Head TSL parameters at 5250 MHz

The following parameters and calculations were applied

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.9         | 4.71 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 35.5 ± 6 %   | 4.60 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL at 5250 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.98 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 79.6 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.29 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 22.8 W/kg ± 19.5 % (k=2) |

### Head TSL parameters at 5300 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.9         | 4.76 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 35.5 ± 6 %   | 4.67 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

### SAR result with Head TSL at 5300 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 8.24 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 82.1 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.35 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 23.4 W/kg ± 19.5 % (k=2) |

# Head TSL parameters at 5500 MHz The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.6         | 4.96 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 35.4 ± 6 %   | 4.89 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              | ****             |

#### SAR result with Head TSL at 5500 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 8.56 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 85.5 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.42 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 24.1 W/kg ± 19.5 % (k=2) |

### Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.5         | 5.07 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 35.3 ± 6 %   | 4.97 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL at 5600 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 8.38 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 83.6 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.38 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 23.8 W/kg ± 19.5 % (k=2) |

### Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.4         | 5.22 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 35.1 ± 6 %   | 5.08 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              | ****             |

### SAR result with Head TSL at 5750 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 8.07 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 80.5 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.28 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 22.7 W/kg ± 19.5 % (k=2) |

# Head TSL parameters at 5800 MHz The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.3         | 5.27 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 35.0 ± 6 %   | 5.11 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL at 5800 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 8.22 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 81.9 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.32 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 23.1 W/kg ± 19.5 % (k=2) |

### Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL at 5200 MHz

| Impedance, transformed to feed point | 48.6 Ω - 5.3 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 25.1 dB       |

#### Antenna Parameters with Head TSL at 5250 MHz

| Impedance, transformed to feed point | 47.7 Ω - 4.1 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 26.2 dB       |  |

#### Antenna Parameters with Head TSL at 5300 MHz

| Impedance, transformed to feed point | 46.9 Ω - 2.2 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 28.0 dB       |

#### Antenna Parameters with Head TSL at 5500 MHz

| Impedance, transformed to feed point | 50.6 $\Omega$ - 4.0 j $\Omega$ |
|--------------------------------------|--------------------------------|
| Return Loss                          | - 28.0 dB                      |

#### Antenna Parameters with Head TSL at 5600 MHz

| Impedance, transformed to feed point | 53.6 $\Omega$ + 1.2 j $\Omega$ |
|--------------------------------------|--------------------------------|
| Return Loss                          | - 28.6 dB                      |

#### Antenna Parameters with Head TSL at 5750 MHz

| Impedance, transformed to feed point | 51.4 Ω - 0.3 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 37.3 dB       |  |

#### Antenna Parameters with Head TSL at 5800 MHz

| Impedance, transformed to feed point | 51.2 Ω - 2.2 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 32.0 dB       |  |

#### General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.201 ns |
|----------------------------------|----------|
|                                  |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG |
|-----------------|-------|
|                 |       |

#### **DASY5 Validation Report for Head TSL**

Date: 19.06.2023

Test Laboratory: SPEAG, Zurich, Switzerland

### DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1060

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5250 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5500 MHz, Frequency: 5500 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz Medium parameters used: f=5200 MHz;  $\sigma=4.53$  S/m;  $\epsilon_r=35.5;$   $\rho=1000$  kg/m $^3$ , Medium parameters used: f=5250 MHz;  $\sigma=4.60$  S/m;  $\epsilon_r=35.5;$   $\rho=1000$  kg/m $^3$ , Medium parameters used: f=5300 MHz;  $\sigma=4.67$  S/m;  $\epsilon_r=35.5;$   $\rho=1000$  kg/m $^3$ , Medium parameters used: f=5500 MHz;  $\sigma=4.89$  S/m;  $\epsilon_r=35.4;$   $\rho=1000$  kg/m $^3$ , Medium parameters used: f=5600 MHz;  $\sigma=4.97$  S/m;  $\epsilon_r=35.3;$   $\rho=1000$  kg/m $^3$ , Medium parameters used: f=5600 MHz;  $\sigma=4.97$  S/m;  $\epsilon_r=35.3;$   $\rho=1000$  kg/m $^3$ , Medium parameters used: f=5750 MHz;  $\sigma=5.08$  S/m;  $\epsilon_r=35.1;$   $\rho=1000$  kg/m $^3$ , Medium parameters used: f=5800 MHz;  $\sigma=5.08$  S/m;  $\epsilon_r=35.0;$   $\rho=1000$  kg/m $^3$ , Medium parameters used: f=5800 MHz;  $\sigma=5.11$  S/m;  $\epsilon_r=35.0;$   $\rho=1000$  kg/m $^3$  Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.8, 5.8, 5.8) @ 5200 MHz, ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.49, 5.49, 5.49) @ 5300 MHz, ConvF(5.25, 5.25, 5.25) @ 5500 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz, ConvF(5.01, 5.01, 5.01) @ 5800 MHz; Calibrated: 07.03.2023
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 19.12.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 76.08 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 27.3 W/kg

SAR(1 g) = 7.92 W/kg; SAR(10 g) = 2.27 W/kg

Smallest distance from peaks to all points 3 dB below = 6.9 mm

Ratio of SAR at M2 to SAR at M1 = 70.9%

Maximum value of SAR (measured) = 18.0 W/kg

#### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 75.90 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 26.7 W/kg

SAR(1 g) = 7.98 W/kg; SAR(10 g) = 2.29 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 71.8%

Maximum value of SAR (measured) = 18.0 W/kg

### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 76.02 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 28.5 W/kg

SAR(1 g) = 8.24 W/kg; SAR(10 g) = 2.35 W/kg

Smallest distance from peaks to all points 3 dB below = 6.8 mm

Ratio of SAR at M2 to SAR at M1 = 70.8%

Maximum value of SAR (measured) = 18.8 W/kg

## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 75.86 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 32.2 W/kg

SAR(1 g) = 8.56 W/kg; SAR(10 g) = 2.42 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 67.3%

Maximum value of SAR (measured) = 20.1 W/kg

### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 76.37 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 30.3 W/kg

SAR(1 g) = 8.38 W/kg; SAR(10 g) = 2.38 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 68.5%

Maximum value of SAR (measured) = 19.6 W/kg

#### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 73.46 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 30.9 W/kg

SAR(1 g) = 8.07 W/kg; SAR(10 g) = 2.28 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

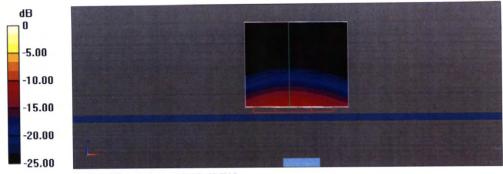
Ratio of SAR at M2 to SAR at M1 = 66.6%

Maximum value of SAR (measured) = 19.3 W/kg

#### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

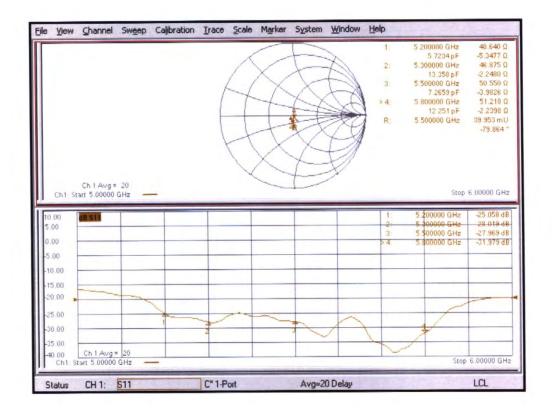
dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 74.09 V/m; Power Drift = 0.05 dB

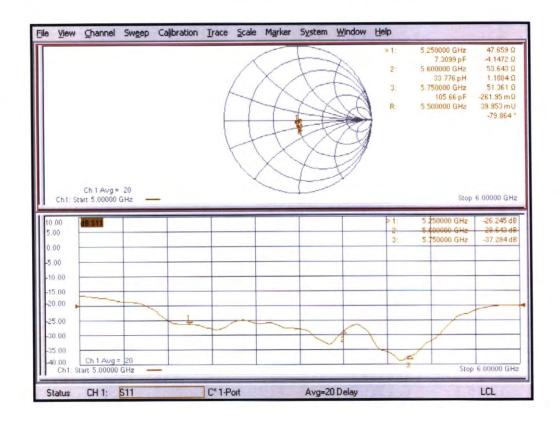

Peak SAR (extrapolated) = 31.5 W/kg

SAR(1 g) = 8.22 W/kg; SAR(10 g) = 2.32 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm


Ratio of SAR at M2 to SAR at M1 = 66.5%

Maximum value of SAR (measured) = 19.6 W/kg




0 dB = 20.1 W/kg = 13.03 dBW/kg

# Impedance Measurement Plot for Head TSL (5200, 5300, 5500, 5800 MHz)



# Impedance Measurement Plot for Head TSL (5250, 5600, 5750 MHz)



## 6.5GHz Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

| CALIBRATION C                                | ERTIFICATI                             |                                                                                                                                                  |                                           |
|----------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Object                                       | D6.5GHzV2 - SN                         | 1:1059                                                                                                                                           | 2                                         |
| Calibration procedure(s)                     | QA CAL-22.v6<br>Calibration Proce      | edure for SAR Validation Source                                                                                                                  | s between 3-10 GHz                        |
| Calibration date:                            | December 01, 20                        | 021                                                                                                                                              |                                           |
| The measurements and the uncert              | ainties with confidence p              | onal standards, which realize the physical ur<br>robability are given on the following pages a<br>ry facility: environment temperature (22 ± 3)° | nd are part of the certificate.           |
| Primary Standards                            | ID#                                    | Cal Date (Certificate No.)                                                                                                                       | Scheduled Calibration                     |
| Power meter NRP                              | SN: 104778                             | 09-Apr-21 (No. 217-03291/03292)                                                                                                                  | Apr-22                                    |
| Power sensor NRP-Z91                         | SN: 103244                             | 09-Apr-21 (No. 217-03291)                                                                                                                        | Apr-22                                    |
| Power sensor NRP-Z91 Power sensor R&S NRP33T | SN: 103245                             | 09-Apr-21 (No. 217-03292)                                                                                                                        | Apr-22                                    |
| Reference 20 dB Attenuator                   | SN: 100967                             | 08-Apr-21 (No. 217-03293)                                                                                                                        | Apr-22                                    |
| Type-N mismatch combination                  | SN: BH9394 (20k)<br>SN: 310982 / 06327 | 09-Apr-21 (No. 217-03343)                                                                                                                        | Apr-22                                    |
| Reference Probe EX3DV4                       | SN: 7405                               | 09-Apr-21 (No. 217-03344)<br>30-Dec-20 (No. EX3-7405_Dec20)                                                                                      | Apr-22<br>Dec-21                          |
| DAE4                                         | SN: 908                                | 24-Jun-21 (No. DAE4-908_Jun21)                                                                                                                   | Jun-22                                    |
| Secondary Standards                          | ID#                                    | Check Date (in house)                                                                                                                            | Cabaddad Obert                            |
| RF generator Anapico APSIN20G                | SN: 669                                | 28-Mar-17 (in house check Dec-18)                                                                                                                | Scheduled Check<br>In house check: Dec-21 |
| Network Analyzer R&S ZVL13                   | SN: 101093                             | 10-May-12 (in house check Dec-18)                                                                                                                | In house check: Dec-21                    |
|                                              | Name                                   | Function                                                                                                                                         | Cianatura                                 |
| Calibrated by:                               | Leif Klysner                           | Laboratory Technician                                                                                                                            | Signature P NAM                           |
|                                              |                                        |                                                                                                                                                  | Day Sign                                  |
|                                              | Niels Kuster                           | Quality Manager                                                                                                                                  | 1 /LE                                     |
| Approved by:                                 |                                        |                                                                                                                                                  |                                           |

#### Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL tissue simulating liquid ConvF

sensitivity in TSL / NORM x,y,z

N/A not applicable or not measured

#### Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range Of 4 MHz To 10 GHz)", October 2020.

#### Additional Documentation:

b) DASY System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.
- The absorbed power density (APD): The absorbed power density is evaluated according to Samaras T, Christ A, Kuster N, "Compliance assessment of the epithelial or absorbed power density above 6 GHz using SAR measurement systems", Bioelectromagnetics, 2021 (submitted). The additional evaluation uncertainty of 0.55 dB (rectangular distribution) is considered.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY6                        | V16.0                            |
|------------------------------|------------------------------|----------------------------------|
| Extrapolation                | Advanced Extrapolation       |                                  |
| Phantom                      | Modular Flat Phantom         |                                  |
| Distance Dipole Center - TSL | 5 mm                         | with Spacer                      |
| Zoom Scan Resolution         | dx, dy = 3.4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) |
| Frequency                    | 6500 MHz ± 1 MHz             |                                  |

Head TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 34.5         | 6.07 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.3 ± 6 %   | 6.13 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        | 4444         |                  |

### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                         |
|-------------------------------------------------------|--------------------|-------------------------|
| SAR measured                                          | 100 mW input power | 29.0 W/kg               |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 289 W/kg ± 24.7 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 5.33 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 53.3 W/kg ± 24.4 % (k=2) |

#### **Appendix**

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 52.9 Ω - 6.2 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 23.5 dB       |

### **APD (Absorbed Power Density)**

| APD averaged over 1 cm <sup>2</sup> | Condition          |                                      |
|-------------------------------------|--------------------|--------------------------------------|
| APD measured                        | 100 mW input power | 289 W/m <sup>2</sup>                 |
| APD measured                        | normalized to 1W   | 2890 W/m <sup>2</sup> ± 29.2 % (k=2) |

| APD averaged over 4 cm <sup>2</sup> | condition          |                                      |
|-------------------------------------|--------------------|--------------------------------------|
| APD measured                        | 100 mW input power | 130 W/m <sup>2</sup>                 |
| APD measured                        | normalized to 1W   | 1300 W/m <sup>2</sup> ± 28.9 % (k=2) |

<sup>\*</sup>The reported APD values have been derived using psSAR8g.

#### General Antenna Parameters and Design

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

### **Additional EUT Data**

| SPEAG |
|-------|
|       |

### **DASY6 Validation Report for Head TSL**

Measurement Report for D6.5GHz-1059, UID 0 -, Channel 6500 (6500.0MHz)

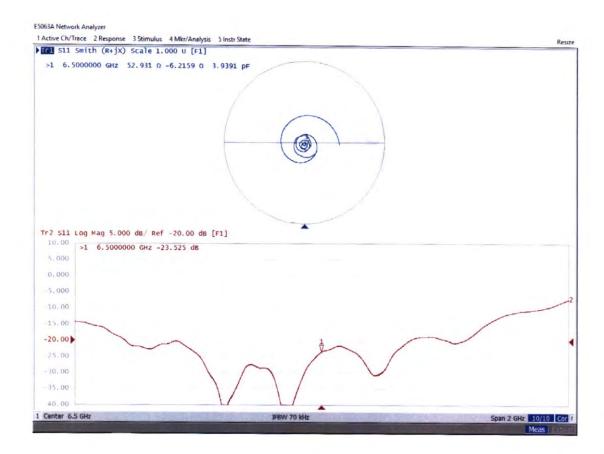
| Device ur | nder Test | Properties |
|-----------|-----------|------------|
|-----------|-----------|------------|

| Name, Manufacturer | Dimensions [mm]    | IMEI     | DUT Type |
|--------------------|--------------------|----------|----------|
| D6.5GHz            | 16.0 x 6.0 x 300.0 | SN: 1059 |          |

#### **Exposure Conditions**

| Phantom<br>Section, TSL | Position, Test<br>Distance<br>[mm] | Band | Group,<br>UID | Frequency<br>[MHz] | Conversion<br>Factor | TSL Cond.<br>[S/m] | TSL<br>Permittivity |
|-------------------------|------------------------------------|------|---------------|--------------------|----------------------|--------------------|---------------------|
| Flat, HSL               | 5.00                               | Band | CW,           | 6500               | 5.75                 | 6.13               | 34.3                |

#### **Hardware Setup**


| Phantom                | TSL             | Probe, Calibration Date     | DAE, Calibration Date  |
|------------------------|-----------------|-----------------------------|------------------------|
| MFP V8.0 Center - 1182 | HBBL600-10000V6 | EX3DV4 - SN7405, 2020-12-30 | DAE4 Sn908, 2021-06-24 |

#### Scan Setup

|                     | Zoom Scan          |                     | Zoom Scan         |
|---------------------|--------------------|---------------------|-------------------|
| Grid Extents [mm]   | 22.0 x 22.0 x 22.0 | Date                | 2021-12-01, 13:15 |
| Grid Steps [mm]     | 3.4 x 3.4 x 1.4    | psSAR1g [W/Kg]      | 29.0              |
| Sensor Surface [mm] | 1.4                | psSAR10g [W/Kg]     | 5.33              |
| Graded Grid         | Yes                | Power Drift [dB]    | -0.00             |
| Grading Ratio       | 1.4                | Power Scaling       | Disabled          |
| MAIA                | N/A                | Scaling Factor [dB] |                   |
| Surface Detection   | VMS + 6p           | TSL Correction      | No correction     |
| Scan Method         | Measured           | M2/M1 [%]           | 51.1              |
|                     |                    | Dist 3dB Peak [mm]  | 4.8               |



### Impedance Measurement Plot for Head TSL



### 13 MHz Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client CTTL

Beijing

Certificate No. CLA13-1009\_May23

| CALIB | RATION | CERTIF | ICATE |
|-------|--------|--------|-------|
| CALID |        | CEILLI | IVAIL |

Object

CLA13 - SN: 1009

Calibration procedure(s)

QA CAL-15.v10

Calibration Procedure for SAR Validation Sources below 700 MHz

Calibration date:

May 19, 2023

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards               | ID#                | Cal Date (Certificate No.)        | Scheduled Calibration  |
|---------------------------------|--------------------|-----------------------------------|------------------------|
| Power meter NRP2                | SN: 104778         | 30-Mar-23 (No. 217-03804/03805)   | Mar-24                 |
| Power sensor NRP-Z91            | SN: 103244         | 30-Mar-23 (No. 217-03804)         | Mar-24                 |
| Power sensor NRP-Z91            | SN: 103245         | 30-Mar-23 (No. 217-03805)         | Mar-24                 |
| Reference 20 dB Attenuator      | SN: CC2552 (20x)   | 30-Mar-23 (No. 217-03809)         | Mar-24                 |
| Type-N mismatch combination     | SN: 310982 / 06327 | 30-Mar-23 (No. 217-03810)         | Mar-24                 |
| Reference Probe EX3DV4          | SN: 3877           | 06-Jan-23 (No. EX3-3877_Jan23)    | Jan-24                 |
| DAE4                            | SN: 654            | 27-Jan-23 (No. DAE4-654_Jan23)    | Jan-24                 |
| Secondary Standards             | ID#                | Check Date (in house)             | Scheduled Check        |
| Power meter NRP2                | SN: 107193         | 08-Nov-21 (in house check Dec-22) | In house check: Dec-24 |
| Power sensor NRP-Z91            | SN: 100922         | 15-Dec-09 (in house check Dec-22) | In house check: Dec-24 |
| Power sensor NRP-Z91            | SN: 100418         | 01-Jan-04 (in house check Dec-22) | In house check: Dec-24 |
| RF generator HP 8648C           | SN: US3642U01700   | 04-Aug-99 (in house check Jun-22) | In house check: Jun-24 |
| Network Analyzer Agilent E8358A | SN: US41080477     | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 |
|                                 | Name               | Function                          | Signature              |
| Calibrated by:                  | Jeton Kastrati     | Laboratory Technician             | Teles                  |
| Approved by:                    | Sven Kühn          | Technical Manager                 |                        |

Issued: May 23, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: CLA13-1009\_May23

Page 1 of 6

### Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

S Servizio svizzero di taratui
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

#### Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### **Additional Documentation:**

c) DASY System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version         | DASY5                          | V52.10.4                        |
|----------------------|--------------------------------|---------------------------------|
| Extrapolation        | Advanced Extrapolation         |                                 |
| Phantom              | ELI4 Flat Phantom              | Shell thickness: 2 ± 0.2 mm     |
| EUT Positioning      | Touch Position                 |                                 |
| Zoom Scan Resolution | dx, dy = 4.0  mm, dz = 1.4  mm | Graded Ratio = 1.4 (Z direction |
| Frequency            | 13 MHz ± 1 MHz                 |                                 |
|                      |                                |                                 |

Head TSL parameters
The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 55.0         | 0.75 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 53.6 ± 6 %   | 0.72 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition        |                           |
|-------------------------------------------------------|------------------|---------------------------|
| SAR measured                                          | 1 W input power  | 0.558 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W | 0.573 W/kg ± 18.4 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition        |                           |
|---------------------------------------------------------|------------------|---------------------------|
| SAR measured                                            | 1 W input power  | 0.344 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W | 0.353 W/kg ± 18.0 % (k=2) |

## Appendix (Additional assessments outside the scope of SCS 0108)

### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 49.6 Ω - 1.7 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 35.2 dB       |  |

### **Additional EUT Data**

| Manufactured by | SPEAG |
|-----------------|-------|

### **DASY5 Validation Report for Head TSL**

Date: 19.05.2023

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: CLA13; Type: CLA13; Serial: CLA13 - SN: 1009

Communication System: UID 0 - CW; Frequency: 13 MHz

Medium parameters used: f = 13 MHz;  $\sigma = 0.72$  S/m;  $\varepsilon_r = 53.6$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

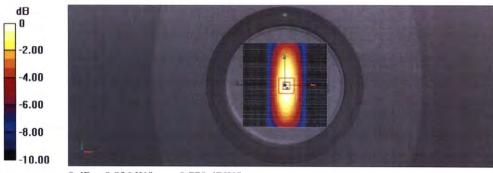
#### DASY52 Configuration:

- Probe: EX3DV4 SN3877; ConvF(15.33, 15.33, 15.33) @ 13 MHz; Calibrated: 06.01.2023
- · Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 27.01.2023
- Phantom: ELI v6.0; Type: QDOVA003AA; Serial: TP:2034
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

#### CLA Calibration for HSL-LF Tissue/CLA-13, touch configuration, Pin=1W/Zoom Scan,

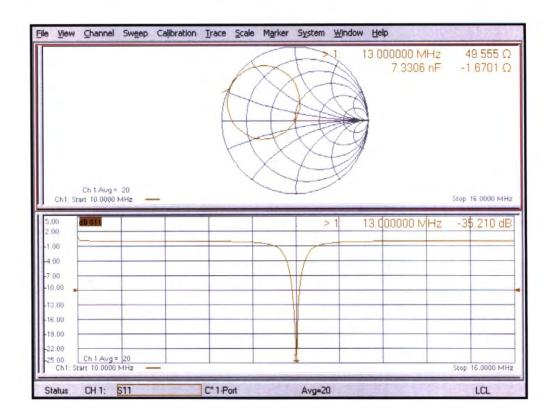
dist=1.4mm (8x10x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 31.63 V/m; Power Drift = -0.07 dB


Peak SAR (extrapolated) = 1.17 W/kg

SAR(1 g) = 0.558 W/kg; SAR(10 g) = 0.344 W/kg

Smallest distance from peaks to all points 3 dB below = 15.2 mm


Ratio of SAR at M2 to SAR at M1 = 77.5%

Maximum value of SAR (measured) = 0.836 W/kg



0 dB = 0.836 W/kg = -0.778 dBW/kg

### Impedance Measurement Plot for Head TSL



### **10GHz Dipole Calibration Certificate**

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** 

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

CTTL Beijing Certificate No. 5G-Veri10-1005\_Jan24

### **CALIBRATION CERTIFICATE**

5G Verification Source 10 GHz - SN: 1005 Object

QA CAL-45.v4 Calibration procedure(s)

Calibration procedure for sources in air above 6 GHz

January 18, 2024 Calibration date:

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards       | ID#      | Cal Date (Certificate No.)      | Scheduled Calibration |
|-------------------------|----------|---------------------------------|-----------------------|
| Reference Probe EUmmWV3 | SN: 9374 | 04-Dec-23 (No. EUmm-9374_Dec23) | Dec-24                |
| DAE4                    | SN: 1215 | 29-Jun-23 (No. DAE4-1215_Jun23) | Jun-24                |

| Secondary Standards              | ID#            | Check Date (in house)             | Scheduled Check        |
|----------------------------------|----------------|-----------------------------------|------------------------|
| RF generator R&S SMF100A         | SN: 100184     | 29-Nov-23 (in house check Nov-23) | In house check: Nov-24 |
| Power sensor R&S NRP18S-10       | SN: 101258     | 29-Nov-23 (in house check Nov-23) | In house check: Nov-24 |
| Network Analyzer Keysight E5063A | SN: MY54504221 | 31-Oct-19 (in house check Oct-22) | In house check: Oct-25 |

Signature Name Function Calibrated by: Joanna Lleshaj Laboratory Technician

Sven Kühn Technical Manager

Issued: January 19, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Approved by:

#### Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

#### Glossary

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

CW

Continuous wave

#### Calibration is Performed According to the Following Standards

- Internal procedure QA CAL-45, Calibration procedure for sources in air above 6 GHz.
- IEC/IEEE 63195-1, "Assessment of power density of human exposure to radio frequency fields from wireless devices in close proximity to the head and body (frequency range of 6 GHz to 300 GHz)", May 2022

#### Methods Applied and Interpretation of Parameters

- Coordinate System: z-axis in the waveguide horn boresight, x-axis is in the direction of the E-field, y-axis normal to the others in the field scanning plane parallel to the horn flare and horn flange.
- Measurement Conditions: (1) 10 GHz: The radiated power is the forward power to the horn
  antenna minus ohmic and mismatch loss. The forward power is measured prior and after
  the measurement with a power sensor. During the measurements, the horn is directly
  connected to the cable and the antenna ohmic and mismatch losses are determined by farfield measurements. (2) 30, 45, 60 and 90 GHz: The verification sources are switched on for
  at least 30 minutes. Absorbers are used around the probe cub and at the ceiling to minimize
  reflections.
- Horn Positioning: The waveguide horn is mounted vertically on the flange of the waveguide source to allow vertical positioning of the EUmmW probe during the scan. The plane is parallel to the phantom surface. Probe distance is verified using mechanical gauges positioned on the flare of the horn.
- E- field distribution: E field is measured in two x-y-plane (10mm, 10mm + λ/4) with a
  vectorial E-field probe. The E-field value stated as calibration value represents the E-fieldmaxima and the averaged (1cm² and 4cm²) power density values at 10mm in front of the
  horn.
- Field polarization: Above the open horn, linear polarization of the field is expected. This is verified graphically in the field representation.

#### **Calibrated Quantity**

 Local peak E-field (V/m) and average of peak spatial components of the poynting vector (W/m²) averaged over the surface area of 1 cm² and 4cm² at the nominal operational frequency of the verification source. Both square and circular averaging results are listed.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

| DASY Version                   | DASY8 Module mmWave                    | V3.2 |
|--------------------------------|----------------------------------------|------|
| Phantom                        | 5G Phantom                             |      |
| Distance Horn Aperture - plane | 10 mm                                  |      |
| Number of measured planes      | 2 (10mm, 10mm + \( \lambda \text{4} \) |      |
| Frequency                      | 10 GHz ± 10 MHz                        |      |

### Calibration Parameters, 10 GHz

Circular Averaging

| Distance Horn<br>Aperture to<br>Measured Plane | Prad¹<br>(mW) | Max E-field<br>(V/m) | Uncertainty<br>(k = 2) | Avg Power Density Avg (psPDn+, psPDtot+, psPDmod+) (W/m²) |                   | Uncertainty<br>(k = 2) |
|------------------------------------------------|---------------|----------------------|------------------------|-----------------------------------------------------------|-------------------|------------------------|
|                                                |               |                      |                        | 1 cm <sup>2</sup>                                         | 4 cm <sup>2</sup> |                        |
| 10 mm                                          | 93.3          | 151                  | 1.27 dB                | 59.4                                                      | 55.5              | 1.28 dB                |

| Distance Horn<br>Aperture to<br>Measured Plane | Prad¹<br>(mW) | Max E-field<br>(V/m) | Uncertainty<br>(k = 2) | psPDn+, psPDt     | Density<br>tot+, psPDmod+<br>/m²) | Uncertainty<br>(k = 2) |
|------------------------------------------------|---------------|----------------------|------------------------|-------------------|-----------------------------------|------------------------|
|                                                |               |                      |                        | 1 cm <sup>2</sup> | 4 cm <sup>2</sup>                 |                        |
| 10 mm                                          | 93.3          | 151                  | 1.27 dB                | 59.2, 59.4, 59.6  | 55.2, 55.5, 55.7                  | 1.28 dB                |

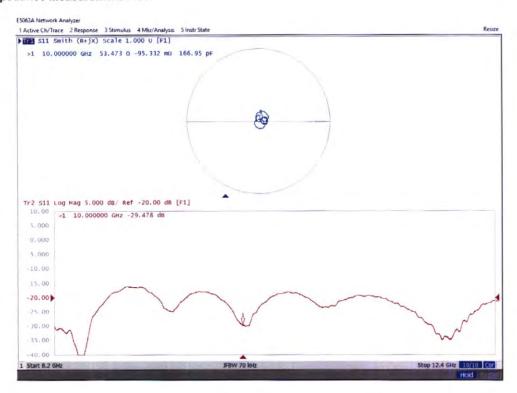
**Square Averaging** 

| Distance Horn<br>Aperture to<br>Measured Plane | Prad¹<br>(mW) | Max E-field<br>(V/m) | Uncertainty<br>(k = 2) | Avg Power Density Avg (psPDn+, psPDtot+, psPDmod+) (W/m²) |                   | Uncertainty<br>(k = 2) |
|------------------------------------------------|---------------|----------------------|------------------------|-----------------------------------------------------------|-------------------|------------------------|
|                                                |               |                      |                        | 1 cm <sup>2</sup>                                         | 4 cm <sup>2</sup> |                        |
| 10 mm                                          | 93.3          | 151                  | 1.27 dB                | 59.4                                                      | 55.4              | 1.28 dB                |

| Distance Horn<br>Aperture to<br>Measured Plane | Prad¹<br>(mW) | Max E-field<br>(V/m) | Uncertainty<br>(k = 2) | psPDn+, psPDt     | Density<br>ot+, psPDmod+<br>/m²) | Uncertainty<br>(k = 2) |
|------------------------------------------------|---------------|----------------------|------------------------|-------------------|----------------------------------|------------------------|
|                                                |               |                      |                        | 1 cm <sup>2</sup> | 4 cm <sup>2</sup>                |                        |
| 10 mm                                          | 93.3          | 151                  | 1.27 dB                | 59.1, 59.4, 59.6  | 55.1, 55.4, 55.7                 | 1.28 dB                |

**Max Power Density** 

| Distance Horn<br>Aperture to<br>Measured Plane | Prad¹<br>(mW) | Max E-field<br>(V/m) | Uncertainty<br>(k = 2) | Max Power Density<br>Sn, Stot,  Stot <br>(W/m²) | Uncertainty<br>(k = 2) |
|------------------------------------------------|---------------|----------------------|------------------------|-------------------------------------------------|------------------------|
| 10 mm                                          | 93.3          | 151                  | 1.27 dB                | 60.5, 60.7, 60.9                                | 1.28 dB                |


 $<sup>^{\</sup>rm I}$  Assessed ohmic and mismatch loss plus numerical offset: 0.30 dB

### Appendix (Additional assessments outside the scope of SCS 0108)

#### **Antenna Parameters**

| Impedance, transformed to feed point | $53.5 \Omega$ - $0.1 j\Omega$ |  |
|--------------------------------------|-------------------------------|--|
| Return Loss                          | - 29.5 dB                     |  |

#### Impedance Measurement Plot



### Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

**Device under Test Properties** 

**DUT Type** Name, Manufacturer Dimensions [mm] IMEI 100.0 x 100.0 x 172.0 SN: 1005 5G Verification Source 10 GHz

**Exposure Conditions** 

Frequency [MHz], Channel Number **Conversion Factor Phantom Section** Position, Test Distance Band Group, [mm] 10000.0, 10000 5G -10.0 mm Validation band CW 1.0

Hardware Setup

Phantom mmWave Phantom - 1002 Medium **Probe, Calibration Date DAE, Calibration Date** EUmmWV3 - SN9374\_F1-55GHz, DAE4 Sn1215, Air 2023-06-29 2023-12-04

Scan Setup

**Measurement Results** 5G Scan 5G Scan 2024-01-18, 15:51 Sensor Surface [mm] MAIA 10.0 Date Avg. Area [cm²] Avg. Type psPDn+ [W/m²] psPDtot+ [W/m²] MAIA not used 1.00 Circular Averaging 59.2 59.4 59.6 60.5 psPDmod+ [W/m<sup>2</sup>] Max(Sn) [W/m²] Max(Stot) [W/m²] Max(|Stot|) [W/m²] 60.7 60.9 E<sub>max</sub> [V/m] Power Drift [dB] 151 -0.01



#### Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

#### **Device under Test Properties**

Dimensions [mm] IMEI **DUT Type** Name, Manufacturer 5G Verification Source 10 GHz 100.0 x 100.0 x 172.0 SN: 1005

#### **Exposure Conditions**

**Position, Test Distance** Group, Frequency [MHz], Channel Number **Conversion Factor Phantom Section** Band [mm] 10000.0, 1.0 5G -10.0 mm Validation band CW 10000

#### **Hardware Setup**

Medium Probe, Calibration Date **DAE, Calibration Date** Phantom mmWave Phantom - 1002 Air EUmmWV3 - SN9374\_F1-55GHz, DAE4 Sn1215, 2023-06-29 2023-12-04

#### Scan Setup

**Measurement Results** 5G Scan 5G Scan 2024-01-18, 15:51 Sensor Surface [mm] 10.0 Date MAIA MAIA not used Avg. Area [cm<sup>2</sup>] 4.00 Circular Averaging 55.2 Avg. Type psPDn+ [W/m²] psPDtot+ [W/m²] 55.5 psPDmod+ [W/m²] Max(Sn) [W/m²] Max(Stot) [W/m²] 55.7 60.5 60.7 Max(|Stot|) [W/m<sup>2</sup>] 60.9 E<sub>max</sub> [V/m] Power Drift [dB] 151 -0.01



# Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

#### **Device under Test Properties**

| The second second second        |                       |          |          |
|---------------------------------|-----------------------|----------|----------|
| Name, Manufacturer              | Dimensions [mm]       | IMEI     | DUT Type |
| 5G Verification Source 10 GHz   | 100 0 100 0 100 0     |          | DOT TYPE |
| and Aerillication Source to GHZ | 100.0 x 100.0 x 172.0 | SN: 1005 |          |

#### **Exposure Conditions**

| Phantom Section | Position, Test Distance<br>[mm] | Band            | Group, | Frequency [MHz],<br>Channel Number | Conversion Factor |
|-----------------|---------------------------------|-----------------|--------|------------------------------------|-------------------|
| 5G -            | 10.0 mm                         | Maria I         |        |                                    |                   |
| 30 -            | 10.0 mm                         | Validation band | CW     | 10000.0,                           | 1.0               |

### Hardware Setup

| Phantom<br>mmWave Phantom - 1002 | <b>Medium</b><br>Air | Probe, Calibration Date<br>EUmmWV3 - SN9374_F1-55GHz,<br>2023-12-04 | DAE, Calibration Date<br>DAE4 Sn1215,<br>2023-06-29 |
|----------------------------------|----------------------|---------------------------------------------------------------------|-----------------------------------------------------|
|                                  |                      |                                                                     | 2023-06-29                                          |
|                                  |                      |                                                                     | 21122 22 23                                         |

#### Scan Setup

| 2000 2011 2012      | 5G Scan       |                                 | 5G Scan           |
|---------------------|---------------|---------------------------------|-------------------|
| Sensor Surface [mm] | 10.0          | Date                            | 2024-01-18, 15:51 |
| MAIA                | MAIA not used | Avg. Area [cm <sup>2</sup> ]    | 1.00              |
|                     |               | Avg. Type                       | Square Averaging  |
|                     |               | psPDn+ [W/m²]                   | 59.1              |
|                     |               | psPDtot+ [W/m²]                 | 59.4              |
|                     |               | psPDmod+ [W/m²]                 | 59.6              |
|                     |               | Max(Sn) [W/m <sup>2</sup> ]     | 60.5              |
|                     |               | Max(Stot) [W/m <sup>2</sup> ]   | 60.7              |
|                     |               | Max( Stot ) [W/m <sup>2</sup> ] | 60.9              |
|                     |               | E <sub>max</sub> [V/m]          |                   |
|                     |               | Power Drift [dB]                | 151               |
|                     |               | - The Bill [SD]                 | -0.01             |

**Measurement Results** 



#### Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

**Device under Test Properties** 

DUT Type Dimensions [mm] IMEI Name, Manufacturer 100.0 x 100.0 x 172.0 SN: 1005 5G Verification Source 10 GHz

**Exposure Conditions** 

Frequency [MHz], Channel Number **Conversion Factor** Position, Test Distance Group, **Phantom Section** [mm] 10000.0, 1.0 10.0 mm Validation band CW 10000

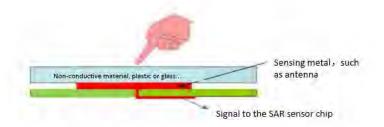
Hardware Setup

Medium **Probe, Calibration Date DAE, Calibration Date** Phantom mmWave Phantom - 1002 EUmmWV3 - SN9374\_F1-55GHz, DAE4 Sn1215, Air 2023-06-29 2023-12-04

Scan Setup

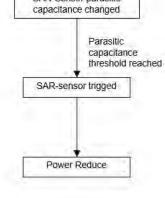
**Measurement Results** 5G Scan 5G Scan 2024-01-18, 15:51 Sensor Surface [mm] MAIA 10.0 Date Avg. Area [cm²] Avg. Type psPDn+ [W/m²] psPDtot+ [W/m²] MAIA not used 4.00 Square Averaging 55.1 55.4 psPDmod+ [W/m<sup>2</sup>] 55.7 Max(Sn) [W/m<sup>2</sup>] 60.5 Max(Stot) [W/m²] Max(|Stot|) [W/m²] 60.7 60.9 E<sub>max</sub> [V/m] 151 Power Drift [dB] -0.01




## ANNEX I DIPOLE CALIBRATION CERTIFICAT

Referring to KDB865664 D01, if dipoles are verified in return loss (<-20dBm, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

Justification of Extended Calibration SAR Dipole D6.5GHzV2- serial no. 1059


|                        | Head                |           |                            |                |                                  |                 |  |  |  |  |  |  |
|------------------------|---------------------|-----------|----------------------------|----------------|----------------------------------|-----------------|--|--|--|--|--|--|
| Date of<br>Measurement | Return-Loss<br>(dB) | Delta (%) | Real<br>Impedance<br>(ohm) | Delta<br>(ohm) | Imaginary<br>Impedance<br>(johm) | Delta<br>(johm) |  |  |  |  |  |  |
| 2021-12-01             | -23.5               | /         | 52.9                       | /              | -6.2                             | /               |  |  |  |  |  |  |
| 2022-11-28             | -22.8               | 3.0       | 53.4                       | 0.5            | -5.9                             | 0.3             |  |  |  |  |  |  |
| 2023-11-22             | -23.1               | 2.0       | 53.6                       | 0.7            | -5.6                             | 0.6             |  |  |  |  |  |  |

# **ANNEX J SAR Sensor Triggering Data Summary**



SAR sensors accurately discriminate between an inanimate object and human body proximity. The resulting detection from the SAR sensor is used to reduce power in the presence of a human body.

When the human body is close to the antenna which is connected to the SAR sensor, SAR sensor will be trigged till the parasitic capacitance threshold is reached. In this situation, TX power will be reduced.



SAR-Sensor parasitic

| ANT    | Side   | Distance |  |  |
|--------|--------|----------|--|--|
|        | Front  | 18       |  |  |
| ANTO   | Rear   | 20       |  |  |
| ANTO   | Right  | 18       |  |  |
|        | Bottom | 20       |  |  |
|        | Front  | 18       |  |  |
| A NIT1 | Rear   | 20       |  |  |
| ANT1   | Left   | 18       |  |  |
|        | Bottom | 20       |  |  |
|        | Front  | 18       |  |  |
| ANT3   | Rear   | 20       |  |  |
| ANTS   | Left   | 18       |  |  |
|        | Тор    | 20       |  |  |
|        | Front  | 18       |  |  |
| ANT4   | Rear   | 20       |  |  |
|        | Тор    | 18       |  |  |
|        | Front  | 18       |  |  |
| ANT5   | Rear   | 20       |  |  |
| ANIS   | Right  | 18       |  |  |
|        | Тор    | 18       |  |  |
|        | Front  | 4        |  |  |
| ANT7   | Rear   | 18       |  |  |
|        | Left   | 14       |  |  |
| ANT10  | Front  | 18       |  |  |
| ANT10  | Rear   | 20       |  |  |

| Right | 18 |
|-------|----|
|-------|----|

Per FCC KDB Publication 616217 D04v01r02, this device was tested by the manufacturer to determine the proximity sensor triggering distances for some positions. The measured output power within  $\pm 5$ mm of the triggering points (or until touching the phantom) is included for front, rear and each applicable edge.

To ensure all production units are compliant it is necessary to test SAR at a distance 1mm less than the smallest distance from the device and SAR phantom (determined from these triggering tests according to the KDB 616217 D04v01r02) with the device at maximum output power without power reduction. These SAR tests are included in addition to the SAR tests for the device touching the SAR phantom, with reduced power.

#### ANT0/1/3/4/5/10:

#### **Front**

Moving device toward the phantom:

| sensor near or far(KDB 616217 6.2.6)           |     |     |     |     |     |      |      |      |      |      |      |
|------------------------------------------------|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| Distance [mm] 23 22 21 20 19 18 17 16 15 14 13 |     |     |     |     |     |      |      |      |      | 13   |      |
| Main antenna                                   | Far | Far | Far | Far | Far | Near | Near | Near | Near | Near | Near |

Moving device away from the phantom:

| sensor near or far(KDB 616217 6.2.6)           |      |      |      |      |      |      |     |     |     |     |     |
|------------------------------------------------|------|------|------|------|------|------|-----|-----|-----|-----|-----|
| Distance [mm] 13 14 15 16 17 18 19 20 21 22 23 |      |      |      |      |      |      |     |     | 23  |     |     |
| Main antenna                                   | Near | Near | Near | Near | Near | Near | Far | Far | Far | Far | Far |

#### ANT0/1/3/4/5/10:

#### Rear

Moving device toward the phantom:

| sensor near or far(KDB 616217 6.2.6)           |     |     |     |     |     |      |      |      |      |      |      |
|------------------------------------------------|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| Distance [mm] 25 24 23 22 21 20 19 18 17 16 15 |     |     |     |     |     |      |      |      |      | 15   |      |
| Main antenna                                   | Far | Far | Far | Far | Far | Near | Near | Near | Near | Near | Near |

Moving device away from the phantom:

| sensor near or far(KDB 616217 6.2.6)           |      |      |      |      |      |      |     |     |     |     |     |
|------------------------------------------------|------|------|------|------|------|------|-----|-----|-----|-----|-----|
| Distance [mm] 15 16 17 18 19 20 21 22 23 24 25 |      |      |      |      |      |      |     |     |     | 25  |     |
| Main antenna                                   | Near | Near | Near | Near | Near | Near | Far | Far | Far | Far | Far |

### ANT7:

### Rear

Moving device toward the phantom:

| sensor near or far(KDB 616217 6.2.6)           |     |     |     |     |     |      |      |      |      |      |      |
|------------------------------------------------|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| Distance [mm] 23 22 21 20 19 18 17 16 15 14 13 |     |     |     |     |     |      |      |      | 13   |      |      |
| Main antenna                                   | Far | Far | Far | Far | Far | Near | Near | Near | Near | Near | Near |

Moving device away from the phantom:

| sensor near or far(KDB 616217 6.2.6) |      |      |      |      |      |      |     |     |     |     |     |
|--------------------------------------|------|------|------|------|------|------|-----|-----|-----|-----|-----|
| Distance [mm]                        | 13   | 14   | 15   | 16   | 17   | 18   | 19  | 20  | 21  | 22  | 23  |
| Main antenna                         | Near | Near | Near | Near | Near | Near | Far | Far | Far | Far | Far |

#### ANT3:

### Top

Moving device toward the phantom:

| sensor near or far(KDB 616217 6.2.6)           |     |     |     |     |     |      |      |      |      |      |      |
|------------------------------------------------|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| Distance [mm] 25 24 23 22 21 20 19 18 17 16 15 |     |     |     |     |     |      |      |      |      | 15   |      |
| Main antenna                                   | Far | Far | Far | Far | Far | Near | Near | Near | Near | Near | Near |

Moving device away from the phantom:

|                                                           | sensor near or far(KDB 616217 6.2.6) |  |  |  |  |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------|--------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|--|
| Distance [mm] 15 16 17 18 19 20 21 22 23 24 25            |                                      |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Main antenna Near Near Near Near Near Far Far Far Far Far |                                      |  |  |  |  |  |  |  |  |  |  |  |  |  |

#### ANT4/5:

#### Top

Moving device toward the phantom:

|                                                                 | sensor near or far(KDB 616217 6.2.6) |  |  |  |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------|--------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|
| Distance [mm] 23 22 21 20 19 18 17 16 15 14 13                  |                                      |  |  |  |  |  |  |  |  |  |  |  |  |
| Main antenna Far Far Far Far Near Near Near Near Near Near Near |                                      |  |  |  |  |  |  |  |  |  |  |  |  |

Moving device away from the phantom:

|                                                       | sensor near or far(KDB 616217 6.2.6) |  |  |  |  |  |  |  |  |  |     |  |  |  |
|-------------------------------------------------------|--------------------------------------|--|--|--|--|--|--|--|--|--|-----|--|--|--|
| Distance [mm] 13 14 15 16 17 18 19 20 21 22 23        |                                      |  |  |  |  |  |  |  |  |  |     |  |  |  |
| Main antenna Near Near Near Near Near Far Far Far Far |                                      |  |  |  |  |  |  |  |  |  | Far |  |  |  |

#### ANT0/1:

#### **Bottom**

Moving device toward the phantom:

|                                                | sensor near or far(KDB 616217 6.2.6)                            |  |  |  |  |  |  |  |  |  |  |  |  |  |
|------------------------------------------------|-----------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|--|
| Distance [mm] 25 24 23 22 21 20 19 18 17 16 15 |                                                                 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Main antenna                                   | Main antenna Far Far Far Far Near Near Near Near Near Near Near |  |  |  |  |  |  |  |  |  |  |  |  |  |

Moving device away from the phantom:

|                                                           | sensor near or far(KDB 616217 6.2.6) |  |  |  |  |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------|--------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|--|
| Distance [mm] 15 16 17 18 19 20 21 22 23 24 25            |                                      |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Main antenna Near Near Near Near Near Far Far Far Far Far |                                      |  |  |  |  |  |  |  |  |  |  |  |  |  |

### ANT1/3:

### Left Edge

Moving device toward the phantom:

|                                                | sensor near or far(KDB 616217 6.2.6)                            |  |  |  |  |  |  |  |  |  |  |  |  |  |
|------------------------------------------------|-----------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|--|
| Distance [mm] 23 22 21 20 19 18 17 16 15 14 13 |                                                                 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Main antenna                                   | Main antenna Far Far Far Far Near Near Near Near Near Near Near |  |  |  |  |  |  |  |  |  |  |  |  |  |

Moving device away from the phantom:

|                                                           | sensor near or far(KDB 616217 6.2.6) |  |  |  |  |  |  |  |  |  |     |  |  |
|-----------------------------------------------------------|--------------------------------------|--|--|--|--|--|--|--|--|--|-----|--|--|
| Distance [mm] 13 14 15 16 17 18 19 20 21 22 23            |                                      |  |  |  |  |  |  |  |  |  |     |  |  |
| Main antenna Near Near Near Near Near Far Far Far Far Far |                                      |  |  |  |  |  |  |  |  |  | Far |  |  |

### ANT7:

### Left Edge

Moving device toward the phantom:

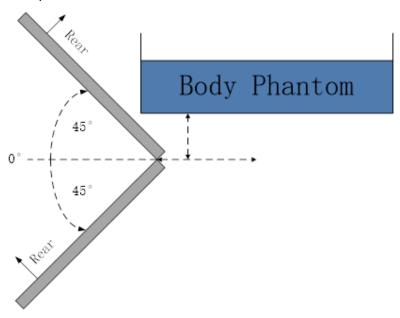
|                                                                                     |  |  | senso | r near or | far(KDB 6 | 516217 6. | .2.6) |  |  |  |  |  |
|-------------------------------------------------------------------------------------|--|--|-------|-----------|-----------|-----------|-------|--|--|--|--|--|
| sensor near or far(KDB 616217 6.2.6)  Distance [mm] 19 18 17 16 15 14 13 12 11 10 9 |  |  |       |           |           |           |       |  |  |  |  |  |
| Main antenna Far Far Far Far Near Near Near Near Near Near Near                     |  |  |       |           |           |           |       |  |  |  |  |  |

Moving device away from the phantom:

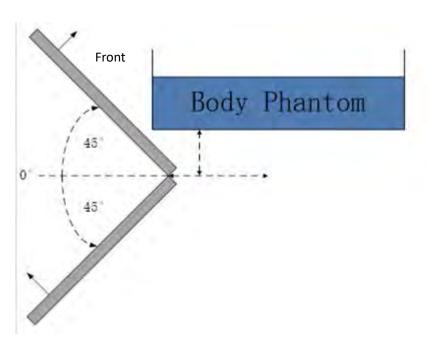
|                                               | sensor near or far(KDB 616217 6.2.6)                      |  |  |  |  |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------|-----------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|--|
| Distance [mm] 9 10 11 12 13 14 15 16 17 18 19 |                                                           |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Main antenna                                  | Main antenna Near Near Near Near Near Far Far Far Far Far |  |  |  |  |  |  |  |  |  |  |  |  |  |

### ANT0/5/10:

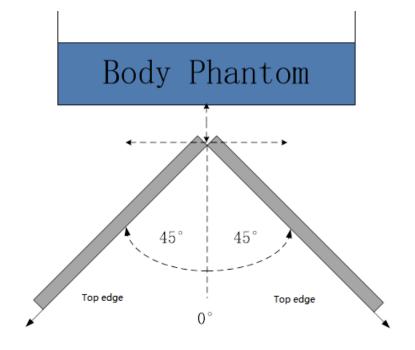
# Right Edge


Moving device toward the phantom:

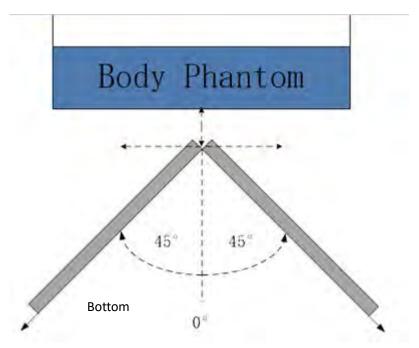
| sensor near or far(KDB 616217 6.2.6)                            |  |  |  |  |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|--|
| Distance [mm] 23 22 21 20 19 18 17 16 15 14 13                  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Main antenna Far Far Far Far Near Near Near Near Near Near Near |  |  |  |  |  |  |  |  |  |  |  |  |  |


Moving device away from the phantom:

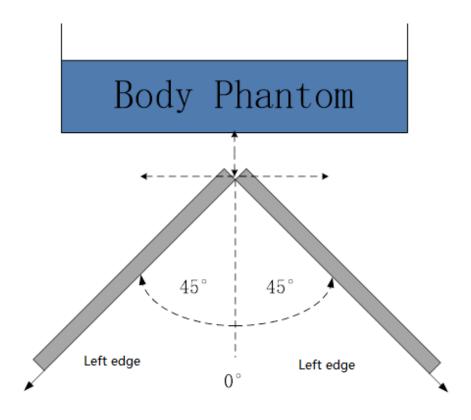
|                                                           | sensor near or far(KDB 616217 6.2.6) |  |  |  |  |  |  |  |  |  |     |  |  |  |
|-----------------------------------------------------------|--------------------------------------|--|--|--|--|--|--|--|--|--|-----|--|--|--|
| Distance [mm] 13 14 15 16 17 18 19 20 21 22 23            |                                      |  |  |  |  |  |  |  |  |  |     |  |  |  |
| Main antenna Near Near Near Near Near Far Far Far Far Far |                                      |  |  |  |  |  |  |  |  |  | Far |  |  |  |


Per FCC KDB Publication 616217 D04v01r02, the influence of table tilt angles to proximity sensor triggering is determined by positioning each edge that contains a transmitting antenna, perpendicular to the flat phantom, at the smallest sensor triggering test distanceby rotating the device around the edge next to the phantom in  $\leq 10^{\circ}$  increments until the tablet is  $\pm 45^{\circ}$  or more from the vertical position at  $0^{\circ}$ .

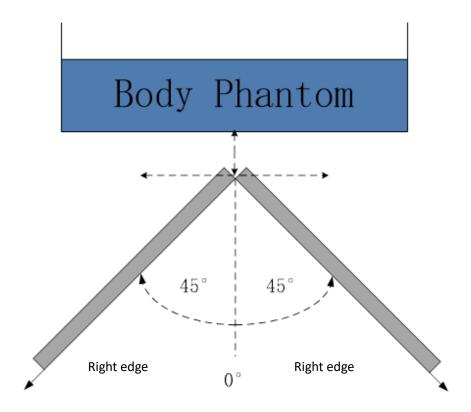



The Rear evaluation




The Front evaluation




The Top edge evaluation



The Bottom edge evaluation



The Left edge evaluation



The Right edge evaluation

Based on the above evaluation, we come to the conclusion that the sensor triggering is not released and normal maximum output power is not restored within the  $\pm 45^{\circ}$  range at the smallest sensor triggering test distance declared by manufacturer.

### **ANNEX K** Accreditation Certificate



# **Accredited Laboratory**

A2LA has accredited

## TELECOMMUNICATION TECHNOLOGY LABS, CAICT

Beijing, People's Republic of China

for technical competence in the field of

### **Electrical Testing**

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017

General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).



Presented this 26th day of June 2023.

Mr. Trace McInturff, Vice President, Accreditation Services For the Accreditation Council Certificate Number 7049.01

Valid to July 31, 2024

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.