

APPLICATION CERTIFICATION FCC Part 15C&IC On Behalf of ASAP Technology(Jiangxi) Co., Ltd.

10W Fast Wireless Charging Pad - White 10W Fast Wireless Charging Pad - Black

Model No.: B07PZ8GHXY, B07Q1DBDCV

FCC ID: 2APXNLACA096 IC: 24654-LACA096

Prepared for Address	:	ASAP Technology(Jiangxi) Co., Ltd. No.5, Shuguang Rd, West Zone, Ji'an County Industrial Park, Ji'an, Jiangxi Ji'an, 343100, P.R.China
Prepared by Address	:	Shenzhen Accurate Technology Co., Ltd. 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China
		Tel: +86-755-26503290 Fax: +86-755-26503396

Report No.	:	ATE20190544
Date of Test	:	March 28-May 28, 2019
Date of Report	:	May 28, 2019

TABLE OF CONTENTS

Description

Page

Test	Report Declaration	
1.	TEST RESULTS SUMMARY	.4
2.	GENERAL INFORMATION	.5
2.	1. Description of Device (EUT)	5
2.		
2.	3. Special Accessory and Auxiliary Equipment	5
2.	4. Description of Test Facility	
2.	5. Measurement Uncertainty	
3.	MEASURING DEVICE AND TEST EQUIPMENT	.7
3.	1. The Equipment Used to Measure Conducted Emission	7
3.	2. The Equipment Used to Measure Radiated Emission	7
4.	AC POWER LINE CONDUCTED EMISSION TEST	.8
4.	1. Block Diagram of Test Setup	8
4.		
4.	3. Configuration of EUT on Test	8
4.	4. Operating Condition of EUT	8
4.	5. Test Procedure	
	6. Data Sample	
4.		
5.	RADIATED EMISSION TEST	12
5.	1. Block Diagram of Test	12
5.	2. Radiated Emission Test Limit	13
5.	β	
	4. Operating Condition of EUT	
	5. Test Procedure	
	6. Data Sample	
5.		
6.	OCCUPIED BANDWIDTH TEST	
6.		21
6.		
6.		
6.	4. Test Result	
7.	ANTENNA REQUIREMENT	23
7.	1. The Requirement	23
7.	2. Antenna Construction	23

Test Report Declaration

Applicant	:	ASAP Technology(Jiangxi) Co., Ltd.
Address	:	No.5, Shuguang Rd, West Zone, Ji'an County Industrial Park, Ji'an, Jiangxi Ji'an, 343100, P.R.China
Product	:	10W Fast Wireless Charging Pad – White
		10W Fast Wireless Charging Pad – Black
Model No.	:	B07PZ8GHXY, B07Q1DBDCV (Note: It's just different colors, B07PZ8GHXY for white, B07Q1DBDCV for black. So we only tested the B07Q1DBDCV model)

Measurement Procedure Used:

FCC CFR47 Part 15 Subpart C Section 15.207 and 15.209 ANSI C63.10: 2013 RSS-216 issue 2 January 2016 RSS-Gen Issue 5 April 2018

The device described above is tested by Shenzhen Accurate Technology Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C and RSS-216 limits both radiated and conducted emissions. The measurement results are contained in this test report and Shenzhen Accurate Technology Co., Ltd. is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC&IC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of Shenzhen Accurate Technology Co., Ltd.

Date of Test :	March 28-May 28, 2019
Date of Report :	May 28, 2019
Prepared by :	(Stray Yang, Engener)
Approved & Authorized Signer :	(Sean Liu, Manager)

1. TEST RESULTS SUMMARY

Test Items	Test Standard	Test Results
AC Power Line Conducted Emission	FCC Part 15.207 RSS-216 Issue 2, section 6.2.2.1 RSS-Gen Issue 5, section 8.8	Pass
Radiated Emission	FCC Part 15.209 RSS-216 Issue 2,section 6.2.2.2&6.3.2 RSS-Gen Issue 5, section 8.9	Pass
Occupied Bandwidth	FCC Part 15.215(c) RSS-Gen Issue 5, section 6.7	N/A
Antenna Requirement	FCC Part 15.203 RSS-Gen Issue 5 section 6.8	Pass

2. GENERAL INFORMATION

2.1.Description of Device (EUT)

10W Fast Wireless Charging Pad - Black					
Operating Frequency	:	110-205KHz			
Type of Modulation	:	FSK			
Type of Antenna	:	Induction coil			
Operating Voltage	:	Input: DC 5V/2A 9V/1.67A Output: DC 5V/1A 9V/1.1A (10W Max)			
Trade Mark	:	amazonbasics			

2.2.Test Mode

Test Item		EMI Test Modes
Conducted Em	ission	Max. Power Output
Radiated Emiss	sion	Max. Power Output

2.3. Special Accessory and Auxiliary Equipment

Description	Manufacturer	Model	S/N
Fast charging supply adapter	UGREEN	CD122	N/A
Iphone8S PLUS	Apple	MQ8G2ZP/A	C39V9DEPJCLM

2.4.Description of Test Facility

EMC Lab	:	Recognition of accreditation by Federal Communications Commission (FCC) The Designation Number is CN1189 The Registration Number is 708358 Listed by Innovation, Science and Economic Development Canada (ISEDC)
		The Registration Number is 5077A-2
		Accredited by China National Accreditation Service for Conformity Assessment (CNAS) The Registration Number is CNAS L3193
		Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 4297.01
Name of Firm Site Location	•	Shenzhen Accurate Technology Co., Ltd 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China

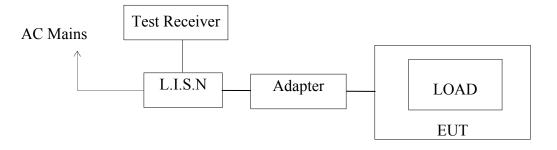
2.5.Measurement Uncertainty

Conducted emission expanded uncertainty	:	U=2.23dB, k=2
Radiated emission expanded uncertainty (9kHz-30MHz)	:	U=3.08dB, k=2
Radiated emission expanded uncertainty (30MHz-1000MHz)	:	U=4.42dB, k=2
Radiated emission expanded uncertainty (Above 1GHz)	:	U=4.06dB, k=2

3. MEASURING DEVICE AND TEST EQUIPMENT

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.	
						Interval	
1.	Test Receiver	Rohde & Schwarz	ESCS30	100307	Jan.05, 2019	1 Year	
2.	L.I.S.N.	Schwarzbeck	NLSK8126	8126431	Jan.05, 2019	1 Year	
3.	Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100305	Jan.05, 2019	1 Year	
4	50Ω Coaxial	Anritsu Corp	MP59B	6200283936	Jan.05, 2019	1 Year	
4.	Switch						
5.	RF Coaxial Cable	SUHNER	N-2m	No.2	Jan.05, 2019	1 Year	
6.	Measurement Software: ES-K1 V1.71						

3.1. The Equipment Used to Measure Conducted Emission


3.2. The Equipment Used to Measure Radiated Emission

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.	
						Interval	
1.	Spectrum Analyzer	Rohde&Schwarz	FSV40	101495	Jan.05, 2019	1 Year	
2.	Test Receiver	Rohde& Schwarz	ESR	101817	Jan.05, 2019	1 Year	
3.	Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan.05, 2019	1 Year	
4.	Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan.05, 2019	1 Year	
5.	Pre-Amplifier	Agilent	8447D	294A10619	Jan.05, 2019	1 Year	
6.	50 Coaxial Switch	Anritsu Corp	MP59B	6200506474	Jan.05, 2019	1 Year	
7.	RF Coaxial Cable	RESENBERGER	N-12m	No.11	Jan.05, 2019	1 Year	
8.	RF Coaxial Cable	RESENBERGER	N-0.5m	No.12	Jan.05, 2019	1 Year	
9.	RF Coaxial Cable	SUHNER	N-2m	No.13	Jan.05, 2019	1 Year	
10.	RF Coaxial Cable	SUHNER	N-0.5m	No.15	Jan.05, 2019	1 Year	
11.	RF Coaxial Cable	SUHNER	N-2m	No.16	Jan.05, 2019	1 Year	
12.	RF Coaxial Cable	RESENBERGER	N-6m	No.17	Jan.05, 2019	1 Year	
13.	13. Measurement Software: EZ_EMC V1.1.4.2						

4. AC POWER LINE CONDUCTED EMISSION TEST

4.1.Block Diagram of Test Setup

4.2.AC Power Line Conducted Emission Test Limits

Frequency	Limit dB(µV)					
(MHz)	Quasi-peak Level	Average Level				
0.15 - 0.50	66.0 - 56.0 *	56.0 - 46.0 *				
0.50 - 5.00	56.0	46.0				
5.00 - 30.00	5.00 - 30.00 60.0 50.0					
NOTE1: The lower limit shall apply at the transition frequencies.						
NOTE2: The limit decreases linearly with the logarithm of the frequency in the range						
0.15MHz to 0.50M	Hz.					

4.3. Configuration of EUT on Test

The equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

4.4.Operating Condition of EUT

- 4.4.1. Setup the EUT and simulator as shown as Section 4.1.
- 4.4.2. Turn on the power of all equipment.
- 4.4.3. Let the EUT work in test mode and measure it.

4.5.Test Procedure

The EUT is put on the plane 0.8 m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.10: 2013 on Conducted Emission Measurement.

The bandwidth of test receiver (R & S ESCS30) is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

4.6.Data Sample

Frequency	Transducer	QuasiPeak	Average	QuasiPeak	Average	QuasiPeak	Average	Remark
(MHz)	value	Level	Level	Limit	Limit	Margin	Margin	(Pass/Fail)
	(dB)	(dBµV)	(dBµV)	(dBµV)	(dBµV)	(dB)	(dB)	
X.XX	10.6	25.3	17.0	59.0	49.0	33.7	32.0	Pass

Transducer value = Insertion loss of LISN + Cable Loss Result = Quasi-peak Level/Average Level + Transducer value Limit = Limit stated in standard

Calculation Formula:

Margin = Limit – Reading level value – Transducer value

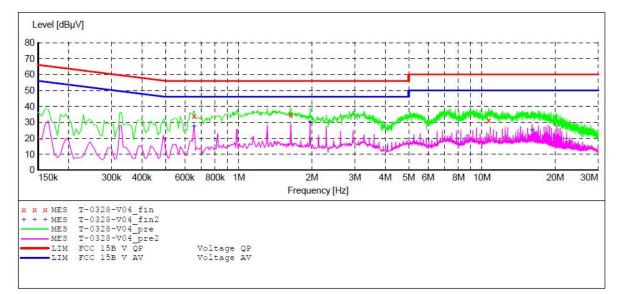
4.7.Test Results

Pass.

The frequency range from 150kHz to 30MHz is checked.

Emissions attenuated more than 20 dB below the permissible value are not reported.

The spectral diagrams are attached as below.


ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART 15 C

EUT: 10W Fast Wireless Charging Pad - Black M/N:B07Q1DBDCV Manufacturer: ASAP Technology(Jiangxi) Co., Ltd. Operating Condition: Max. Power Output Test Site: 1#Shielding Room Operator: WADE Test Specification: L 120V/60Hz Comment: Start of Test: 3/28/2019 /

SCAN TABLE: "V 9K-30MHz fin"

Short Desc	ription:		UB STD VTE			
Start	Stop Frequency		Detector	Meas. Time	IF Bandw.	Transducer
	150.0 kHz		QuasiPeak Average			NSLK8126 2008
150.0 kHz	30.0 MHz	5.0 kHz	2	1.0 s	9 kHz	NSLK8126 2008

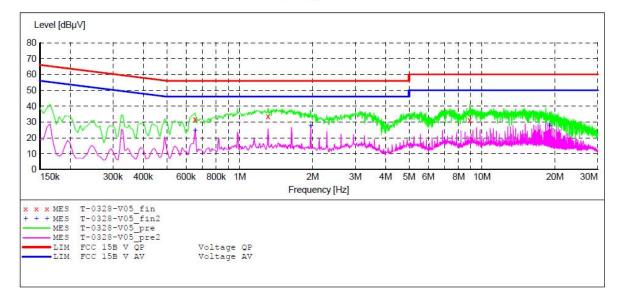
MEASUREMENT RESULT: "T-0328-V04 fin"

3/28/2019

i	Frequency MHz	Level dBµV		Limit dBµV	Margin dB	Detector	Line	PE
	0.655000	34.00	10.8	56		~	L1	GND
	1.640000	34.60	10.9	56	21.4	QP	L1	GND
	10.645000	31.40	11.3	60	28.6	QP	L1	GND

MEASUREMENT RESULT: "T-0328-V04 fin2"

3/28/2019 Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.655000	27.30	10.8 11.0	46	18.7 16.1	AV AV	L1	GND GND
16.045000	24.90	11.4	50	25.1	AV	L1	GND


ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART 15 C

EUT: 10W Fast Wireless Charging Pad - Black M/N:B07Q1DBDCV Manufacturer: ASAP Technology(Jiangxi) Co., Ltd. Operating Condition: Max. Power Output Test Site: 1#Shielding Room Operator: WADE Test Specification: N 120V/60Hz Comment: Start of Test: 3/28/2019 /

SCAN TABLE: "V 9K-30MHz fin"

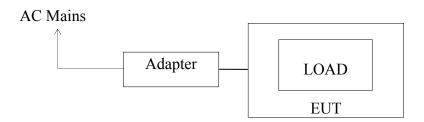
Short Desc	ription:	5	SUB STD VTE	RM2 1.70		
	Stop Frequency			Meas. Time	IF Bandw.	Transducer
9.0 kHz	150.0 kHz	100.0 Hz	QuasiPeak Average	1.0 s	200 Hz	NSLK8126 2008
150.0 kHz	30.0 MHz	5.0 kHz	QuasiPeak Average	1.0 s	9 kHz	NSLK8126 2008

MEASUREMENT RESULT: "T-0328-V05 fin"

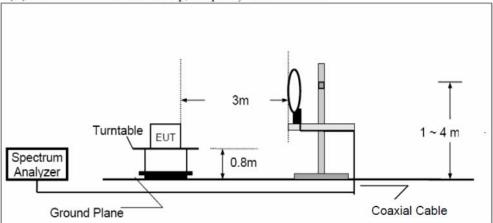
3/28/2019

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.655000	31.80	10.8	56	24.2	QP	N	GND
1.310000	33.50	10.9	56	22.5	QP	N	GND
8.900000	31.30	11.3	60	28.7	QP	N	GND

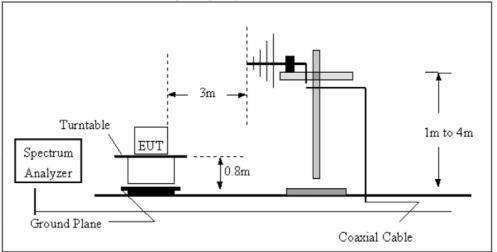
MEASUREMENT RESULT: "T-0328-V05 fin2"


3/28/2019 Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.655000	24.50	10.8	46	21.5	AV	N	GND
1.965000	27.20	11.0	46	18.8	AV	N	GND
19.000000	27.60	11.4	50	22.4	AV	N	GND

5. RADIATED EMISSION TEST


5.1.Block Diagram of Test

5.1.1.Block diagram of connection between the EUT and simulators



5.1.2.Block diagram of test setup (In chamber)

(A)Radiated Emission Test Set-Up, Frequency below 30MHz

(B)Radiated Emission Test Set-Up, Frequency 30-1000MHz

5.2.Radiated Emission Test Limit

Frequency	Field Streng Limitation		Field Strength Limitation	n at 3m Measurement Dist
(MHz)	(uV/m)	Dist	(uV/m)	(dBuV/m)
0.009 - 0.490	2400 / F(KHz)	300m	10000 * 2400/F(KHz)	20log 2400/F(KHz) + 80
0.490 - 1.705	24000 / F(KHz)	30m	100 * 24000/F(KHz)	20log 24000/F(KHz) + 40
1.705 - 30.00	30	30m	100* 30	20log 30 + 40
30.0 - 88.0	100	3m	100	20log 100
88.0 - 216.0	150	3m	150	20log 150
216.0 - 960.0	200	3m	200	20log 200
Above 960.0	500	3m	500	20log 500

Limit: 2400/125=19.2uV/m@300m

Distance Correction Factor=40log(test distance/specific distance)

5.3.EUT Configuration on Test

The equipments are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.4. Operating Condition of EUT

5.4.1. Setup the EUT and simulator as shown as Section 5.1.

- 5.4.2. Turn on the power of all equipment.
- 5.4.3. Let the EUT work in test mode and measure it.

5.5.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.10: 2013 on radiated emission measurement.

From 9kHz to 30MHz at distance 3m The EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

From 30MHz to 1000MHz at distance 3m The measuring antenna height varied between 1 and 4m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity. The measurements were performed for both vertical and horizontal antenna polarization.

The final measurement will be performed with an EMI Receiver set to Quasi Peak detector for the frequency bands 9kHz to 90kHz and 110 to 490 kHz where an average detector will be used according to Section 15.209(d)(2).

The final level, expressed in dBuV/m, is arrived at by taking the reading from the EMI receiver(Level dBuV) and adding the antenna correction factor and cable loss factor(Factor dB) to it. This result then has to be compared with the relevant FCC limit. The resolution bandwidth during the measurement is as follows:

9kHz – 150kHz: ResBW: 200Hz 150kHz – 30MHz: ResBW: 9kHz

The bandwidth of the EMI test receiver is set at 120kHz from 30MHz to 1000MHz.

5.6.Data Sample

Frequency(Reading	Factor	Result	Limit	Margin	Remark
MHz)	(dBµv)	(dB/m)	(dBµv/m)	(dBµv/m)	(dB)	
X.XX	49.83	-22.03	27.80	43.50	-15.70	QP

 $\begin{array}{l} Frequency(MHz) = Emission \ frequency \ in \ MHz\\ Reading(dB\mu\nu) = Uncorrected \ Analyzer/Receiver \ reading\\ Factor \ (dB/m) = Antenna \ factor + Cable \ Loss - Amplifier \ gain\\ Result(dB\mu\nu/m) = Reading + Factor\\ Limit \ (dB\mu\nu/m) = Limit \ stated \ in \ standard \end{array}$

Calculation Formula:

 $Margin(dB) = Result (dB\mu v/m) - Limit(dB\mu v/m)$

Result($dB\mu v/m$) = Reading($dB\mu v$) + Factor(dB/m)

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the limit.

5.7.Test Result

Pass.

Emissions attenuated more than 20 dB below the permissible value are not reported.

The spectrum analyzer plots are attached as below.

Transducer

1516E


From 9kHz to 30MHz:

ACCURATE TECHNOLOGY CO., LTD

RADIATED EMISSION STANDARD FCC PART 15 C

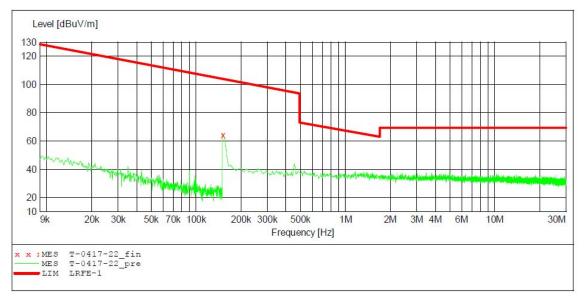
Operating Condition:	10W Fast Wireless Charging Pad - Black M/N:B07Q1DBDCV ASAP Technology(Jiangxi) Co., Ltd. Max. Power Output 2#Chamber
Operator: Test Specification: Comment: Start of Test:	X

SCAN TABLE: "LFRE(E) Fin" Short Description: _____SUB_STD_VTERM2 1.70 Start Stop Step Detector Meas. IF Frequency Frequency Width Time Bandw. 9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz 150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz

MEASUREMENT RESULT: "T-0417-21 fin"

2019-4-17

							Azimuth deg	Polarization
0.150000	72.50	/	/	/	PK	/	/	Х


ACCURATE TECHNOLOGY CO., LTD

RADIATED EMISSION STANDARD FCC PART 15 C

EUT: 10W Fast Wireless Charging Pad - Black M/N:B07Q1DBDCV Manufacturer: ASAP Technology(Jiangxi) Co., Ltd. Operating Condition: Max. Power Output Test Site: 2#Chamber Operator: WADE Test Specification: DC 5V Comment: Y Start of Test: 2019-4-17 /

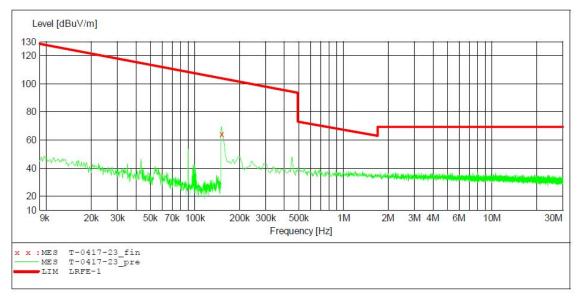
SCAN TABLE: "LFRE(E) Fin"

Short Desc		,	SUB STD VTER	RM2 1.70		
Start	Stop	Step -	Detector	Meas.	IF	Transducer
Frequency	Frequency	Width		Time	Bandw.	
9.0 kHz	150.0 kHz	100.0 Hz	QuasiPeak	1.0 s	200 Hz	1516E
150.0 kHz	30.0 MHz	5.0 kHz	QuasiPeak	1.0 s	9 kHz	1516E

MEASUREMENT RESULT: "T-0417-22 fin"

2019-4-17

	Level dBuV/m			2		2		Polarization	
0.150000	64.20	/	/	/	PK	1	1	Y	


ACCURATE TECHNOLOGY CO., LTD

RADIATED EMISSION STANDARD FCC PART 15 C

EUT:10W Fast Wireless Charging Pad - Black M/N:B07Q1DBDCVManufacturer:ASAP Technology(Jiangxi) Co., Ltd.Operating Condition:Max. Power OutputTest Site:2#ChamberOperator:WADETest Specification:DC 5VComment:ZStart of Test:2019-4-17 /

SCAN TABLE: "LFRE(E) Fin"

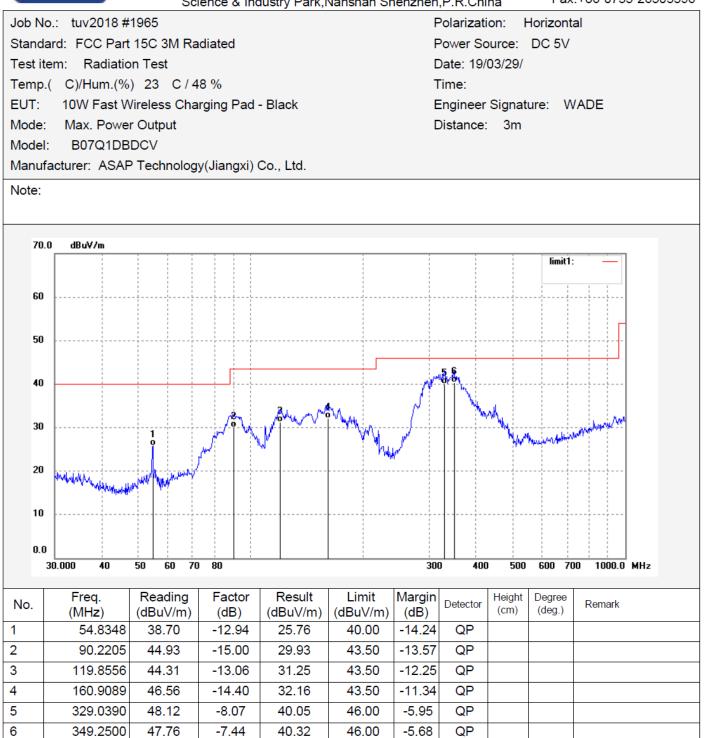
Short I	Description:		SUB STD VTER	RM2 1.70		
Start	Stop	Step _	Detector	Meas.	IF	Transducer
Frequer	ncy Frequency	Width		Time	Bandw.	
9.0 kHz	150.0 kHz	100.0 Hz	QuasiPeak	1.0 s	200 Hz	1516E
150.0 }	Hz 30.0 MHz	5.0 kHz	QuasiPeak	1.0 s	9 kHz	1516E

MEASUREMENT RESULT: "T-0417-23 fin"

2019-4-17

Frequency Level Transd Limit Margin Det. Height Azimuth Polarization MHz dBuV/m dB dBuV/m dB cm deg

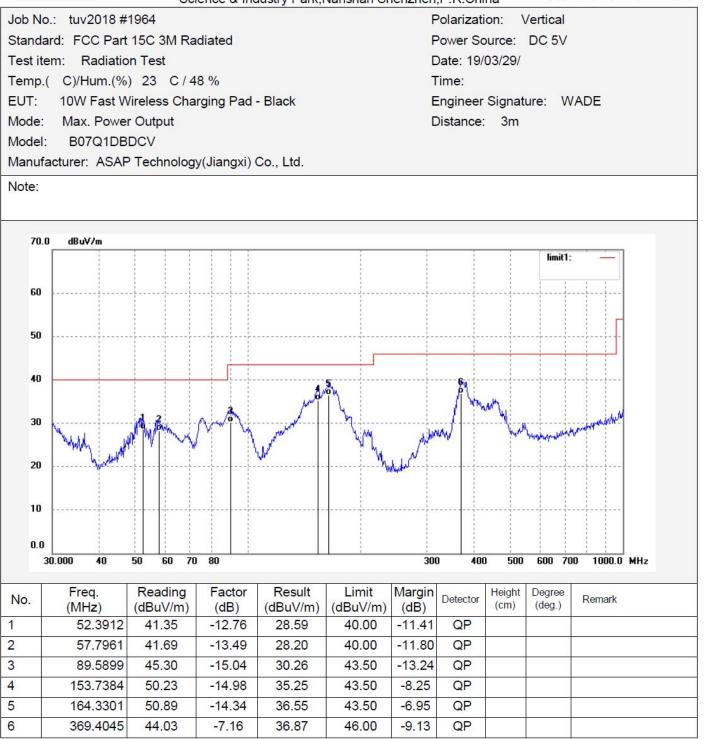
0.150000 64.68 / / / PK / / Z



Report No.: ATE20190544 Page 19 of 23

From 30MHz to 1000MHz:

ACCURATE TECHNOLOGY CO., LTD.


F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

6. OCCUPIED BANDWIDTH TEST

6.1. The Requirement For Section 15.215(c)

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of this part, must be designed to ensure that 20dB bandwidth of thee mission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equip compliance with the 20dB attenuation specification may base on measurement at the intentional radiator's antenna output terminal unless the intentional radiator uses a permanently attached antenna, in which case compliance shall be. demonstrated by measuring the radiated emissions.

6.2. The Requirement For RSS-Gen Issue 5, section 6.7

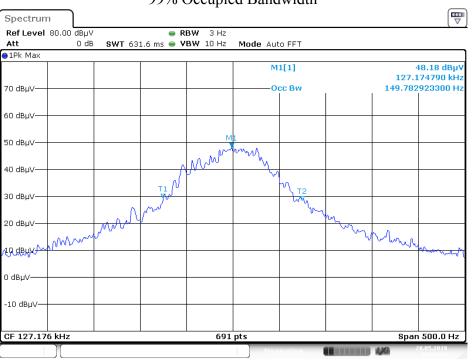
The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

In some cases, the "x dB bandwidth" is required, which is defined as the frequency range between two points, one at the lowest frequency below and one at the highest frequency above the carrier frequency, at which the maximum power level of the transmitted emission is attenuated x dB below the maximum in-band power level of the modulated signal, where the two points are on the outskirts of the in-band emission.

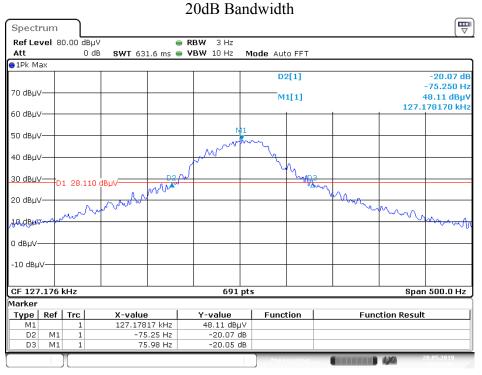
6.3.Test Procedure

Use the following spectrum analyzer settings:

a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency


- b) Span = approximately 2 to 5 times the OBW
- c) RBW =1% to 5% of the OBW
- d) VBW \geq 3*RBW
- e) Sweep = auto;
- f) Detector function = peak
- g) Trace = max hold

h) All the trace to stabilize, use the marker-to-peak function to set the marker to the peak of the emission, use the marker-delta function to measure and record the 20dB down bandwidth of the emission.


6.4. Test Result

Frequency	99% Occupied Bandwidth	20dB Bandwidth
(KHz)	(KHz)	(KHz)
127.176	0.150	

99% Occupied Bandwidth

Date: 28.MAY.2019 16:34:44

Date: 28.MAY.2019 16:38:00

7. ANTENNA REQUIREMENT

7.1.The Requirement

According to Section 15.203 and RSS-Gen Section 6.8, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.2. Antenna Construction

Device is equipped with permanent attached antenna, which isn't displaced by other antenna. Therefore, the equipment complies with the antenna requirement of Section 15.203 and RSS-Gen Section 6.8.

***** End of Test Report *****