Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}=4.0 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$	Graded Ratio = 1.4 (Z direction)
	$5200 \mathrm{MHz} \pm 1 \mathrm{MHz}$	
	$5250 \mathrm{MHz} \pm 1 \mathrm{MHz}$	
Frequency	$5300 \mathrm{MHz} \pm 1 \mathrm{MHz}$	
	$5500 \mathrm{MHz} \pm 1 \mathrm{MHz}$	
	$5600 \mathrm{MHz} \pm 1 \mathrm{MHz}$	
	$5750 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters at 5200 MHz
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	36.0	$4.66 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$34.9 \pm 6 \%$	$4.50 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	$\ldots--$	$\ldots--$

SAR result with Head TSL at 5200 MHz

SAR averaged over $\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g }) \text { of Head TSL }}$	Condition	
SAR measured	100 mW input power	$7.84 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{7 7 . 8} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\mathbf{1 0} \mathbf{~ c m}^{\mathbf{3}} \mathbf{(1 0 ~ \mathbf { g })}$ of Head TSL	condition	
SAR measured	100 mW input power	$2.26 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 2 . 3} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	35.9	$4.71 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$34.8 \pm 6 \%$	$4.55 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	$-\ldots-$	----

SAR result with Head TSL at $5250 \mathbf{M H z}$

SAR averaged over $\mathbf{1} \mathrm{cm}^{\mathbf{3}} \mathbf{(1 \mathbf { g }) \text { of Head TSL }}$	Condition	
SAR measured	100 mW input power	$7.87 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{7 8 . 1} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9 \%} \mathbf{(k = 2)}$

SAR averaged over $\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 \mathbf { g }) \text { of Head TSL }}$	condition	
SAR measured	100 mW input power	$2.25 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to $\mathbf{1 W}$	$\mathbf{2 2 . 3} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Head TSL parameters at 5300 MHz
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	35.9	$4.76 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$34.7 \pm 6 \%$	$4.60 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	---	$\ldots-$

SAR result with Head TSL at $5300 \mathbf{~ M H z}$

SAR averaged over $\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g }) \text { of Head TSL }}$	Condition	
SAR measured	100 mW input power	$8.17 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{8 1 . 1} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 ~ \mathbf { g }) \text { of Head TSL }}$	condition	
SAR measured	100 mW input power	$2.33 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 3 . 1} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	35.6	$4.96 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$34.4 \pm 6 \%$	$4.80 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	---	$\ldots--$

SAR result with Head TSL at 5500 MHz

SAR averaged over $\mathbf{1 \mathbf { c m } ^ { \mathbf { 3 } } \mathbf { 1 } \mathbf { ~ g }) \text { of Head TSL }}$	Condition	
SAR measured	100 mW input power	$8.60 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{8 5 . 3} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\mathbf{1 0} \mathbf{~ c m}^{\mathbf{3}} \mathbf{(1 0 ~ \mathbf { ~ g }) \text { of Head TSL }}$	condition	
SAR measured	100 mW input power	$2.44 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 4 . 1} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%$ (k=2)

Head TSL parameters at $5600 \mathbf{M H z}$

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	35.5	$5.07 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$34.3 \pm 6 \%$	$4.90 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	$\ldots--$	\ldots

SAR result with Head TSL at 5600 MHz

SAR averaged over $\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g }) \text { of Head TSL }}$	Condition	
SAR measured	100 mW input power	$\mathbf{8 . 3 9 \mathrm { W } / \mathbf { k g }}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{8 3 . 2} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9} \% \mathbf{(k = 2)}$

SAR averaged over $\mathbf{1 0} \mathbf{~ c m}^{\mathbf{3}} \mathbf{(1 0 ~ \mathbf { g })}$ of Head TSL	condition	
SAR measured	100 mW input power	$2.40 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 3 . 7} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2)}$

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	35.4	$5.22 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$34.1 \pm 6 \%$	$5.05 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	$\ldots-$.	\ldots

SAR result with Head TSL at 5750 MHz

SAR averaged over $\mathbf{1} \mathbf{~ c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g }) \text { of Head TSL }}$	Condition	
SAR measured	100 mW input power	$8.12 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{8 0 . 4} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 ~ \mathbf { ~ })}$ of Head TSL	condition	
SAR measured	100 mW input power	$2.31 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 2 . 8} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Head TSL parameters at 5800 MHz
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	35.3	$5.27 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$34.0 \pm 6 \%$	$5.10 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	$\ldots--$	\ldots

SAR result with Head TSL at 5800 MHz

SAR averaged over $\mathbf{1} \mathbf{~ c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g })}$ of Head TSL	Condition	
SAR measured	100 mW input power	$\mathbf{8 . 2 7} \mathrm{W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{8 2 . 0} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\left.\mathbf{1 0} \mathbf{~ c m}^{\mathbf{3}} \mathbf{(1 0} \mathbf{~ g}\right)$ of Head TSL	condition	
SAR measured	100 mW input power	$2.34 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 3 . 1} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \% \mathbf{(k = 2)}$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	$49.4 \Omega-6.5 \mathrm{j} \Omega$
Return Loss	-23.7 dB

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	$47.7 \Omega-5.5 \mathrm{j} \Omega$
Return Loss	-24.3 dB

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	$46.2 \Omega-3.2 \mathrm{j} \Omega$
Return Loss	-25.8 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	$50.0 \Omega \cdot 3.1 \mathrm{j} \Omega$
Return Loss	-30.1 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	$53.6 \Omega+0.5 \mathrm{j} \Omega$
Return Loss	-29.2 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	$51.9 \Omega-1.7 \mathrm{j} \Omega$
Return Loss	-32.1 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	$51.2 \Omega-3.2 \mathrm{j} \Omega$
Return Loss	-29.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.202 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

Date: 05.07.2022

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1060

Communication System: UID 0 - CW; Frequency: 5200 MHz , Frequency: 5250 MHz , Frequency: 5300 MHz, Frequency: 5500 MHz , Frequency: 5600 MHz , Frequency: 5750 MHz , Frequency: 5800 MHz Medium parameters used: $\mathrm{f}=5200 \mathrm{MHz} ; \sigma=4.50 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=34.9 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=5250 \mathrm{MHz} ; \sigma=4.55 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=34.8 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=5300 \mathrm{MHz} ; \sigma=4.60 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=34.7 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=5500 \mathrm{MHz} ; \sigma=4.80 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=34.4 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=5600 \mathrm{MHz} ; \sigma=4.90 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=34.3 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=5750 \mathrm{MHz} ; \sigma=5.05 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=34.1 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=5800 \mathrm{MHz} ; \sigma=5.10 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=34.0 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN3503; ConvF(5.8, 5.8, 5.8) @ 5200 MHz , $\operatorname{ConvF}(5.5,5.5,5.5) @ 5250 \mathrm{MHz}$, $\operatorname{ConvF}(5.49,5.49,5.49) @ 5300 \mathrm{MHz}, \operatorname{ConvF}(5.25,5.25,5.25) @ 5500 \mathrm{MHz}, \operatorname{ConvF}(5.1,5.1,5.1)$ @ $5600 \mathrm{MHz}, \operatorname{ConvF}(5.08,5.08,5.08)$ @ 5750 MHz , $\operatorname{ConvF}(5.01,5.01,5.01) @ 5800 \mathrm{MHz}$; Calibrated: 08.03.2022
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.05.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5200 \mathrm{MHz} /$ Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: $d x=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=74.40 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.07 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=27.9 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=7.84 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{2 . 2 6} \mathbf{W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.2 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=69.1 \%$
Maximum value of SAR $($ measured $)=17.6 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5250 \mathrm{MHz} /$ Zoom Scan,
dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $d x=4 \mathrm{~mm}, d y=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=75.86 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.09 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=27.1 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{7 . 8 7} \mathrm{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.25 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=6.8 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=69.8 \%$
Maximum value of SAR (measured) $=17.4 \mathrm{~W} / \mathrm{kg}$

Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5300 \mathrm{MHz} /$ Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=77.09 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.02 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=28.9 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.17 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.33 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.2 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=68.9 \%$
Maximum value of SAR (measured) $=18.3 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5500 \mathrm{MHz} /$ Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $d x=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=76.69 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.02 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=32.9 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.60 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.44 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.2 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=66.4 \%$
Maximum value of SAR $($ measured $)=19.8 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5600 \mathrm{MHz} /$ Zoom Scan, dist=1.4mm $(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $d x=4 \mathrm{~mm}, d y=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=76.44 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.02 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=31.2 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.39 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.40 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.2 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=67.3 \%$
Maximum value of SAR (measured) $=19.3 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5750 \mathrm{MHz} /$ Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=73.53 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.08 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=31.8 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.12 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.31 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.2 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=65.4 \%$
Maximum value of SAR (measured) $=19.0 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5800 \mathrm{MHz} /$ Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0 : Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=74.35 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.03 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=32.9 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.27 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.34 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.2 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=65.2 \%$
Maximum value of SAR (measured) $=19.4 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Head TSL (5200, 5250, 5300, 5500, 5600 MHz)

Impedance Measurement Plot for Head TSL (5300, 5500, 5600, 5750, 5800 MHz)

3500 MHz Dipole Calibration Certificate

[^0]Page 1 of 8

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x, y, z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
b) KDB 865664 , "SAR Measurement Requirements for 100 MHz to 6 GHz "

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}=4.0 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$	Graded Ratio $=1.4$ (Z direction)
	$3400 \mathrm{MHz} \pm 1 \mathrm{MHz}$	
Frequency	$3500 \mathrm{MHz} \pm 1 \mathrm{MHz}$	
	$3600 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters at 3400 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	38.0	$2.81 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$37.3 \pm 6 \%$	$2.84 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	-	-

SAR result with Head TSL at $3400 \mathbf{M H z}$

SAR averaged over $\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g }) \text { of Head TSL }}$	Condition	
SAR measured	100 mW input power	$6.85 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{6 8 . 0} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\mathbf{1 0} \mathbf{~ c m}^{\mathbf{3}} \mathbf{(1 0 ~ \mathbf { g }) \text { of Head TSL }}$	condition	
SAR measured	100 mW input power	$2.57 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 5 . 6} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2)}$

Head TSL parameters at 3500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	37.9	$2.91 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$37.2 \pm 6 \%$	$2.92 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	-	-

SAR result with Head TSL at $3500 \mathbf{M H z}$

SAR averaged over $\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g })}$ of Head TSL	Condition	
SAR measured	$\mathbf{1 0 0} \mathrm{mW}$ input power	$6.79 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{6 7 . 5} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 \mathbf { g })}$ of Head TSL	condition	
SAR measured	100 mW input power	$2.54 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 5 . 3} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Head TSL parameters at 3600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	37.8	$3.02 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$37.1 \pm 6 \%$	$2.99 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	--	-

SAR result with Head TSL at $\mathbf{3 6 0 0} \mathbf{~ M H z}$

SAR averaged over $\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g })}$ of Head TSL	Condition	
SAR measured	100 mW input power	$6.66 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{6 6 . 4} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 ~ \mathbf { g })}$ of Head TSL	condition	
SAR measured	100 mW input power	$2.49 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 4 . 8} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 3400 MHz

Impedance, transformed to feed point	$46.4 \Omega-8.7 \mathrm{j} \Omega$
Return Loss	-20.2 dB

Antenna Parameters with Head TSL at $\mathbf{3 5 0 0} \mathbf{~ M H z}$

Impedance, transformed to feed point	$55.1 \Omega-3.7 \mathrm{j} \Omega$
Return Loss	-24.5 dB

Antenna Parameters with Head TSL at $\mathbf{3 6 0 0} \mathbf{~ M H z}$

Impedance, transformed to feed point	$59.5 \Omega-0.4 \mathrm{j} \Omega$
Return Loss	-21.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.137 ns

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

Date: 01.07.2022
Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 3500 MHz ; Type: D3500V2; Serial: D3500V2 - SN: 1016
Communication System: UID 0-CW; Frequency: 3500 MHz , Frequency: 3400 MHz , Frequency: 3600
MHz
Medium parameters used: $\mathrm{f}=3500 \mathrm{MHz} ; \sigma=2.92 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=37.2 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=3400 \mathrm{MHz} ; \sigma=2.84 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=37.3 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=3600 \mathrm{MHz} ; \sigma=2.99 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=37.1 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN3503; ConvF(7.91, 7.91, 7.91)@3500 MHz, ConvF(7.97, 7.97, 7.97)@3400 $\mathrm{MHz}, \operatorname{ConvF}(7.91,7.91,7.91) @ 3600 \mathrm{MHz}$; Calibrated: 08.03.2022
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.05.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}, \mathbf{d}=10 \mathrm{~mm}, \mathrm{f}=\mathbf{3 5 0 0 M H z} /$ Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 8) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=69.69 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.01 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=18.5 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=6.79 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{2 . 5 4} \mathrm{W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=8.6 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=74.7 \%$
Maximum value of SAR (measured) $=13.1 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Head Tissue $/ \mathbf{P i n}=100 \mathrm{~mW}, \mathrm{~d}=10 \mathrm{~mm}, \mathrm{f}=\mathbf{3 4 0 0 \mathrm { MHz } / \text { Zoom Scan, }}$ dist $=1.4 \mathrm{~mm}(8 \times 8 \times 8) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=70.52 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.01 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=18.5 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=6.85 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{2 . 5 7} \mathrm{W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=8.4 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=75.4 \%$
Maximum value of SAR (measured) $=12.9 \mathrm{~W} / \mathrm{kg}$

Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}, \mathrm{~d}=10 \mathrm{~mm}, \mathrm{f}=3600 \mathrm{MHz} /$ Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 8) /$ Cube 0: Measurement grid: $d x=4 \mathrm{~mm}, d y=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=68.51 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.01 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=18.5 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=6.66 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.49 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=8.4 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=74.3 \%$
Maximum value of SAR $($ measured $)=12.9 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Head TSL

3700 MHz Dipole Calibration Certificate

Calibration Laboratory of

Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)
S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

```
Client CTTL (Auden)

CALIBRATION CERTIFICATE
\begin{tabular}{|c|c|c|c|}
\hline Object & \multicolumn{3}{|l|}{D3700V2 - SN:1004} \\
\hline Calibration procedure(s) & \multicolumn{3}{|l|}{\begin{tabular}{l}
QA CAL-22.v6 \\
Calibration Procedure for SAR Validation Sources between \(3-10 \mathrm{GHz}\)
\end{tabular}} \\
\hline Calibration date: & \multicolumn{3}{|l|}{July 01, 2022} \\
\hline \multicolumn{4}{|l|}{This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.} \\
\hline \multicolumn{4}{|l|}{All calibrations have been conducted in the closed laboratory facility: environment temperature ( \(22 \pm 3)^{\circ} \mathrm{C}\) and humidity \(<70 \%\).} \\
\hline \multicolumn{4}{|l|}{Calibration Equipment used (M\&TE critical for calibration)} \\
\hline Primary Standards & ID \# & Cal Date (Certificate No.) & Scheduled Calibration \\
\hline Power meter NRP & SN: 104778 & 04-Apr-22 (No. 217-03525/03524) & Apr-23 \\
\hline Power sensor NRP-Z91 & SN: 103244 & 04-Apr-22 (No. 217-03524) & Apr-23 \\
\hline Power sensor NRP-Z91 & SN: 103245 & 04-Apr-22 (No. 217-03525) & Apr-23 \\
\hline Reference 20 dB Attenuator & SN: BH9394 (20k) & 04-Apr-22 (No. 217-03527) & Apr-23 \\
\hline Type-N mismatch combination & SN: 310982 / 06327 & 04-Apr-22 (No. 217-03528) & Apr-23 \\
\hline Reference Probe EX3DV4 & SN: 3503 & 08-Mar-22 (No. EX3-3503_Mar22) & Mar-23 \\
\hline DAE4 & SN: 601 & 02-May-22 (No. DAE4-601_May22) & May-23 \\
\hline Secondary Standards & ID \# & Check Date (in house) & Scheduled Check \\
\hline Power meter E4419B & SN: GB39512475 & \(30-\mathrm{Oct}-14\) (in house check Oct-20) & In house check: Oct-22 \\
\hline Power sensor HP 8481A & SN: US37292783 & 07-Oct-15 (in house check Oct-20) & In house check: Oct-22 \\
\hline Power sensor HP 8481A & SN: MY41093315 & 07-Oct-15 (in house check Oct-20) & In house check: Oct-22 \\
\hline RF generator R\&S SMT-06 & SN: 100972 & 15-Jun-15 (in house check Oct-20) & In house check: Oct-22 \\
\hline \multirow[t]{2}{*}{Network Analyzer Agilent E8358A} & SN: US41080477 & 31-Mar-14 (in house check Oct-20) & In house check: Oct-22 \\
\hline & Name & Function & Signature \\
\hline Calibrated by: & Joanna Lleshaj & Laboratory Technician & ciflitury \\
\hline \multirow[t]{2}{*}{Approved by:} & Sven Kühn & Technical Manager & \\
\hline & & & Issued: July 11, 2022 \\
\hline
\end{tabular}

No.I23Z60340-SEM06

\section*{Calibration Laboratory of}

Schmid \& Partner
S Schweizerischer Kalibrierdienst
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Glossary:
\begin{tabular}{ll} 
TSL & tissue simulating liquid \\
ConvF & sensitivity in TSL / NORM \(x, y, z\) \\
N/A & not applicable or not measured
\end{tabular}

\section*{Calibration is Performed According to the Following Standards:}
a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz )", October 2020.
b) KDB 865664 , "SAR Measurement Requirements for 100 MHz to 6 GHz "

\section*{Additional Documentation:}
c) DASY System Handbook

\section*{Methods Applied and Interpretation of Parameters:}
- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor \(\mathrm{k}=2\), which for a normal distribution corresponds to a coverage probability of approximately \(95 \%\).

Measurement Conditions
\begin{tabular}{l} 
DASY system configuration, as far as not given on page 1. \\
\begin{tabular}{|l|c|c|}
\hline DASY Version & DASY52 & V52.10.4 \\
\hline Extrapolation & Advanced Extrapolation & \\
\hline Phantom & Modular Flat Phantom V5.0 & \\
\hline Distance Dipole Center - TSL & 10 mm & with Spacer \\
\hline Zoom Scan Resolution & \(\mathrm{dx}, \mathrm{dy}=4.0 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}\) & Graded Ratio \(=1.4\) (Z direction) \\
\hline Frequency & \(3700 \mathrm{MHz} \pm 1 \mathrm{MHz}\) & \\
\hline
\end{tabular} \\
\hline
\end{tabular}

Head TSL parameters at 3700 MHz
The following parameters and calculations were applied.
The following parameters and calculations were applied.
\begin{tabular}{|l|c|c|c|}
\hline & Temperature & Permittivity & Conductivity \\
\hline Nominal Head TSL parameters & \(22.0^{\circ} \mathrm{C}\) & 37.7 & \(3.12 \mathrm{mho} / \mathrm{m}\) \\
\hline Measured Head TSL parameters & \((22.0 \pm 0.2)^{\circ} \mathrm{C}\) & \(37.0 \pm 6 \%\) & \(3.07 \mathrm{mho} / \mathrm{m} \pm 6 \%\) \\
\hline Head TSL temperature change during test & \(<0.5^{\circ} \mathrm{C}\) & - & - \\
\hline
\end{tabular}

SAR result with Head TSL at \(3700 \mathbf{M H z}\)
\begin{tabular}{|l|c|c|}
\hline SAR averaged over \(\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{( 1 \mathbf { g } ) \text { of Head TSL }}\) & Condition & \\
\hline SAR measured & 100 mW input power & \(6.74 \mathrm{~W} / \mathrm{kg}\) \\
\hline SAR for nominal Head TSL parameters & normalized to 1 W & \(\mathbf{6 7 . 3} \mathbf{W} / \mathbf{k g} \pm 19.9 \%(\mathbf{k}=\mathbf{2})\) \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|}
\hline SAR averaged over \(\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{( 1 0 ~ \mathbf { g } )}\) of Head TSL & condition & \\
\hline SAR measured & 100 mW input power & \(2.44 \mathrm{~W} / \mathrm{kg}\) \\
\hline SAR for nominal Head TSL parameters & normalized to 1 W & \(\mathbf{2 4 . 4} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \% \mathbf{( k = 2 )}\) \\
\hline
\end{tabular}

Head TSL parameters at \(3800 \mathbf{M H z}\)
The following parameters and calculations were applied.
The following parameters and calculations were applied.
\begin{tabular}{|l|c|c|c|}
\hline & Temperature & Permittivity & Conductivity \\
\hline Nominal Head TSL parameters & \(22.0^{\circ} \mathrm{C}\) & 37.6 & \(3.22 \mathrm{mho} / \mathrm{m}\) \\
\hline Measured Head TSL parameters & \((22.0 \pm 0.2)^{\circ} \mathrm{C}\) & \(36.8 \pm 6 \%\) & \(3.15 \mathrm{mho} / \mathrm{m} \pm 6 \%\) \\
\hline Head TSL temperature change during test & \(<0.5^{\circ} \mathrm{C}\) & - & - \\
\hline
\end{tabular}

SAR result with Head TSL at \(3800 \mathbf{M H z}\)
\begin{tabular}{|l|c|c|}
\hline SAR averaged over \(\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{( 1 \mathbf { g } ) \text { of Head TSL }}\) & Condition & \\
\hline SAR measured & 100 mW input power & \(6.57 \mathrm{~W} / \mathrm{kg}\) \\
\hline SAR for nominal Head TSL parameters & normalized to 1 W & \(\mathbf{6 5 . 7} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9} \%(\mathbf{k}=\mathbf{2})\) \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|}
\hline SAR averaged over \(\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{( 1 0 ~ \mathbf { g } )}\) of Head TSL & condition & \\
\hline SAR measured & 100 mW input power & \(2.40 \mathrm{~W} / \mathbf{k g}\) \\
\hline SAR for nominal Head TSL parameters & normalized to 1 W & \(\mathbf{2 3 . 9} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})\) \\
\hline
\end{tabular}

\section*{Appendix (Additional assessments outside the scope of SCS 0108)}

\section*{Antenna Parameters with Head TSL at 3700 MHz}
\begin{tabular}{|l|c|}
\hline Impedance, transformed to feed point & \(48.6 \Omega-6.6 \mathrm{j} \Omega\) \\
\hline Return Loss & -23.3 dB \\
\hline
\end{tabular}

\section*{Antenna Parameters with Head TSL at \(\mathbf{3 8 0 0} \mathbf{~ M H z}\)}
\begin{tabular}{|l|c|}
\hline Impedance, transformed to feed point & \(57.5 \Omega-5.9 \mathrm{j} \Omega\) \\
\hline Return Loss & -21.0 dB \\
\hline
\end{tabular}

\section*{General Antenna Parameters and Design}

Electrical Delay (one direction)
1.138 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

\section*{Additional EUT Data}
\begin{tabular}{|l|l|}
\hline Manufactured by & SPEAG \\
\hline
\end{tabular}

\section*{DASY5 Validation Report for Head TSL}

Date: 01.07.2022

Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 3700 MHz ; Type: D3700V2; Serial: D3700V2 - SN: 1004
Communication System: UID \(0-\) CW; Frequency: 3700 MHz , Frequency: 3800 MHz
Medium parameters used: \(\mathrm{f}=3700 \mathrm{MHz} ; \sigma=3.07 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=37 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}\),
Medium parameters used: \(\mathrm{f}=3800 \mathrm{MHz} ; \sigma=3.15 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=36.8 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}\)
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:
- Probe: EX3DV4 - SN3503; ConvF(7.73, 7.73, 7.73)@3700 MHz, ConvF(7.73, 7.73, 7.73)@3800 MHz ; Calibrated: 08.03.2022
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.05.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin \(=100 \mathrm{~mW}, \mathrm{~d}=10 \mathrm{~mm}, \mathrm{f}=\mathbf{3 7 0 0 \mathrm { MHz } / \mathrm { Zoom } \text { Scan, }}\)
dist \(=1.4 \mathrm{~mm}(8 \times 8 \times 8) /\) Cube 0: Measurement grid: \(\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}\)
Reference Value \(=69.98 \mathrm{~V} / \mathrm{m}\); Power Drift \(=-0.06 \mathrm{~dB}\)
Peak SAR \((\) extrapolated \()=19.1 \mathrm{~W} / \mathrm{kg}\)
\(\operatorname{SAR}(1 \mathrm{~g})=6.74 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.44 \mathrm{~W} / \mathrm{kg}\)
Smallest distance from peaks to all points 3 dB below \(=8 \mathrm{~mm}\)
Ratio of SAR at M2 to SAR at M1 \(=73.9 \%\)
Maximum value of SAR (measured) \(=13.1 \mathrm{~W} / \mathrm{kg}\)
Dipole Calibration for Head Tissue \(/ \mathbf{P i n}=100 \mathrm{~mW}, \mathbf{d}=10 \mathrm{~mm}, \mathrm{f}=\mathbf{3 8 0 0 \mathrm { MHz } / \text { Zoom Scan, }}\)
dist \(=1.4 \mathrm{~mm}(8 \times 8 \times 8) /\) Cube 0: Measurement grid: \(\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}\)
Reference Value \(=68.05 \mathrm{~V} / \mathrm{m}\); Power Drift \(=0.01 \mathrm{~dB}\)
Peak SAR \((\) extrapolated \()=18.9 \mathrm{~W} / \mathrm{kg}\)
\(\operatorname{SAR}(1 \mathrm{~g})=6.57 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.40 \mathrm{~W} / \mathrm{kg}\)
Smallest distance from peaks to all points 3 dB below \(=8.2 \mathrm{~mm}\)
Ratio of SAR at M2 to SAR at M1 \(=73.1 \%\)
Maximum value of SAR (measured) \(=13.0 \mathrm{~W} / \mathrm{kg}\)


Impedance Measurement Plot for Head TSL


\section*{3900 MHz Dipole Calibration Certificate}


Certificate No: D3900V2-1024_Jul22
Page 1 of 8

\section*{Calibration Laboratory of Schmid \& Partner \\ Engineering AG \\ Zeughausstrasse 43, 8004 Zurich, Switzerland}


S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Glossary:
TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM \(x, y, z\)
N/A
not applicable or not measured

\section*{Calibration is Performed According to the Following Standards:}
a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz )", October 2020.
b) KDB 865664 , "SAR Measurement Requirements for 100 MHz to 6 GHz "

\section*{Additional Documentation:}
c) DASY System Handbook

\section*{Methods Applied and Interpretation of Parameters:}
- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor \(\mathrm{k}=2\), which for a normal distribution corresponds to a coverage probability of approximately \(95 \%\).

\section*{Measurement Conditions}

DASY system configuration, as far as not given on page 1.
\begin{tabular}{l} 
DASY system configuration, as far as not given on page 1. \\
\begin{tabular}{|l|c|c|}
\hline DASY Version & DASY52 & V52.10.4 \\
\hline Extrapolation & Advanced Extrapolation & \\
\hline Phantom & Modular Flat Phantom V5.0 & \\
\hline Distance Dipole Center - TSL & 10 mm & with Spacer \\
\hline Zoom Scan Resolution & \(\mathrm{dx}, \mathrm{dy}=4.0 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}\) & Graded Ratio \(=1.4\) (Z direction) \\
\hline & \(3900 \mathrm{MHz} \pm 1 \mathrm{MHz}\) & \\
Frequency & \(4000 \mathrm{MHz} \pm 1 \mathrm{MHz}\) & \\
\hline
\end{tabular} \\
\hline
\end{tabular}

Head TSL parameters at 3900 MHz
The following parameters and calculations were applied.
The following parameters and calculations were applied.
\begin{tabular}{|l|c|c|c|}
\hline & Temperature & Permittivity & Conductivity \\
\hline Nominal Head TSL parameters & \(22.0^{\circ} \mathrm{C}\) & 37.5 & \(3.32 \mathrm{mho} / \mathrm{m}\) \\
\hline Measured Head TSL parameters & \((22.0 \pm 0.2)^{\circ} \mathrm{C}\) & \(36.7 \pm 6 \%\) & \(3.24 \mathrm{mho} / \mathrm{m} \pm 6 \%\) \\
\hline Head TSL temperature change during test & \(<0.5^{\circ} \mathrm{C}\) & - & - \\
\hline
\end{tabular}

SAR result with Head TSL at \(3900 \mathbf{M H z}\)
\begin{tabular}{|l|c|c|}
\hline SAR averaged over \(\mathbf{1 \mathbf { c m } ^ { \mathbf { 3 } } \mathbf { ( 1 \mathbf { g } ) } \text { of Head TSL }}\) & Condition & \\
\hline SAR measured & 100 mW input power & \(6.96 \mathrm{~W} / \mathrm{kg}\) \\
\hline SAR for nominal Head TSL parameters & normalized to 1 W & \(\mathbf{6 9 . 6} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9 \%} \mathbf{( k = 2 )}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|}
\hline SAR averaged over \(\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{( 1 0 ~ \mathbf { g } )}\) of Head TSL & condition & \\
\hline SAR measured & 100 mW input power & \(2.42 \mathrm{~W} / \mathrm{kg}\) \\
\hline SAR for nominal Head TSL parameters & normalized to 1 W & \(\mathbf{2 4 . 1} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})\) \\
\hline
\end{tabular}

Head TSL parameters at 4000 MHz
The following parameters and calculations were applied.
The following parameters and calculations were applied.
\begin{tabular}{|l|c|c|c|}
\hline & Temperature & Permittivity & Conductivity \\
\hline Nominal Head TSL parameters & \(22.0^{\circ} \mathrm{C}\) & 37.4 & \(3.43 \mathrm{mho} / \mathrm{m}\) \\
\hline Measured Head TSL parameters & \((22.0 \pm 0.2)^{\circ} \mathrm{C}\) & \(36.6 \pm 6 \%\) & \(3.33 \mathrm{mho} / \mathrm{m} \pm 6 \%\) \\
\hline Head TSL temperature change during test & \(<0.5^{\circ} \mathrm{C}\) & - & --- \\
\hline
\end{tabular}

\section*{SAR result with Head TSL at 4000 MHz}
\begin{tabular}{|l|c|c|}
\hline SAR averaged over \(\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{( 1 \mathbf { g } )}\) of Head TSL & Condition & \\
\hline SAR measured & 100 mW input power & \(6.82 \mathrm{~W} / \mathbf{k g}\) \\
\hline SAR for nominal Head TSL parameters & normalized to 1 W & \(\mathbf{6 8 . 2} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9} \%(\mathbf{k}=\mathbf{2})\) \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|}
\hline SAR averaged over \(\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{( 1 0 ~ \mathbf { g } )}\) of Head TSL & condition & \\
\hline SAR measured & 100 mW input power & \(2.38 \mathrm{~W} / \mathbf{k g}\) \\
\hline SAR for nominal Head TSL parameters & normalized to 1 W & \(\mathbf{2 3 . 6} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})\) \\
\hline
\end{tabular}

\section*{Head TSL parameters at 4100 MHz}

The following parameters and calculations were applied.
\begin{tabular}{|l|c|c|c|}
\hline & Temperature & Permittivity & Conductivity \\
\hline Nominal Head TSL parameters & \(22.0{ }^{\circ} \mathrm{C}\) & 37.2 & \(3.53 \mathrm{mho} / \mathrm{m}\) \\
\hline Measured Head TSL parameters & \((22.0 \pm 0.2)^{\circ} \mathrm{C}\) & \(36.5 \pm 6 \%\) & \(3.41 \mathrm{mho} / \mathrm{m} \pm 6 \%\) \\
\hline Head TSL temperature change during test & \(<0.5{ }^{\circ} \mathrm{C}\) & - & - \\
\hline
\end{tabular}

SAR result with Head TSL at \(4100 \mathbf{M H z}\)
\begin{tabular}{|l|c|c|}
\hline SAR averaged over \(\mathbf{1} \mathbf{~ m}^{\mathbf{3}} \mathbf{( 1 \mathbf { g } )}\) of Head TSL & Condition & \\
\hline SAR measured & 100 mW input power & \(6.82 \mathrm{~W} / \mathbf{k g}\) \\
\hline SAR for nominal Head TSL parameters & normalized to 1 W & \(\mathbf{6 8 . 3} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9} \%(\mathbf{k}=\mathbf{2})\) \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|}
\hline SAR averaged over \(\left.\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{( 1 0 ~ g}\right)\) of Head TSL & condition & \\
\hline SAR measured & 100 mW input power & \(2.37 \mathrm{~W} / \mathbf{k g}\) \\
\hline SAR for nominal Head TSL parameters & normalized to 1 W & \(\mathbf{2 3 . 6} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})\) \\
\hline
\end{tabular}

\section*{Appendix (Additional assessments outside the scope of SCS 0108)}

\section*{Antenna Parameters with Head TSL at 3900 MHz}
\begin{tabular}{|l|c|}
\hline Impedance, transformed to feed point & \(46.3 \Omega-6.6 \mathrm{j} \Omega\) \\
\hline Return Loss & -22.1 dB \\
\hline
\end{tabular}

\section*{Antenna Parameters with Head TSL at 4000 MHz}
\begin{tabular}{|l|c|}
\hline Impedance, transformed to feed point & \(52.1 \Omega-2.7 \mathrm{j} \Omega\) \\
\hline Return Loss & -29.5 dB \\
\hline
\end{tabular}

\section*{Antenna Parameters with Head TSL at 4100 MHz}
\begin{tabular}{|l|c|}
\hline Impedance, transformed to feed point & \(59.8 \Omega-1.9 \mathrm{j} \Omega\) \\
\hline Return Loss & -20.8 dB \\
\hline
\end{tabular}

\section*{General Antenna Parameters and Design}
\begin{tabular}{|l|l}
\hline Electrical Delay (one direction) & 1.107 ns \\
\hline
\end{tabular}

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

\section*{Additional EUT Data}
\begin{tabular}{|l|l|}
\hline Manufactured by & SPEAG \\
\hline
\end{tabular}

\section*{DASY5 Validation Report for Head TSL}

Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 3900 MHz; Type: D3900V2; Serial: D3900V2 - SN:1024
Communication System: UID 0 - CW; Frequency: 3900 MHz , Frequency: 4000 MHz , Frequency: 4100
MHz
Medium parameters used: \(\mathrm{f}=3900 \mathrm{MHz} ; \sigma=3.24 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=36.7 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}\),
Medium parameters used: \(\mathrm{f}=4000 \mathrm{MHz} ; \sigma=3.33 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=36.6 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}\),
Medium parameters used: \(\mathrm{f}=4100 \mathrm{MHz} ; \sigma=3.41 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=36.5 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}\)
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

\section*{DASY52 Configuration:}
- Probe: EX3DV4 - SN3503; ConvF(7.39, 7.39, 7.39) @ 3900 MHz , ConvF \((7.39,7.39,7.39\) ) @ 4000 MHz, ConvF(7.26, 7.26, 7.26) @ 4100 MHz; Calibrated: 08.03.2022
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.05.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin \(=100 \mathrm{~mW}, \mathrm{~d}=10 \mathrm{~mm}, \mathrm{f}=\mathbf{3 9 0 0 \mathrm { MHz } / \mathrm { Zoom } \text { Scan, }}\)
dist \(=1.4 \mathrm{~mm}(8 \times 8 \times 8) /\) Cube 0 : Measurement grid: \(\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}\)
Reference Value \(=71.06 \mathrm{~V} / \mathrm{m}\); Power Drift \(=0.00 \mathrm{~dB}\)
Peak SAR \((\) extrapolated \()=20.0 \mathrm{~W} / \mathrm{kg}\)
\(\operatorname{SAR}(1 \mathrm{~g})=6.96 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.42 \mathrm{~W} / \mathrm{kg}\)
Smallest distance from peaks to all points 3 dB below \(=8 \mathrm{~mm}\)
Ratio of SAR at M2 to SAR at M1 \(=74.2 \%\)
Maximum value of SAR (measured) \(=13.9 \mathrm{~W} / \mathrm{kg}\)
Dipole Calibration for Head Tissue/Pin \(=100 \mathrm{~mW}, \mathrm{~d}=10 \mathrm{~mm}, \mathrm{f}=\mathbf{4 0 0 0 \mathrm { MHz } / \text { Zoom Scan, }}\)
dist \(=1.4 \mathrm{~mm}(8 \times 8 \times 8) /\) Cube 0: Measurement grid: \(\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}\)
Reference Value \(=71.32 \mathrm{~V} / \mathrm{m}\); Power Drift \(=0.02 \mathrm{~dB}\)
Peak SAR \((\) extrapolated \()=20.0 \mathrm{~W} / \mathrm{kg}\)
\(\operatorname{SAR}(1 \mathrm{~g})=\mathbf{6 . 8 2} \mathrm{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{2 . 3 8} \mathrm{W} / \mathrm{kg}\)
Smallest distance from peaks to all points 3 dB below \(=8 \mathrm{~mm}\)
Ratio of SAR at M2 to SAR at M1 \(=73.6 \%\)
Maximum value of SAR \((\) measured \()=13.8 \mathrm{~W} / \mathrm{kg}\)

Dipole Calibration for Head Tissue/Pin=100 mW, \(\mathbf{d = 1 0 m m}, \mathrm{f}=4100 \mathrm{MHz} /\) Zoom Scan, dist \(=1.4 \mathrm{~mm}(8 \times 8 \times 8) /\) Cube 0 : Measurement grid: \(\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}\)
Reference Value \(=69.19 \mathrm{~V} / \mathrm{m}\); Power Drift \(=0.04 \mathrm{~dB}\)
Peak SAR \((\) extrapolated \()=19.7 \mathrm{~W} / \mathrm{kg}\)
\(\operatorname{SAR}(\mathbf{1} \mathrm{g})=\mathbf{6 . 8 2} \mathbf{W} / \mathrm{kg} ; \operatorname{SAR}(\mathbf{1 0} \mathrm{g})=\mathbf{2 . 3 7} \mathrm{W} / \mathrm{kg}\)
Smallest distance from peaks to all points 3 dB below \(=8 \mathrm{~mm}\)
Ratio of SAR at M2 to SAR at M1 \(=74.2 \%\)
Maximum value of SAR (measured) \(=13.7 \mathrm{~W} / \mathrm{kg}\)


Impedance Measurement Plot for Head TSL


\section*{ANNEX I SAR Sensor Triggering Data Summary}

\author{
SAR sensor trigger distance
}


Per FCC KDB Publication 616217 D04v01r02, this device was tested by the manufacturer to determine the proximity sensor triggering distances for the rear and bottom edge of the device. The measured output power within \(\pm 5 \mathrm{~mm}\) of the triggering points (or until touching the phantom) is included for rear and each applicable edge.

To ensure all production units are compliant it is necessary to test SAR at a distance 1 mm less than the smallest distance from the device and SAR phantom (determined from these triggering tests according to the KDB 616217 D04v01r02) with the device at maximum output power without power reduction. These SAR tests are included in addition to the SAR tests for the device touching the SAR phantom, with reduced power.

We tested the power and got the different proximity sensor triggering distances for front/rear /bottom/right edge for ANTO. The manufacturer has declared \(17 \mathrm{~mm} / 28 \mathrm{~mm} / 20 \mathrm{~mm} / 11 \mathrm{~mm}\) is the most conservative triggering distance for ANT0 with front/rear/bottom/right edge. So base on the most conservative triggering distance of \(17 \mathrm{~mm} / 28 \mathrm{~mm} / 20 \mathrm{~mm} / 11 \mathrm{~mm}\), additional SAR measurements were required at \(16 \mathrm{~mm} / 27 \mathrm{~mm} / 19 \mathrm{~mm} / 10 \mathrm{~mm}\) from the highest SAR position between front/rear/bottom/right edge of ANTO.

We tested the power and got the different proximity sensor triggering distances for front/rear /bottom/left edge for ANT1. The manufacturer has declared \(14 \mathrm{~mm} / 23 \mathrm{~mm} / 20 \mathrm{~mm} / 21 \mathrm{~mm}\) is the most conservative triggering distance for ANT1 with front/rear/bottom/left edge. So base on the most conservative triggering distance of \(14 \mathrm{~mm} / 23 \mathrm{~mm} / 20 \mathrm{~mm} / 21 \mathrm{~mm}\), additional SAR measurements were required at \(13 \mathrm{~mm} / 22 \mathrm{~mm} / 19 \mathrm{~mm} / 20 \mathrm{~mm}\) from the highest SAR position between front/rear/bottom/left edge of ANT1.

No.I23Z60340-SEM06
We tested the power and got the different proximity sensor triggering distances for front/rear /top/left edge for ANT3. The manufacturer has declared \(15 \mathrm{~mm} / 22 \mathrm{~mm} / 23 \mathrm{~mm} / 15 \mathrm{~mm}\) is the most conservative triggering distance for ANT3 with front/rear/top/left edge. So base on the most conservative triggering distance of \(15 \mathrm{~mm} / 22 \mathrm{~mm} / 23 \mathrm{~mm} / 15 \mathrm{~mm}\), additional SAR measurements were required at \(14 \mathrm{~mm} / 21 \mathrm{~mm} / 22 \mathrm{~mm} / 14 \mathrm{~mm}\) from the highest SAR position between front/rear/top/left edge of ANT3.

We tested the power and got the different proximity sensor triggering distances for front/rear /top/right edge for ANT5. The manufacturer has declared \(15 \mathrm{~mm} / 20 \mathrm{~mm} / 25 \mathrm{~mm} / 16 \mathrm{~mm}\) is the most conservative triggering distance for ANT5 with front/rear/top/right edge. So base on the most conservative triggering distance of \(15 \mathrm{~mm} / 20 \mathrm{~mm} / 25 \mathrm{~mm} / 16 \mathrm{~mm}\), additional SAR measurements were required at \(14 \mathrm{~mm} / 19 \mathrm{~mm} / 24 \mathrm{~mm} / 15 \mathrm{~mm}\) from the highest SAR position between front/rear/top/right edge of ANT5.

\section*{ANTO:}

\section*{Front Edge}

Moving device toward the phantom:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{sensor near or far(KDB 616217 6.2.6)} \\
\hline Distance [mm] & 22 & 21 & 20 & 19 & 18 & 17 & 16 & 15 & 14 & 13 & 12 \\
\hline Main antenna & Far & Far & Far & Far & Far & Near & Near & Near & Near & Near & Near \\
\hline
\end{tabular}

Moving device away from the phantom:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{15}{|c|}{ sensor near or far(KDB 6162176.2.6) } \\
\hline Distance [mm] & \(\mathbf{1 2}\) & \(\mathbf{1 3}\) & \(\mathbf{1 4}\) & \(\mathbf{1 5}\) & \(\mathbf{1 6}\) & \(\mathbf{1 7}\) & \(\mathbf{1 8}\) & \(\mathbf{1 9}\) & \(\mathbf{2 0}\) & \(\mathbf{2 1}\) & \(\mathbf{2 2}\) \\
\hline Main antenna & Near & Near & Near & Near & Near & Near & Far & Far & Far & Far & Far \\
\hline
\end{tabular}

\section*{Rear Edge}

Moving device toward the phantom:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{ sensor near or far(KDB 616217 6.2.6) } \\
\hline Distance [mm] & \(\mathbf{3 3}\) & \(\mathbf{3 2}\) & \(\mathbf{3 1}\) & \(\mathbf{3 0}\) & \(\mathbf{2 9}\) & \(\mathbf{2 8}\) & \(\mathbf{2 7}\) & \(\mathbf{2 6}\) & \(\mathbf{2 5}\) & \(\mathbf{2 4}\) & \(\mathbf{2 3}\) \\
\hline Main antenna & Far & Far & Far & Far & Far & Near & Near & Near & Near & Near & Near \\
\hline
\end{tabular}

Moving device away from the phantom:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{15}{|c|}{ sensor near or far(KDB 6162176.2.6) } \\
\hline Distance [mm] & \(\mathbf{2 3}\) & \(\mathbf{2 4}\) & \(\mathbf{2 5}\) & \(\mathbf{2 6}\) & \(\mathbf{2 7}\) & \(\mathbf{2 8}\) & \(\mathbf{2 9}\) & \(\mathbf{3 0}\) & \(\mathbf{3 1}\) & \(\mathbf{3 2}\) & \(\mathbf{3 3}\) \\
\hline Main antenna & Near & Near & Near & Near & Near & Near & Far & Far & Far & Far & Far \\
\hline
\end{tabular}

\section*{Bottom Edge}

Moving device toward the phantom:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{ sensor near or far(KDB 616217 6.2.6) } \\
\hline Distance [mm] & \(\mathbf{2 5}\) & \(\mathbf{2 4}\) & \(\mathbf{2 3}\) & \(\mathbf{2 2}\) & \(\mathbf{2 1}\) & \(\mathbf{2 0}\) & \(\mathbf{1 9}\) & \(\mathbf{1 8}\) & \(\mathbf{1 7}\) & \(\mathbf{1 6}\) & \(\mathbf{1 5}\) \\
\hline Main antenna & Far & Far & Far & Far & Far & Near & Near & Near & Near & Near & Near \\
\hline
\end{tabular}

Moving device away from the phantom:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{ sensor near or far(KDB 6162176.2.6) } \\
\hline Distance \([\mathrm{mm}]\) & \(\mathbf{1 5}\) & \(\mathbf{1 6}\) & \(\mathbf{1 7}\) & \(\mathbf{1 8}\) & \(\mathbf{1 9}\) & \(\mathbf{2 0}\) & \(\mathbf{2 1}\) & \(\mathbf{2 2}\) & \(\mathbf{2 3}\) & \(\mathbf{2 4}\) & \(\mathbf{2 5}\) \\
\hline Main antenna & Near & Near & Near & Near & Near & Near & Far & Far & Far & Far & Far \\
\hline
\end{tabular}

\section*{Right Edge}

Moving device toward the phantom:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{17}{|c|}{ sensor near or far(KDB 6162176.2.6) } \\
\hline Distance [mm] & \(\mathbf{1 5}\) & \(\mathbf{1 4}\) & \(\mathbf{1 3}\) & \(\mathbf{1 2}\) & \(\mathbf{1 1}\) & \(\mathbf{1 0}\) & \(\mathbf{9}\) & \(\mathbf{8}\) & \(\mathbf{7}\) & \(\mathbf{6}\) & \(\mathbf{5}\) \\
\hline Main antenna & Far & Far & Far & Far & Far & Near & Near & Near & Near & Near & Near \\
\hline
\end{tabular}

Moving device away from the phantom:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{sensor near or far(KDB 616217 6.2.6)} \\
\hline Distance [mm] & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline Main antenna & Near & Near & Near & Near & Near & Near & Far & Far & Far & Far & Far \\
\hline
\end{tabular}

\section*{ANT1:}

\section*{Front Edge}

Moving device toward the phantom:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{sensor near or far(KDB 616217 6.2.6)} \\
\hline Distance [mm] & 19 & 18 & 17 & 16 & 15 & 14 & 13 & 12 & 11 & 10 & 9 \\
\hline Main antenna & Far & Far & Far & Far & Far & Near & Near & Near & Near & Near & Near \\
\hline
\end{tabular}

Moving device away from the phantom:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{16}{|c|}{ sensor near or far(KDB 6162176.2.6) } \\
\hline Distance [mm] & \(\mathbf{9}\) & \(\mathbf{1 0}\) & \(\mathbf{1 1}\) & \(\mathbf{1 2}\) & \(\mathbf{1 3}\) & \(\mathbf{1 4}\) & \(\mathbf{1 5}\) & \(\mathbf{1 6}\) & \(\mathbf{1 7}\) & \(\mathbf{1 8}\) & \(\mathbf{1 9}\) \\
\hline Main antenna & Near & Near & Near & Near & Near & Near & Far & Far & Far & Far & Far \\
\hline
\end{tabular}

\section*{Rear Edge}

Moving device toward the phantom:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{ sensor near or far(KDB 616217 6.2.6) } \\
\hline Distance [mm] & \(\mathbf{2 8}\) & \(\mathbf{2 7}\) & \(\mathbf{2 6}\) & \(\mathbf{2 5}\) & \(\mathbf{2 4}\) & \(\mathbf{2 3}\) & \(\mathbf{2 2}\) & \(\mathbf{2 1}\) & \(\mathbf{2 0}\) & \(\mathbf{1 9}\) & \(\mathbf{1 8}\) \\
\hline Main antenna & Far & Far & Far & Far & Far & Near & Near & Near & Near & Near & Near \\
\hline
\end{tabular}

Moving device away from the phantom:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|c|}{ sensor near or far(KDB 6162176.2.6) } \\
\hline Distance [mm] & \(\mathbf{1 8}\) & \(\mathbf{1 9}\) & \(\mathbf{2 0}\) & \(\mathbf{2 1}\) & \(\mathbf{2 2}\) & \(\mathbf{2 3}\) & \(\mathbf{2 4}\) & \(\mathbf{2 5}\) & \(\mathbf{2 6}\) & \(\mathbf{2 7}\) & \(\mathbf{2 8}\) \\
\hline Main antenna & Near & Near & Near & Near & Near & Near & Far & Far & Far & Far & Far \\
\hline
\end{tabular}

\section*{Bottom Edge}

Moving device toward the phantom:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{ sensor near or far(KDB 616217 6.2.6) } \\
\hline Distance [mm] & \(\mathbf{2 5}\) & \(\mathbf{2 4}\) & \(\mathbf{2 3}\) & \(\mathbf{2 2}\) & \(\mathbf{2 1}\) & \(\mathbf{2 0}\) & \(\mathbf{1 9}\) & \(\mathbf{1 8}\) & \(\mathbf{1 7}\) & \(\mathbf{1 6}\) & \(\mathbf{1 5}\) \\
\hline Main antenna & Far & Far & Far & Far & Far & Near & Near & Near & Near & Near & Near \\
\hline
\end{tabular}

Moving device away from the phantom:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{ sensor near or far(KDB 6162176.2.6) } \\
\hline Distance \([\mathrm{mm}]\) & \(\mathbf{1 5}\) & \(\mathbf{1 6}\) & \(\mathbf{1 7}\) & \(\mathbf{1 8}\) & \(\mathbf{1 9}\) & \(\mathbf{2 0}\) & \(\mathbf{2 1}\) & \(\mathbf{2 2}\) & \(\mathbf{2 3}\) & \(\mathbf{2 4}\) & \(\mathbf{2 5}\) \\
\hline Main antenna & Near & Near & Near & Near & Near & Near & Far & Far & Far & Far & Far \\
\hline
\end{tabular}

\section*{Left Edge}

Moving device toward the phantom:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{14}{|c|}{ sensor near or far(KDB 6162176.2.6) } \\
\hline Distance [mm] & \(\mathbf{2 6}\) & \(\mathbf{2 5}\) & \(\mathbf{2 4}\) & \(\mathbf{2 3}\) & \(\mathbf{2 2}\) & \(\mathbf{2 1}\) & \(\mathbf{2 0}\) & \(\mathbf{1 9}\) & \(\mathbf{1 8}\) & \(\mathbf{1 7}\) & \(\mathbf{1 6}\) \\
\hline Main antenna & Far & Far & Far & Far & Far & Near & Near & Near & Near & Near & Near \\
\hline
\end{tabular}

Moving device away from the phantom:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{ sensor near or far(KDB 6162176.2.6) } \\
\hline Distance [mm] & \(\mathbf{1 6}\) & \(\mathbf{1 7}\) & \(\mathbf{1 8}\) & \(\mathbf{1 9}\) & \(\mathbf{2 0}\) & \(\mathbf{2 1}\) & \(\mathbf{2 2}\) & \(\mathbf{2 3}\) & \(\mathbf{2 4}\) & \(\mathbf{2 5}\) & \(\mathbf{2 6}\) \\
\hline Main antenna & Near & Near & Near & Near & Near & Near & Far & Far & Far & Far & Far \\
\hline
\end{tabular}

\section*{ANT3:}

\section*{Front Edge}

Moving device toward the phantom:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{ sensor near or far(KDB 616217 6.2.6) } \\
\hline Distance [mm] & \(\mathbf{2 0}\) & \(\mathbf{1 9}\) & \(\mathbf{1 8}\) & \(\mathbf{1 7}\) & \(\mathbf{1 6}\) & \(\mathbf{1 5}\) & \(\mathbf{1 4}\) & \(\mathbf{1 3}\) & \(\mathbf{1 2}\) & \(\mathbf{1 1}\) & \(\mathbf{1 0}\) \\
\hline Main antenna & Far & Far & Far & Far & Far & Near & Near & Near & Near & Near & Near \\
\hline
\end{tabular}

Moving device away from the phantom:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{15}{|c|}{ sensor near or far(KDB 6162176.2.6) } \\
\hline Distance [mm] & \(\mathbf{1 0}\) & \(\mathbf{1 1}\) & \(\mathbf{1 2}\) & \(\mathbf{1 3}\) & \(\mathbf{1 4}\) & \(\mathbf{1 5}\) & \(\mathbf{1 6}\) & \(\mathbf{1 7}\) & \(\mathbf{1 8}\) & \(\mathbf{1 9}\) & \(\mathbf{2 0}\) \\
\hline Main antenna & Near & Near & Near & Near & Near & Near & Far & Far & Far & Far & Far \\
\hline
\end{tabular}

\section*{Rear Edge}

Moving device toward the phantom:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{14}{|c|}{ sensor near or far(KDB 616217 6.2.6) } \\
\hline Distance [mm] & \(\mathbf{2 7}\) & \(\mathbf{2 6}\) & \(\mathbf{2 5}\) & \(\mathbf{2 4}\) & \(\mathbf{2 3}\) & \(\mathbf{2 2}\) & \(\mathbf{2 1}\) & \(\mathbf{2 0}\) & \(\mathbf{1 9}\) & \(\mathbf{1 8}\) & \(\mathbf{1 7}\) \\
\hline Main antenna & Far & Far & Far & Far & Far & Near & Near & Near & Near & Near & Near \\
\hline
\end{tabular}

Moving device away from the phantom:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{14}{|c|}{ sensor near or far(KDB 6162176.2.6) } \\
\hline Distance [mm] & \(\mathbf{1 7}\) & \(\mathbf{1 8}\) & \(\mathbf{1 9}\) & \(\mathbf{2 0}\) & \(\mathbf{2 1}\) & \(\mathbf{2 2}\) & \(\mathbf{2 3}\) & \(\mathbf{2 4}\) & \(\mathbf{2 5}\) & \(\mathbf{2 6}\) & \(\mathbf{2 7}\) \\
\hline Main antenna & Near & Near & Near & Near & Near & Near & Far & Far & Far & Far & Far \\
\hline
\end{tabular}

\section*{Top Edge}

Moving device toward the phantom:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{ sensor near or far(KDB 6162176.2.6) } \\
\hline Distance [mm] & \(\mathbf{2 8}\) & \(\mathbf{2 7}\) & \(\mathbf{2 6}\) & \(\mathbf{2 5}\) & \(\mathbf{2 4}\) & \(\mathbf{2 3}\) & \(\mathbf{2 2}\) & \(\mathbf{2 1}\) & \(\mathbf{2 0}\) & \(\mathbf{1 9}\) & \(\mathbf{1 8}\) \\
\hline Main antenna & Far & Far & Far & Far & Far & Near & Near & Near & Near & Near & Near \\
\hline
\end{tabular}

Moving device away from the phantom:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{ sensor near or far(KDB 616217 6.2.6) } \\
\hline Distance [mm] & \(\mathbf{1 8}\) & \(\mathbf{1 9}\) & \(\mathbf{2 0}\) & \(\mathbf{2 1}\) & \(\mathbf{2 2}\) & \(\mathbf{2 3}\) & \(\mathbf{2 4}\) & \(\mathbf{2 5}\) & \(\mathbf{2 6}\) & \(\mathbf{2 7}\) & \(\mathbf{2 8}\) \\
\hline Main antenna & Near & Near & Near & Near & Near & Near & Far & Far & Far & Far & Far \\
\hline
\end{tabular}

\section*{Left Edge}

Moving device toward the phantom:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{15}{|c|}{ sensor near or far(KDB 6162176.2.6) } \\
\hline Distance [mm] & \(\mathbf{2 0}\) & \(\mathbf{1 9}\) & \(\mathbf{1 8}\) & \(\mathbf{1 7}\) & \(\mathbf{1 6}\) & \(\mathbf{1 5}\) & \(\mathbf{1 4}\) & \(\mathbf{1 3}\) & \(\mathbf{1 2}\) & \(\mathbf{1 1}\) & \(\mathbf{1 0}\) \\
\hline Main antenna & Far & Far & Far & Far & Far & Near & Near & Near & Near & Near & Near \\
\hline
\end{tabular}

Moving device away from the phantom:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{sensor near or far(KDB 616217 6.2.6)} \\
\hline Distance [mm] & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
\hline Main antenna & Near & Near & Near & Near & Near & Near & Far & Far & Far & Far & Far \\
\hline
\end{tabular}

\section*{ANT4/ANT5:}

\section*{Front Edge}

Moving device toward the phantom:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{ sensor near or far(KDB 616217 6.2.6) } \\
\hline Distance [mm] & \(\mathbf{2 0}\) & \(\mathbf{1 9}\) & \(\mathbf{1 8}\) & \(\mathbf{1 7}\) & \(\mathbf{1 6}\) & \(\mathbf{1 5}\) & \(\mathbf{1 4}\) & \(\mathbf{1 3}\) & \(\mathbf{1 2}\) & \(\mathbf{1 1}\) & \(\mathbf{1 0}\) \\
\hline Main antenna & Far & Far & Far & Far & Far & Near & Near & Near & Near & Near & Near \\
\hline
\end{tabular}

Moving device away from the phantom:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{15}{|c|}{ sensor near or far(KDB 6162176.2.6) } \\
\hline Distance [mm] & \(\mathbf{1 0}\) & \(\mathbf{1 1}\) & \(\mathbf{1 2}\) & \(\mathbf{1 3}\) & \(\mathbf{1 4}\) & \(\mathbf{1 5}\) & \(\mathbf{1 6}\) & \(\mathbf{1 7}\) & \(\mathbf{1 8}\) & \(\mathbf{1 9}\) & \(\mathbf{2 0}\) \\
\hline Main antenna & Near & Near & Near & Near & Near & Near & Far & Far & Far & Far & Far \\
\hline
\end{tabular}

\section*{Rear Edge}

Moving device toward the phantom:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{14}{|c|}{ sensor near or far(KDB 616217 6.2.6) } \\
\hline Distance [mm] & \(\mathbf{2 5}\) & \(\mathbf{2 4}\) & \(\mathbf{2 3}\) & \(\mathbf{2 2}\) & \(\mathbf{2 1}\) & \(\mathbf{2 0}\) & \(\mathbf{1 9}\) & \(\mathbf{1 8}\) & \(\mathbf{1 7}\) & \(\mathbf{1 6}\) & \(\mathbf{1 5}\) \\
\hline Main antenna & Far & Far & Far & Far & Far & Near & Near & Near & Near & Near & Near \\
\hline
\end{tabular}

Moving device away from the phantom:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{14}{|c|}{ sensor near or far(KDB 6162176.2.6) } \\
\hline Distance [mm] & \(\mathbf{1 5}\) & \(\mathbf{1 6}\) & \(\mathbf{1 7}\) & \(\mathbf{1 8}\) & \(\mathbf{1 9}\) & \(\mathbf{2 0}\) & \(\mathbf{2 1}\) & \(\mathbf{2 2}\) & \(\mathbf{2 3}\) & \(\mathbf{2 4}\) & \(\mathbf{2 5}\) \\
\hline Main antenna & Near & Near & Near & Near & Near & Near & Far & Far & Far & Far & Far \\
\hline
\end{tabular}

\section*{Top Edge}

Moving device toward the phantom:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{ sensor near or far(KDB 616217 6.2.6) } \\
\hline Distance [mm] & \(\mathbf{3 0}\) & \(\mathbf{2 9}\) & \(\mathbf{2 8}\) & \(\mathbf{2 7}\) & \(\mathbf{2 6}\) & \(\mathbf{2 5}\) & \(\mathbf{2 4}\) & \(\mathbf{2 3}\) & \(\mathbf{2 2}\) & \(\mathbf{2 1}\) & \(\mathbf{2 0}\) \\
\hline Main antenna & Far & Far & Far & Far & Far & Near & Near & Near & Near & Near & Near \\
\hline
\end{tabular}

Moving device away from the phantom:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{ sensor near or far(KDB 6162176.2.6) } \\
\hline Distance \([\mathbf{m m}]\) & \(\mathbf{2 0}\) & \(\mathbf{2 1}\) & \(\mathbf{2 2}\) & \(\mathbf{2 3}\) & \(\mathbf{2 4}\) & \(\mathbf{2 5}\) & \(\mathbf{2 6}\) & \(\mathbf{2 7}\) & \(\mathbf{2 8}\) & \(\mathbf{2 9}\) & \(\mathbf{3 0}\) \\
\hline Main antenna & Near & Near & Near & Near & Near & Near & Far & Far & Far & Far & Far \\
\hline
\end{tabular}

\section*{Right Edge}

Moving device toward the phantom:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{15}{|c|}{ sensor near or far(KDB 6162176.2.6) } \\
\hline Distance [mm] & \(\mathbf{2 1}\) & \(\mathbf{2 0}\) & \(\mathbf{1 9}\) & \(\mathbf{1 8}\) & \(\mathbf{1 7}\) & \(\mathbf{1 6}\) & \(\mathbf{1 5}\) & \(\mathbf{1 4}\) & \(\mathbf{1 3}\) & \(\mathbf{1 2}\) & \(\mathbf{1 1}\) \\
\hline Main antenna & Far & Far & Far & Far & Far & Near & Near & Near & Near & Near & Near \\
\hline
\end{tabular}

Moving device away from the phantom:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{16}{|c|}{ sensor near or far(KDB 6162176.2.6) } \\
\hline Distance [mm] & \(\mathbf{1 1}\) & \(\mathbf{1 2}\) & \(\mathbf{1 3}\) & \(\mathbf{1 4}\) & \(\mathbf{1 5}\) & \(\mathbf{1 6}\) & \(\mathbf{1 7}\) & \(\mathbf{1 8}\) & \(\mathbf{1 9}\) & \(\mathbf{2 0}\) & \(\mathbf{2 1}\) \\
\hline Main antenna & Near & Near & Near & Near & Near & Near & Far & Far & Far & Far & Far \\
\hline
\end{tabular}

Per FCC KDB Publication 616217 D04v01r02, the influence of table tilt angles to proximity sensor triggering is determined by positioning each edge that contains a transmitting antenna, perpendicular to the flat phantom, at the smallest sensor triggering test distanceby rotating the device around the edge next to the phantom in \(\leq 10^{\circ}\) increments until the tablet is \(\pm 45^{\circ}\) or more from the vertical position at \(0^{\circ}\).


The front/rear edge evaluation


The bottom/top edge evaluation


\section*{The left/right edge evaluation}

Based on the above evaluation, we come to the conclusion that the sensor triggering is not released and normal maximum output power is not restored within the \(\pm 45^{\circ}\) range at the smallest sensor triggering test distance declared by manufacturer.

\section*{ANNEX J P-Sensor Triggering Data Summary}

\author{
P -Sensor Trigger region
}

Trigger area in yellow box

\section*{Receiver \&P-sensor for Head SAR}
1. The receiver works and the P-Sensor detects the object approaching ( 50 mm )
2. The AP monitors the status changes of the handset and P -Sensor, and then performs interrupt processing with the defined keyValue
3. The upper layer according to the KeyValue, to execute (send AT instruction) to reduce/restore the antenna power.


\section*{P -Sensor Trigger region}

P-sensor is located on the front of the main board as shown in the figure. When the head is close during a voice call, the P-sensor is triggered.

trigger distance 5 cm


\section*{P-Sensor Working principle description}
1. P-Sensor is to sense the effect of changing light, and give a judgment signal through the position of the mobile phone receiver near the head 50 mm to reduce the antenna transmission power or restore the power,
2. Therefore, the function of P-Sensor SAR is only the position of the receiver on the front of the mobile phone, and it does not judge the close range of each antenna.


Per FCC KDB Publication 616217 D04v01r02, this device was tested by the manufacturer to determine the proximity sensor triggering distances for the rear and bottom edge of the device. The measured output power within \(\pm 5 \mathrm{~mm}\) of the triggering points (or until touching the phantom) is included for rear and each applicable edge.

To ensure all production units are compliant it is necessary to test SAR at a distance 1 mm less than the smallest distance from the device and SAR phantom (determined from these triggering tests according to the KDB 616217 D04v01r02) with the device at maximum output power without power reduction. These SAR tests are included in addition to the SAR tests for the device touching the SAR phantom, with reduced power.

\section*{Front Edge}

Moving device toward the phantom:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{sensor near or far(KDB 616217 6.2.6)} \\
\hline Distance [mm] & 55 & 54 & 53 & 52 & 51 & 50 & 49 & 48 & 47 & 48 & 47 \\
\hline Main antenna & Far & Far & Far & Far & Far & Near & Near & Near & Near & Near & Near \\
\hline
\end{tabular}

Moving device away from the phantom:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{sensor near or far(KDB 616217 6.2.6)} \\
\hline Distance [mm] & 45 & 46 & 47 & 48 & 49 & 50 & 51 & 52 & 53 & 54 & 55 \\
\hline Main antenna & Near & Near & Near & Near & Near & Near & Far & Far & Far & Far & Far \\
\hline
\end{tabular}


The front edge evaluation

\section*{ANNEX K Accreditation Certificate}
```


[^0]: Certificate No: D3500V2-1016_Jul22

