Calibration Laboratory of

Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

[^0]Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

$\begin{array}{ll}\text { TSL } & \text { tissue simulating liquid } \\ \text { ConvF } & \text { sensitivity in TSL / NORM } x, y, z\end{array}$
N/A
not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
b) KDB 865664 , "SAR Measurement Requirements for 100 MHz to 6 GHz "

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$	Graded Ratio $=1.4$ (Z direction)
Frequency	$3300 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	38.2	$2.71 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$38.1 \pm 6 \%$	$2.79 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	-	-

SAR result with Head TSL

SAR averaged over $\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g })}$ of Head TSL	Condition	
SAR measured	100 mW input power	$6.67 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{6 6 . 1} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9} \% \mathbf{(k = 2)}$

SAR averaged over $\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 \mathbf { g })}$ of Head TSL	condition	
SAR measured	100 mW input power	$\mathbf{2 . 5 6} \mathrm{W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 5 . 5} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$53.8 \Omega-8.0 \mathrm{j} \Omega$
Return Loss	-21.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.124 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 3300 MHz ; Type: D3300V2; Serial: D3300V2-SN:1011
Communication System: UID $0-\mathrm{CW}$; Frequency: 3300 MHz
Medium parameters used: $\mathrm{f}=3300 \mathrm{MHz} ; \sigma=2.79 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=38.1 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN3503; ConvF(7.97, 7.97, 7.97)@3300 MHz; Calibrated: 07.03.2023
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 19.12.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}, \mathbf{d}=10 \mathrm{~mm}, \mathrm{f}=\mathbf{3 3 0 0} \mathbf{M H z} /$ Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=70.47 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.02 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=17.4 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=6.67 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{2 . 5 6} \mathrm{W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=8.2 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at $\mathrm{M} 1=75.7 \%$
Maximum value of SAR (measured) $=12.5 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Head TSL

3500 MHz Dipole Calibration Certificate

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland
Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

S Schweizerischer Kalibrierdienst
Servizio svizzero di taratura
Swiss Calibration Service
Accreditation No.: SCS 0108

Client Beiling
CALIBRATION CERTIFICATE

Object	D3500V2 - SN:1016		
Calibration procedure(s)	QA CAL-22.v7 Calibration Proce	ure for SAR Validation Sou	$\text { een } 3-10 \mathrm{GHz}$
Calibration date: June 21,2023			
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.			
All calibrations have been conducted in the closed laboratory facility: environment temperature (22 $\pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.			
Calibration Equipment used (M\&TE critical for calibration)			
Primary Standards	ID \#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	30-Mar-23 (No. 217-03804/03805)	Mar-24
Power sensor NRP-Z91	SN: 103244	30-Mar-23 (No. 217-03804)	Mar-24
Power sensor NRP-Z91	SN: 103245	30-Mar-23 (No. 217-03805)	Mar-24
Reference 20 dB Attenuator	SN: BH9394 (20k)	30-Mar-23 (No. 217-03809)	Mar-24
Type-N mismatch combination	SN: 310982 / 06327	30-Mar-23 (No. 217-03810)	Mar-24
Reference Probe EX3DV4	SN: 3503	07-Mar-23 (No. EX3-3503_Mar23)	Mar-24
DAE4	SN: 601	19-Dec-22 (No. DAE4-601_Dec22)	Dec-23
Secondary Standards	ID\#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	$30-$ Oct-14 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
RF generator R\&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-22)	In house check: Oct-24
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24
	Name	Function	Signature
Calibrated by:	Kreşimir Franjić	Laboratory Technician	
Approved by:	Sven Kühn	Technical Manager	
			Issued: June 22, 2023

Calibration Laboratory of

Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
C Servizio svizzero di taratura
S Swiss Calibration Service
Accreditation No.: SCS 0108
Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x, y, z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
b) KDB 865664 , "SAR Measurement Requirements for 100 MHz to 6 GHz "

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.
DASY Version

Head TSL parameters at 3400 MHz
The following parameters and calculations were applied.
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	38.0	$2.81 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$37.9 \pm 6 \%$	$2.86 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	-	-

SAR result with Head TSL at 3400 MHz

SAR averaged over $\mathbf{1} \mathbf{~ c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g })}$ of Head TSL	Condition	
SAR measured	100 mW input power	$6.79 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{6 7 . 6} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 \mathbf { g }) \text { of Head TSL }}$	condition	
SAR measured	100 mW input power	$\mathbf{2 . 5 4} \mathrm{W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 5 . 4} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Head TSL parameters at 3500 MHz
The following parameters and calculations were applied.
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	37.9	$2.91 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$37.8 \pm 6 \%$	$2.93 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	-	-

SAR result with Head TSL at $\mathbf{3 5 0 0} \mathbf{~ M H z}$

SAR averaged over $\mathbf{1} \mathbf{~ c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g })}$ of Head TSL	Condition	
SAR measured	100 mW input power	$6.71 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{6 6 . 9} \mathbf{~ W} / \mathbf{k g} \pm \mathbf{1 9 . 9} \%(\mathbf{k = 2})$

SAR averaged over $\left.\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0} \mathbf{~ g}\right)$ of Head TSL	condition	
SAR measured	100 mW input power	$2.53 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 5 . 2} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Head TSL parameters at $3600 \mathbf{M H z}$

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	37.8	$3.02 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$37.7 \pm 6 \%$	$3.01 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	-	-

SAR result with Head TSL at $\mathbf{3 6 0 0} \mathbf{~ M H z}$

SAR averaged over $\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g })}$ of Head TSL	Condition	
SAR measured	100 mW input power	$6.62 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{6 6 . 2} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 ~ \mathbf { g })}$ of Head TSL	condition	
SAR measured	100 mW input power	$2.47 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 4 . 7} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 3400 MHz

Impedance, transformed to feed point	$45.3 \Omega-8.1 \mathrm{j} \Omega$
Return Loss	-20.2 dB

Antenna Parameters with Head TSL at 3500 MHz

Impedance, transformed to feed point	$54.5 \Omega-2.5 \mathrm{j} \Omega$
Return Loss	-26.1 dB

Antenna Parameters with Head TSL at $\mathbf{3 6 0 0} \mathbf{~ M H z}$

Impedance, transformed to feed point	$58.6 \Omega-0.4 \mathrm{j} \Omega$
Return Loss	-22.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.137 ns

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 3500 MHz ; Type: D3500V2; Serial: D3500V2-SN:1016
Communication System: UID $0-\mathrm{CW}$; Frequency: 3500 MHz , Frequency: 3400 MHz , Frequency: 3600
MHz
Medium parameters used: $\mathrm{f}=3500 \mathrm{MHz} ; \sigma=2.93 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=37.8 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Medium parameters used: $\mathrm{f}=3400 \mathrm{MHz} ; \sigma=2.86 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=37.9 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Medium parameters used: $\mathrm{f}=3600 \mathrm{MHz} ; \sigma=3.01 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=37.7 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN3503; ConvF(7.91, 7.91, 7.91) @ $3500 \mathrm{MHz}, \operatorname{ConvF}(7.91,7.91,7.91$) @ 3400 MHz, ConvF(7.91, 7.91, 7.91) @ 3600 MHz ; Calibrated: 07.03.2023
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 19.12.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}, \mathrm{~d}=10 \mathrm{~mm}, \mathrm{f}=\mathbf{3 5 0 0 \mathrm { MHz } / \text { Zoom Scan, }}$
dist $=1.4 \mathrm{~mm}(8 \times 8 \times 8) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=69.74 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.01 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=18.0 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=6.71 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{2 . 5 3} \mathrm{W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=8 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at $\mathrm{M} 1=74.9 \%$
Maximum value of SAR (measured) $=12.9 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}, \mathrm{~d}=10 \mathrm{~mm}, \mathrm{f}=\mathbf{3 4 0 0 \mathrm { MHz } / \text { Zoom Scan, }}$ dist=1.4mm (8x8x8)/Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=70.34 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.01 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=18.1 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=6.79 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{2 . 5 4} \mathrm{W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=8 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=75.3 \%$
Maximum value of SAR (measured) $=13.1 \mathrm{~W} / \mathrm{kg}$

Dipole Calibration for Head Tissue/Pin=100 mW, $\mathbf{d}=10 \mathrm{~mm}, \mathrm{f}=\mathbf{3 6 0 0 \mathrm { MHz } / \text { Zoom Scan, }}$ dist $=1.4 \mathrm{~mm}(8 \times 8 \times 8) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=68.24 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.00 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=18.3 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=6.62 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.47 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=8 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=74.2 \%$
Maximum value of SAR (measured) $=13.0 \mathrm{~W} / \mathrm{kg}$

$0 \mathrm{~dB}=13.1 \mathrm{~W} / \mathrm{kg}=11.18 \mathrm{dBW} / \mathrm{kg}$

Impedance Measurement Plot for Head TSL

3700 MHz Dipole Calibration Certificate

Calibration Laboratory of Schmid \& Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland
Accredited by the Swiss Accreditation Service (SAS)

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Certificate No. D3700V2-1004_Jun23
CALIBRATION CERTIFICATE

Object	D3700V2 - SN:1004		
Calibration procedure(s)	QA CAL-22.v7 Calibration Proce	ure for SAR Validation Sou	veen $3-10 \mathrm{GHz}$
Calibration date:	June 21, 2023		
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.			
All calibrations have been conducted in the closed laboratory facility: environment temperature ($22 \pm 3)^{\circ} \mathrm{C}$ and humidity $\mathbf{~} 70 \%$.			
Calibration Equipment used (M\&TE critical for calibration)			
Primary Standards	ID \#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	30-Mar-23 (No. 217-03804/03805)	Mar-24
Power sensor NRP-Z91	SN: 103244	30-Mar-23 (No. 217-03804)	Mar-24
Power sensor NRP-Z91	SN: 103245	30-Mar-23 (No. 217-03805)	Mar-24
Reference 20 dB Attenuator	SN: BH9394 (20k)	30-Mar-23 (No. 217-03809)	Mar-24
Type-N mismatch combination	SN: 310982 / 06327	30-Mar-23 (No. 217-03810)	Mar-24
Reference Probe EX3DV4	SN: 3503	07-Mar-23 (No. EX3-3503_Mar23)	Mar-24
DAE4	SN: 601	19-Dec-22 (No. DAE4-601_Dec22)	Dec-23
Secondary Standards	ID\#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: US37292783	$07-$ Oct-15 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
RF generator R\&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-22)	In house check: Oct-24
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24
	Name	Function	Signature
Calibrated by:	KreSimir Franjic	Laboratory Technician	
Approved by:	Sven Kühn	Technical Manager	
			Issued: June 22, 2023

Calibration Laboratory of

Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

S Schweizerischer Kalibrierdiens
C Service suisse d'étalonnage
C Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x, y, z
N/A not applicable or not measured
Calibration is Performed According to the Following Standards:
a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz "

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}=4.0 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$	Graded Ratio $=1.4$ (Z direction)
Frequency	$3700 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters at 3700 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	37.7	$3.12 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$37.6 \pm 6 \%$	$3.08 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	-	-

SAR result with Head TSL at $3700 \mathbf{M H z}$

SAR averaged over $\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g })}$ of Head TSL	Condition	
SAR measured	100 mW input power	$6.76 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{6 7 . 8} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 \mathbf { g }) \text { of Head TSL }}$	condition	
SAR measured	100 mW input power	$2.47 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 4 . 7} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Head TSL parameters at $3800 \mathbf{M H z}$
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	37.6	$3.22 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$37.5 \pm 6 \%$	$3.16 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	-	-

SAR result with Head TSL at $3800 \mathbf{M H z}$

SAR averaged over $\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g })}$ of Head TSL	Condition	
SAR measured	100 mW input power	$6.44 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{6 4 . 6} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\left.\mathbf{1 0} \mathrm{cm}^{\mathbf{3}} \mathbf{(1 0} \mathbf{g}\right)$ of Head TSL	condition	
SAR measured	100 mW input power	$2.36 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 3 . 6} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 3700 MHz

Impedance, transformed to feed point	$49.6 \Omega-6.3 \mathrm{j} \Omega$
Return Loss	-24.0 dB

Antenna Parameters with Head TSL at $3800 \mathbf{M H z}$

Impedance, transformed to feed point	$56.7 \Omega-4.6 j \Omega$
Return Loss	-22.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.139 ns

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2 - SN: 1004
Communication System: UID $0-$ CW; Frequency: 3700 MHz , Frequency: 3800 MHz
Medium parameters used: $\mathrm{f}=3700 \mathrm{MHz} ; \sigma=3.08 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=37.6 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Medium parameters used: $\mathrm{f}=3800 \mathrm{MHz} ; \sigma=3.16 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=37.5 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN3503; ConvF(7.73, 7.73, 7.73) @ 3700 MHz , ConvF(7.73, 7.73, 7.73) @ 3800 MHz ; Calibrated: 07.03.2023
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 19.12.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}, \mathrm{~d}=10 \mathrm{~mm}, \mathrm{f}=\mathbf{3 7 0 0 \mathrm { MHz } / \text { Zoom Scan, }}$
dist=1.4mm (8x8x8)/Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=68.84 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.00 \mathrm{~dB}$
Peak SAR (extrapolated) $=19.0 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=6.76 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.47 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=8 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=74.2 \%$
Maximum value of SAR (measured) $=13.3 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}, \mathrm{~d}=10 \mathrm{~mm}, \mathrm{f}=\mathbf{3 8 0 0 \mathrm { MHz } / \text { Zoom Scan, }}$ dist $=1.4 \mathrm{~mm}(8 \times 8 x 8) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$ Reference Value $=67.41 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.02 \mathrm{~dB}$ Peak SAR $($ extrapolated $)=17.5 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=6.44 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.36 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=8.4 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=75.1 \%$
Maximum value of SAR $($ measured $)=12.6 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Head TSL

Calibration Laboratory of

Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland
Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client	CTTL Beijing		Certificate No.	D3900V2-1024_Jun23
CALIBRATION CERTIFICATE				
Object D3900V2-SN:1024				
Calibration procedure(s) QA CAL-22.v7 Calibration Procedure for SAR Validation Sources between $3-10 \mathrm{GHz}$				
Calibration date: June 21,2023				
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.				
All calibrations have been conducted in the closed laboratory facility: environment temperature ($22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.				
Calibration Equipment used (M\&TE critical for calibration)				
Primar	Standards	ID \#	Cal Date (Certificate No.)	Scheduled Calibration
Power	meter NRP2	SN: 104778	30-Mar-23 (No. 217-03804/03805)	Mar-24
Power	sensor NRP-Z91	SN: 103244	30-Mar-23 (No. 217-03804)	Mar-24
Power	sensor NRP-Z91	SN: 103245	30-Mar-23 (No. 217-03805)	Mar-24
Refer	nce 20 dB Attenuator	SN: BH9394 (20k)	30-Mar-23 (No. 217-03809)	Mar-24
Type-N	V mismatch combination	SN: 310982 / 06327	30-Mar-23 (No. 217-03810)	Mar-24
Refer	nce Probe EX3DV4	SN: 3503	07-Mar-23 (No. EX3-3503_Mar23)	Mar-24
		SN: 601	19-Dec-22 (No. DAE4-601_Dec22)	
Secon	dary Standards	ID\#	Check Date (in house)	Scheduled Check
Power	meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-22)	In house check: Oct-24
Power	sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
Power	sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
RF ge	nerator R\&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-22)	In house check: Oct-24
Network Analyzer Agilent E8358A		SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24
		Name	Function	Signature
Calibr	ated by:	Kresimir Franjic	Laboratory Technician	
Approved by:		Sven Kühn	Technical Manager	
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.				

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Schweizerischer Kalibrierdie
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x, y, z
N/A
not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
b) KDB 865664 , "SAR Measurement Requirements for 100 MHz to 6 GHz "

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY system configuration, as far as not given on page 1.
DASY Version

Head TSL parameters at $3900 \mathbf{M H z}$
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	37.5	$3.32 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$37.4 \pm 6 \%$	$3.25 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	-	-

SAR result with Head TSL at $3900 \mathbf{M H z}$

SAR averaged over $\mathbf{1} \mathbf{~ c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g })}$ of Head TSL	Condition	
SAR measured	100 mW input power	$6.97 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to $\mathbf{1 W}$	$\mathbf{6 9 . 9} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 ~ \mathbf { g })}$ of Head TSL	condition	
SAR measured	100 mW input power	$2.42 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 4 . 2} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Head TSL parameters at 4000 MHz

The following parameters and calculations were applied.
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	37.4	$3.43 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$37.3 \pm 6 \%$	$3.33 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	-	-

SAR result with Head TSL at 4000 MHz

SAR averaged over $\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g })}$ of Head TSL	Condition	
SAR measured	100 mW input power	$6.84 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{6 8 . 7} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\left.\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0} \mathbf{g}\right)$ of Head TSL	condition	
SAR measured	100 mW input power	$2.38 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 3 . 8} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Head TSL parameters at 4100 MHz

The following parameters and calculations were applied.
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	37.2	$3.53 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$37.1 \pm 6 \%$	$3.42 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	-	-

SAR result with Head TSL at $\mathbf{4 1 0 0} \mathbf{~ M H z}$

SAR averaged over $\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g })}$ of Head TSL	Condition	
SAR measured	100 mW input power	$6.83 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{6 8 . 6} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\left.\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 ~ g}\right)$ of Head TSL	condition	
SAR measured	100 mW input power	$\mathbf{2 . 3 8} \mathbf{W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 3 . 8} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 3900 MHz

Impedance, transformed to feed point	$46.3 \Omega-5.4 \mathrm{j} \Omega$
Return Loss	-23.4 dB

Antenna Parameters with Head TSL at $\mathbf{4 0 0 0} \mathbf{~ M H z}$

Impedance, transformed to feed point	$51.8 \Omega-2.7 \mathrm{j} \Omega$
Return Loss	-29.8 dB

Antenna Parameters with Head TSL at $\mathbf{4 1 0 0} \mathbf{~ M H z}$

Impedance, transformed to feed point	$59.2 \Omega-0.8 \mathrm{j} \Omega$
Return Loss	-21.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.107 ns

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 3900 MHz; Type: D3900V2; Serial: D3900V2 - SN:1024
Communication System: UID $0-\mathrm{CW}$; Frequency: 3900 MHz , Frequency: 4000 MHz , Frequency: 4100
MHz
Medium parameters used: $\mathrm{f}=3900 \mathrm{MHz} ; \sigma=3.25 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=37.4 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Medium parameters used: $\mathrm{f}=4000 \mathrm{MHz} ; \sigma=3.33 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=37.3 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Medium parameters used: $\mathrm{f}=4100 \mathrm{MHz} ; \sigma=3.42 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=37.1 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN3503; ConvF(7.39, 7.39, 7.39)@3900 MHz, ConvF(7.39, 7.39, 7.39)@4000 $\mathrm{MHz}, \operatorname{ConvF}(7.26,7.26,7.26) @ 4100 \mathrm{MHz}$; Calibrated: 07.03.2023
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 19.12.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

```
Dipole Calibration for Head Tissue/Pin \(=100 \mathrm{~mW}, \mathbf{d}=10 \mathrm{~mm}, \mathrm{f}=3900 \mathrm{MHz} /\) Zoom Scan, dist \(=1.4 \mathrm{~mm}(8 \times 8 \times 8) /\) Cube 0: Measurement grid: \(\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}\)
Reference Value \(=71.68 \mathrm{~V} / \mathrm{m}\); Power Drift \(=-0.01 \mathrm{~dB}\)
Peak SAR \((\) extrapolated \()=19.7 \mathrm{~W} / \mathrm{kg}\)
\(\operatorname{SAR}(1 \mathrm{~g})=\mathbf{6 . 9 7} \mathrm{W} / \mathrm{kg} ; \operatorname{SAR}(\mathbf{1 0} \mathrm{g})=\mathbf{2 . 4 2} \mathbf{W} / \mathrm{kg}\)
Smallest distance from peaks to all points 3 dB below \(=8 \mathrm{~mm}\)
Ratio of SAR at M2 to SAR at M1 \(=74.3 \%\)
Maximum value of SAR (measured) \(=14.0 \mathrm{~W} / \mathrm{kg}\)
```

Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}, \mathrm{~d}=10 \mathrm{~mm}, \mathrm{f}=4000 \mathrm{MHz} /$ Zoom Scan,
dist $=1.4 \mathrm{~mm}(8 \times 8 \times 8) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=72.34 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.00 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=19.6 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{6 . 8 4} \mathrm{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{2 . 3 8} \mathrm{W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=8 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=73.7 \%$
Maximum value of SAR (measured) $=13.9 \mathrm{~W} / \mathrm{kg}$

Dipole Calibration for Head Tissue/Pin=100 mW, $d=10 \mathrm{~mm}, \mathrm{f}=\mathbf{4 1 0 0 \mathrm { MHz } / \text { Zoom Scan, }}$
dist $=1.4 \mathrm{~mm}(8 \times 8 \times 8) /$ Cube 0 : Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=69.41 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.04 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=19.2 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{6 . 8 3} \mathrm{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{2 . 3 8} \mathrm{W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=8 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=74.2 \%$
Maximum value of SAR $($ measured $)=13.9 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Head TSL

Eile	e View	Channel	Swe	ep	Calibration	Irace	Scale	Marker	System Wi	Window			
	Chl: St	Ch 1 Avg Cht 3.70000		-							$\begin{aligned} & 3.9 \\ & 4.1 \\ & 4.0 \\ & 3.9 \end{aligned}$	900000 GHz 7.6241 pF 00000 GHz 51.918 pF 000000 GHz 14.581 pF 900000 GHz	46.272Ω -5.3530Ω 59.172Ω $-76411 \mathrm{~m} \Omega$ 51.817Ω -2.7289Ω 67.654 mU -121.67° Stop 4.30000 GHz
	10.00	des SI										00000 CHz	-2*395 dB
	5.00										4	100000 GHz	-2 2883 dB
	0.00								>3		4	100000 CHz	$-27846 \mathrm{~dB}$
	-10.00												
	-15.00	-											
	2500									-			
	-25.00												
													Stop 4.30000 GHz
Ch1: statt 3.70000 GHz													
	Status	CH 1: 511				C* 1-Port		Avg=20 Delay					LCL

5GHz Dipole Calibration Certificate

Calibration Laboratory of

Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S
Swiss Calibration Service
Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client	CTTL
	Beijing

Certificate No. D5GHzV2-1060_Jun23
CALIBRATION CERTIFICATE

Object	D5GHzV2 - SN:1060		
Calibration procedure(s)	QA CAL-22.v7 Calibration Procedure for SAR Validation Sources between $3-10 \mathrm{GHz}$		
Calibration date:	June 19, 2023		
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.			
All calibrations have been conducted in the closed laboratory facility: environment temperature (22 $\pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.			
Calibration Equipment used (M\&TE critical for calibration)			
Primary Standards	ID \#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	30-Mar-23 (No. 217-03804/03805)	Mar-24
Power sensor NRP-Z91	SN: 103244	30-Mar-23 (No. 217-03804)	Mar-24
Power sensor NRP-Z91	SN: 103245	30-Mar-23 (No. 217-03805)	Mar-24
Reference 20 dB Attenuator	SN: BH9394 (20k)	30-Mar-23 (No. 217-03809)	Mar-24
Type- N mismatch combination	SN: 310982 / 06327	30-Mar-23 (No. 217-03810)	Mar-24
Reference Probe EX3DV4	SN: 3503	07-Mar-23 (No. EX3-3503_Mar23)	Mar-24
DAE4	SN: 601	19-Dec-22 (No. DAE4-601_Dec22)	Dec-23
Secondary Standards	ID \#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	$30-$ Oct-14 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
RF generator R\&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-22)	In house check: Oct-24
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24
Calibrated by:	Name	Function	Signature
	Jeffrey Katzman	Laboratory Technician	7 ,
Approved by:	Sven Kühn	Technical Manager	
	Issued: June 20, 2023		

Calibration Laboratory of

Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland
S Schweizerischer Kalibrierdienst

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM $\mathrm{x}, \mathrm{y}, \mathrm{z}$
N/A not applicable or not measured
Calibration is Performed According to the Following Standards:
a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
b) KDB 865664 , "SAR Measurement Requirements for 100 MHz to 6 GHz "

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy $=4.0 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$	Graded Ratio $=1.4$ (Z direction)
	$5200 \mathrm{MHz} \pm 1 \mathrm{MHz}$	
	$5250 \mathrm{MHz} \pm 1 \mathrm{MHz}$	
Frequency	$5300 \mathrm{MHz} \pm 1 \mathrm{MHz}$	
	$5500 \mathrm{MHz} \pm 1 \mathrm{MHz}$	
	$5600 \mathrm{MHz} \pm 1 \mathrm{MHz}$	
	$5750 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	36.0	$4.66 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$35.5 \pm 6 \%$	$4.53 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	$\ldots-$.	\ldots

SAR result with Head TSL at $5200 \mathbf{M H z}$

SAR averaged over $\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g }) \text { of Head TSL }}$	Condition	
SAR measured	100 mW input power	$7.92 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{7 8 . 9} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\left.\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0} \mathbf{g}\right)$ of Head TSL	condition	
SAR measured	100 mW input power	$2.27 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 2 . 6} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	35.9	$4.71 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$35.5 \pm 6 \%$	$4.60 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	\ldots	$\ldots-$

SAR result with Head TSL at 5250 MHz

SAR averaged over $\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g }) \text { of Head TSL }}$	Condition	
SAR measured	100 mW input power	$7.98 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{7 9 . 6} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\mathbf{1 0} \mathbf{~ c m}^{\mathbf{3}} \mathbf{(1 0 ~ \mathbf { g })}$ of Head TSL	condition	
SAR measured	100 mW input power	$2.29 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to $\mathbf{1 W}$	$\mathbf{2 2 . 8} \mathbf{~ W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Head TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	35.9	$4.76 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$35.5 \pm 6 \%$	$4.67 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	\ldots	$\ldots-$

SAR result with Head TSL at 5300 MHz

SAR averaged over $\mathbf{1 ~ c m}$		
$\mathbf{3} \mathbf{(1 ~ g})$ of Head TSL	Condition	
SAR measured	100 mW input power	$8.24 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{8 2 . 1} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\mathbf{1 0} \mathbf{~ c m}^{\mathbf{3}} \mathbf{(1 0 ~ \mathbf { g })}$ of Head TSL	condition	
SAR measured	100 mW input power	$2.35 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 3 . 4} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \% \mathbf{(k = 2)}$

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	35.6	$4.96 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$35.4 \pm 6 \%$	$4.89 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	$-\ldots$.--

SAR result with Head TSL at 5500 MHz

SAR averaged over $\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g })}$ of Head TSL	Condition	
SAR measured	100 mW input power	$8.56 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{8 5 . 5} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\left.\mathbf{1 0} \mathbf{~ c m}^{\mathbf{3}} \mathbf{(1 0 ~ g}\right)$ of Head TSL	condition	
SAR measured	100 mW input power	$2.42 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 4 . 1} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	35.5	$5.07 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$35.3 \pm 6 \%$	$4.97 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5{ }^{\circ} \mathrm{C}$	$\ldots .-$	\ldots

SAR result with Head TSL at 5600 MHz

SAR averaged over $\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g })}$ of Head TSL	Condition	
SAR measured	100 mW input power	$8.38 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{8 3 . 6} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9 \%} \mathbf{(k = 2)}$

SAR averaged over $\left.\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 ~ g}\right)$ of Head TSL	condition	
SAR measured	100 mW input power	$2.38 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 3 . 8} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Head TSL parameters at $5750 \mathbf{M H z}$

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	35.4	$5.22 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$35.1 \pm 6 \%$	$5.08 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	$\ldots-$.	\ldots.

SAR result with Head TSL at 5750 MHz

SAR averaged over $\mathbf{1} \mathbf{~ c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g })}$ of Head TSL	Condition	
SAR measured	$\mathbf{1 0 0} \mathbf{~ m W}$ input power	$\mathbf{8 . 0 7} \mathbf{W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to $\mathbf{1 W}$	$\mathbf{8 0 . 5} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 \mathbf { g })}$ of Head TSL	condition	
SAR measured	100 mW input power	$2.28 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 2 . 7} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2)}$

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	35.3	$5.27 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$35.0 \pm 6 \%$	$5.11 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	\ldots	$\ldots-$

SAR result with Head TSL at $5800 \mathbf{M H z}$

SAR averaged over $\mathbf{1 \mathbf { c m } ^ { \mathbf { 3 } } \mathbf { (1 ~ g }) \text { of Head TSL }}$	Condition	
SAR measured	100 mW input power	$8.22 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{8 1 . 9} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\left.\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0} \mathbf{~ g}\right)$ of Head TSL	condition	
SAR measured	100 mW input power	$2.32 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 3 . 1} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	$48.6 \Omega-5.3 \mathrm{j} \Omega$
Return Loss	-25.1 dB

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	$47.7 \Omega-4.1 \mathrm{j} \Omega$
Return Loss	-26.2 dB

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	$46.9 \Omega-2.2 \mathrm{j} \Omega$
Return Loss	-28.0 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	$50.6 \Omega-4.0 \mathrm{j} \Omega$
Return Loss	-28.0 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	$53.6 \Omega+1.2 \mathrm{j} \Omega$
Return Loss	-28.6 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	$51.4 \Omega-0.3 \mathrm{j} \Omega$
Return Loss	-37.3 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	$51.2 \Omega-2.2 \mathrm{j} \Omega$
Return Loss	-32.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.201 ns

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1060

Communication System: UID 0 - CW; Frequency: 5200 MHz , Frequency: 5250 MHz , Frequency: 5300
MHz , Frequency: 5500 MHz , Frequency: 5600 MHz , Frequency: 5750 MHz , Frequency: 5800 MHz
Medium parameters used: $\mathrm{f}=5200 \mathrm{MHz} ; \sigma=4.53 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=35.5 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=5250 \mathrm{MHz} ; \sigma=4.60 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=35.5 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=5300 \mathrm{MHz} ; \sigma=4.67 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=35.5 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=5500 \mathrm{MHz} ; \sigma=4.89 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=35.4 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=5600 \mathrm{MHz} ; \sigma=4.97 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=35.3 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=5750 \mathrm{MHz} ; \sigma=5.08 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=35.1 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=5800 \mathrm{MHz} ; \sigma=5.11 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=35.0 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4-SN3503; ConvF(5.8, 5.8,5.8)@ $5200 \mathrm{MHz}, \operatorname{ConvF}(5.5,5.5,5.5) @ 5250 \mathrm{MHz}$, ConvF($5.49,5.49,5.49$) @ $5300 \mathrm{MHz}, \operatorname{ConvF}(5.25,5.25,5.25) @ 5500 \mathrm{MHz}$, $\operatorname{ConvF}(5.1,5.1,5.1)$ @ $5600 \mathrm{MHz}, \mathrm{ConvF}(5.08,5.08,5.08)$ @ $5750 \mathrm{MHz}, \operatorname{ConvF}(5.01,5.01,5.01)$ @ 5800 MHz ; Calibrated: 07.03.2023
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 19.12.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5200 \mathrm{MHz} /$ Zoom Scan,
dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=76.08 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.08 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=27.3 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{7 . 9 2} \mathrm{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.27 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=6.9 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at MI $=70.9 \%$
Maximum value of SAR (measured) $=18.0 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5250 \mathrm{MHz} /$ Zoom Scan,
dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=75.90 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.04 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=26.7 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{7 . 9 8} \mathbf{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{2 . 2 9} \mathbf{W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.2 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=71.8 \%$
Maximum value of SAR $($ measured $)=18.0 \mathrm{~W} / \mathrm{kg}$

Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5300 \mathrm{MHz} / \mathrm{Zoom}$ Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$ Reference Value $=76.02 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.08 \mathrm{~dB}$ Peak SAR $($ extrapolated $)=28.5 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.24 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.35 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=6.8 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at MI $=70.8 \%$
Maximum value of SAR (measured) $=18.8 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5500 \mathrm{MHz} /$ Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=75.86 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.04 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=32.2 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.56 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.42 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.2 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=67.3 \%$
Maximum value of SAR $($ measured $)=20.1 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5600 \mathrm{MHz} /$ Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=76.37 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.04 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=30.3 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.38 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{2 . 3 8} \mathbf{W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.2 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=68.5 \%$
Maximum value of SAR (measured) $=19.6 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5750 \mathrm{MHz} / \mathrm{Zoom}$ Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=73.46 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.04 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=30.9 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.07 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{2 . 2 8} \mathbf{W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.2 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=66.6 \%$
Maximum value of SAR (measured) $=19.3 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5800 \mathrm{MHz} /$ Zoom Scan,
dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $d x=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=74.09 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.05 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=31.5 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.22 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{2 . 3 2} \mathbf{W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.2 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=66.5 \%$
Maximum value of SAR (measured) $=19.6 \mathrm{~W} / \mathrm{kg}$

$0 \mathrm{~dB}=20.1 \mathrm{~W} / \mathrm{kg}=13.03 \mathrm{dBW} / \mathrm{kg}$

Impedance Measurement Plot for Head TSL (5200, 5300, 5500, 5800 MHz)

Impedance Measurement Plot for Head TSL (5250, 5600, 5750 MHz)

13 MHz Dipole Calibration Certificate

S Schweizerischer Kalibrierdiens

Accredited by the Swiss Accreditation Service (SAS)
C Service suisse d'étalonnage
C Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Glossary:
TSL
ConvF
N/A
tissue simulating liquid

Calibration is Performed According to the Following Standards:
a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific

Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
b) KDB 865664 , "SAR Measurement Requirements for 100 MHz to 6 GHz "

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	ELI4 Flat Phantom	Shell thickness: $2 \pm 0.2 \mathrm{~mm}$
EUT Positioning	Touch Position	
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}=4.0 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$	Graded Ratio $=1.4$ (Z direction)
Frequency	$13 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	55.0	$0.75 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$53.6 \pm 6 \%$	$0.72 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	\ldots	\ldots.

SAR result with Head TSL

SAR averaged over $\mathbf{1} \mathbf{~ c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g })}$ of Head TSL	Condition	
SAR measured	1 W input power	$0.558 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{0 . 5 7 3} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 8 . 4} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\left.\mathbf{1 0} \mathbf{~ m}^{\mathbf{3}} \mathbf{(1 0 ~ g}\right)$ of Head TSL	condition	
SAR measured	1 W input power	$0.344 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{0 . 3 5 3} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 8 . 0} \%(\mathbf{k}=\mathbf{2})$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$49.6 \Omega-1.7 \mathrm{j} \Omega$
Return Loss	-35.2 dB

Additional EUT Data

Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

Test Laboratory: SPEAG, Zurich, Switzerland
DUT: CLA13; Type: CLA13; Serial: CLA13-SN: 1009
Communication System: UID $0-\mathrm{CW}$; Frequency: 13 MHz
Medium parameters used: $\mathrm{f}=13 \mathrm{MHz} ; \sigma=0.72 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=53.6 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)
DASY52 Configuration:

- Probe: EX3DV4 - SN3877; ConvF $(15.33,15.33,15.33)$ @ 13 MHz ; Calibrated: 06.01.2023
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 27.01.2023
- Phantom: ELI v6.0; Type: QDOVA003AA; Serial: TP:2034
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

CLA Calibration for HSL-LF Tissue/CLA-13, touch configuration, Pin=1W/Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 10 \times 8) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=31.63 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.07 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=1.17 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=0.558 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.344 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=15.2 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=77.5 \%$
Maximum value of SAR (measured) $=0.836 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Head TSL

ANNEX I SAR Sensor Triggering Data Summary

ANT	Side	Distance
ANTO	Front	18
	Rear	20
	Right	18
	Bottom	20
ANT1	Front	18
	Rear	20
	Left	18
	Bottom	20
ANT3	Front	18
	Rear	20
	Left	18
	Top	18
ANT4	Front	18
	Rear	20
	Top	18
ANT5	Front	18
	Rear	20
	Right	18
	Top	18

Per FCC KDB Publication 616217 D04v01r02, this device was tested by the manufacturer to determine the proximity sensor triggering distances for some positions. The measured output power within $\pm 5 \mathrm{~mm}$ of the triggering points (or until touching the phantom) is included for front, rear and each applicable edge.

To ensure all production units are compliant it is necessary to test SAR at a distance 1 mm less than the smallest distance from the device and SAR phantom (determined from these triggering tests according to the KDB 616217 D04v01r02) with the device at maximum output power without power reduction. These SAR tests are included in addition to the SAR tests for the device touching the SAR phantom, with reduced power.

ANT0/1/3/4/5:

Front

Moving device toward the phantom:

sensor near or far(KDB 616217 6.2.6)													
Distance $[\mathbf{m m}]$	$\mathbf{2 3}$	$\mathbf{2 2}$	$\mathbf{2 1}$	$\mathbf{2 0}$	$\mathbf{1 9}$	$\mathbf{1 8}$	$\mathbf{1 7}$	$\mathbf{1 6}$	$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$		
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near		

Moving device away from the phantom:

sensor near or far(KDB 616217 6.2.6)														
Distance [mm]	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$			
Main antenna	Near	Near	Near	Near	Near	Near	Far	Far	Far	Far	Far			

Rear

Moving device toward the phantom:

sensor near or far(KDB 6162176.2.6)											
Distance $[\mathbf{m m}]$	$\mathbf{2 5}$	$\mathbf{2 4}$	$\mathbf{2 3}$	$\mathbf{2 2}$	$\mathbf{2 1}$	$\mathbf{2 0}$	$\mathbf{1 9}$	$\mathbf{1 8}$	$\mathbf{1 7}$	$\mathbf{1 6}$	$\mathbf{1 5}$
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near

Moving device away from the phantom:

sensor near or far(KDB 616217 6.2.6)														
Distance [mm]	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5}$			
Main antenna	Near	Near	Near	Near	Near	Near	Far	Far	Far	Far	Far			

ANT3/4/5:

Top

Moving device toward the phantom:

sensor near or far(KDB 616217 6.2.6)											
Distance [mm]	23	22	21	20	19	18	17	16	15	14	13
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near

Moving device away from the phantom:

| sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Distance $[\mathbf{m m}]$ | $\mathbf{1 3}$ | $\mathbf{1 4}$ | $\mathbf{1 5}$ | $\mathbf{1 6}$ | $\mathbf{1 7}$ | $\mathbf{1 8}$ | $\mathbf{1 9}$ | $\mathbf{2 0}$ | $\mathbf{2 1}$ | $\mathbf{2 2}$ | $\mathbf{2 3}$ |
| Main antenna | Near | Near | Near | Near | Near | Near | Far | Far | Far | Far | Far |

ANT0/1:

Bottom
Moving device toward the phantom:

sensor near or far(KDB 616217 6.2.6)													
Distance $[\mathbf{m m}]$	$\mathbf{2 5}$	$\mathbf{2 4}$	$\mathbf{2 3}$	$\mathbf{2 2}$	$\mathbf{2 1}$	$\mathbf{2 0}$	$\mathbf{1 9}$	$\mathbf{1 8}$	$\mathbf{1 7}$	$\mathbf{1 6}$	$\mathbf{1 5}$		
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near		

Moving device away from the phantom:

sensor near or far(KDB6162176.2.6)													
Distance $[\mathrm{mm}]$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5}$		
Main antenna	Near	Near	Near	Near	Near	Near	Far	Far	Far	Far	Far		

ANT1/3:

Left Edge

Moving device toward the phantom:

sensor near or far(KDB 616217 6.2.6)											
Distance [mm]	23	22	21	20	19	18	17	16	15	14	13
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near

Moving device away from the phantom:

| sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Distance $[\mathbf{m m}]$ | $\mathbf{1 3}$ | $\mathbf{1 4}$ | $\mathbf{1 5}$ | $\mathbf{1 6}$ | $\mathbf{1 7}$ | $\mathbf{1 8}$ | $\mathbf{1 9}$ | $\mathbf{2 0}$ | $\mathbf{2 1}$ | $\mathbf{2 2}$ | $\mathbf{2 3}$ |
| Main antenna | Near | Near | Near | Near | Near | Near | Far | Far | Far | Far | Far |

ANT0/5:

Right Edge

Moving device toward the phantom:

sensor near or far(KDB 616217 6.2.6)													
Distance $[\mathbf{m m}]$	$\mathbf{2 3}$	$\mathbf{2 2}$	$\mathbf{2 1}$	$\mathbf{2 0}$	$\mathbf{1 9}$	$\mathbf{1 8}$	$\mathbf{1 7}$	$\mathbf{1 6}$	$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$		
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near		

Moving device away from the phantom:

sensor near or far(KDB 616217 6.2.6)															
Distance $[\mathrm{mm}]$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$				
Main antenna	Near	Near	Near	Near	Near	Near	Far	Far	Far	Far	Far				

Per FCC KDB Publication 616217 D04v01r02, the influence of table tilt angles to proximity sensor triggering is determined by positioning each edge that contains a transmitting antenna, perpendicular to the flat phantom, at the smallest sensor triggering test distanceby rotating the device around the edge next to the phantom in $\leq 10^{\circ}$ increments until the tablet is $\pm 45^{\circ}$ or more from the vertical position at 0°.

The Rear evaluation

The Front evaluation

The Top edge evaluation

The Left edge evaluation

The Right edge evaluation
Based on the above evaluation, we come to the conclusion that the sensor triggering is not released and normal maximum output power is not restored within the $\pm 45^{\circ}$ range at the smallest sensor triggering test distance declared by manufacturer.

ANNEX J Accreditation Certificate

Accredited Laboratory

A2LA has accredited
TELECOMMUNICATION TECHNOLOGY LABS, CAICT
Beijing, People's Republic of China
for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017
General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Mr. Trace McInturff, Vice President, Accreditation Services For the Accreditation Council
Cerlificate Number 7049.01
Valid to July 31, 2024

[^0]: S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage
 C Servizio svizzero di taratura
 S
 Swiss Calibration Service

