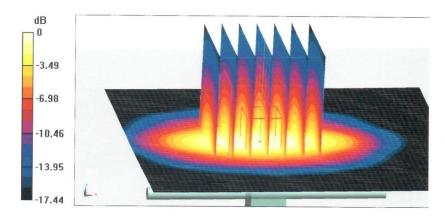


DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China


Date: 10.24.2018

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d088 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.367$ S/m; $\epsilon_r = 41.1$; $\rho = 1000$ kg/m3 Phantom section: Center Section

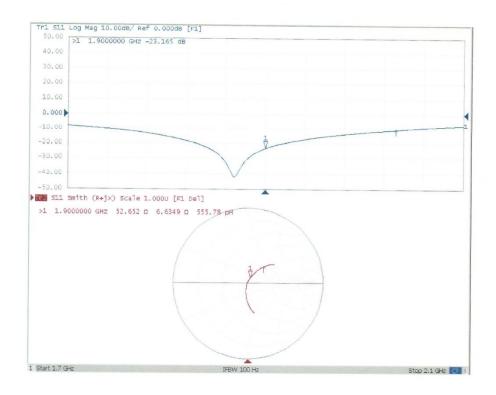
DASY5 Configuration:

- Probe: EX3DV4 SN7514; ConvF(7.73, 7.73, 7.73) @ 1900 MHz; Calibrated: 8/27/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/20/2018
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.2 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 19.0 W/kg SAR(1 g) = 9.92 W/kg; SAR(10 g) = 5.17 W/kgMaximum value of SAR (measured) = 15.7 W/kg

0 dB = 15.7 W/kg = 11.96 dBW/kg

Certificate No: Z18-60387


Page 5 of 8

Impedance Measurement Plot for Head TSL

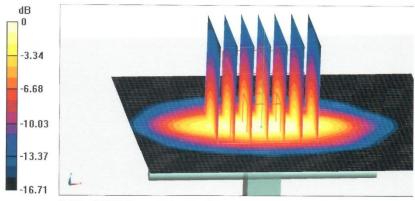
Certificate No: Z18-60387

Page 6 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Fax: +86-10-62304633-2504 http://www.chinattl.cn E-mail: cttl a chinattl.com

Date: 10.24.2018

DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d088 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1


Medium parameters used: f = 1900 MHz; σ = 1.551 S/m; ϵ_r = 52.63; ρ = 1000 kg/m3 Phantom section: Right Section

DASY5 Configuration:

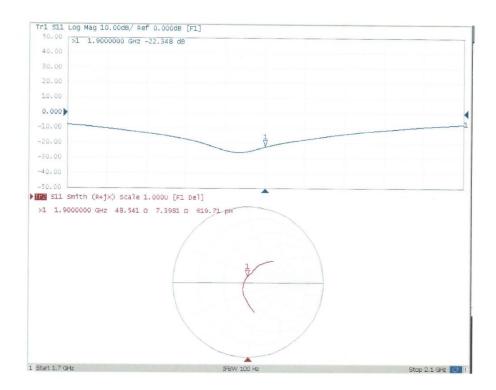
- Probe: EX3DV4 SN7514; ConvF(7.53, 7.53, 7.53) @ 1900 MHz; Calibrated: 8/27/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/20/2018
- . Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.60 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 19.0 W/kg SAR(1 g) = 10.3 W/kg; SAR(10 g) = 5.41 W/kg Maximum value of SAR (measured) = 15.9 W/kg

0 dB = 15.9 W/kg = 12.01 dBW/kg

Certificate No: Z18-60387


Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: Z18-60387

Page 8 of 8

2300MHz Dipole Calibration Certificate

Tel: +86-10-623046 E-mail: ettl@chinati	33-2079 Fax: - tl.com http://		CALIBRATIO CNAS L0570 B-60339
CALIBRATION CE			8-60339
	ERTIFICAT	Е	
Object			
	D2300	√2 - SN: 1059	
Calibration Procedure(s)			
		-003-01	
	Calibra	tion Procedures for dipole validation kits	
Calibration date:	Septen	nber 3, 2018	
All calibrations have been humidity<70%. Calibration Equipment used		the closed laboratory facility: environment or calibration)	temperature(22±3)℃ and
Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	
Power Meter NRVD	1	ear Bate(Ganbrated by, Gertinoate 140.)	Schoolulad ('alibration
	102083	01-Nov-17 (CTTL, No.J17X08756)	Scheduled Calibration
Power sensor NRV-Z5	102083	01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756)	Oct-18
	and a second	01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 12-Sep-17(SPEAG,No.EX3-7464 Sep17)	Oct-18 Oct-18
Power sensor NRV-Z5	100542	01-Nov-17 (CTTL, No.J17X08756)	Oct-18
Power sensor NRV-Z5 Reference Probe EX3DV4	100542 SN 7464	01-Nov-17 (CTTL, No.J17X08756) 12-Sep-17(SPEAG,No.EX3-7464_Sep17)	Oct-18 Oct-18 Sep-18
Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4	100542 SN 7464 SN 1524	01-Nov-17 (CTTL, No.J17X08756) 12-Sep-17(SPEAG,No.EX3-7464_Sep17) 13-Sep-17(SPEAG,No.DAE4-1524_Sep17)	Oct-18 Oct-18 Sep-18 Sep-18
Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards	100542 SN 7464 SN 1524 ID #	01-Nov-17 (CTTL, No.J17X08756) 12-Sep-17(SPEAG,No.EX3-7464_Sep17) 13-Sep-17(SPEAG,No.DAE4-1524_Sep17) Cal Date(Calibrated by, Certificate No.)	Oct-18 Oct-18 Sep-18 Sep-18 Scheduled Calibration
Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	100542 SN 7464 SN 1524 ID # MY49071430	01-Nov-17 (CTTL, No.J17X08756) 12-Sep-17(SPEAG,No.EX3-7464_Sep17) 13-Sep-17(SPEAG,No.DAE4-1524_Sep17) Cal Date(Calibrated by, Certificate No.) 23-Jan-18 (CTTL, No.J18X00560)	Oct-18 Oct-18 Sep-18 Sep-18 Scheduled Calibration Jan-19 Jan-19
Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	100542 SN 7464 SN 1524 ID # MY49071430 MY46110673	01-Nov-17 (CTTL, No.J17X08756) 12-Sep-17(SPEAG,No.EX3-7464_Sep17) 13-Sep-17(SPEAG,No.DAE4-1524_Sep17) Cal Date(Calibrated by, Certificate No.) 23-Jan-18 (CTTL, No.J18X00560) 24-Jan-18 (CTTL, No.J18X00561) Function	Oct-18 Oct-18 Sep-18 Sep-18 Scheduled Calibration Jan-19
Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	100542 SN 7464 SN 1524 ID # MY49071430 MY46110673 Name Zhao Jing	01-Nov-17 (CTTL, No.J17X08756) 12-Sep-17(SPEAG,No.EX3-7464_Sep17) 13-Sep-17(SPEAG,No.DAE4-1524_Sep17) Cal Date(Calibrated by, Certificate No.) 23-Jan-18 (CTTL, No.J18X00560) 24-Jan-18 (CTTL, No.J18X00561)	Oct-18 Oct-18 Sep-18 Sep-18 Scheduled Calibration Jan-19 Jan-19
Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	100542 SN 7464 SN 1524 ID # MY49071430 MY46110673 Name	01-Nov-17 (CTTL, No.J17X08756) 12-Sep-17(SPEAG,No.EX3-7464_Sep17) 13-Sep-17(SPEAG,No.DAE4-1524_Sep17) Cal Date(Calibrated by, Certificate No.) 23-Jan-18 (CTTL, No.J18X00560) 24-Jan-18 (CTTL, No.J18X00561) Function	Oct-18 Oct-18 Sep-18 Sep-18 Scheduled Calibration Jan-19 Jan-19
Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C Calibrated by: Reviewed by:	100542 SN 7464 SN 1524 ID # MY49071430 MY46110673 Name Zhao Jing	01-Nov-17 (CTTL, No.J17X08756) 12-Sep-17(SPEAG,No.EX3-7464_Sep17) 13-Sep-17(SPEAG,No.DAE4-1524_Sep17) Cal Date(Calibrated by, Certificate No.) 23-Jan-18 (CTTL, No.J18X00560) 24-Jan-18 (CTTL, No.J18X00561) Function SAR Test Engineer	Oct-18 Oct-18 Sep-18 Sep-18 Scheduled Calibration Jan-19 Jan-19

Certificate No: Z18-60339

Page 1 of 8

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z18-60339

Page 2 of 8

Measurement Conditions

DASY Version	DASY52	52.10.1.1476
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	

Head TSL parameters

Frequency

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.5	1.67 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.3 ± 6 %	1.65 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

2300 MHz ± 1 MHz

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	12.2 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	49.1 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.90 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	23.7 mW /g ± 18.7 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.9	1.81 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.3 ± 6 %	1.82 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.3 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	48.9 mW /g ± 18.8 % (k=2)
SAR averaged over 10 $\ensuremath{\mathcal{Cm}^3}$ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	6.01 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	24.0 mW /g ± 18.7 % (k=2)

Certificate No: Z18-60339

Page 3 of 8

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.8Ω- 3.32jΩ
Return Loss	- 29.0dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	44.9Ω- 2.75jΩ	
Return Loss	- 24.3dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1 000
	1.036 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

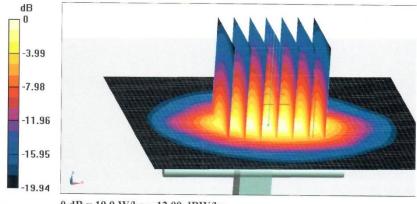
Manufactured by	SPEAG

Certificate No: Z18-60339

Page 4 of 8

DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China

Date: 08.31.2018


DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN: 1059 Communication System: UID 0, CW; Frequency: 2300 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2300 MHz; $\sigma = 1.649$ S/m; $\epsilon r = 39.34$; $\rho = 1000$ kg/m3 Phantom section: Center Section

DASY5 Configuration:

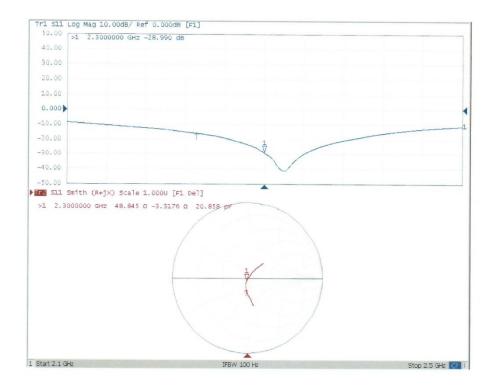
- Probe: EX3DV4 SN7464; ConvF(8.4, 8.4, 8.4) @ 2300 MHz; Calibrated: 9/12/2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1524; Calibrated: 9/13/2017
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

```
Reference Value = 102.3 V/m; Power Drift = 0.05 dB
Peak SAR (extrapolated) = 24.2 W/kg
SAR(1 g) = 12.2 W/kg; SAR(10 g) = 5.9 W/kg
Maximum value of SAR (measured) = 19.9 W/kg
```


0 dB = 19.9 W/kg = 12.99 dBW/kg

Certificate No: Z18-60339


Page 5 of 8

Impedance Measurement Plot for Head TSL

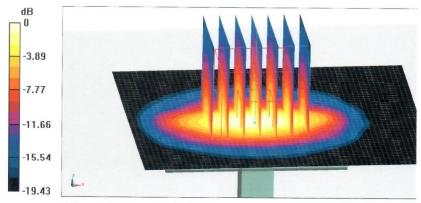
Certificate No: Z18-60339

Page 6 of 8

DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China

Date: 09.03.2018

DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN: 1059 Communication System: UID 0, CW; Frequency: 2300 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2300 MHz; $\sigma = 1.822$ S/m; $\epsilon r = 52.31$; $\rho = 1000$ kg/m3 Phantom section: Right Section


DASY5 Configuration:

- Probe: EX3DV4 SN7464; ConvF(8.3, 8.3, 8.3) @ 2300 MHz; Calibrated: 9/12/2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1524; Calibrated: 9/13/2017
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

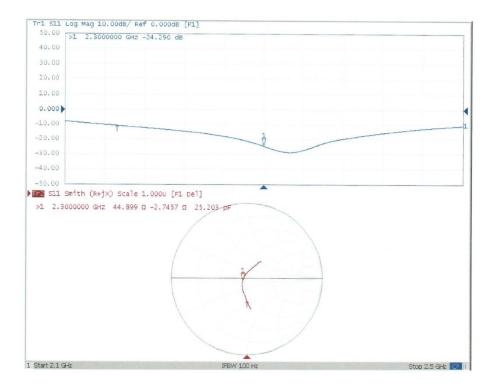
Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

```
Reference Value = 97.25 V/m; Power Drift = 0.08 dB
Peak SAR (extrapolated) = 23.2 W/kg
SAR(1 g) = 12.3 W/kg; SAR(10 g) = 6.01 W/kg
```

Maximum value of SAR (measured) = 19.5 W/kg

0 dB = 19.5 W/kg = 12.90 dBW/kg

Certificate No: Z18-60339


Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: Z18-60339

Page 8 of 8

2450 MHz Dipole Calibration Certificate

Add: No.51 Xueyu Tel: +86-10-62304	an Road, Haidian Dis	Strict, Beijing, 100191, China +86-10-62304633-2504	校准 CALIBRATIO CNAS L0570
E-mail: cttl@china	ttl.com http://	/www.chinattl.en	
Client CTT	L(South Brand	ch) Certificate No: Z	18-60388
CALIBRATION C	ERTIFICAT	ſE	
Object	D2450	V2 - SN: 873	
Calibration Procedure(s)	EE 711	-003-01	
		tion Procedures for dipole validation kits	
Calibration date:		er 26, 2018	
This collibration Codificate			
measurements(SI). The me pages and are part of the ce	asurements and	traceability to national standards, which re the uncertainties with confidence probability	ealize the physical units of y are given on the following
	n conducted in	the closed laboratory facility: environmer or calibration)	ant temperature(22±3) $^\circ\!\!\!\!\!^\circ$ and
All calibrations have been numidity<70%. Calibration Equipment used	n conducted in	or calibration)	
All calibrations have been numidity<70%. Calibration Equipment used	n conducted in		nt temperature(22±3)°C and Scheduled Calibration Oct-18
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5	I (M&TE critical for ID # 102083 100542	or calibration) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4	I (M&TE critical for ID# 102083 100542 SN 7514	Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 27-Aug-18(SPEAG,No.EX3-7514_Aug18)	Scheduled Calibration Oct-18 Oct-18 Aug-19
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5	I (M&TE critical for ID # 102083 100542	Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756)	Scheduled Calibration Oct-18 Oct-18 Aug-19
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4	I (M&TE critical for ID# 102083 100542 SN 7514	Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 27-Aug-18(SPEAG,No.EX3-7514_Aug18)	Scheduled Calibration Oct-18 Oct-18 Aug-19
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	I (M&TE critical fo ID# 102083 100542 SN 7514 SN 1555	Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 27-Aug-18(SPEAG,No.EX3-7514_Aug18) 20-Aug-18(SPEAG,No.DAE4-1555_Aug18)	Scheduled Calibration Oct-18 Oct-18 Aug-19 3) Aug-19
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards	I (M&TE critical fo ID# 102083 100542 SN 7514 SN 1555 ID#	Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 27-Aug-18(SPEAG,No.EX3-7514_Aug18) 20-Aug-18(SPEAG,No.DAE4-1555_Aug18) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration Oct-18 Oct-18 Aug-19 B) Aug-19 Scheduled Calibration
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	I (M&TE critical fo ID # 102083 100542 SN 7514 SN 1555 ID # MY49071430	Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 27-Aug-18(SPEAG,No.EX3-7514_Aug18) 20-Aug-18(SPEAG,No.DAE4-1555_Aug18) Cal Date(Calibrated by, Certificate No.) 23-Jan-18 (CTTL, No.J18X00560)	Scheduled Calibration Oct-18 Oct-18 Aug-19 B) Aug-19 Scheduled Calibration Jan-19
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	 conducted in (M&TE critical for ID # 100542 SN 7514 SN 1555 ID # MY49071430 MY46110673 	Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 27-Aug-18(SPEAG,No.EX3-7514_Aug18) 20-Aug-18(SPEAG,No.DAE4-1555_Aug18 Cal Date(Calibrated by, Certificate No.) 23-Jan-18 (CTTL, No.J18X00560) 24-Jan-18 (CTTL, No.J18X00561)	Scheduled Calibration Oct-18 Oct-18 Aug-19 3) Aug-19 Scheduled Calibration Jan-19 Jan-19
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	a conducted in (M&TE critical for 102083 100542 SN 7514 SN 1555 ID # MY49071430 MY46110673 Name	Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 27-Aug-18(SPEAG,No.EX3-7514_Aug18) 20-Aug-18(SPEAG,No.DAE4-1555_Aug18) Cal Date(Calibrated by, Certificate No.) 23-Jan-18 (CTTL, No.J18X00560) 24-Jan-18 (CTTL, No.J18X00561) Function	Scheduled Calibration Oct-18 Oct-18 Aug-19 3) Aug-19 Scheduled Calibration Jan-19 Jan-19
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	a conducted in (M&TE critical for ID # 102083 100542 SN 7514 SN 1555 ID # MY49071430 MY46110673 Name Zhao Jing	Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 27-Aug-18(SPEAG,No.EX3-7514_Aug18) 20-Aug-18(SPEAG,No.DAE4-1555_Aug18) Cal Date(Calibrated by, Certificate No.) 23-Jan-18 (CTTL, No.J18X00560) 24-Jan-18 (CTTL, No.J18X00561) Function SAR Test Engineer	Scheduled Calibration Oct-18 Oct-18 Aug-19 3) Aug-19 Scheduled Calibration Jan-19 Jan-19

Certificate No: Z18-60388

Page 1 of 8

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z18-60388

Page 2 of 8

Tel: +86-10-62304633-2079 E-mail: ettl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.2.1495
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.2 ± 6 %	1.80 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	52.0 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.02 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.1 mW /g ± 18.7 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.8 ± 6 %	2.01 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.8 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	50.5 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.91 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	23.5 mW /g ± 18.7 % (k=2)

Certificate No: Z18-60388

Page 3 of 8