Dipole Calibration for Body Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5300 \mathrm{MHz} /$ Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0 : Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$ Reference Value $=67.12 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.07 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=29.1 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=7.36 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.06 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.2 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=66.1 \%$
Maximum value of SAR (measured) $=17.3 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Body Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5500 \mathrm{MHz} /$ Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0 : Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=68.41 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.05 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=33.0 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=7.86 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.17 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.2 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=64.2 \%$
Maximum value of SAR (measured) $=19.0 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Body Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5600 \mathrm{MHz} /$ Zoom Scan,
dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube $0:$ Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=67.25 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.08 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=33.2 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=7.72 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.15 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.2 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=63.4 \%$
Maximum value of SAR $($ measured $)=18.7 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Body Tissue/Pin $=100 \mathrm{~mW}$, dist=10mm, $\mathrm{f}=5750 \mathrm{MHz} /$ Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0 : Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=65.67 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.06 \mathrm{~dB}$
Peak SAR (extrapolated) $=34.2 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=7.61 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.11 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.2 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=62 \%$
Maximum value of SAR (measured) $=18.7 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Body Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5800 \mathrm{MHz} /$ Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=65.55 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.06 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=32.7 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=7.42 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.04 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.2 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=62.5 \%$
Maximum value of SAR $($ measured $)=18.2 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Body TSL (5200, 5250, 5300, 5500 MHz)

Impedance Measurement Plot for Body TSL (5600, 5750, 5800 MHz)

3700 MHz Dipole Calibration Certificate

Calibration Laboratory of

 Schmid \& PartnerEngineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
C Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client CTTL-BJ (Auden)		Certific	700V2-1004_Jul20
CALIBRATION CERTIFICATE			
Object D3700V2-SN:1004			
Calibration procedure(s)	QA CAL-22.v5 Calibration Proc July 27, 2020	ure for SAR Validation Sou	ween $3-10 \mathrm{GHz}$
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.			
All calibrations have been conducted in the closed laboratory facility: environment temperature ($22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.			
Calibration Equipment used (M\&TE critical for calibration)			
Primary Standards	ID \#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr-21
Power sensor NRP-Z91	SN: 103244	01-Apr-20 (No. 217-03100)	Apr-21
Power sensor NRP-Z91	SN: 103245	01-Apr-20 (No. 217-03101)	Apr-21
Reference 20 dB Attenuator	SN: BH9394 (20k)	31-Mar-20 (No. 217-03106)	Apr-21
Type-N mismatch combination	SN: 310982 / 06327	31-Mar-20 (No. 217-03104)	Apr-21
Reference Probe EX3DV4	SN: 3503	31-Dec-19 (No. EX3-3503_Dec19)	Dec-20
DAE4	SN: 601	27-Dec-19 (No. DAE4-601_Dec19)	Dec-20
Secondary Standards	ID \#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R\&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	Mokser
Approved by:	Katja Pokovic	Technical Manager	
			Issued: July 28, 2020

Calibration Laboratory of

Schmid \& Partner
S Schweizerischer Kalibrierdienst

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

C Service suisse d'etalonnag
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Glossary:
TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured
Calibration is Performed According to the Following Standards:
a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak SpatialAveraged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
d) KDB 865664 , "SAR Measurement Requirements for 100 MHz to 6 GHz "

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.
DASY Version DASY5 V52.10.4 Extrapolation Advanced Extrapolation Phantom Modular Flat Phantom V5.0 Distance Dipole Center - TSL 10 mm with Spacer Zoom Scan Resolution $\mathrm{dx}, \mathrm{dy}=4.0 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$ Graded Ratio $=1.4$ (Z direction) Frequency $3700 \mathrm{MHz} \pm 1 \mathrm{MHz}$

Head TSL parameters at 3700 MHz
The following parameters and calculations were applied.
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	37.7	$3.12 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$37.4 \pm 6 \%$	$3.05 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	---	----

SAR result with Head TSL at 3700 MHz

SAR averaged over $\mathbf{1} \mathrm{cm}^{\mathbf{3}} \mathbf{(1 \mathbf { g }) \text { of Head TSL }}$	Condition	
SAR measured	100 mW input power	$6.69 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{6 7 . 1} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $10 \mathrm{~cm}^{\mathbf{3}}(\mathbf{1 0} \mathrm{g})$ of Head TSL	condition	
SAR measured	100 mW input power	$2.41 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 4 . 1} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Head TSL parameters at 3800 MHz
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	37.6	$3.22 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$37.3 \pm 6 \%$	$3.13 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	----	----

SAR result with Head TSL at 3800 MHz

SAR averaged over $\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g }) \text { of Head TSL }}$	Condition	
SAR measured	100 mW input power	$6.55 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{6 5 . 7} \mathbf{W} / \mathbf{k g} \pm 19.9 \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\mathbf{1 0} \mathbf{c m}^{\mathbf{3}}(\mathbf{1 0} \mathbf{~ g})$ of Head TSL	condition	
SAR measured	100 mW input power	$2.39 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 3 . 9} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Body TSL parameters at 3700 MHz
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	51.0	$3.55 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$50.3 \pm 6 \%$	$3.54 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	----	----

SAR result with Body TSL at 3700 MHz

SAR averaged over $\mathbf{1} \mathrm{cm}^{\mathbf{3}} \mathbf{(1 \mathbf { g })}$ of Body TSL	Condition	
SAR measured	100 mW input power	$6.37 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{6 3 . 5} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9} \% \mathbf{(k = 2)}$

SAR averaged over $10 \mathrm{~cm}^{\mathbf{3}}(\mathbf{1 0} \mathbf{~ g})$ of Body TSL	condition	
SAR measured	100 mW input power	$2.28 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{2 2 . 7} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Body TSL parameters at 3800 MHz
The following parameters and calculations were applied.
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	50.9	$3.66 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$50.2 \pm 6 \%$	$3.65 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	----	----

SAR result with Body TSL at 3800 MHz

SAR averaged over $\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g }) \text { of Body TSL }}$	Condition	
SAR measured	100 mW input power	$6.12 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{6 1 . 0} \mathrm{~W} / \mathbf{k g} \pm \mathbf{1 9 . 9} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\left.\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 ~ g}\right)$ of Body TSL	condition	
SAR measured	100 mW input power	$2.21 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Body TSL parameters	normalized to $\mathbf{1 W}$	$\mathbf{2 2 . 1} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 3700 MHz

Impedance, transformed to feed point	$47.5 \Omega-6.8 \mathrm{j} \Omega$
Return Loss	-22.6 dB

Antenna Parameters with Head TSL at 3800 MHz

Impedance, transformed to feed point	$57.9 \Omega-6.3 \mathrm{j} \Omega$
Return Loss	-20.6 dB

Antenna Parameters with Body TSL at 3700 MHz

Impedance, transformed to feed point	$47.8 \Omega-4.1 \mathrm{j} \Omega$
Return Loss	-26.4 dB

Antenna Parameters with Body TSL at 3800 MHz

Impedance, transformed to feed point	$58.9 \Omega-4.1 \mathrm{j} \Omega$
Return Loss	-20.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.139 ns

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

Date: 23.07.2020
Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2 - SN: 1004
Communication System: UID 0 - CW; Frequency: 3700 MHz , Frequency: 3800 MHz
Medium parameters used: $\mathrm{f}=3700 \mathrm{MHz} ; \sigma=3.05 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=37.4 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=3800 \mathrm{MHz} ; \sigma=3.13 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=37.3 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN3503; ConvF(7.73, 7.73, 7.73) @ $3700 \mathrm{MHz}, \operatorname{ConvF}(7.73,7.73,7.73) @ 3800$ MHz; Calibrated: 31.12.2019
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}, \mathrm{~d}=10 \mathrm{~mm}, \mathrm{f}=3700 \mathrm{MHz} /$ Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 8) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=70.79 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.01 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=19.2 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=6.69 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.41 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=8 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=73.5 \%$
Maximum value of SAR $($ measured $)=13.0 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}, \mathrm{~d}=10 \mathrm{~mm}, \mathrm{f}=3800 \mathrm{MHz} /$ Zoom Scan,
dist=1.4mm (8x8x8)/Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=68.69 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.01 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=18.8 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=6.55 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.39 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=8.6 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=73.2 \%$
Maximum value of SAR (measured) $=12.8 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 27.07.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2 - SN: 1004
Communication System: UID 0 - CW; Frequency: 3700 MHz , Frequency: 3800 MHz
Medium parameters used: $\mathrm{f}=3700 \mathrm{MHz} ; \sigma=3.54 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=50.3 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=3800 \mathrm{MHz} ; \sigma=3.65 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=50.2 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN3503; ConvF(7.31, 7.31, 7.31)@3700 MHz, ConvF(7.31, 7.31, 7.31)@3800 MHz; Calibrated: 31.12.2019
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Body Tissue/Pin $=100 \mathrm{~mW}, \mathrm{~d}=10 \mathrm{~mm}, \mathrm{f}=3700 \mathrm{MHz} / \mathrm{Zoom}$ Scan ,
dist=1.4mm (8x8x8)/Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=64.62 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.04 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=17.7 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=6.37 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.28 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=8 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=74.4 \%$
Maximum value of SAR (measured) $=12.3 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Body Tissue/Pin $=100 \mathrm{~mW}, \mathrm{~d}=10 \mathrm{~mm}, \mathrm{f}=3800 \mathrm{MHz} / \mathrm{Zoom}$ Scan ,
dist $=1.4 \mathrm{~mm}(8 \times 8 \times 8) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=61.65 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.03 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=17.2 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=6.12 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.21 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=8 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=73.7 \%$
Maximum value of SAR (measured) $=11.9 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Body TSL

No.I21Z60613-SEM06

ANNEX I Sensor Triggering Data Summary

SAR sensor trigger distance

Antenna	Trigger	Trigger
	Position	Distance (mm)
ANT0	Back	17
	Bottom	19
	Front	11
	Right	4
ANT1	Back	17
	Bottom	12
	Front	9
	Left	12
	Back	17
	Top	18
	Front	10
	Left	7
	Back	17
	Top	16
	Front	11
	Right	9

Per FCC KDB Publication 616217 D04v01r02, this device was tested by the manufacturer to determine the proximity sensor triggering distances for the rear and bottom edge of the device. The measured output power within $\pm 5 \mathrm{~mm}$ of the triggering points (or until touching the phantom) is included for rear and each applicable edge.

To ensure all production units are compliant it is necessary to test SAR at a distance 1 mm less than the smallest distance from the device and SAR phantom (determined from these triggering tests according to the KDB 616217 D04v01r02) with the device at maximum output power without power reduction. These SAR tests are included in addition to the SAR tests for the device touching the SAR phantom, with reduced power.

We tested the power and got the different proximity sensor triggering distances for rear, bottom, front and right edge for ANTO. The manufacturer has declared 17 mm is the most conservative triggering distance for ANTO with rear edge. The 19 mm distance for bottom edge. The 11 mm distance for front edge. The 4 mm distance for right edge. So base on the most conservative triggering distance of $17 / 19 / 11 / 4 \mathrm{~mm}$, additional SAR measurements were required at 16/18/10/3mm from the highest SAR position between rear/bottom/front/right edge of main antenna.

We tested the power and got the different proximity sensor triggering distances for rear, bottom, front and left edge for ANT1. The manufacturer has declared 17 mm is the most conservative triggering distance for ANT1 with rear edge. The 12mm distance for bottom edge. The 9mm distance for front edge. The 12 mm distance for left edge. So base on the most conservative triggering distance of $17 / 12 / 9 / 12 \mathrm{~mm}$, additional SAR measurements were required at 16/11/8/11mm from the highest SAR position between rear/bottom/front/left edge of main antenna.

We tested the power and got the different proximity sensor triggering distances for rear, top, front and left edge for ANT4. The manufacturer has declared 17 mm is the most conservative triggering distance for ANT4 with rear edge. The 18 mm distance for top edge. The 10 mm distance for front edge. The 7 mm distance for left edge. So base on the most conservative triggering distance of $17 / 18 / 10 / 7 \mathrm{~mm}$, additional SAR measurements were required at $16 / 17 / 9 / 6 \mathrm{~mm}$ from the highest SAR position between rear/top/front/left edge of main antenna.

We tested the power and got the different proximity sensor triggering distances for rear, top, front and right edge for ANT6. The manufacturer has declared 17 mm is the most conservative triggering distance for ANT6 with rear edge. The 16 mm distance for top edge. The 11 mm distance for front edge. The 9 mm distance for right edge. So base on the most conservative triggering distance of 17/16/11/9mm, additional SAR measurements were required at 16/15/10/8mm from the highest SAR position between rear/top/front/right edge of main antenna.

Main antenna - ANTO

Rear

Moving device toward the phantom:

sensor near or far(KDB 616217 6.2.6)													
Distance [mm]	$\mathbf{2 2}$	$\mathbf{2 1}$	$\mathbf{2 0}$	$\mathbf{1 9}$	$\mathbf{1 8}$	$\mathbf{1 7}$	$\mathbf{1 6}$	$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$		
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near		

Moving device away from the phantom:

sensor near or far(KDB 616217 6.2.6)											
Distance [mm]	12	13	14	15	16	17	18	19	20	21	22
Main antenna	Near	Near	Near	Near	Near	Near	Far	Far	Far	Far	Far

Bottom

Moving device toward the phantom:

sensor near or far(KDB 616217 6.2.6)											
Distance [mm]	24	23	22	21	20	19	18	17	16	15	14
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near

Moving device away from the phantom:

sensor near or far(KDB 6162176.2.6)															
Distance [mm]	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$				
Main antenna	Near	Near	Near	Near	Near	Near	Far	Far	Far	Far	Far				

Front Edge

Moving device toward the phantom:

sensor near or far(KDB 616217 6.2.6)											
Distance [mm]	16	15	14	13	12	11	10	9	8	7	6
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near

Moving device away from the phantom:

sensor near or far(KDB 616217 6.2.6)											
Distance [mm]	6	7	8	9	10	11	12	13	14	15	16
Main antenna	Near	Near	Near	Near	Near	Near	Far	Far	Far	Far	Far

TTL

Right Edge

Moving device toward the phantom:

sensor near or far(KDB 616217 6.2.6)											
Distance [mm]	9	8	7	6	5	4	3	2	1	0	/
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	/

Moving device away from the phantom:

sensor near or far(KDB 616217 6.2.6)											
Distance [mm]	/	0	1	2	3	4	5	6	7	8	9
Main antenna	/	Near	Near	Near	Near	Near	Far	Far	Far	Far	Far

Main antenna - ANT1
Rear
Moving device toward the phantom:

sensor near or far(KDB 616217 6.2.6)											
Distance [mm]	22	21	20	19	18	17	16	15	14	13	12
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near

Moving device away from the phantom:

sensor near or far(KDB 616217 6.2.6)											
Distance [mm]	12	13	14	15	16	17	18	19	20	21	22
Main antenna	Near	Near	Near	Near	Near	Near	Far	Far	Far	Far	Far

Bottom

Moving device toward the phantom:

sensor near or far(KDB 616217 6.2.6)											
Distance [mm]	17	16	15	14	13	12	11	10	9	8	7
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near

Moving device away from the phantom:

sensor near or far(KDB 616217 6.2.6)											
Distance [mm]	7	8	9	10	11	12	13	14	15	16	17
Main antenna	Near	Near	Near	Near	Near	Near	Far	Far	Far	Far	Far

TTL

Front Edge

Moving device toward the phantom:

sensor near or far(KDB 616217 6.2.6)											
Distance [mm]	14	13	12	11	10	9	8	7	6	5	4
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near

Moving device away from the phantom:

sensor near or far(KDB 616217 6.2.6)															
Distance [mm]	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$				
Main antenna	Near	Near	Near	Near	Near	Near	Far	Far	Far	Far	Far				

Left Edge

Moving device toward the phantom:

sensor near or far(KDB 616217 6.2.6)											
Distance [mm]	17	16	15	14	13	12	11	10	9	8	7
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near

Moving device away from the phantom:

sensor near or far(KDB 616217 6.2.6)											
Distance [mm]	7	8	9	10	11	12	13	14	15	16	17
Main antenna	Near	Near	Near	Near	Near	Near	Far	Far	Far	Far	Far

Main antenna - ANT4

Rear

Moving device toward the phantom:

sensor near or far(KDB 6162176.2.6)													
Distance $[\mathbf{m m}]$	$\mathbf{2 2}$	$\mathbf{2 1}$	$\mathbf{2 0}$	$\mathbf{1 9}$	$\mathbf{1 8}$	$\mathbf{1 7}$	$\mathbf{1 6}$	$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$		
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near		

Moving device away from the phantom:

sensor near or far(KDB 616217 6.2.6)											
Distance [mm]	12	13	14	15	16	17	18	19	20	21	22
Main antenna	Near	Near	Near	Near	Near	Near	Far	Far	Far	Far	Far

TTL

Top

Moving device toward the phantom:

sensor near or far(KDB 616217 6.2.6)											
Distance [mm]	$\mathbf{2 3}$	$\mathbf{2 2}$	$\mathbf{2 1}$	$\mathbf{2 0}$	$\mathbf{1 9}$	$\mathbf{1 8}$	$\mathbf{1 7}$	$\mathbf{1 6}$	$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near

Moving device away from the phantom:

sensor near or far(KDB 616217 6.2.6)											
Distance [mm]	13	14	15	16	17	18	19	20	21	22	23
Main antenna	Near	Near	Near	Near	Near	Near	Far	Far	Far	Far	Far

Front Edge

Moving device toward the phantom:

sensor near or far(KDB 616217 6.2.6)											
Distance [mm]	15	14	13	12	11	10	9	8	7	6	5
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near

Moving device away from the phantom:

sensor near or far(KDB 616217 6.2.6)											
Distance [mm]	5	6	7	8	9	10	11	12	13	14	15
Main antenna	Near	Near	Near	Near	Near	Near	Far	Far	Far	Far	Far

Left Edge

Moving device toward the phantom:

sensor near or far(KDB 616217 6.2.6)											
Distance [mm]	12	11	10	9	8	7	6	5	4	3	2
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near

Moving device away from the phantom:

sensor near or far(KDB 616217 6.2.6)														
Distance [mm]	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$			
Main antenna	Near	Near	Near	Near	Near	Near	Far	Far	Far	Far	Far			

Main antenna - ANT6

Rear

Moving device toward the phantom:

sensor near or far(KDB 616217 6.2.6)													
Distance [mm]	$\mathbf{2 2}$	$\mathbf{2 1}$	$\mathbf{2 0}$	$\mathbf{1 9}$	$\mathbf{1 8}$	$\mathbf{1 7}$	$\mathbf{1 6}$	$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$		
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near		

Moving device away from the phantom:

sensor near or far(KDB 616217 6.2.6)											
Distance [mm]	12	13	14	15	16	17	18	19	20	21	22
Main antenna	Near	Near	Near	Near	Near	Near	Far	Far	Far	Far	Far

Top
Moving device toward the phantom:

sensor near or far(KDB 6162176.2.6)															
Distance [mm]	$\mathbf{2 1}$	$\mathbf{2 0}$	$\mathbf{1 9}$	$\mathbf{1 8}$	$\mathbf{1 7}$	$\mathbf{1 6}$	$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$				
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near				

Moving device away from the phantom:

sensor near or far(KDB 6162176.2.6)															
Distance [mm]	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$	$\mathbf{2 1}$				
Main antenna	Near	Near	Near	Near	Near	Near	Far	Far	Far	Far	Far				

Front Edge

Moving device toward the phantom:

sensor near or far(KDB 616217 6.2.6)											
Distance [mm]	16	15	14	13	12	11	10	9	8	7	6
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near

Moving device away from the phantom:

sensor near or far(KDB 616217 6.2.6)											
Distance [mm]	6	7	8	9	10	11	12	13	14	15	16
Main antenna	Near	Near	Near	Near	Near	Near	Far	Far	Far	Far	Far

TTL

Right Edge

Moving device toward the phantom:

sensor near or far(KDB 616217 6.2.6)											
Distance [mm]	14	13	12	11	10	9	8	7	6	5	4
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near

Moving device away from the phantom:

sensor near or far(KDB 616217 6.2.6)											
Distance [mm]	4	5	6	7	8	9	10	11	12	13	14
Main antenna	Near	Near	Near	Near	Near	Near	Far	Far	Far	Far	Far

Per FCC KDB Publication 616217 D04v01r02, the influence of table tilt angles to proximity sensor triggering is determined by positioning each edge that contains a transmitting antenna, perpendicular to the flat phantom, at the smallest sensor triggering test distanceby rotating the device around the edge next to the phantom in $\leq 10^{\circ}$ increments until the tablet is $\pm 45^{\circ}$ or more from the vertical position at 0°.

The front/rear evaluation

The Left edge evaluation

Based on the above evaluation, we come to the conclusion that the sensor triggering is not released and normal maximum output power is not restored within the $\pm 45^{\circ}$ range at the smallest sensor triggering test distance declared by manufacturer.

ANNEX J Accreditation Certificate

