

÷

Grid Pad 15 Smartbox GP15A N/A EED32M00138906 2APXM-GP15A Aug.10, 2020 47 CFR Part 15 Subpart E PASS

Prepared for: Smartbox Assistive Technology Limited Ysobel House, Enigma Commercial Centre, Sandys Road, Malvern, Worcestershire, UK WR14 1JJ

Prepared by: Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled to	sunlight	Sun Reviewed by:	Jok Yang	(1)
Approved a Report Seal	Sam Chu	ang Date:	Aug.10, 2020 Check No.:309	6327781
(A)				

Page 2 of 24

2 Version Version No. Description Date Aug.10, 2020 Original 00 Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 3 of 24

3 Test Summary

Report No. : EED32M00138906

	Test Item		n Test Requirement Test method		Result				
	Dynam	nic Frequei	ncy Selection	47 CFF Se	R Part 15 Sub ction 15.407 (part E h)	KDB9054	62 D02	PASS
S.	Remarl The tes Tx: Rx: RF: CH: Volt: Temp: Humid: Press: N/A:	c: In this who In this who	e(s) and the sa ole report Tx (c ole report RX (ole report RF r ole report CH r ole report Volt ole report Tem ole report Hum ole report Pres ole report not a	mple inform or tx) means or rx) means neans Radia means chan means Volt p means Te nid means h ss means Pr application	ation are prov 5 Transmitter. 5 Receiver. ated Frequence anel. age. emperature. umidity. ressure.	vided by the o	client.	(St)	(J

4 Content			
1 COVER PAGE	~ ~ ~	<hr/>	1
2 VERSION			2
3 TEST SUMMARY			
4 CONTENT	<u> </u>	<u> </u>	4
5 TEST REQUIREMENT			5
5.1 TEST SETUP			5
5.1.1 For Conducted test setup.			5
5.2 TEST ENVIRONMENT 5.3 TEST CONDITION			ə 5
6 GENERAL INFORMATION			6
6.1 CLIENT INFORMATION			6
6.2 GENERAL DESCRIPTION OF EUT			6
6.3 PRODUCT SPECIFICATION SUBJECT	CTIVE TO THIS STANDARD		7
6.4 DESCRIPTION OF SUPPORT UNIT	S		9
6.6 DEVIATION FROM STANDARDS			9 Q
6.7 ABNORMALITIES FROM STANDAR	D CONDITIONS		
6.8 OTHER INFORMATION REQUEST	ED BY THE CUSTOMER		9
6.9 MEASUREMENT UNCERTAINTY (S	95% CONFIDENCE LEVELS, K=2	2)	9
7 EQUIPMENT LIST			10
8 RADIO TECHNICAL REQUIREME	NTS SPECIFICATION		11
Appendix A)Dynamic Frequency	/ Selection		12
PHOTOGRAPHS OF EUT CONSTRU	UCTIONAL DETAILS	<u> </u>	24

5.2 Test Environment

Operating Environment:					
Temperature:	23.0 °C	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	12	12	
Humidity:	54 % RH	(25)	(25)	(3	
Atmospheric Pressure:	1010mbar	\bigcirc		V	

5.3 Test Condition

Test channel:				
Test Mede	Ty/Dy		RF Channel	
Test Mode	I X/KX	Low(L)	Middle(cm)	High(H)
902 11a/p/aa(UT20)		Channel 52	Channel 56	Channel 64
002.11a/11/ac(H120)	5250WITZ ~5350 WITZ	5260MHz	5280MHz	5320MHz
902 11p/co/UT40)		Channel54	N/A	Channel62
002.111/ac(H140)	5250101HZ ~5550 101HZ	5270MHz	N/A	5310MHz
		Channel58	N/A	N/A
002.11a0(F100)	525010112 ~5550 10HZ	5290MHz	N/A	N/A

Page 6 of 24

6 General Information

6.1 Client Information

Applicant:	Smartbox Assistive Technology Limited
Address of Applicant:	Ysobel House, Enigma Commercial Centre, Sandys Road, Malvern, Worcestershire, UK WR14 1JJ
Manufacturer:	Smartbox Assistive Technology Limited
Address of Manufacturer:	Ysobel House, Enigma Commercial Centre, Sandys Road, Malvern, Worcestershire, UK WR14 1JJ
Factory:	Estone Technology LTD
Address of Factory:	2F, Building No.1, Jia'an Industrial Park, No.2 Long Chang Road, Bao'an, Shenzhen 518101, China.

6.2 General Description of EUT

Grid Pad 15			0
GP15A	\sim		\sim
Smartbox			
U-NII-2A: 5.2	5-5.35GHz		
AC Adapter	MODEL:MANGO40S-12BB-ES INPUT:100-240V~,50/60Hz ,1.0A Max OUTPUT:12V3.33A		(2)
Battery	Model:5080115P Capacity:10000mAh/74Wh Nominal Voltage:7.4V Limited Charge Voltage:8.4V		C
May 22, 2020		(A)	
May 22, 2020) to Jul. 17, 2020	S	
	Grid Pad 15 GP15A Smartbox U-NII-2A: 5.2 AC Adapter Battery May 22, 2020 May 22, 2020	Grid Pad 15GP15ASmartboxU-NII-2A: 5.25-5.35GHzAC AdapterMODEL:MANGO40S-12BB-ES INPUT:100-240V~,50/60Hz ,1.0A Max OUTPUT:12V3.33ABatteryModel:5080115P Capacity:10000mAh/74Wh Nominal Voltage:7.4V Limited Charge Voltage:8.4VMay 22, 2020May 22, 2020	Grid Pad 15GP15ASmartboxU-NII-2A: 5.25-5.35GHzAC AdapterMODEL:MANGO40S-12BB-ES INPUT:100-240V~,50/60Hz ,1.0A Max OUTPUT:12V3.33ABatteryModel:5080115P Capacity:10000mAh/74Wh Nominal Voltage:7.4V Limited Charge Voltage:8.4VMay 22, 2020May 22, 2020

Page 7 of 24

6.3 Product Specification subjective to this standard

Operation Frequency:	IEEE 802.11a/n/ac(HT20): 5260MHz ~5320 MHz IEEE802.11n/ac(HT40) 5270MHz ~5310 MHz IEEE802.11ac(HT80) 5290
Channel Numbers:	IEEE 802.11a/n/ac(HT20): 5260MHz ~5320 MHz / 4 channel IEEE802.11n/ac(HT40) 5270MHz ~5310 MHz / 2 channel IEEE802.11ac(HT80) 5290 / 1 channel
Type of Modulation:	DSSS,OFDM
Test Power Grade:	Reference Table 1
Test Software of EUT:	DRTU
Antenna Type and Gain:	PCB antenna, Gain: 1.95 dBi
Test Voltage:	Battery 7.4V

Operation Frequency each of channel

For 802.11	a/n/ac(HT20)	Operation	in the 5260MHz	~5320 MHz	MHz band		6
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
52	5260MHz	56	5280MHz	60	5300MHz	64	5320MHz

For 802.11n/ac(HT40) Operation in the 5270MHz ~5310 MHz band

Channel	Frequency	Channel	Frequency
54	5190MHz	46	5310MHz

Channel	Frequency	Channel	Frequency	Channel	Frequency
58	5290MHz	N/A	N/A	N/A	N/A

Table 1:

	U	Power Setting-	1TX		$\overline{\mathbb{C}}$
Mada	Channal	Fraguanay	Deta Pata	Pov	ver Setting
Mode	Channel	Frequency		chain0	chain1
	52	5260		14.5	14.75
IEEE 802.11a	56	5280	6Mbps	14.5	14.25
	64	5320		14.5	14.25
	52	5260		14.75	15
IEEE 802.11n 20MHz	56	5280	MCS0	14.75	14.5
	64	5320		14.5	14.25
	54	5270	MCCO	14.5	14
IEEE 802.110 40101HZ	62	5310		14.5	13.5
	52	5260		14.75	15
IEEE 802.11ac 20MHz	56	5280	MCS0	14.75	14.5
	64	5320		14.5	14.25
IEEE 802.11ac 40MHz	54	5270	MCSO	14.5	14
	62	5310		14.5	13.5
IEEE 802.11ac 80MHz	58	5290	MCS0	18	18
	(A)F	ower Setting-M	1IMO		
Mada	Channel		Data Data	Pov	ver Setting
wode	Channel	Frequency	Frequency Data Rate		chain1
	52	5260		11.25	11.25
IEEE 802.11n 20MHz	56	5280	MCS0	11.25	11.25
	64	5320		11	11
	54	5270	MCCO	12	12
	62	5310		11.5	11.5
	52	5260		11.25	11.25
IEEE 802.11ac 20MHz	56	5280	MCS0	11.25	11.25
(6)	64	5320	$\langle \mathcal{O} \rangle$	11	11
	54	5270	MCCO	12	12
	62	5310		11.5	11.5
IEEE 802.11ac 80MHz	58	5290	MCS0	15	13.5
					6

6.4 Description of Support Units

The EUT has been tested with associated equipment below

Ass equipi	sociated ment name	Manufacture	model	S/N serial number	Supplied by	Certification
AE1	Notebook	DELL	DELL 3490	D245DX2	DELL	CE&FCC

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted. FCC Designation No.: CN1164

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	ltem	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
2	DE nower conducted	0.46dB (30MHz-1GHz)	
2	RF power, conducted	0.55dB (1GHz-18GHz)	
$\langle S \rangle$	Dedicted Sourique emission test	4.5dB (30MHz-1GHz)	
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)	
4	Conduction omission	3.5dB (9kHz to 150kHz)	
4	Conduction emission	3.1dB (150kHz to 30MHz)	
5	Temperature test	0.64°C	
6	Humidity test	3.8%	
7	DC power voltages	0.026%	

Page 10 of 24

Report No. : EED32M00138906

7 Equipment List

RF test system									
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)				
Spectrum Analyzer	Keysight	N9010A	MY54510339	02-17-2020	02-16-2021				
Signal Generator	Keysight	N5182B	MY53051549	02-17-2020	02-16-2021				
Temperature/ Humidity Indicator	biaozhi	НМ10	1804186	07-26-2019	07-25-2020				
High-pass filter	Sinoscite	FL3CX03WG18N M12-0398-002							
High-pass filter	MICRO- TRONICS	SPA-F-63029-4)		(
DC Power	Keysight	E3642A	MY56376072	02-17-2020	02-16-2021				
PC-1	Lenovo	R4960d							
BT&WI-FI Automatic control	R&S	OSP120	101374	02-17-2020	02-16-2021				
RF control unit	JS Tonscend	JS0806-2	158060006	02-17-2020	02-16-2021				
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3			/				

Page 11 of 24

8 Radio Technical Requirements Specification

Reference documents for testing:

	No.	Identity	Document Title		
i i	1	FCC Part15E	Subpart C-Intentional Radiators		
	2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices		
	3	KDB789033 D02 General UNII Test Procedures New Rules v01	Guidelines for compliance testing of unlicensed national information infrastructure (U-NII) device part 15 subpart E		

Test Results List:

	Test Requirement	Test method	Test item	Verdict	Note
-	47 CFR Part 15 Subpart E Section 15.407 (h)	KDB905462 D02	Dynamic Frequency Selection	PASS	Appendix A)

Page 12 of 24

Appendix A)Dynamic Frequency Selection

Test Limit

FCC according to §15.407 (h), KDB 905462 D02 "compliance measurement procedures for unlicensed-national information infrastructure devices operating in the 5250-5350 MHz and 5470-5725 MHz bands incorporating dynamic frequency selection". and KDB 905462 D03 " U-NII client devices without radar detection capability.

IC according RSS-247 section 6.3, and it harmonized with FCC Part 15 DFS rules.

The EIRP refer section 4.3 output power measurement in this report.

Table 1: Applicability of DFS requirements prior to use of a channel

	Operational Mode					
Requirement	Master	Client (without radar detection)	Client(with radar detection)			
Non-Occupancy Period	Yes	Not required	Yes			
DFS Detection Threshold	Yes	Not required	Yes			
Channel Availability Check Time	Yes	Not required	Not required			
U-NII Detection Bandwidth	Yes	Not required	Yes			

Table 2: Applicability of DFS requirements during normal operation

12	Denvironent	Operational Mode			
S	Requirement	Master Device or Client with Radar Detection	Client Without Radar Detection		
	DFS Detection Threshold	Yes	Not required		
	Channel Closing Transmission Time	Yes	Yes		
	Channel Move Time	Yes	Yes		
	U-NII Detection Bandwidth	Yes	Not required		

Page 13 of 24

Additional requirements for devices with	Master Device or Client with	Client Without Radar Detection
multiple bandwidth mods	Radar Detection	
U-NII Detection Bandwidth and Statistical	All BW modes must be	Not required
Performance Check	tested	Not required
Channel Move Time and Channel Closing	Test using widest BW mode	Test using the widest BW mode
Transmission Time	available	available for the link
All other tests	Any single BW mode	Not required
Note: Frequencies selected for statistic	cal performance check (Sectio	n 7.8.4) should include several
frequencies within the radar detecti	on bandwidth and frequencies	s near the edge of the radar
detection bandwidth. For 802.11 de	evices it is suggested to select	t frequencies in each of the
bonded 20 MHz cha	annels and the channel center	frequency.

Table 3: Interference Threshold values, Master or Client incorporating In-Service

Maximum Transmit Power	Value (See Notes 1, 2, and 3)		
EIRP ≥ 200 milliwatt	-64 dBm		
EIRP < 200 milliwatt and power spectral density < 10 dBm/MHz	-62 dBm		
EIRP < 200 milliwatt that do not meet the power spectral density requirement	-64 dBm		

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna. **Note 2:** Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

Table 4: DFS Response requirement values

Parameter	Value		
Non-occupancy period	Minimum 30 minutes		
Channel Availability Check Time	60 seconds		
Channel Move Time	10 seconds See Note 1.		
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Notes 1 and 2.		
U-NII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission power bandwidth. See Note 3.		

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Page 14 of 24

	Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials
1	0	1 🛇	1428	18	See Not	te 1
	1		Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A	$\operatorname{Roundup}\left\{ \begin{pmatrix} \frac{1}{360} \end{pmatrix} \right\}$ $\left(\frac{19 \cdot 10^{6}}{\operatorname{PRI}_{\mu \operatorname{sec}}} \right)$	60%	30
F	2	1-5	150-230	23-29	60%	30
F	3	6-10	200-500	16-18	60%	30
F	4	11-20	200-500	12-16	60%	30
		Deder Type	- 1 <i>1</i>)		000/	400

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

Page 15 of 24

	Table 6 – Long Pulse Radar Test Signal									
X	Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trials		
6	5	50-100	5-20	1000-2000	1-3	8-20	80%	30		

Table 7 – Frequency Hopping Radar Test Signal

	Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
	6	1	333	9	0.333	300	70%	30
								12

Test Procedure

Overview Of EUT With Respect To §15.407 (H) Requirements

The firmware installed in the EUT during testing was:

Firmware Rev: 1030.27.425.2018

The EUT operates over the 5250-5350 MHz range as a Client Device that does not have radar detection capability.

Page 16 of 24

The EUT uses one transmitter connected to two 50-ohm coaxial antenna ports via a diversity switch. Only one antenna port is connected to the test system since the EUT has one antenna only.

The Slave device associated with the EUT during these tests does not have radar detection capability.

WLAN traffic is generated by streaming the video file TestFile.mp2 "6 ½ Magic Hours" from the Master to the Slave in full motion video mode using the media player with the V2.61 Codec package.

The EUT utilizes the 802.11a architecture, with a nominal channel bandwidth of 20 MHz.

The rated output power of the Master unit is < 23dBm (EIRP). Therefore the required interference threshold level is -62 dBm. After correction for antenna gain and procedural adjustments, the required conducted threshold at the antenna port is -62 + 5 = -57dBm.

The calibrated conducted DFS Detection Threshold level is set to -57 dBm. The tested level is lower than the required level hence it provides margin to the limit.

Manufacturer's Statement Regarding Uniform Channel Spreading

The end product implements an automatic channel selection feature at startup such that operation commences on channels distributed across the entire set of allowed 5GHz channels. This feature will ensure uniform spreading is achieved while avoiding non-allowed channels due to prior radar events.

TEST AND MEASUREMENT SYSTEM

System Overview

The measurement system is based on a conducted test method.

The short pulse and long pulse signal generating system utilizes the NTIA software. The Vector Signal Generator has been validated by the NTIA. The hopping signal generating system utilizes the CCS simulated hopping method and system, which has been validated by the DoD, FCC and NTIA. The software selects waveform parameters from within the bounds of the signal type on a random basis using uniform distribution.

The short pulse types 2, 3 and 4, and the long pulse type 5 parameters are randomized at run-time.

The hopping type 6 pulse parameters are fixed while the hopping sequence is based on the August 2005 NTIA Hopping Frequency List. The initial starting point randomized at run-time and each subsequent starting point is incremented by 475. Each frequency in the 100-length segment is compared to the boundaries of the EUT Detection Bandwidth and the software creates a hopping burst pattern in accordance with Section 7.4.1.3 Method #2 Simulated Frequency Hopping Radar Waveform Generating Subsystem of FCC 06-96 APPENDIX. The frequency of the signal generator is incremented in 1 MHz steps from FL to FH for each successive trial. This incremental sequence is repeated as required to generate a minimum of 30 total trials and to maintain a uniform frequency distribution over the entire Detection Bandwidth.

The signal monitoring equipment consists of a spectrum analyzer set to display 8001 bins on the horizontal axis. The time-domain resolution is 2 msec / bin with a 16 second sweep time, meeting the 10 second short pulse reporting criteria. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection and max hold. The time-domain resolution is 3 msec / bin with a 24 second sweep time, meeting the 22 second long pulse reporting criteria and allowing a minimum of 10 seconds after the end of the long pulse waveform.

Should multiple RF ports be utilized for the Master and/or Slave devices (for example, for diversity or MIMO implementations), 50 ohm termination would be removed from the splitter so that connection can be established between splitter and the Master and/or

Slave devices.

Conducted Method System Block Diagram

Page 19 of 24

System Calibration

Connect the spectrum analyzer to the test system in place of the master device. Set the signal generator to CW mode. Adjust the amplitude of the signal generator to yield a measured level of –62 dBm on the spectrum analyzer.

Without changing any of the instrument settings, reconnect the spectrum analyzer to the Common port of the Spectrum Analyzer Combiner/Divider and connect a 50 ohm load to the Master Device port of the test system.

Measure the amplitude and calculate the difference from -62 dBm. Adjust the Reference Level Offset of the spectrum analyzer to this difference. Confirm that the signal is displayed at -62 dBm. Readjust the RBW and VBW to 3 MHz, set the span to 10 MHz, and confirm that the signal is still displayed at -62 dBm.

The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of –62 dBm and the spectrum analyzer will still indicate the level as received by the Master Device.

Set the signal generator to produce a radar waveform, trigger a burst manually and measure the level on the spectrum analyzer. Readjust the amplitude of the signal generator as required so that the peak level of the waveform is at a displayed level equal to the required or desired interference detection threshold. Separate signal generator amplitude settings are determined as required for each radar type.

Adjustment Of Displayed Traffic Level

Establish a link between the Master and Slave, adjusting the Link Step Attenuator as needed to provide a suitable received level at the Master and Slave devices. Stream the video test file to generate WLAN traffic. Confirm that the WLAN traffic level, as displayed on the spectrum analyzer, is at lower amplitude than the radar detection threshold. Confirm that the displayed traffic is from the Master Device. For Master Device testing confirm that the displayed traffic does not include Slave Device traffic. For Slave Device testing confirm that the displayed traffic does not include Master Device traffic.

If a different setting of the Master Step Attenuator is required to meet the above conditions, perform a new System Calibration for the new Master Step Attenuator setting.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No.EED32M00138901 for EUT external and internal photos.

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.