandwidth (-26dBc) (MHz)		
	Frequency (MHz)	DFT-s-pi/2 BPSK	DFT-s-QPSK
	1745.0	9.710	9.710

n66, 10MHz Bandwidth, DFT-s-pi/2 BPSK (-26dBc BW)

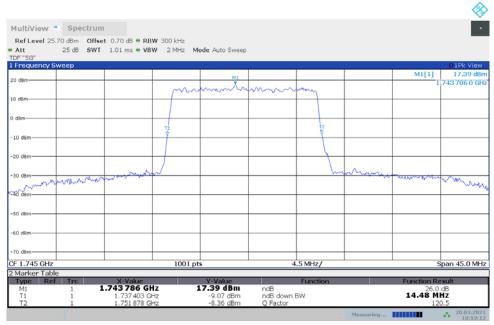
Date:20 MAR.2021 10:52:05

n66, 10MHz Bandwidth,DFT-s-QPSK (-26dBc BW)

Date:20 MAR.2021 10:52:20



n66, 15MHz (-26dBc)

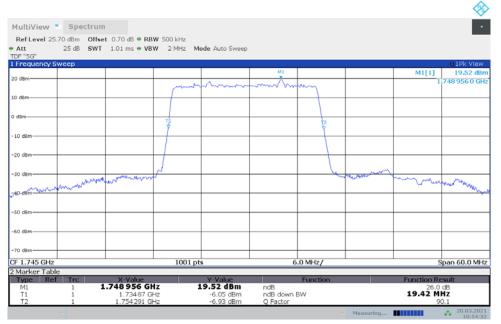

	Frequency (MHz)	Emission Bandwidth (-26dBc) (MHz)	
		DFT-s-pi/2 BPSK	DFT-s-QPSK
	1745.0	14.520	14.476

n66, 15MHz Bandwidth, DFT-s-pi/2 BPSK (-26dBc BW)

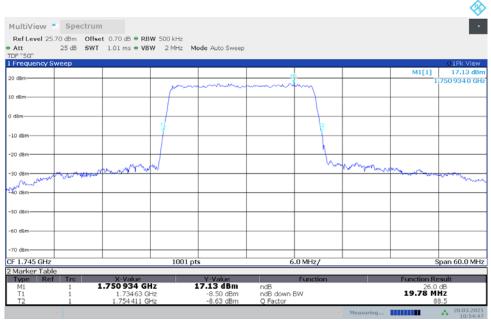
Date:20 MAR.2021 10:52:58

n66, 15MHz Bandwidth,DFT-s-QPSK (-26dBc BW)

Date:20 MAR.2021 10:53:12



n66, 20MHz (-26dBc)

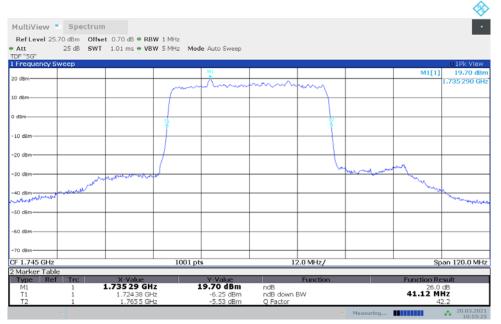

		Emission Bandwidth (-26dBc) (MHz)	
Frequency (MHz)	DFT-s-pi/2 BPSK	DFT-s-QPSK	
	1745.0	19.421	19.780

n66, 20MHz Bandwidth, DFT-s-pi/2 BPSK (-26dBc BW)

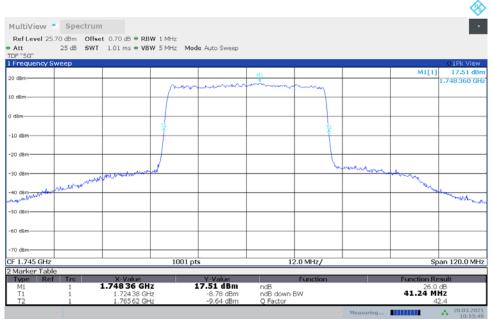
Date:20 MAR.2021 10:54:32

n66, 20MHz Bandwidth,DFT-s-QPSK (-26dBc BW)

Date:20 MAR.2021 10:54:47



n66, 40MHz (-26dBc)


Frequency (MHz)	Emission Bandwidth (-26dBc) (MHz)	
	DFT-s-pi/2 BPSK	DFT-s-QPSK
1745.0	41.120	41.240

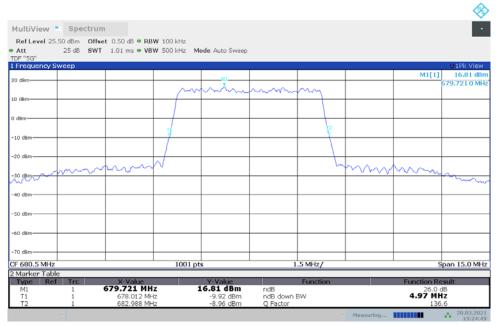
n66, 40MHz Bandwidth,DFT-s-pi/2 BPSK (-26dBc BW)

Date:20 MAR.2021 10:55:25

n66, 40MHz Bandwidth,DFT-s-QPSK (-26dBc BW)

Date:20 MAR.2021 10:55:40

NR n71 n71, 5MHz (-26dBc)

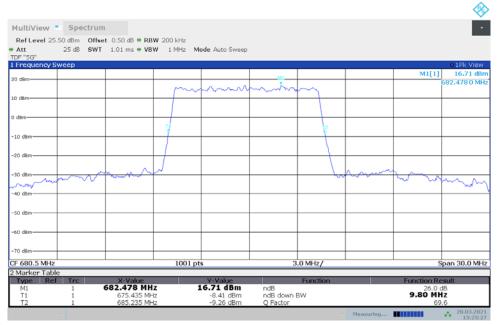

Frequency (MHz)	Emission Bandwidth (-26dBc) (MHz)	
	DFT-s-pi/2 BPSK	DFT-s-QPSK
680.5	4.945	4.975

n71, 5MHz Bandwidth,DFT-s-pi/2 BPSK (-26dBc BW)

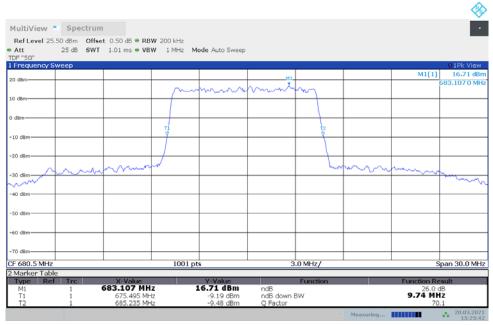
Date:20 MAR.2021 15:24:35

n71, 5MHz Bandwidth,DFT-s-QPSK (-26dBc BW)

Date:20 MAR.2021 15:24:49



n71, 10MHz (-26dBc)

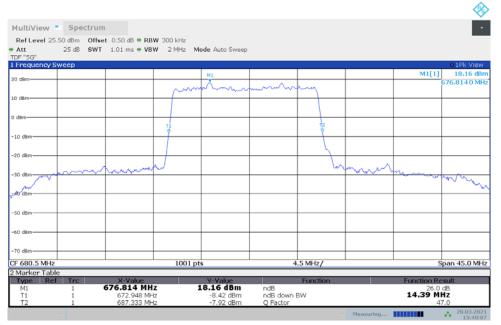

Frequency (MHz)	Emission Bandwidth (-26dBc) (MHz)	
	DFT-s-pi/2 BPSK	DFT-s-QPSK
680.5	9.800	9.740

n71, 10MHz Bandwidth,DFT-s-pi/2 BPSK (-26dBc BW)

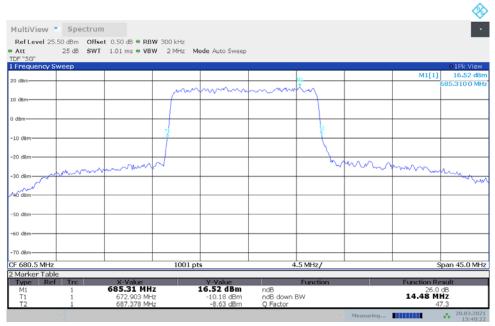
Date:20 MAR.2021 15:25:27

n71, 10MHz Bandwidth,DFT-s-QPSK (-26dBc BW)

Date:20 MAR.2021 15:25:42



n71, 15MHz (-26dBc)

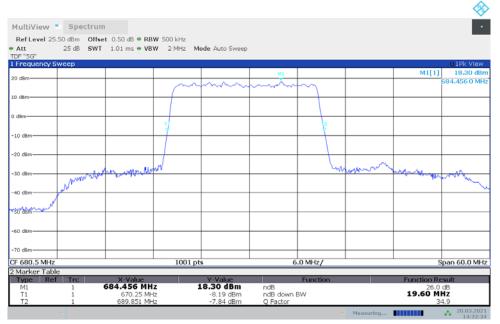

Frequency (MHz)	Emission Bandwidth (-26dBc) (MHz)	
	DFT-s-pi/2 BPSK	DFT-s-QPSK
680.5	14.386	14.476

n71, 15MHz Bandwidth,DFT-s-pi/2 BPSK (-26dBc BW)

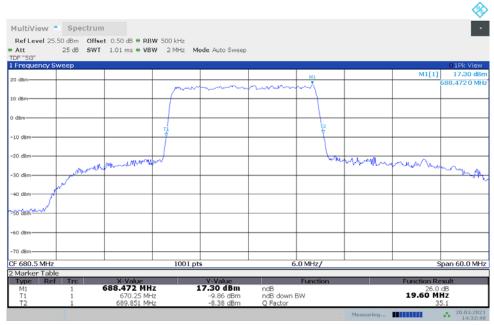
Date:20 MAR.2021 15:40:08

n71, 15MHz Bandwidth,DFT-s-QPSK (-26dBc BW)

Date:20 MAR.2021 15:40:22



n71, 20MHz (-26dBc)


Frequency (MHz)	Emission Bandwidth (-26dBc) (MHz)	
	DFT-s-pi/2 BPSK	DFT-s-QPSK
680.5	19.600	19.600

n71, 20MHz Bandwidth,DFT-s-pi/2 BPSK (-26dBc BW)

Date:20 MAR.2021 14:32:34

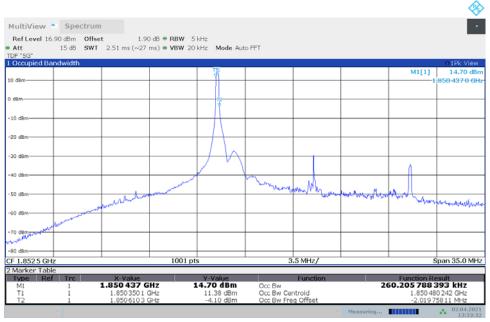
n71, 20MHz Bandwidth,DFT-s-QPSK (-26dBc BW)

Date:20 MAR.2021 14:32:49

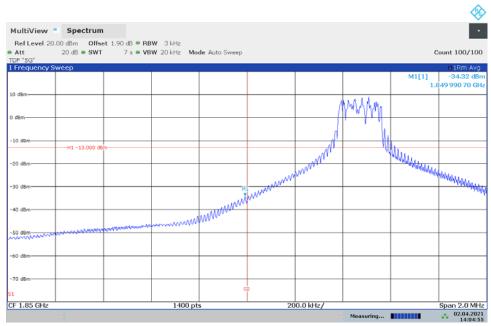
A.6 Band Edge Compliance

A.6.1 Measurement limit

Part 22.917, Part 24.238 and Part 27.53(h) specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.


Part 27.53(m) specifies for mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

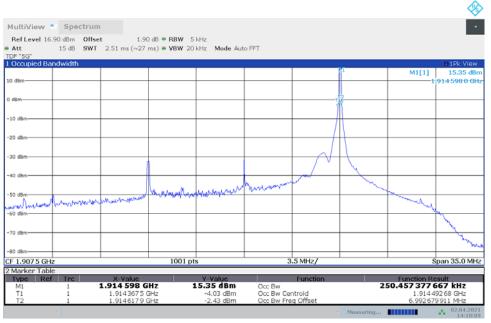
Part 27.53(g) states for operations in the 600 MHz band and the 698–746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.



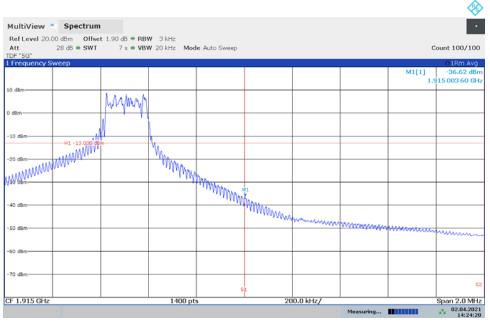
A.6.2 Measurement result LTE Band 12+NR n25 OBW: 1RB-low_offset

Date: 2 APR 2021 13:33:33

LOW BAND EDGE BLOCK-1RB-low_offset



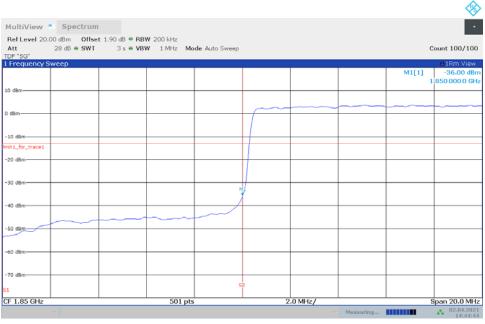
Date: 2 APR 2021 14:04:55



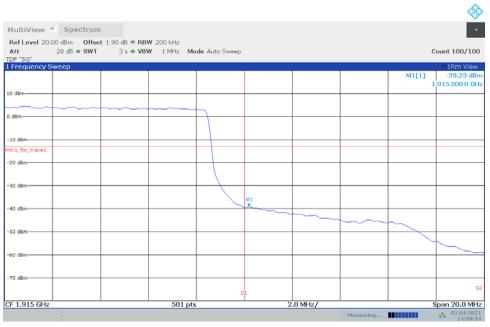
OBW: 1RB-high_offset

Date:2APR.2021 14:10:05

HIGH BAND EDGE BLOCK-1RB-high_offset



Date: 2 APR 2021 14:24:20



LOW BAND EDGE BLOCK-20MHz-100%RB

Date: 2 APR 2021 14:44:44

HIGH BAND EDGE BLOCK-20MHz-100%RB

Date: 2 APR 2021 14:50:55

LTE Band 2+NR n41 OBW: 1RB-low_offset

lultiView	Spectrun	n				
	.00 dBm Offse					_
Att F "5G"	30 dB SWT	2.51 ms (~27 ms) 🖷	VBW 20 kHz Mode Auto	o FFT		
Occupied Ba	ndwidth					O1Pk View
			P 2		M	11[1] 22.10 dB
			172			2 496 682 0 GH
dBm			T1 V			
			7			
dBm						
0 d8m						
) d8m						
					1 1	
0 dBm			10	me l	M	
			- And	and more wanter and		
) d8m		punton		100		hada .
	to man and the second					manoralanda
dêm-						
0 d8m						
0 d8m						
2.4985 GH	z		1001 pts	3.5 MHz/		Span 35.0 MH
Marker Tabl	-					
Type Ref		X-Value	Y-Value	Function		ction Result
M1	1	2.496 682 GHz	22.10 dBm	Occ Bw		2 272 527 kHz
T1 T2	1	2.496 623 4 GHz 2.497 359 7 GHz	3.44 dBm 7.34 dBm	Occ Bw Centroid Occ Bw Freg Offset		2.496 991 544 GHz 1.508 455 905 MHz

Date:2APR.2021 08:41:12

LOW BAND EDGE BLOCK-1RB-low_offset

									\$
	Spectrum								
Ref Level 26.0 Att	00 dBm Offsel	t 9.00 dB = RBV 3 s = VBV		de Auto Sween				c	ount 100/100
TDF "5G"		53 - 101	100 KH2 100	as Auto offeep					
1 Frequency S	weep							M1[1]	 1Rm View -28.16 dBm
20 d8m									-28.16 dBm 95.999.00 GHz-
10 dBm									
0 dBm									
o dom									
-10 d8m									
imit1_for_trace1									
-20 dBm									
-30 d8m									MI
50 0511								~~~~	
-40 d8m									
-50 dBm									
-60 dBm									
90 MBH									
-70 d8m-									
2.495 GHz			501 pts		10	0.0 kHz/			2.496 GHz
							Measuring		02.04.2021

Date:2APR.2021 08:48:21

									V
1ultiView 🍍	Spectrum								•
Ref Level 25.00									
Att 2 DF "5G"	26 dB 🖷 SWT	3 s 🖷 VB1	W 5 MHz Mode	Auto Sweep				C	ount 100/100
Frequency Sw	еер		I		1				O1Rm View
) d8m								M1[1]	-14.90 dBr
								2	1494 995 0 GH
I dBm									
dom									
d8m-									
ben									
0 dBm									
0 dBm									
0 dBm									
0 d8m									
0 d8m									
i0 dBm									
0 dBm									
70 dBm									
.489 5 GHz			501 pts		55	0.0 kHz/			2.495 GH
			001 pro				Measuring		02.04.2021 08:54:38

Date:2APR.2021 08:54:39

OBW: 1RB-high_offset

lultiView	Specti	rum							
Ref Level 2	0.00 dBm 0	Iffset 9.00 dB	RBW 5 kHz						
Att DF "5G"	30 dB S	WT 837 µs (~11 ms) •	VBW 20 kHz 1	Mode Auto F	FT				
Occupied B	andwidth								01Pk View
								AMA MAL1]	20.14 dB
							- 1	1"VVV"] 2.0	89 083 40 G
dBm								72	
10							54	N N	
dBm							- March	10.	
0 d8m							AND A CONTRACT	1	h.
0 dam			unummini (M)				MM MARKA		Mr.
0 d8m						AND			1 Martin
o opini					WWW.AAAAAAAAA	MAAAA			1994
0 d8m					MAADAA.				
man	mon	monorman	www.www.www	fonnes					
0 d8m	· · · · ·								
0 d8m									
0 d8m									
0 d8m									
2.687 5 G	17		1001 pts		50	0.0 kHz/			Span 5.0 Mł
Jarker Tab			1001 pta			010 10 12/			opan olo Mr
Type Re		X-Value	Y-1	/alue		Function		Function Re	
M1	1	2.689 083 4 GHz		4 dBm	Occ Bw		4	98.361 233	
T1 T2	1	2.688 856 95 GH; 2.689 355 31 GH;		15 dBm 94 dBm	Occ Bw Cer Occ Bw Fre				0613 GHz 9984 MHz

Date:2APR.2021 11:00:18

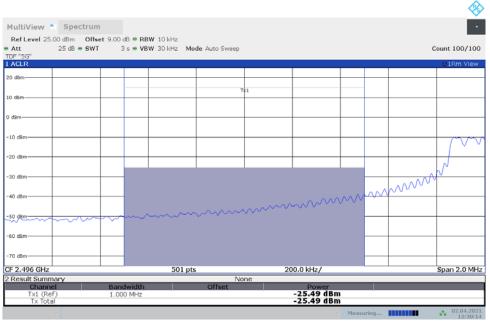
HIGH BAND EDGE BLOCK-1RB-high_offset

			<u>~</u>
ultiView Spectrum			•
ef Level 25.00 dBm Offset 9.00 dB tt 26 dB • SWT 3 s F "5G"	RBW 10 kHz VBW 50 kHz Mode Auto Swe	ep	Count 100/100
Frequency Sweep			01Rm View
dam			M1[1] -33.21 dBm 2.690 005 00 GHz
dBm			
d8m			
0.d9m rl_for_trace1			
0 d8m			
) dam	~~~~		
0 dam			
) dam			
i d8m			
.69 GHz	501 pts	100.0 kHz/	2.691 GHz

Date:2APR.2021 11:06:58

af Level 25.00 dt	Sm Offset 9.00	de e prw 1 M	Hz				_
	dB = SWT			Auto Sweep		(Count 100/10
requency Swee	p						01Rm View
d8m-						M1[1]	-18.01 dt
18m						2	691 009 0 G
Bm-							<u> </u>
1							
m							
for_trace1				1	 		
d8m					 	 	
dam							
d8m						 	
Contraction							
d8m-							
dBm							

Date: 2 APR 2021 11:14:18



LOW BAND EDGE BLOCK-100MHz-100%RB

								8
	Spectrum							•
Ref Level 25.0 Att DF "5G"	00 dBm Offse 26 dB • SWT	N/1 MHz N/5 MHz Mode	a Auto Sweep				c	ount 100/100
Frequency S	weep							O1Rm View
0 d8m							M1[1]	-7.64 dBn
GBM							2.4	96 000 00 GH
) dBm								
d8m		 						
								,
10 d8m								
it1_for_trace1		 						
20 d8m								
20 dBm								
10 dBm								
40 d8m								
50 d8m								
50 d8m								
5U G8M-								
70 d8m								
.495 GHz		501 pts		10	0.0 kHz/	1		2.496 GHz
						Measuring		02.04.2021 12:20:37

Date: 2 APR 2021 12:20:37

Date: 2 APR 2021 12:30:13

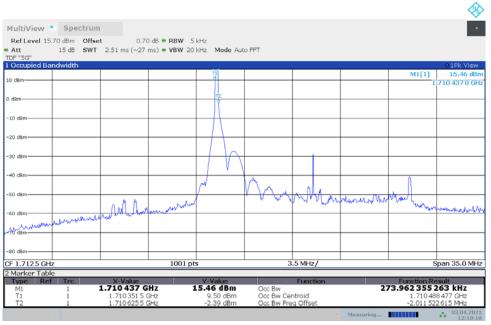
									~
AultiView 📑	Spectrum								•
Ref Level 25.00 d Att 26			N/1 MHz N/5 MHz Mode	Auto Sween					ount 100/100
DF "5G"		53 - 46	in other mode	Auto onteep					
Frequency Swe	ep							M1[1]	01Rm View -31.37 dBn
0 d8m									-31.37 dbn
								-	1949990000
dDate									
0 dBm									
d8m									
10 d8m									
20 d8m									
it1_for_trace1									
30 dBm									
i0 dBm									
50 dBm									
(0. d0m)									
0 dBm									
70 dBm									
.489 5 GHz			501 pts		55	50.0 kHz/	I	I	2.495 GHz
11030 0112			borpts				Measuring		02.04.2021 12:36:52

Date:2APR.2021 12:36:52

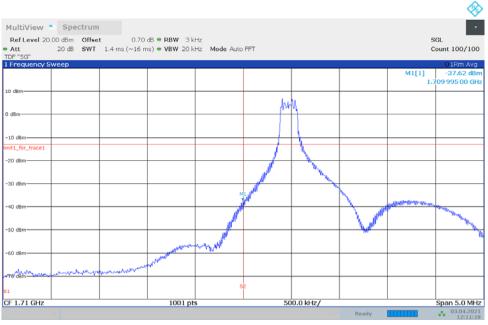
HIGH BAND EDGE BLOCK-100MHz-100%RB

ultiView Spectr	um					
ef Level 25.00 dBm O	ffset 9.00 dB 🖷 F	BW 1 MHz				
tt 26 dB ● S' F "5G"	WT 3s 🗢 V	BW 5 MHz Mode	Auto Sweep		c	Count 100/100
requency Sweep						01Rm View
d8m-					M1[1]	-36.10 dBm
2011					2.0	690 007 00 GHz
18m						
BW-						
3m						
-10-11						
for_trace1						
d8m						
dBm						
dBm						
d8m						
GBM						
d8m						
asm						
d8m						
ubm						

Date:2APR.2021 12:43:47


ItiView Spectro	1 Millio					
t 26 dB = SV	5 MHz Mode	Auto Sweep				Count 100/10
"5G" requency Sweep						01Rm Vie
equency offeep					M1[1]	-35.73 d
8m					 	2.694 920 0
Bm	 				 	
m	 					
for_trace1	 				 	
Tion Trades						
d8m	 					
dBm						
M1						
dBm		~~~~	\sim			
Capiti			\sim	\sim		
d8m						
d8m						
d8m						
91 GHz	501 pts		1	1.9 MHz/		2.81 0

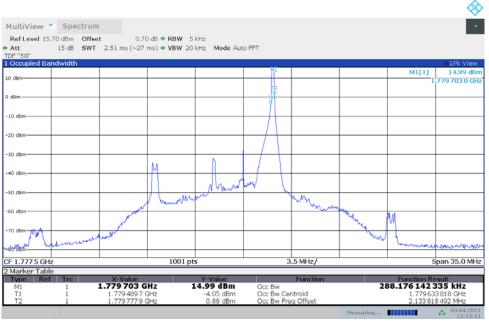
Date: 2 APR 2021 12:49:59



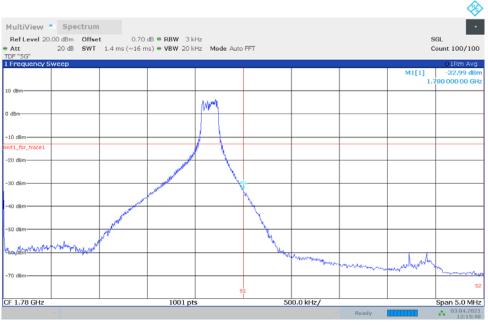
NR n66 OBW: 1RB-low_offset

Date: 3 APR 2021 12:10:18

LOW BAND EDGE BLOCK-1RB-low_offset



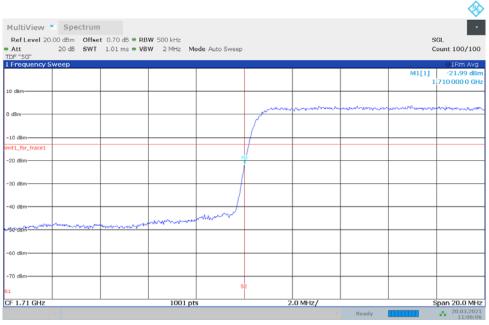
Date: 3 APR 2021 12:11:18



OBW: 1RB-high_offset

Date:3 APR 2021 12:15:12

HIGH BAND EDGE BLOCK-1RB-high_offset



Date:3APR.2021 12:15:41

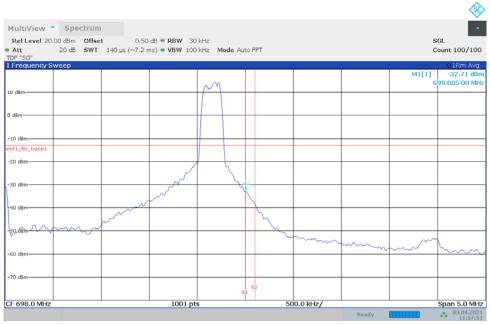
LOW BAND EDGE BLOCK-20MHz-100%RB

Date:20 MAR.2021 11:06:07

HIGH BAND EDGE BLOCK-20MHz-100%RB

	Spectru		RBW 500 kHz					ę	- GL
Att DF "5G"	20 dB SW1	T 1.01 ms 🖷	VBW 2 MHz	Mode Auto Swee	p			(Count 100/100
Frequency S	weep								01Rm Avg
								M1[1]	-24.04 dB
dBm									1780 000 0 Gi
dom.									
dBm	manyum	mann	www.www	mound					
ubm									
0 d8m									
t1_for_trace1					/				
20 d8m					<u>.</u>				
					1				
10 d8m					-				
					1				
0 dBm				_					
					monum	And marked and	mon	man	
0 d8m								mann	and the second
i0 d8m									
0 d8m									
0 UBm									4
					Si				
F 1.78 GHz			1001	pts	1	2.0 MHz/			Span 20.0 MH

Date:20 MAR.2021 11:08:32

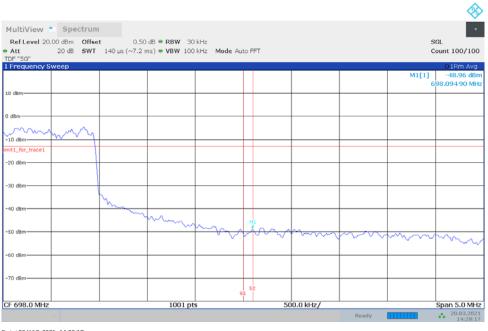


NR n71 LOW BAND EDGE BLOCK-1RB-low_offset

MultiView Spectrur Ref Level 20.00 dBm Offs) kHz			SGL
	140 µs (~7.2 ms) ● VBW 100		FFT		Count 100/10
Frequency Sweep					O 1Rm Av
			m		M1[1] -33.03 dE 663.000 00 M
0 dBm-					
dBm					
10 dBm					
it1_for_trace1					
20 d8m			1 m		
30 dBm		A A		m -	
40 dBm				- man	
50 dBm				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
60 dBor	m	N I			
70 d8m					
ro uem		S2 S2			
F 663.0 MHz	1001 pt	is in the second	500.0 kł	iz/	Span 5.0 MI

HIGH BAND EDGE BLOCK-1RB-high_offset

Date: 3 APR 2021 11:57:51



LOW BAND EDGE BLOCK-20MHz-100%RB

MultiView •	On a showing										~
Ref Level 20.0 Att	00 dBm Offsel		dB = RBW 30 ns) = VBW 100		Aut	o FFT					SGL Count 100/100
Frequency Sw	veep										•1Rm Avg
										M1[1]	-45.80 dBr 563.000 00 MH
0 dBm										,	563.000 00 MH
dBm											
							h	~	mm	mm	how
10 d8m-							·				
hit1_for_trace1											
20 d8m											
30 d8m-											
40 dBm						in the					
50 dBm				m	~~						
m	m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\sim	\sim							
60 d8m								_			
-70 dBm											
				s	s 1	2					
F 663.0 MHz			1001 pt	s		5	00.0 kHz/		1		Span 5.0 MH
									Ready		20.03.202

Date:20 MAR.2021 14:27:41

HIGH BAND EDGE BLOCK-20MHz-100%RB

Date: 20 MAR 2021 14:28:17

A.7 Conducted Spurious Emission

A.7.1 Measurement Method

The following steps outline the procedure used to measure the conducted emissions from the EUT.

1. In measuring unwanted emissions, the spectrum shall be investigated from 30 MHz or the lowest radio frequency signal generated in the equipment, whichever is lower, without going below 9 kHz, up to at least the frequency given below:

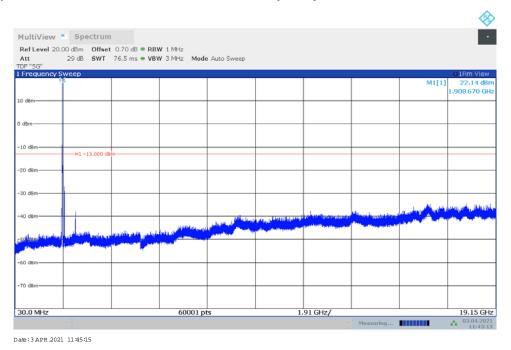
(a) If the equipment operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

(b) If the equipment operates at or above 10 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.

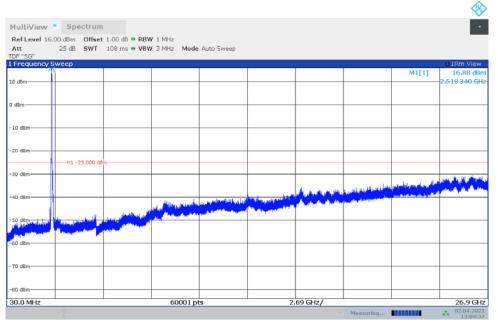
- 2. Determine EUT transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.
- 3. The number of sweep points of spectrum analyzer is greater than $2 \times \text{span/RBW}$.

A. 7.2 Measurement Limit

Part 22.917, Part 24.238 and Part 27.53(h) specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

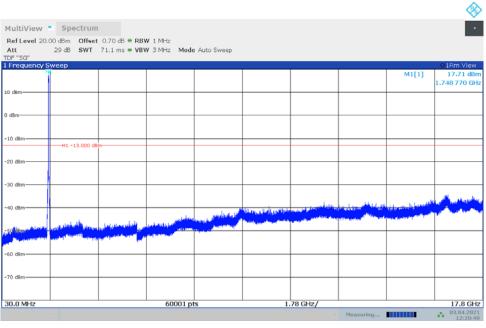

Part 27.53(m) specifies for mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

Part 27.53(g) states for operations in the 600 MHz band and the 698–746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

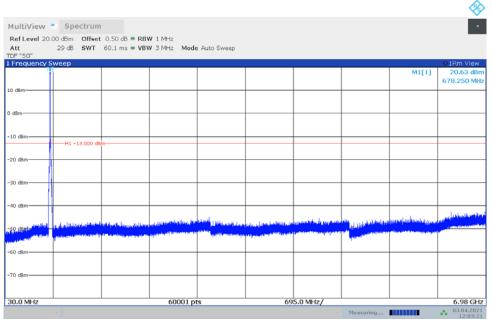


A. 7.3 Measurement result LTE Band 12+NR n25 NOTE: peak above the limit line is the carrier frequency.

LTE Band 2+NR n41 NOTE: peak above the limit line is the carrier frequency.



Date:2APR.2021 13:04:38


NR n66 NOTE: peak above the limit line is the carrier frequency.

Date: 3 APR 2021 12:20:40

NR n71

NOTE: peak above the limit line is the carrier frequency.

Date: 3 APR 2021 12:03:22

A.8 Peak-to-Average Power Ratio

The peak-to-average ratio (PAR) of the transmission may not exceed 13 dB

a) Refer to instrument's analyzer instruction manual for details on how to use the power statistics/CCDF function;

b) Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;

- c) Set the number of counts to a value that stabilizes the measured CCDF curve;
- d) Record the maximum PAPR level associated with a probability of 0.1%.

Measurement results LTE Band 12+NR n25, 20MHz

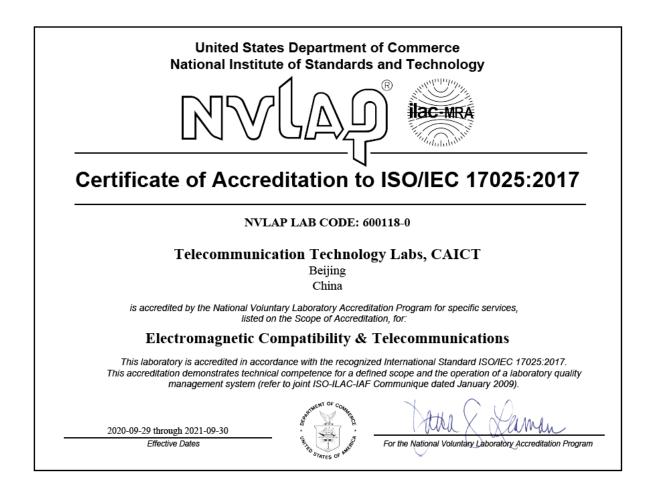
Frequency (MHz)	PAPR (dB)									
	DFT-s-pi/2 BPSK	DFT-s-QPSK	DFT-s-16QAM	DFT-s-64QAM	DFT-s-256QAM	CP-QPSK	CP-16QAM	CP-64QAM	CP-256QAM	
1880.0	7.32	8.54	8.42	8.78	9.02	9.12	9.36	9.50	9.12	

LTE Band 2+NR n41, 100MHz

Frequency (MHz)	PAPR (dB)									
	DFT-s-pi/2 BPSK	DFT-s-QPSK	DFT-s-16QAM	DFT-s-64QAM	DFT-s-256QAM	CP-QPSK	CP-16QAM	CP-64QAM	CP-256QAM	
2592.99	9.56	9.61	10.25	9.93	10.74	10.43	10.69	10.71	10.56	

NR n66, 40MHz

Frequency (MHz)	PAPR (dB)									
	DFT-s-pi/2 BPSK	DFT-s-QPSK	DFT-s-16QAM	DFT-s-64QAM	DFT-s-256QAM	CP-QPSK	CP-16QAM	CP-64QAM	CP-256QAM	
1745.0	7.80	7.88	7.92	7.72	8.30	8.12	8.24	8.50	8.54	


NR n71, 20MHz

Frequency (MHz)	PAPR (dB)								
	DFT-s-pi/2 BPSK	DFT-s-QPSK	DFT-s-16QAM	DFT-s-64QAM	DFT-s-256QAM	CP-QPSK	CP-16QAM	CP-64QAM	CP-256QAM
680.5	6.44	7.44	8.14	7.20	7.98	8.44	8.60	8.30	7.98

Annex B: Accreditation Certificate

END OF REPORT