

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.5Ω+ 2.11 jΩ		
Return Loss	- 28.0dB		

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.3Ω+ 4.51 jΩ		
Return Loss	- 26.7dB		

General Antenna Parameters and Design

Electrical Delay (one direction)	1.024 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: Z18-60388

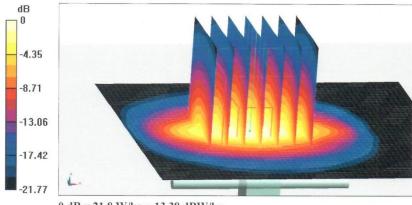
Page 4 of 8

Date: 10.26.2018

Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 873

DASY5 Validation Report for Head TSL

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.802$ S/m; $\varepsilon_r = 39.2$; $\rho = 1000$ kg/m3 Phantom section: Right Section


DASY5 Configuration:

- Probe: EX3DV4 SN7514; ConvF(6.95, 6.95, 6.95) @ 2450 MHz; Calibrated: 8/27/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/20/2018
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

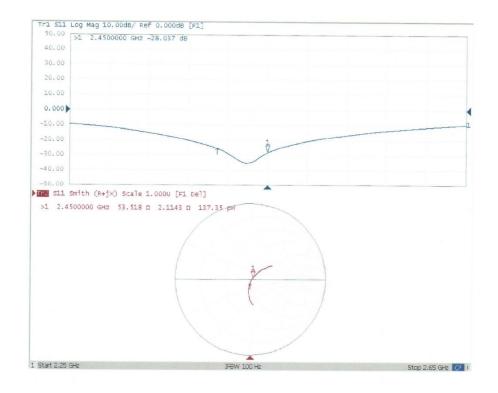
Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 105.0 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 26.8 W/kgSAR(1 g) = 13 W/kg; SAR(10 g) = 6.02 W/kg

Maximum value of SAR (measured) = 21.8 W/kg

0 dB = 21.8 W/kg = 13.38 dBW/kg

Certificate No: Z18-60388


Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: Z18-60388

Page 6 of 8

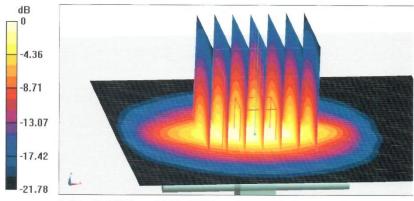
E-mail: cttl@chinattl.com http://www.chinattl.cn

Date: 10.26.2018

Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 873

DASY5 Validation Report for Body TSL

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 2.008$ S/m; $\varepsilon_r = 52.76$; $\rho = 1000$ kg/m3 Phantom section: Center Section


DASY5 Configuration:

- Probe: EX3DV4 SN7514; ConvF(7.13, 7.13, 7.13) @ 2450 MHz; Calibrated: 8/27/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/20/2018
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

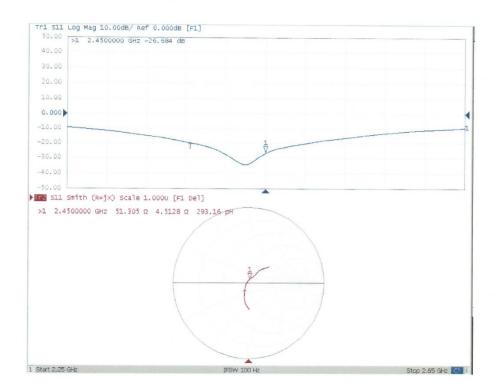
Reference Value = 98.89 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 26.4 W/kg SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.91 W/kg

Maximum value of SAR (measured) = 21.3 W/kg

0 dB = 21.3 W/kg = 13.28 dBW/kg

Certificate No: Z18-60388

Page 7 of 8



http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

Certificate No: Z18-60388

Page 8 of 8

5G Dipole Calibration Certificate

Add: No.51 Xuey	uan Road, Haidian D	ATION LABORATORY	CALIBRATIO
Tel: +86-10-6230- E-mail: cttl@chin	attl.com http	: +86-10-62304633-2504	CNAS L0570
Client CT	TL(South Bra	anch) Certificate No: Z	19-60293
CALIBRATION C	ERTIFICA	TE	
Object	D5GH	HzV2 - SN: 1238	
Calibration Procedure(s)		11-003-01 ration Procedures for dipole validation kits	
Calibration date:		st 29, 2019	
pages and are part of the c	ertificate.	d the uncertainties with confidence probability	
pages and are part of the c	ertificate. n conducted in	the closed laboratory facility: environment	
bages and are part of the c All calibrations have bee numidity<70%. Calibration Equipment use	ertificate. n conducted in	the closed laboratory facility: environment	t temperature(22±3)℃ and
bages and are part of the c All calibrations have bee humidity<70%. Calibration Equipment use	ertificate. n conducted in d (M&TE critical	the closed laboratory facility: environment	
bages and are part of the c All calibrations have bee numidity<70%. Calibration Equipment user Primary Standards	ertificate. n conducted in d (M&TE critical	the closed laboratory facility: environment for calibration) Cal Date(Calibrated by, Certificate No.)	t temperature(22±3)°C and Scheduled Calibration
Dages and are part of the c All calibrations have bee numidity<70%. Calibration Equipment user Primary Standards Power Meter NRP2	ertificate. n conducted in d (M&TE critical ID # 106276 101369	the closed laboratory facility: environment for calibration) Cal Date(Calibrated by, Certificate No.) 11-Apr-19 (CTTL, No.J19X02605)	t temperature(22±3)℃ and Scheduled Calibration Apr-20
Pages and are part of the contract of the cont	ertificate. n conducted in d (M&TE critical ID # 106276 101369	the closed laboratory facility: environment for calibration) Cal Date(Calibrated by, Certificate No.) 11-Apr-19 (CTTL, No.J19X02605) 11-Apr-19 (CTTL, No.J19X02605)	t temperature(22±3)℃ and Scheduled Calibration Apr-20 Apr-20
bages and are part of the c All calibrations have bee humidity<70%. Calibration Equipment user Primary Standards Power Meter NRP2 Power sensor NRP6A ReferenceProbe EX3DV4	ertificate. n conducted in d (M&TE critical ID # 106276 101369 SN 3617	the closed laboratory facility: environment for calibration) Cal Date(Calibrated by, Certificate No.) 11-Apr-19 (CTTL, No.J19X02605) 11-Apr-19 (CTTL, No.J19X02605) 31-Jan-19(SPEAG,No.EX3-3617_Jan19)	t temperature(22±3)℃ and Scheduled Calibration Apr-20 Apr-20 Jan-20
Dages and are part of the contract of the cont	ertificate. n conducted in d (M&TE critical ID # 106276 101369 SN 3617 SN 1555 ID #	the closed laboratory facility: environment for calibration) Cal Date(Calibrated by, Certificate No.) 11-Apr-19 (CTTL, No.J19X02605) 11-Apr-19 (CTTL, No.J19X02605) 31-Jan-19(SPEAG,No.EX3-3617_Jan19) 22-Aug-19(CTTL-SPEAG,No.Z19-60295) Cal Date(Calibrated by, Certificate No.)	t temperature(22±3)℃ and Scheduled Calibration Apr-20 Apr-20 Jan-20 Aug-20
bages and are part of the c All calibrations have bee humidity<70%. Calibration Equipment user Primary Standards Power Meter NRP2 Power sensor NRP6A ReferenceProbe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	ertificate. n conducted in d (M&TE critical ID # 106276 101369 SN 3617 SN 1555 ID #	the closed laboratory facility: environment for calibration) Cal Date(Calibrated by, Certificate No.) 11-Apr-19 (CTTL, No.J19X02605) 11-Apr-19 (CTTL, No.J19X02605) 31-Jan-19(SPEAG,No.EX3-3617_Jan19) 22-Aug-19(CTTL-SPEAG,No.Z19-60295) Cal Date(Calibrated by, Certificate No.)	t temperature(22±3)℃ and Scheduled Calibration Apr-20 Apr-20 Jan-20 Aug-20 Scheduled Calibration
bages and are part of the c All calibrations have bee humidity<70%. Calibration Equipment user Primary Standards Power Meter NRP2 Power sensor NRP6A ReferenceProbe EX3DV4 DAE4 Secondary Standards	ertificate. n conducted in d (M&TE critical ID # 106276 101369 SN 3617 SN 1555 ID # MY49071430	the closed laboratory facility: environment for calibration) Cal Date(Calibrated by, Certificate No.) 11-Apr-19 (CTTL, No.J19X02605) 11-Apr-19 (CTTL, No.J19X02605) 31-Jan-19(CTTL, No.J19X02605) 22-Aug-19(CTTL-SPEAG,No.Z19-60295) Cal Date(Calibrated by, Certificate No.) 23-Jan-19 (CTTL, No.J19X00336)	t temperature(22±3)℃ and Scheduled Calibration Apr-20 Apr-20 Jan-20 Aug-20 Scheduled Calibration Jan-20 Jan-20 Jan-20
Calibrations have been humidity<70%. Calibration Equipment user Primary Standards Power Meter NRP2 Power sensor NRP6A ReferenceProbe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	ertificate. n conducted in d (M&TE critical ID # 106276 101369 SN 3617 SN 1555 ID # MY49071430 MY46110673	the closed laboratory facility: environment for calibration) Cal Date(Calibrated by, Certificate No.) 11-Apr-19 (CTTL, No.J19X02605) 11-Apr-19 (CTTL, No.J19X02605) 31-Jan-19 (CTTL, No.J19X02605) 31-Jan-19 (CTTL-SPEAG,No.Z19-60295) Cal Date(Calibrated by, Certificate No.) 23-Jan-19 (CTTL, No.J19X00336) 24-Jan-19 (CTTL, No.J19X00547)	t temperature(22±3)℃ and Scheduled Calibration Apr-20 Apr-20 Jan-20 Aug-20 Scheduled Calibration Jan-20
All calibrations have bee humidity<70%. Calibration Equipment user Primary Standards Power Meter NRP2 Power sensor NRP6A ReferenceProbe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzerE5071C	ertificate. n conducted in d (M&TE critical ID # 106276 101369 SN 3617 SN 1555 ID # MY49071430 MY46110673 Name	the closed laboratory facility: environment for calibration) Cal Date(Calibrated by, Certificate No.) 11-Apr-19 (CTTL, No.J19X02605) 11-Apr-19 (CTTL, No.J19X02605) 31-Jan-19(SPEAG,No.EX3-3617_Jan19) 22-Aug-19(CTTL-SPEAG,No.Z19-60295) Cal Date(Calibrated by, Certificate No.) 23-Jan-19 (CTTL, No.J19X00336) 24-Jan-19 (CTTL, No.J19X00547) Function	t temperature(22±3)℃ and Scheduled Calibration Apr-20 Apr-20 Jan-20 Aug-20 Scheduled Calibration Jan-20 Jan-20 Jan-20 Signature

Certificate No: Z19-60293

Page 1 of 14

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z19-60293

Page 2 of 14

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.7 ± 6 %	4.69 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.81 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.0 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.23 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.3 W/kg ± 24.2 % (k=2)

Certificate No: Z19-60293

Page 3 of 14

Head TSL parameters at 5600 MHz The following parameters and calculations w

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.4 ± 6 %	4.99 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5600 MHz

nalized to 1W 79.5 W/kg ± 24.4 % (k=2
Condition
Condition

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.1 ± 6 %	5.10 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.86 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.4 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.23 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.2 W/kg ± 24.2 % (k=2)

Certificate No: Z19-60293

Page 4 of 14

Body TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.1 ± 6 %	5.40 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.17 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	71.5 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.04 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.3 W/kg ± 24.2 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.6 ± 6 %	5.70 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.62 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.9 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.18 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.7 W/kg ± 24.2 % (k=2)

Certificate No: Z19-60293

Page 5 of 14

Body TSL parameters at 5750 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.5 ± 6 %	5.78 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 $\ {\it Cm}^3$ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.39 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	73.6 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.10 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.9 W/kg ± 24.2 % (k=2)

Page 6 of 14

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	48.8Ω - 4.65jΩ	
Return Loss	- 26.2dB	

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	49.2Ω + 0.58jΩ	
Return Loss	- 40.0dB	

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	50.3Ω + 1.08jΩ	
Return Loss	- 39.0dB	

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	48.8Ω - 2.02jΩ	
Return Loss	- 32.5dB	

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	51.3Ω + 3.94jΩ	
Return Loss	- 27.8dB	

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	52.2Ω + 4.77jΩ				
Return Loss	- 25.8dB				

Certificate No: Z19-60293

Page 7 of 14

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304653-2504 E-mail: ettl@chinattl.com http://www.chinattl.en

General Antenna Parameters and Design

Electrical Delay (one direction)	1.059 ns	1
----------------------------------	----------	---

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: Z19-60293

Page 8 of 14

DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China

Date: 08.28.2019

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1238

Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz,

Medium parameters used: f = 5250 MHz; σ = 4.692 S/m; ϵ_r = 35.71; ρ = 1000 kg/m3, Medium parameters used: f = 5600 MHz; σ = 4.992 S/m; ϵ_r = 35.42; ρ = 1000 kg/m3, Medium parameters used: f = 5750 MHz; σ = 5.096 S/m; ϵ_r = 35.13; ρ = 1000 kg/m3,

Phantom section: Center Section

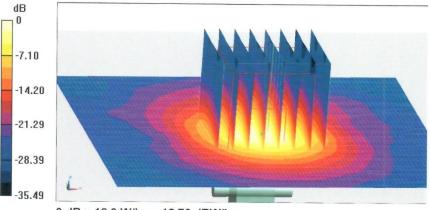
DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(5.39, 5.39, 5.39) @ 5250 MHz; ConvF(5.06, 5.06, 5.06) @ 5600 MHz; ConvF(5.07, 5.07, 5.07) @ 5750 MHz; Calibrated: 1/31/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/22/2019
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.41 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 32.8 W/kg SAR(1 g) = 7.81 W/kg; SAR(10 g) = 2.23 W/kg Maximum value of SAR (measured) = 18.7 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.02 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 35.7 W/kg SAR(1 g) = 7.96 W/kg; SAR(10 g) = 2.27 W/kg Maximum value of SAR (measured) = 19.2 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.55 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 36.5 W/kg SAR(1 g) = 7.86 W/kg; SAR(10 g) = 2.23 W/kg Maximum value of SAR (measured) = 18.9 W/kg

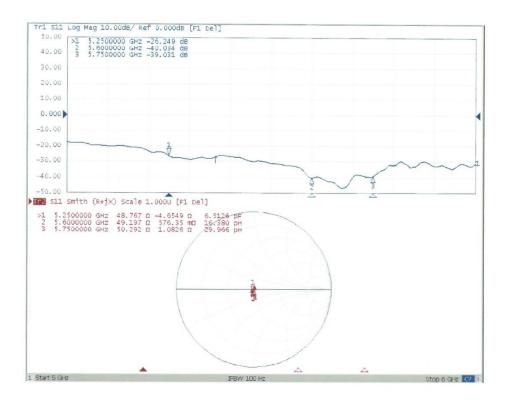

Certificate No: Z19-60293

Page 9 of 14

0 dB = 18.9 W/kg = 12.76 dBW/kg

Certificate No: Z19-60293

Page 10 of 14



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.en

Impedance Measurement Plot for Head TSL

Certificate No: Z19-60293

Page 11 of 14

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

Date: 08.29.2019

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1238

Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz,

Medium parameters used: f = 5250 MHz; σ = 5.402 S/m; ϵ_r = 48.05; ρ = 1000 kg/m3, Medium parameters used: f = 5600 MHz; σ = 5.703 S/m; ϵ_r = 47.61; ρ = 1000 kg/m3, Medium parameters used: f = 5750 MHz; σ = 5.782 S/m; ϵ_r = 47.49; ρ = 1000 kg/m3.

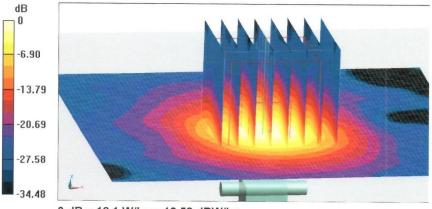
Phantom section: Right Section

- DASY5 Configuration:
 - Probe: EX3DV4 SN3617; ConvF(4.76, 4.76, 4.76) @ 5250 MHz; ConvF(4.23, 4.23, 4.23) @ 5600 MHz; ConvF(4.36, 4.36, 4.36) @ 5750 MHz; Calibrated: 1/31/2019
 - Sensor-Surface: 1.4mm (Mechanical Surface Detection)
 - Electronics: DAE4 Sn1555; Calibrated: 8/22/2019
 - Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 54.85 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 27.5 W/kg SAR(1 g) = 7.17 W/kg; SAR(10 g) = 2.04 W/kg Maximum value of SAR (measured) = 16.4 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 56.17 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 32.3 W/kg SAR(1 g) = 7.62 W/kg; SAR(10 g) = 2.18 W/kg Maximum value of SAR (measured) = 18.4 W/kg

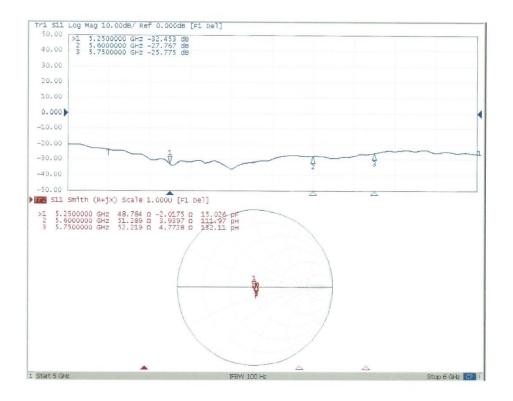
Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 55.47 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 33.2 W/kg SAR(1 g) = 7.39 W/kg; SAR(10 g) = 2.1 W/kg Maximum value of SAR (measured) = 18.1 W/kg


Certificate No: Z19-60293

Page 12 of 14

0 dB = 18.1 W/kg = 12.58 dBW/kg

Certificate No: Z19-60293


Page 13 of 14

Impedance Measurement Plot for Body TSL

Certificate No: Z19-60293

Page 14 of 14

ANNEX J: Extended Calibration SAR Dipole

Referring to KDB865664 D01, if dipoles are verified in return loss (<-20dBm, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

Justification of Extended Calibration SAR Dipole D750V3– serial no.1163

Head										
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)				
2019-09-03	-26.9	/	50.5	/	-4.53	/				
2020-09-01	-25.8	4.1	51.2	0.7	-4.29	0.24				

Justification of Extended Calibration SAR Dipole D835V2– serial no.4d057

Head										
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)				
2018-10-09	-27.7	/	49.6	/	-4.08	/				
2019-10-06	-26.9	2.9	50.1	0.5	-3.95	0.13				

Justification of Extended Calibration SAR Dipole D1750V2– serial no. 1152

Head										
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)				
2019-08-30	-38.1	/	49.1	/	-0.84	/				
2020-08-28	-36.5	4.2	50.2	1.1	-0.49	0.35				

Justification of Extended Calibration SAR Dipole D1900V2- serial no. 5d088

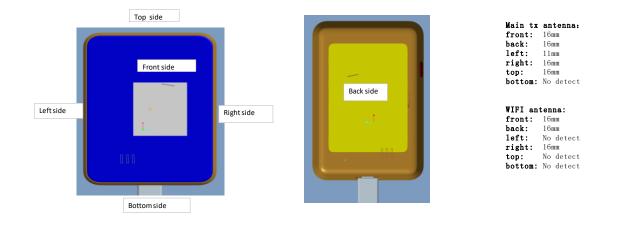
Head										
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)				
2018-10-24	-23.2	/	52.7	/	6.63	/				
2019-10-22	-22.9	1.3	53.5	0.8	6.86	0.23				

Justification of Extended Calibration SAR Dipole D2300V2- serial no. 1059

Head										
Date of Measurement	Return-Loss (dB)	Delta (%) Real Impedance (ohm)		Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)				
2018-09-03	-29.0	/	48.8	/	-3.32	/				
2019-09-02	-28.4	2.1	49.7	0.9	-3.03	0.29				
2020-09-01	-26.6	8.3	50.3	1.5	-2.87	0.45				

Justification of Extended Calibration SAR Dipole D2450V2– serial no. 873

Head										
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)				
2018-10-26	-28.0	/	53.5	/	2.11	/				
2019-10-22	-27.3	2.5	54.4	0.9	2.29	0.18				


Justification of Extended Calibration SAR Dipole D5GHzV2– serial no.1238

	Head										
Date of Measurement	Return-Loss (dB)	Delta (%) Impedance		Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)					
5250MHz											
2019-08-29	-26.2	/	48.8	/	-4.65	/					
2020-08-28	-25.1	4.2	4.2 49.7 0.9		-4.26	0.39					
		Ę	5600MHz								
2019-08-29	-40.0	/	49.2	/	0.58	/					
2020-08-28	-38.1	4.8	50.3	1.1	0.85	0.27					
		5	5750MHz								
2019-08-29	-39.0	/	50.3	/	1.08	/					
2020-08-28	-37.7	3.3	51.1	0.8	1.44	0.36					

The Return-Loss is <-20dB, and within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the value result should support extended cabration.

ANNEX K: Sensor Triggering Data Summary

According to the above description, this device was tested by the manufacturer to determine the SAR sensor triggering distances for the front rear top and bottom edge of the device. The measured power state within \pm 5mm of the triggering points (or until touching the phantom) is included for rear and each applicable edge.

To ensure all production units are compliant it is necessary to test SAR at a distance 1mm less than the smallest distance from the device and SAR phantom with the device at maximum output power without power reduction.

We tested the power and got the different SAR sensor triggering distances for front, rear, Right, Top and Left edge. But the manufacturer has declared 16mm (front/rear/right/top) / 11mm (left) are the most conservative triggering distance for main antenna. So base on the most conservative triggering distance as above, additional SAR measurements were required at 15mm (front/rear/right/top) / 10mm (left) for main antenna.

We tested the power and got the different SAR sensor triggering distances for front, rear and Right. But the manufacturer has declared 16mm (front/rear/right) are the most conservative triggering distance for main antenna. So base on the most conservative triggering distance as above, additional SAR measurements were required at 15mm (front/rear/right) for wifi antenna.

Main antenna

Front

Moving device toward the phantom:

The power state											
Distance [mm] 21 20 19 18 17 16 15 14 13 12 11									11		
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low

Moving device away from the phantom:

The power state											
Distance [mm] 11 12 13 14 15 16 17 18 19 20 21									21		
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal

Rear Edge

Moving device toward the phantom:

The power state													
Distance [mm] 21 20 19 18 17 16 15 14 13 12 11													
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low		

Moving device away from the phantom:

The power state													
Distance [mm] 11 12 13 14 15 16 17 18 19 20 21													
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal		

Right Edge

Moving device toward the phantom:

The power state												
Distance [mm] 21 20 19 18 17 16 15 14 13 12 11												
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low	

Moving device away from the phantom:

The power state												
Distance [mm] 11 12 13 14 15 16 17 18 19 20 21												
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal	

Тор

Moving device toward the phantom:

	The power state												
Distance [mm] 21 20 19 18 17 16 15 14 13 12 11													
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low		

Moving device away from the phantom:

The power state											
Distance [mm] 11 12 13 14 15 16 17 18 19 20 21											
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal

Left

Moving device toward the phantom:

	The power state												
Distance [mm] 16 15 14 13 12 11 10 9 8 7 6													
Ν	Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low	

Moving device away from the phantom:

The power state												
Distance [mm] 6 7 8 9 10 11 12 13 14 15 16												
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal	

Wifi antenna

Front

Moving device toward the phantom:

The power state												
Distance [mm] 21 20 19 18 17 16 15 14 13 12 11												
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low	

Moving device away from the phantom:

The power state												
Distance [mm] 11 12 13 14 15 16 17 18 19 20 21												
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal	

Rear Edge

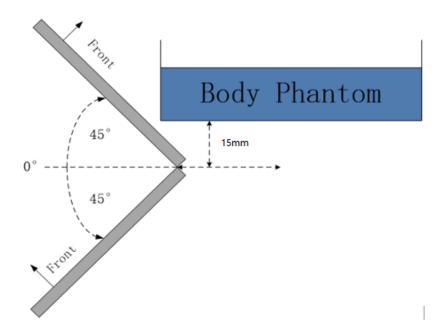
Moving device toward the phantom:

	The power state												
Distance [mm] 21 20 19 18 17 16 15 14 13 12 11													
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low		

Moving device away from the phantom:

The power state											
Distance [mm] 11 12 13 14 15 16 17 18 19 20 21											
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal

Right Edge

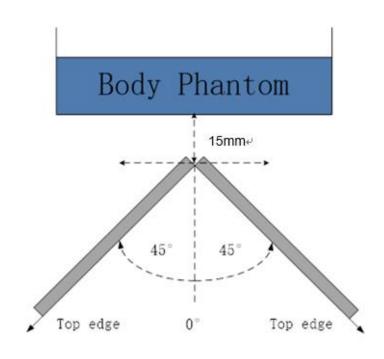

Moving device toward the phantom:

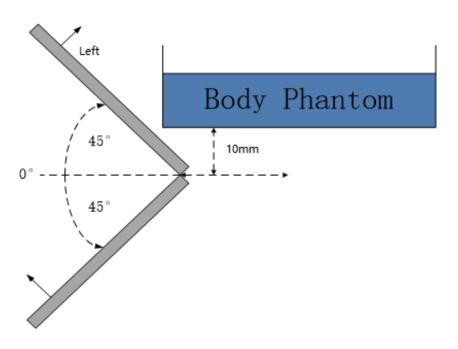
The power state												
	Distance [mm]	21	20	19	18	17	16	15	14	13	12	11
	Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low

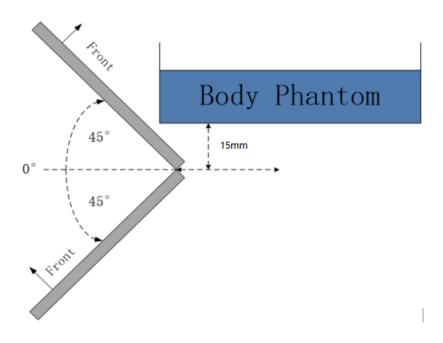
Moving device away from the phantom:

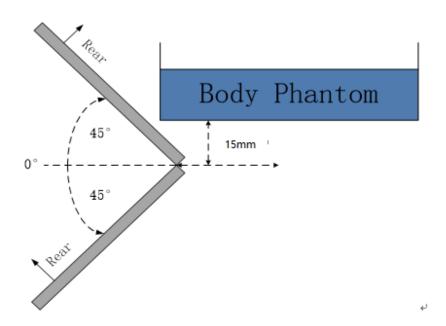
	The power state										
Distance [mm]	11	12	13	14	15	16	17	18	19	20	21
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal

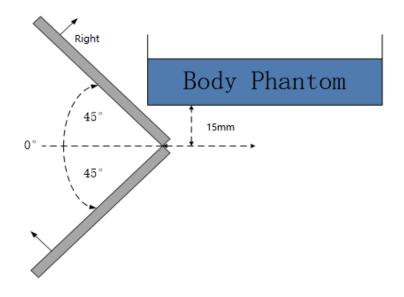
The influence of table tilt angles to SAR sensor triggering is determined by positioning each edge that contains a transmitting antenna, perpendicular to the flat phantom, at the smallest sensor triggering test distance by rotating the device around the edge next to the phantom in $\leq 10^{\circ}$ increments until the tablet is ±45° or more from the vertical position at 0°.


The front evaluation for main antenna


The right edge evaluation for main antenna


The top edge evaluation for main antenna


The left edge evaluation for main antenna


The front evaluation for wifi antenna

The rear evaluation for wifi antenna

The right edge evaluation for wifi antenna

Based on the above evaluation, we come to the conclusion that the sensor triggering is not released and normal maximum output power is not restored within the $\pm 45^{\circ}$ range at the smallest sensor triggering test distance declared by manufacturer.

ANNEX L: Accreditation Certificate

END OF REPORT