

FCC Test Report

Report No.: AGC09355201001FE02

FCC ID	8	2APXU-R-T001
APPLICATION PURPOSE	:	Original Equipment
PRODUCT DESIGNATION	:	Smart Nutrition Scale
BRAND NAME	:	RENPHO
MODEL NAME	÷	R-T001
APPLICANT		TIT INTERNATIONAL LIMITED
DATE OF ISSUE	® •	Nov. 05,2020
STANDARD(S)	:	FCC Part 15.247
REPORT VERSION	:	V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the bedicated restruction of Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day Safter the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc~cert.com.

 Attestation of Global Compliance(Shenzhen)Co., Ltd

 Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd

 Tel: +86-755 2523 4088
 E-mail: agc@agc-cert.com

Web: http://cn.agc-cert.com/

Report No.: AGC09355201001FE02 Page 2 of 45

REPORT REVISE RECORD

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0		Nov. 05,2020	Valid	Initial Release

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Festive/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the writter authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issue of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

 Attestation of Global Compliance(Shenzhen)Co., Ltd

 Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd

 Tel: +86-755 2523 4088
 E-mail: agc@agc-cert.com

TABLE OF CONTENTS

1. VERIFICATION OF COMPLIANCE	
2. GENERAL INFORMATION	5
 2.1. PRODUCT DESCRIPTION	5 6
2.5. SPECIAL ACCESSORIES 2.6. EQUIPMENT MODIFICATIONS 2.7. ANTENNA REQUIREMENT.	
3. MEASUREMENT UNCERTAINTY	
4. DESCRIPTION OF TEST MODES	
5. SYSTEM TEST CONFIGURATION	
5.1. CONFIGURATION OF TESTED SYSTEM 5.2. EQUIPMENT USED IN TESTED SYSTEM 5.3. SUMMARY OF TEST RESULTS	
6. TEST FACILITY	
7. PEAK OUTPUT POWER	
7.1. MEASUREMENT PROCEDURE 7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) 7.3. LIMITS AND MEASUREMENT RESULT	
8. 6 DB BANDWIDTH	
8.1. MEASUREMENT PROCEDURE 8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) 8.3. LIMITS AND MEASUREMENT RESULTS	
9. CONDUCTED SPURIOUS EMISSION	
9.1. MEASUREMENT PROCEDURE 9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) 9.3. MEASUREMENT EQUIPMENT USED 9.4. LIMITS AND MEASUREMENT RESULT	
10. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY	
10.1. MEASUREMENT PROCEDURE 10.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) 10.3. MEASUREMENT EQUIPMENT USED 10.4. LIMITS AND MEASUREMENT RESULT	
11. RADIATED EMISSION	
11.1. MEASUREMENT PROCEDURE 11.2. TEST SETUP 11.3. LIMITS AND MEASUREMENT RESULT 11.4. TEST RESULT	
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	
APPENDIX B: PHOTOGRAPHS OF EUT	

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the abeliated restriction of the stamp. Subscription of the report is not permitted without the written authorization of AGE. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc~cert.com.

1. VERIFICATION OF COMPLIANCE

Applicant	TIT INTERNATIONAL LIMITED	
Address	MARKET STALL NO.M65 , WO CHE MARKET, WO CHE ESTATE SHATIN, NT, HONG KONG	
Manufacturer	Shenzhen Runfeng Digital Technology Co., LTD	
Address	Chuanghui Building, Intersection of Banxuegang Boulevard and Yongxiang Road, Bantian Subdistrict, Longgang District, Shenzhen, China	
Factory	Zhongshan Camry Electronic Co., Ltd	
Address	Baishawan Industrial Park, Qiwan Road East, East District, Zhongshan, Guangdong	
Product Designation	Smart Nutrition Scale	
Brand Name	RENPHO	
Test Model	R-T001	
Date of test	Oct. 30,2020 to Nov. 05,2020	
Deviation	No any deviation from the test method	
Condition of Test Sample	Normal	
Test Result	Pass	
Report Template	AGCRT-US-BLE/RF	

We hereby certify that:

The above equipment was tested by Attestation of Global Compliance (Shenzhen) Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with radiated emission limits of FCC part 15.247.

Prepared By

Then Huony

Thea Huang Project Engineer

Nov. 05,2020

Max Zhan

Reviewed By

Max Zhang Reviewer

Nov. 05,2020

Approved By

Forrest Lei Authorized Officer

Nov. 05,2020

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the stand inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC in the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

Attestation of Global Compliance(Shenzhen)Co., Ltd Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Web: http://cn.agc-cert.com/

2. GENERAL INFORMATION

2.1. PRODUCT DESCRIPTION

The EUT is designed as a "Smart Nutrition Scale". It is designed by way of utilizing the GFSK technology to achieve the system operation.

A major technical description of EUT is described as following

-3.611dBm (Max)
V 5.0
BR □GFSK, EDR □π /4-DQPSK, □8DPSK BLE ⊠GFSK 1Mbps □GFSK 2Mbps
40 Channel
PCB Antenna (Comply with requirements of the FCC part 15.203)
2dBi
XW32-BLE-A0_V1.0.PCB
TUYA_BCI_BK3432_USE_32Khz_RUNFENG_ALL_2.1
DC 4.5V by battery
r

2.2. TABLE OF CARRIER FREQUENCYS

Frequency Band	Channel Number	Frequency
	0	2402 MHz
		2404 MHz
2400~2483.5MHz		
	38	2478 MHz
-C	39	2480 MHz

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Festing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the writter authorization of AGE the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

2.3. RELATED SUBMITTAL(S)/GRANT(S)

This submittal(s) (test report) is intended for FCC ID: 2APXU-R-T001 filing to comply with the FCC Part 15.247 requirements.

2.4. TEST METHODOLOGY

Both conducted and radiated testing was performed according to the procedures in ANSI C63.10 (2013). Radiated testing was performed at an antenna to EUT distance 3 meters.

2.5. SPECIAL ACCESSORIES

Refer to section 5.2.

2.6. EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

2.7. ANTENNA REQUIREMENT

This intentional radiator is designed with a permanently attached antenna of an antenna to ensure that no antenna other than that furnished by the responsible party shall be used with the device. For more information of the antenna, please refer to the APPENDIX B: PHOTOGRAPHS OF EUT.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the stand of t

 Attestation of Global Compliance(Shenzhen)Co., Ltd

 Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd

 Tel: +86-755 2523 4088
 E-mail: agc@agc-cert.com
 Web: http://cn.agc-cert.com/

3. MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y $\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

- Uncertainty of Conducted Emission, Uc = ±3.2 dB
- Uncertainty of Radiated Emission below 1GHz, $Uc = \pm 3.9 dB$
- Uncertainty of Radiated Emission above 1GHz, Uc = ±4.8 dB
- Uncertainty of total RF power, conducted, $Uc = \pm 0.8 dB$
- Uncertainty of RF power density, conducted, Uc = ±2.6 dB
- Uncertainty of spurious emissions, conducted, $Uc = \pm 2.7 dB$
- Uncertainty of Occupied Channel Bandwidth: $Uc = \pm 2 \%$

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the bedicated resting/inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written approver, and the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

 Attestation of Global Compliance(Shenzhen)Co., Ltd

 Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd

 Tel: +86-755 2523 4088
 E-mail: agc@agc-cert.com

4. DESCRIPTION OF TEST MODES

NO.	TEST MODE DESCRIPTION		
1	Low channel TX		
2	Middle channel TX		
3	High channel TX		

Note:

- 1. Only the result of the worst case was recorded in the report, if no other cases.
- 2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.
- 3. For Conducted Test method, a temporary antenna connector is provided by the manufacture.

e(F) Help(H)		
F TEST COMM COM3 Close EXT EXT Enter DUT Freq 30 TX EX Freq 30 TX EX Freq 30 FX Close Exit Test mode Power 0 FN9 Close Exit Test mode Power 0 FN9 Close EXIT TEST Freq 50 FX Close EXIT TEST FY Close FY Close		
<pre>[CMD] config d_mode:1, freq:40, power:0, p_mode:3, hopping:0, rx_mode:0, afh:0, jpn:0, ble:1. BIE MODE! CMD RSP: d_mode=1, freq=28, powerlewel=0, p_mode=3, hopping=0 PRP DH5 mode! [CMD] config d_mode:1, freq:80, power:0, p_mode:3, hopping:0, rx_mode:0, afh:0, jpn:0, ble:1. [CMD] config d_mode:1, freq:80, power:0, p_mode:3, hopping:0, rx_mode:0, afh:0, jpn:0, ble:1. [CMD] config d_mode:1, freq:80, power:0, p_mode:3, hopping:0, rx_mode:0, afh:0, jpn:0, ble:1. [CMD] config d_mode:1, freq:80, power:0, p_mode:3, hopping:0, rx_mode:0, afh:0, jpn:0, ble:1. BIE MODE! CMD RSP: d_mode=1, freq=50, powerlewel=0, p_mode=3, hopping=0 PRP DH5 mode!</pre>	·	

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Pesturg/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the writter authorization of AGE. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuer of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

5. SYSTEM TEST CONFIGURATION

5.1. CONFIGURATION OF TESTED SYSTEM

Radiated Emission Configure:

EUT

Conducted Emission Configure:

EUT	AE	

5.2. EQUIPMENT USED IN TESTED SYSTEM

Item	Equipment	Model No.	ID or Specification	Remark
1	Smart Nutrition Scale	R-T001	2APXU-R-T001	EUT
2	Control Box	N/A	USB-TTL	AE

5.3. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
15.247 (b)(3)	Peak Output Power	Compliant
15.247 (a)(2)	6 dB Bandwidth	Compliant
15.247 (d)	Conducted Spurious Emission	Compliant
15.247 (e)	Maximum Conducted Output Power Density	Compliant
15.209	Radiated Emission	Compliant
15.207	Conducted Emission	Not applicable

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the writter explorization of AGC the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

6. TEST FACILITY

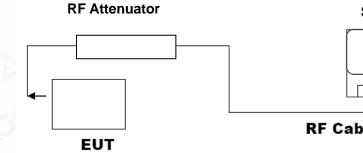
Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd	
Location	1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China	
Designation Number	CN1259	
FCC Test Firm Registration Number	975832	
A2LA Cert. No.	5054.02	
Description	Attestation of Global Compliance (Shenzhen) Co., Ltd is accredited by A2LA	

TEST EQUIPMENT OF RADIATED EMISSION TEST

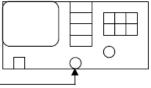
Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
TEST RECEIVER	R&S	ESCI	10096	May 15, 2020	May 14, 2021
EXA Signal Analyzer	Aglient	N9010A	MY53470504	Dec. 12, 2019	Dec. 11, 2020
2.4GHz Filter	EM Electronics	2400-2500MHz	N/A	Mar. 23, 2020	Mar. 22, 2022
Attenuator	ZHINAN	E-002	N/A	N/A	N/A
Horn antenna	SCHWARZBECK	BBHA 9170	#768	Sep. 09, 2019	Sep. 08, 2021
Active loop antenna (9K-30MHz)	ZHINAN	ZN30900C	18051	May 22, 2020	May 21, 2022
Double-Ridged Waveguide Horn	ETS LINDGREN	3117	00034609	May 17, 2019	May 16, 2021
Broadband Preamplifier	ETS LINDGREN	3117PA	00225134	Sep. 03,2020	Sep. 02,2022
ANTENNA	SCHWARZBECK	VULB9168	494	Jan. 09, 2019	Jan. 08, 2021
Test software	Tonscend	JS32-RE (Ver.2.5)	N/A	N/A	N/A

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC, the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

7. PEAK OUTPUT POWER


7.1. MEASUREMENT PROCEDURE

For peak power test:


- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. RBW≥DTS bandwidth
- 3. VBW≥3*RBW.
- 4. SPAN≥VBW.
- 5. Sweep: Auto.
- 6. Detector function: Peak.
- 7. Trace: Max hold.

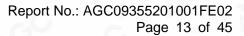
Allow trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power, after any corrections for external attenuators and cables.

7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) PEAK POWER TEST SETUP

Spectrum Analyzer

RF Cable

Compliances Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by th g/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the writter aphorization of AGE presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance he test results the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.


7.3. LIMITS AND MEASUREMENT RESULT

PEAK OUTPUT POWER MEASUREMENT RESULT							
FOR GFSK MOUDULATION							
Frequency (GHz)	Peak Power (dBm)	Applicable Limits (dBm)	Pass or Fail				
2.402	-3.611	30	Pass				
2.440	-3.979	30	Pass				
2.480	-4.145	30	Pass				

CH0

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuer of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc~cert.com.

CH19

CH39

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written approver, be test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuence of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc~cert.com.

8.6 DB BANDWIDTH

8.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Centre Frequency = Operation Frequency, RBW= 100 kHz, VBW≥3×RBW.
- 4. Set SPA Trace 1 Max hold, then View.

Note: The EUT was tested according to ANSI C63.10 for compliance to FCC PART 15.247 requirements.

8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The same as described in section 7.2.

8.3. LIMITS AND MEASUREMENT RESULTS

LIMITS AND MEASUREMENT RESULT								
Applicable Limite	Applicable Limits							
Applicable Limits	Test Data	Criteria						
	Low Channel	795.2	PASS					
>500KHZ	Middle Channel	801.0	PASS					
	High Channel	799.0	PASS					

TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Bedicated Featurg/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written approver, or having not been stamped by the "Bedicated Featurg/Inspection presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc~cert.com.

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written aphroization of AGE the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuence of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc~cert.com.

9. CONDUCTED SPURIOUS EMISSION

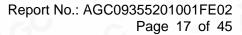
9.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2, Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Trace 1 Max hold, then View.

Note: The EUT was tested according to ANSI C63.10 for compliance to FCC PART 15.247 requirements.

9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The same as described in section 7.2.

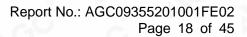

9.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6.

9.4. LIMITS AND MEASUREMENT RESULT

LIMITS AND MEASUREMENT RESULT							
	Measurement Result						
Applicable Limits	Test Data	Criteria					
In any 100 kHz Bandwidth Outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produce by the intentional radiator shall be at least 20 dB below that in 100KHz bandwidth within the band that contains the highest level of the desired power.	At least -20dBc than the reference level	PASS					

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Presting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGE. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuence of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.



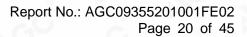
TEST RESULT FOR ENTIRE FREQUENCY RANGE GFSK MODULATION IN LOW CHANNEL

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written aphrorization of AGE the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day Safter the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

🊺 Keysigh	nt Spec															
Center	r Fr	RF eal 1		Ω AC 17500					NSE:INT			ALIGN AUTO pe: Log-Pwr	TRAC	M Nov 03, 202 CE 1 2 3 4 5	6	Frequency
Cicritica		2:			PN	NO: Fast Gain:Low		Trig: Free Atten: 30			Avg Hol		TY		₩	
10 dB/di	liv	Rei	f 20.00	0 dBn	n							M	kr1 7.20 -43.9	54GH: 95dBn	2	Auto Tune
Log 10.0																Center Freq 13.741750000 GHz
-20.0 -30.0 -40.0				1										-24.64 dB		Start Freq 2.483500000 GHz
-50.0																Stop Freq 25.00000000 GHz
Start 2 #Res B	3W 1	100	kHz		X	#VI	3W 30	00 kHz		FUNCT		Sweep	2.152 s (3	25.00 GH: 30000 pts	5)	CF Step 2.251650000 GHz <u>Auto</u> Man
					^ 7.205 4	4 GHz	-4	" 3.995 dE							E	Freq Offset 0 Hz
MSG												STATU	s			

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written approver, and the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuer of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

 Attestation of Global Compliance(Shenzhen)Co., Ltd


 Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd

 Tel: +86-755 2523 4088
 E-mail: agc@agc-cert.com

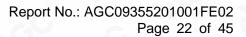
		DULATIO				
Keysight Spectrum Analyzer - Sv RL RF 50 g		SENSE:INT		ALIGN AUTO	04:02:11 PM Nov 03, 2020	
Center Freq 2.4400		Trin Frank		Type: Log-Pwr Hold: 10/10	TRACE 1 2 3 4 5 6 TYPE MWWWW DET PNNNNN	Frequency
	Ir Gain.Low			Mkr1 2.	440 268 6 GHz	Auto Tun
0 dB/div Ref 20.00	dBm				-4.982 dBm	
10.0						Center Free
0.00			1			2.440000000 GH
10.0						
20.0						Start Free
30.0						2.438500000 GH
40.0					a (1916)	
50.0						Stop Fre
50.0						2.441500000 GH
70.0						
enter 2.440000 GHz Res BW 100 kHz		V 300 kHz		Sweep 2.0	Span 3.000 MHz 00 ms (30000 pts)	CF Stej 300.000 kH
MKR MODE TRC SCL	Х	Y	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Mar
1 N 1 f 2	2.440 268 6 GHz	-4.982 dBm				
3 4						FreqOffse
5 6					E	0 H:
7						
8 9						
1						
		m			•	
SG				STATUS		
Keysight Spectrum Analyzer - Sv RL RF 50 S		SENSE:INT		ALIGN AUTO	04:02:20 PM Nov 03, 2020	
enter Freq 1.2150	00000 GHz PNO: Fast ↔	Trig: Free Run		Type: Log-Pwr Hold: 10/10	TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N N	Frequency
	IFGain:Low	Atten: 30 dB			DET	Auto Tum
				Mkr1	2.388 70 GHz	Auto Tune
0 dB/div Ref 20.00	dBm				-57.609 dBm	
10.0						Center Free
0.00						1.215000000 GH:
10.0						
20.0					-24.98 dBm	Start Free
30.0						30.000000 MH:
40.0					1	
50.0						Stop Free
						2.40000000 GH
					Stop 2.400 GHz	CF Step
		V 300 kHz		Sween 229	(III MC / IIIIIIIII 1100)	237 000000 MH
Res BW 100 kHz		V 300 kHz	EUNCTION		3.0 ms (30000 pts)	
Res BW 100 kHz MKR MODE TRC SCL 1 N 1 f	#VB\ X 2.388 70 GHz	V 300 kHz Y -57.609 dBm	FUNCTION	Sweep 228	FUNCTION VALUE	
Res BW 100 kHz MKR MODE TRC SCL 1 N 2 3	X	Y	FUNCTION			<u>Auto</u> Mar
Res BW 100 kHz MKR MODE TRC SCL 1 N 1 f 2 1 1 f	X	Y	FUNCTION			<u>Auto</u> Mar Freq Offse
#Res BW 100 kHz MKR MODE TRC SCL 1 N 1 f 2 3	X	Y	FUNCTION		FUNCTION VALUE	<u>Auto</u> Mar Freq Offse
#Res BW 100 kHz MKR MODE TRC SCL 1 N 1 f 2 3 - - - - 4 - - - - 5 - - - - 6 - - - - - 7 -	X	Y	FUNCTION		FUNCTION VALUE	<u>Auto</u> Mar Freq Offse
Ares BW 100 kHz MKR MODE TRC SCL 1 N 2	X	Y	FUNCTION		FUNCTION VALUE	<u>Auto</u> Mar Freq Offse
2 3 4 5 6 7 8	X	Y	FUNCTION		FUNCTION VALUE	237.000000 MH; <u>Auto</u> Mar Freq Offset 0 H;

Sompliance Dedicated Fe Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the soleciated resistanp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the writter exchorization of AG presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issues to AGC by agc@agc-cert.com. /Inspection The test results Bf ne test report.

	sight Spe															
LXI RL Cent		RF reg 1				CORREC		SEI	NSE:INT	Ava		ALIGN AUTO : Log-Pwr		M Nov 03, 202		Frequency
Cen		eq			0000	PNO: Fa	ast ↔ Low	Trig: Free Atten: 30				: 10/10	TYF De		VIV N N	Auto Tune
10 dE Log	3/div	Re	f 20.0	00 di	Зm							Mk	r1 7.319 -44.20	95GH 04dBn		Auto runo
10.0 0.00 -10.0																Center Freq 13.741750000 GHz
-20.0 -30.0 -40.0					1									-24.98 dB	Ĵm	Start Freq 2.483500000 GHz
-50.0 -60.0 -70.0										and set of the set						Stop Freq 25.00000000 GHz
#Res	t 2.48 s BW	100	kHz			#	≠vbw	/ 300 kHz					2.152 s (3		s)	CF Step 2.251650000 GHz <u>Auto</u> Man
1	MODE TR			_	× 7.3	319 5 GH	z	Y -44.204 dl		NCTION	FUN	ICTION WIDTH	FUNCTION	ON VALUE	Î	
2 3 4 5 6															ш	Freq Offset 0 Hz
7 8 9 10																
11								III							*	
MSG	_	_	_	_	_		_			_		STATUS	5		_	

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC, the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

 Attestation of Global Compliance(Shenzhen)Co., Ltd


 Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd

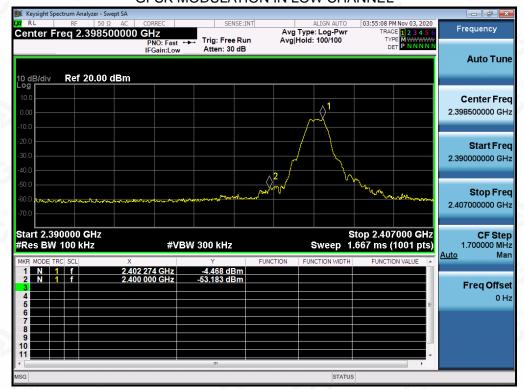
 Tel: +86-755 2523 4088
 E-mail: agc@agc-cert.com

		MODULATI				
Keysight Spectrum Analyzer -	Swept SA D Ω AC CORREC	SENSE:IN	Т	ALIGN AUTO	04:34:38 PM Nov 03, 2020	
Center Freq 2.480		T-1. F	Avg	Type: Log-Pwr Hold: 10/10	TRACE 1 2 3 4 5 6 TYPE MWWWW DET P NNNN	Frequency
	ii Guin.Eow			Mkr1 2	480 269 2 GHz	Auto Tune
10 dB/div Ref 20.0	0 dBm				-5.169 dBm	
10.0			<u> </u>			Center Freq
0.00						2.480000000 GHz
-10.0						
-20.0	AN AND A A A A A A A A A A A A A A A A A					Start Freq
-30.0				Marin		2.478500000 GHz
-40.0						
-50.0 Markan						Stop Freq
-60.0						2.481500000 GHz
-70.0						
Center 2.480000 GH #Res BW 100 kHz		BW 300 kHz		Sweep 2.0	Span 3.000 MHz 00 ms (30000 pts)	300.000 kHz
MKR MODE TRC SCL	X	Y	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	Auto Man
1 N 1 f	2.480 269 2 GHz	-5.169 dBm				
3						Freq Offset
4 5					=	0 Hz
6						
8						
10						
11						
•						
MSG		m		STATUS		
MSG MSG Keysight Spectrum Analyzer -	Swept SA	m		STATUS		
Keysight Spectrum Analyzer - RL RF 50	DΩ AC CORREC	m SENSE:IN		ALIGN AUTO	04:34:47 PM Nov 03, 2020	_
🎉 Keysight Spectrum Analyzer -	0 Ω AC CORREC 0000000 GHz PNO: Fast	Trig: Free Run	Avg		04:34:47 PM Nov 03, 2020	Frequency
Keysight Spectrum Analyzer - RL RF 50	0 Ω AC CORREC	T-1. F	Avg	ALIGN AUTO Type: Log-Pwr Hold: 10/10	04:34:47 PM Nov 03, 2020 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N	Frequency
Center Freq 1.215	0 0 AC CORREC 0000000 GHz PNO: Fast IFGain:Low	Trig: Free Run	Avg	ALIGN AUTO Type: Log-Pwr Hold: 10/10	04:34:47 PM Nov 03, 2020 TRACE 2 3 4 5 6 TYPE M DET P NN NN N 1 2.376 14 GHz	Frequency
Keysight Spectrum Analyzer - RL RF 50	0 0 AC CORREC 0000000 GHz PNO: Fast IFGain:Low	Trig: Free Run	Avg	ALIGN AUTO Type: Log-Pwr Hold: 10/10	04:34:47 PM Nov 03, 2020 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N	Frequency
Keysight Spectrum Analyzer - Keysight Spectrum Analyzer - Scenter Freq 1.215	0 0 AC CORREC 0000000 GHz PNO: Fast IFGain:Low	Trig: Free Run	Avg	ALIGN AUTO Type: Log-Pwr Hold: 10/10	04:34:47 PM Nov 03, 2020 TRACE 2 3 4 5 6 TYPE M DET P NN NN N 1 2.376 14 GHz	Frequency Auto Tune
Keysight Spectrum Analyzer - W RL RF 50 Center Freq 1.215 10 dB/div Ref 20.00	0 0 AC CORREC 0000000 GHz PNO: Fast IFGain:Low	Trig: Free Run	Avg	ALIGN AUTO Type: Log-Pwr Hold: 10/10	04:34:47 PM Nov 03, 2020 TRACE 2 3 4 5 6 TYPE M DET P NN NN N 1 2.376 14 GHz	Frequency Auto Tune Center Freq
Keysight Spectrum Analyzer - WRL RF 50 Center Freq 1.215 0 dB/div Ref 20.00 10 0	0 0 AC CORREC 0000000 GHz PNO: Fast IFGain:Low	Trig: Free Run	Avg	ALIGN AUTO Type: Log-Pwr Hold: 10/10	04:34:47 PM Nov 03, 2020 TRACE 2 3 4 5 6 TYPE M DET P NN NN N 1 2.376 14 GHz	Frequency Auto Tune Center Frec
Keysight Spectrum Analyzer - W RL RF 50 Center Freq 1.215 0 dB/div Ref 20.00 0.00	0 0 AC CORREC 0000000 GHz PNO: Fast IFGain:Low	Trig: Free Run	Avg	ALIGN AUTO Type: Log-Pwr Hold: 10/10	04:34:47 PM Nov 03, 2020 TRACE 2 3 4 5 6 TYPE M DET P NN NN N 1 2.376 14 GHz	Frequency Auto Tune Center Freq 1.215000000 GHz
Keysight Spectrum Analyzer - RL RF SC Center Freq 1.2150 SC 10 dB/div Ref 20.00 0 g - 10.0 -	0 0 AC CORREC 0000000 GHz PNO: Fast IFGain:Low	Trig: Free Run	Avg	ALIGN AUTO Type: Log-Pwr Hold: 10/10	04:34:47 PMNov 03, 2020 TRACE 1 2 3 4 5 G TYPE MWWWWW DET P NNNNN 1 2.376 14 GHz -57.515 dBm	Frequency Auto Tune Center Frec 1.21500000 GHz Start Frec
Keysight Spectrum Analyzer - St R L RF St Center Freq 1.2151 O dB/div Ref 20.01	0 0 AC CORREC 0000000 GHz PNO: Fast IFGain:Low	Trig: Free Run	Avg	ALIGN AUTO Type: Log-Pwr Hold: 10/10	04:34:47 PMNov 03, 2020 TRACE 1 2 3 4 5 G TYPE MWWWWW DET P NNNNN 1 2.376 14 GHz -57.515 dBm	Frequency Auto Tune Center Freq 1.21500000 GHz Start Freq
Keysight Spectrum Analyzer - RL RF SC Center Freq 1.2150 SC 10 dB/div Ref 20.00 9 - 10.0 - -0.00 - -10.0 - -30.0 -	0 0 AC CORREC 0000000 GHz PNO: Fast IFGain:Low	Trig: Free Run	Avg	ALIGN AUTO Type: Log-Pwr Hold: 10/10	04:34:47 PMNov 03, 2020 TRACE 1 2 3 4 5 G TYPE MWWWWW DET P NNNNN 1 2.376 14 GHz -57.515 dBm	Frequency Auto Tune Center Frec 1.215000000 GHz Start Frec 30.000000 MHz
Keysight Spectrum Analyzer - R L RF St Center Freq 1.2151 O dB/div Ref 20.01 O dB/div <	0 0 AC CORREC 0000000 GHz PNO: Fast IFGain:Low	Trig: Free Run	Avg	ALIGN AUTO Type: Log-Pwr Hold: 10/10	04:34:47 PMNov 03, 2020 TRACE 1 2 3 4 5 G TYPE MWWWWW DET P NNNNN 1 2.376 14 GHz -57.515 dBm	Frequency Auto Tune Center Frec 1.215000000 GHz Start Frec 30.000000 MHz Stop Frec
Keysight Spectrum Analyzer RL RF SC Center Freq 1.2151 10 dB/div Ref 20.01 Log	0 0 AC CORREC 0000000 GHz PNO: Fast IFGain:Low	Trig: Free Run	Avg	ALIGN AUTO Type: Log-Pwr Hold: 10/10	04:34:47 PMNov 03, 2020 TRACE 1 2 3 4 5 G TYPE MWWWWW DET P NNNNN 1 2.376 14 GHz -57.515 dBm	Frequency Auto Tune Center Frec 1.215000000 GHz Start Frec 30.000000 MHz Stop Frec
Keysight Spectrum Analyzer - St Center Freq 1.215 O dB/div Ref 20.01 0 dB/div Ref 20.01	0 0 AC CORREC 0000000 GHz PNO: Fast IFGain:Low	Trig: Free Run	Avg	ALIGN AUTO Type: Log-Pwr Hold: 10/10	04:34:47 PM Nov 03, 2020 TRACE 1 23 4 5 6 TYPE MANNAN DET MINIMA 1 2.376 14 GHz -57.515 dBm -25.17 dBm	Frequency Auto Tune Center Frec 1.215000000 GHz Start Frec 30.000000 MHz Stop Frec 2.400000000 GHz
Keysight Spectrum Analyzer RL RF SC Center Freq 1.2151 10 dB/div Ref 20.01 Log	D Q AC CORREC OU0000 GHz PRO: Fast IFGain:Low 0 dBm	Trig: Free Run	Avg	ALIGN AUTO Type: Log-Pwr Hold: 10/10 MKC [*]	04:34:47 PMNov 03, 2020 TRACE 1 2 3 4 5 G TYPE MWWWWW DET P NNNNN 1 2.376 14 GHz -57.515 dBm	Frequency Auto Tune Center Freq 1.215000000 GH2 Start Freq 30.000000 MH2 Stop Freq 2.400000000 GH2 CF Step 237.000000 MH2
Keysight Spectrum Analyzer - St Center Freq 1.215 O dB/div Ref 20.00 10.0 Ref 20.00 10.0 Ref 20.00 -20.0 Ref 20.00 -30.0 Ref 20.00 -20.0 Ref 20.00	D Q AC CORREC OU0000 GHz PRO: Fast IFGain:Low 0 dBm	Trig: Free Run Atten: 30 dB	Avg	ALIGN AUTO Type: Log-Pwr Hold: 10/10 MKC [*]	04:34:47 PM Nov 03, 2020 TRACE 1 23 4 5 6 TYPE M.W.W.W. OET P.N.N.N.M. 1 2.376 14 GHz -57.515 dBm -25 17 dBm -25 17 dBm	Frequency Auto Tune Center Freq 1.215000000 GHz Start Freq 30.000000 MHz Stop Freq 2.400000000 GHz CF Step 237.000000 MHz
Keysight Spectrum Analyzer - St Center Freq 1.215 O dB/div Ref 20.0 I 0 dB/div Ref 20.0 I 1 f I 1 f	Ω Ω AC CORREC ORREC ORDOOOO GHZ PRO: Fast IFGain:Low	Trig: Free Run Atten: 30 dB		ALIGN AUTO Type: Log-Pwr Hold: 10/10 MKr Mkr Sweep 22:	04:34:47 PM Nov 03, 2020 TRACE 1 23 4 5 6 TYPE M MWWWW DET P NNNWN 1 2.376 14 GHz -57.515 dBm -25:17 dBm -25:15 dBm -25:17 dBm -25:1	Frequency Auto Tune Center Freq 1.215000000 GHz Start Freq 30.000000 MHz Stop Freq 2.400000000 GHz CF Step 237.000000 MHz Auto Mar
Keysight Spectrum Analyzer R L RF St Center Freq 1.2150 10 dB/div Ref 20.00 11 dB/div Ref 20.00 11 dB/div Ref 20.00	A C CORREC ODOOOO GHZ PRO: Fast IFGain:Low O dBm O dBm IFGain:Low We decrease of endotries We decrease of endotries #VE	Trig: Free Run Atten: 30 dB		ALIGN AUTO Type: Log-Pwr Hold: 10/10 MKr Mkr Sweep 22:	04:34:47 PM Nov 03, 2020 TRACE 1 23 4 5 6 TYPE M MWWWW DET P NNNWN 1 2.376 14 GHz -57.515 dBm -25:17 dBm -25:15 dBm -25:17 dBm -25:1	Frequency Auto Tune Center Frec 1.215000000 GH2 Start Frec 30.000000 MH2 Stop Frec 2.400000000 GH2 CF Step 237.000000 MH2 Auto Mar
Keysight Spectrum Analyzer - St Center Freq 1.215/ O dB/div Ref 20.01 Start 30 MHz Res BW 100 KHz MKR MODE TRC SCL N O dB/div Ref 20.01 Ref 20.01 O dB/div Ref 20.01 Ref 20.01	A C CORREC ODOOOO GHZ PRO: Fast IFGain:Low O dBm O dBm IFGain:Low We decrease of endotries We decrease of endotries #VE	Trig: Free Run Atten: 30 dB		ALIGN AUTO Type: Log-Pwr Hold: 10/10 MKr Mkr Sweep 22:	04:34:47 PM Nov 03, 2020 TRACE 1 23 4 5 6 TYPE M MWWWW DET P NNNWN 1 2.376 14 GHz -57.515 dBm -25:17 dBm -25:15 dBm -25:17 dBm -25:1	Frequency Auto Tune Center Frec 1.215000000 GH2 Start Frec 30.000000 MH2 Stop Frec 2.400000000 GH2 CF Step 237.000000 MH2 Auto Mar
Keysight Spectrum Analyzer - St R L RF St Center Freq 1.2150 Io dB/div Ref 20.01 Log Io 10.0 Io 20.0 Io -10.0 Io -20.0 Io -30.0 Io -40.0 Io Start 30 MHz Io #Res BW 100 kHz MKR MODE TRC SCL 1 N 1 f 2 3 4 Io	A C CORREC ODOOOO GHZ PRO: Fast IFGain:Low O dBm O dBm IFGain:Low We decrease of endotries We decrease of endotries #VE	Trig: Free Run Atten: 30 dB		ALIGN AUTO Type: Log-Pwr Hold: 10/10 MKr Mkr Sweep 22:	04:34:47 PM Nov 03, 2020 TRACE 1 23 4 5 G TYPE 1 23 4 5 G TYPE 1 20 4 5 G TYPE	Frequency Auto Tune Center Frec 1.215000000 GH2 Start Frec 30.000000 MH2 Stop Frec 2.400000000 GH2 CF Step 237.000000 MH2 Auto Mar
Keysight Spectrum Analyzer R L RF St Center Freq 1.2150 Io dB/div Ref 20.00 Io dB/div Io dB/div Res BW Io dB/div Io dB/div Io dB/dio Io dB/di	A C CORREC ODOOOO GHZ PRO: Fast IFGain:Low O dBm O dBm IFGain:Low We decrease of endotries We decrease of endotries #VE	Trig: Free Run Atten: 30 dB		ALIGN AUTO Type: Log-Pwr Hold: 10/10 MKr Mkr Sweep 22:	04:34:47 PM Nov 03, 2020 TRACE 1 23 4 5 G TYPE 1 23 4 5 G TYPE 1 20 4 5 G TYPE	Frequency Auto Tune Center Freq 1.215000000 GHz Start Freq 30.000000 MHz 2.400000000 GHz 2.400000000 GHz 2.37.000000 MHz Auto Man
Keysight Spectrum Analyzer - St Center Freq 1.215/ R St Conter Freq 1.215/ O B/div Ref 20.01 O O O O B/div Ref 20.01 O O O O O O O O O Start 30 MHz Res BW 100 kHz MKR MODE TRC SCL T T Z N T T Z S S S G O O O O Start 30 MHz Res BW 100 kHz Mz S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S	A C CORREC ODOOOO GHZ PRO: Fast IFGain:Low O dBm O dBm IFGain:Low We decrease of endotries We decrease of endotries #VE	Trig: Free Run Atten: 30 dB		ALIGN AUTO Type: Log-Pwr Hold: 10/10 MKr Mkr Sweep 22:	04:34:47 PM Nov 03, 2020 TRACE 1 23 4 5 G TYPE 1 23 4 5 G TYPE 1 20 4 5 G TYPE	Frequency Auto Tune Center Freq 1.215000000 GHz Start Freq 30.000000 MHz 2.400000000 GHz 2.400000000 GHz 2.37.000000 MHz Auto Man
Keysight Spectrum Analyzer - St Center Freq 1.215 O dB/div Ref 20.00 Log St 10 dB/div Ref 20.00 Start 30 MHz St #Res BW 100 kHz Model Trc ScL 1 f 2 3 d 4 6 7 8 9	A C CORREC ODOOOO GHZ PRO: Fast IFGain:Low O dBm O dBm IFGain:Low We decrease of endotries We decrease of endotries #VE	Trig: Free Run Atten: 30 dB		ALIGN AUTO Type: Log-Pwr Hold: 10/10 MKr Mkr Sweep 22:	04:34:47 PM Nov 03, 2020 TRACE 1 23 4 5 G TYPE 1 23 4 5 G TYPE 1 20 4 5 G TYPE	Frequency Auto Tune Center Freq 1.215000000 GHz Start Freq 30.000000 MHz Stop Freq 2.400000000 GHz CF Step 237.000000 MHz

Compliance Dedicated Fe Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the bedicated res Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written extincrization of AG presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day Safter the issues Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com. g/Inspection The test results ne test report. Bf

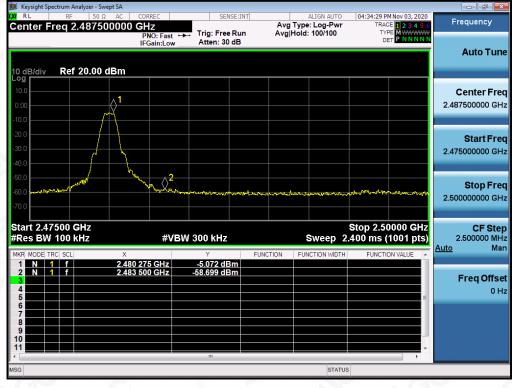
	ectrum Analyzer -									
Center F	RF 50 req 13.750			SEN	SE:INT	Avg Type	ALIGN AUTO e: Log-Pwr	TRAC	MNov 03, 2020	Frequency
			PNO: Fast ↔ FGain:Low	Trig: Free Atten: 30		Avg Hold		DI		Auto Tune
10 dB/div	Ref 20.00) dBm					Mł	r1 7.43 -44.6	3 9 GHz 83 dBm	Auto Tune
Log 10.0 0.00 -10.0										Center Freq 13.750000000 GHz
-20.0 -30.0 -40.0		1							-25.17 dBm	Start Freq 2.50000000 GHz
-50.0 -60.0 <mark></mark>										Stop Freq 25.00000000 GHz
Start 2.50 #Res BW	100 kHz	X	#VBV	N 300 kHz	FUNC			2.152 s (3	5.00 GHz 0000 pts)	CF Step 2.250000000 GHz <u>Auto</u> Man
1 N 1 2 3 3 4 5 6 7 8 9 9 10 11			8 9 GHz	-44.683 dB				FONCTIN		Freq Offset 0 Hz
MSG							STATU	6		

Note: The peak emissions without marker on the above plots are fundamental wave and need not to compare with the limit.


Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written approver, and the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuer of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

 Attestation of Global Compliance(Shenzhen)Co., Ltd

 Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd


 Tel: +86-755 2523 4088
 E-mail: agc@agc-cert.com

TEST RESULT FOR BAND EDGE GFSK MODULATION IN LOW CHANNEL

GFSK MODULATION IN HIGH CHANNEL

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the bedicated festing/inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written approver, and horization of AGC, the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuence of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc~cert.com.

10. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY

10.1. MEASUREMENT PROCEDURE

- (1). Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- (2). Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- (3). Set the SPA Trace 1 Max hold, then View.

Note: The method of PKPSD in the KDB 558074 item 10.2 was used in this testing.

10.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

Refer to Section 7.2.

10.3. MEASUREMENT EQUIPMENT USED

Refer to Section 6.

10.4. LIMITS AND MEASUREMENT RESULT

Channel No.	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Result	
Low Channel	-20.712	8	Pass	
Middle Channel	-20.826	8	Pass	
High Channel	-20.976	8	Pass	

TEST PLOT OF SPECTRAL DENSITY FOR LOW CHANNEL

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Bedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGE the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuence of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc~cert.com.

TEST PLOT OF SPECTRAL DENSITY FOR MIDDLE CHANNEL

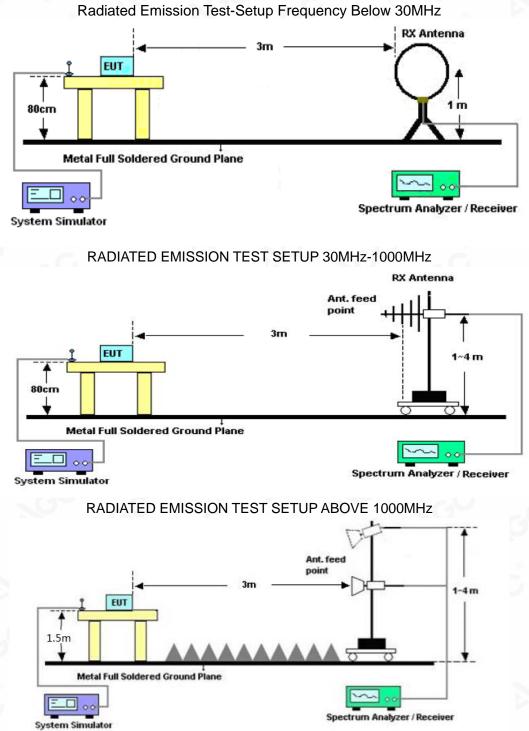
Keysight Spectrum Analyzer - Swept SA					
	GHz		ALIGN AUTO	04:34:06 PM Nov 03, 2020 TRACE 1 2 3 4 5 6 TYPE M	Frequency
10 dB/div Ref 20.00 dBm	PNO: Wide +++ Trig: Free IFGain:Low Atten: 30	e Run Avg∣Ho)dB	id: 1007100 Mkr1 2.	479 904 1 GHz -20.976 dBm	Auto Tune
10.0					Center Freq 2.48000000 GHz
-10.0	.1				Start Freq 2.479400750 GHz
-20.0 -30.0		mmmmmm	᠕᠂ᠬᠬᢇᠬᢇᠼ᠕ᠰ	An try of any of Marin	Stop Fred 2.480599250 GHz
-40.0 Mar 4					CF Step 119.850 kH: <u>Auto</u> Mar
-60.0					Freq Offse 0 H:
Center 2.4800000 GHz #Res BW 3.0 kHz	#VBW 10 kHz		Sweep_1	Span 1.199 MHz 26.4 ms (1001 pts)	
MSG			STATUS		

TEST PLOT OF SPECTRAL DENSITY FOR HIGH CHANNEL

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the bedicated frame/inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the writter aphorization of AGE in the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

11. RADIATED EMISSION

11.1. MEASUREMENT PROCEDURE


- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emission, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the test results of the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

Report No.: AGC09355201001FE02 Page 27 of 45

11.2. TEST SETUP

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the stand restriction of Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the writter aphorization of AGE the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

11.3. LIMITS AND MEASUREMENT RESULT

15.209 Limit in the below table has to be followed

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Note: All modes were tested for restricted band radiated emission, the test records reported below are the worst result compared to other modes.

11.4. TEST RESULT

RADIATED EMISSION BELOW 30MHz

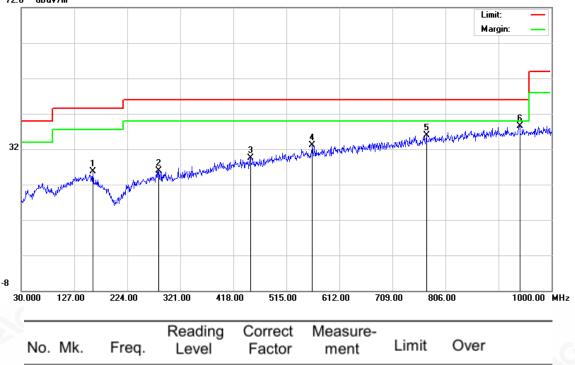
The amplitude of spurious emissions from 9kHz to 30MHz which are attenuated more than 20 dB below the permissible value need not be reported.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Feature/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written approver, without a stamped by the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuerce of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

Report No.: AGC09355201001FE02 Page 29 of 45

EUT		Smart N	utrition Sca	le	~	Model	Name	R	-T001	
Temperature		25° C		8		Relativ	ve Humidit	t y 58	5.4%	C .
Pressure		960hPa	10	0	-0	Test Voltage		N	ormal Vol	tage
Test Mode		Mode 1			6	Anten	na	Н	orizontal	
72.0	dBuV/m								mit: — argin: —	GC
32			her winder Minder Herror W	3 dqqqaradlarda	ide don't have the other of	yes affine due to	n <mark>a</mark> water water	and the second s	man and a start of the start of	
-8	0 127.00		21.00 418. Reading	00 51		512.00 easure-		6.00	1000.00	MHz
N	o. Mk.	Freq.	Level	Facto		ment	Limit	Over		
<u> </u>		MHz	dBuV	dB		BuV/m	dBuV/m	dB	Detecto	r o
0		0.5800	6.16	19.2		25.39	43.50	-18.11	peak	
		7.3500	5.61	19.7		25.33	46.00	-20.67		_
_		.9300	7.08	24.6		31.77	46.00	-14.23		8
_		.5400	6.24	28.0		34.29	46.00	-11.71	peak	- 200
		.5000	6.29	31.1		37.40	46.00	-8.60	peak	
	6 973	3.8100	6.47	32.3	3 3	38.80	54.00	-15.20	peak	

RADIATED EMISSION BELOW 1GHZ


RESULT: PASS

Compliances Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "bedicated Past Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issues of Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com. g/Inspection he test results Sf he test report.

Report No.: AGC09355201001FE02 Page 30 of 45

EUT	Smart Nutrition Scale	Model Name	R-T001
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Vertical
72.0 dBuV/m			

No.	Mk.	Freq.	Level	Factor	ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		160.9500	6.57	19.09	25.66	43.50	-17.84	peak
2		281.2300	5.97	19.91	25.88	46.00	-20.12	peak
3		449.0400	5.53	23.97	29.50	46.00	-16.50	peak
4		562.5300	6.91	26.22	33.13	46.00	-12.87	peak
5		771.0800	6.05	29.76	35.81	46.00	-10.19	peak
6	*	941.8000	6.52	32.06	38.58	46.00	-7.42	peak

RESULT: PASS Note:

- 1. Factor=Antenna Factor + Cable loss, Over= Measurement –Limit.
- 2. All test modes had been tested. The mode 1 is the worst case and recorded in the report.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Pastro/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGE The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

Report No.: AGC09355201001FE02 Page 31 of 45

EUT	Smart Nutrition Scale	Model Name	R-T001
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Horizontal

RADIATED EMISSION ABOVE 1GHZ

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4804.000	46.74	0.08	46.82	74	-27.18	peak
4804.000	36.52	0.08	36.6	54	-17.4	AVG
7206.000	39.41	2.21	41.62	74	-32.38	peak
7206.000	32.23	2.21	34.44	54	-19.56	AVG
- 61	3			- 6	8	
		8				8
Remark:	5	9				e.G
actor = Anter	nna Factor + Cab	le Loss – Pre-	-amplifier.	Q		

EUT	Smart Nutrition Scale	Model Name	R-T001
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4804.000	45.89	0.08	45.97	74	-28.03	peak
4804.000	35.65	0.08	35.73	54 💿	-18.27	AVG
7206.000	39.41	2.21	41.62	74	-32.38	peak
7206.000	31.27	2.21	33.48	54	-20.52	AVG
		10				6
emark:						

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Pasting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuer of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

Report No.: AGC09355201001FE02 Page 32 of 45

EUT	Smart Nutrition Scale	Model Name	R-T001
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 2	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4880.000	47.78	0.14	47.92	74	-26.08	peak
4880.000	36.64	0.14	36.78	54	-17.22	AVG
7320.000	40.51	2.36	42.87	74	-31.13	peak
7320.000	33.42	2.36	35.78	54	-18.22	AVG
3				8		
	8			С.	3	
emark:	- 61	8			- 6	®
actor = Anter	nna Factor + Cable	Loss – Pre-	amplifier.			e.G

EUT	Smart Nutrition Scale	Model Name	R-T001
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 2	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4880.000	47.83	0.14	47.97	74	-26.03	peak
4880.000	39.62	0.14	39.76	54	-14.24	AVG
7320.000	41.54	2.36	43.9	74	-30.1	peak
7320.000	33.21	2.36	35.57	54	-18.43	AVG
			(2)			
			6	8		
emark:						

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written approver, and the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuer of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

Report No.: AGC09355201001FE02 Page 33 of 45

EUT	Smart Nutrition Scale	Model Name	R-T001
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Horizontal

Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
45.26	0.22	45.48	74	-28.52	peak
36.32	0.22	36.54	54	-17.46	AVG
39.08	2.64	41.72	74	-32.28	peak
30.11	2.64	32.75	54	-21.25	AVG
					le la
0				8	
	8				8
na Factor + Cable	e Loss – Pre-	amplifier.	- NO	-0 ^C	
	(dBµV) 45.26 36.32 39.08 30.11	(dBµV) (dB) 45.26 0.22 36.32 0.22 39.08 2.64 30.11 2.64	(dBµV) (dB) (dBµV/m) 45.26 0.22 45.48 36.32 0.22 36.54 39.08 2.64 41.72	(dBµV) (dB) (dBµV/m) (dBµV/m) 45.26 0.22 45.48 74 36.32 0.22 36.54 54 39.08 2.64 41.72 74 30.11 2.64 32.75 54	(dBµV) (dB) (dBµV/m) (dBµV/m) (dB) 45.26 0.22 45.48 74 -28.52 36.32 0.22 36.54 54 -17.46 39.08 2.64 41.72 74 -32.28 30.11 2.64 32.75 54 -21.25

EUT	Smart Nutrition Scale	Model Name	R-T001
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Volue Tree
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
4960.000	45.49	0.22	45.71	74	-28.29	peak
4960.000	35.84	0.22	36.06	54	-17.94	AVG
7440.000	39.46	2.64	42.1	74	-31.9	peak
7440.000	30.53	2.64	33.17	54	-20.83	AVG
	<0 ⁰	-6	(R)		0	20

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

RESULT: PASS

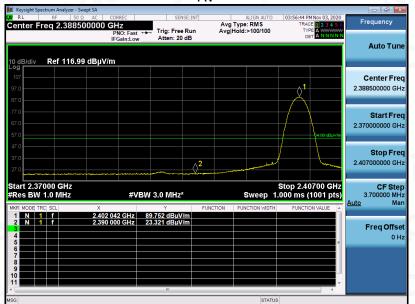
Note:

The amplitude of other spurious emissions from 1G to 25 GHz which are attenuated more than 20 dB below the permissible value need not be reported.

Factor = Antenna Factor + Cable loss - Amplifier gain, Margin= Level -Limit.

The "Factor" value can be calculated automatically by software of measurement system.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated resultary" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGE the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc~cert.com.


EUT	Smart Nutrition Scale	Model Name	R-T001
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Horizontal

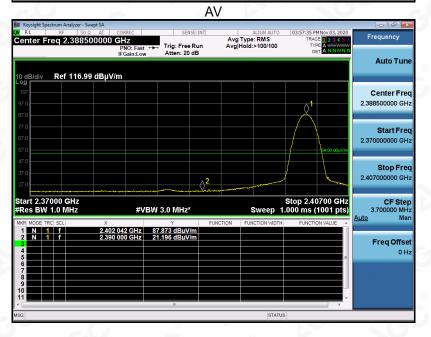
TEST RESULT FOR RESTRICTED BANDS REQUIREMENTS

PK

AV

RESULT: PASS

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written aphorization of AGE. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.


Attestation of Global Compliance(Shenzhen)Co., Ltd Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Web: http://cn.agc-cert.com/

Report No.: AGC09355201001FE02 Page 35 of 45

EUT	Smart Nutrition Scale	Model Name	R-T001
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Vertical

RESULT: PASS

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the test of the definition of the report is not permitted without the written approver apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.