

Report No. : EED32M00138902 Page 1 of 49

TEST REPORT

Product : Grid Pad 15

Trade mark : Smartbox

Model/Type reference : GP15A

Serial Number : N/A

Report Number : EED32M00138902

FCC ID : 2APXM-GP15A Date of Issue : Aug.10, 2020

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

Smartbox Assistive Technology Limited
Ysobel House, Enigma Commercial Centre,
Sandys Road, Malvern, Worcestershire, UK WR14 1JJ

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Sunlight Sun

Reviewed by:

Jok Yang

Sunlight Sun San Cluery

Date:

Aug.10, 2020

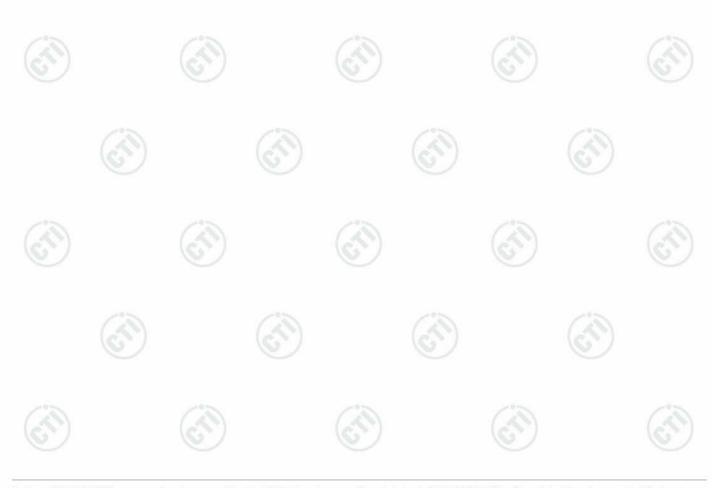
Sam Chuang

Check No.:3096327781

cri) (cri)

2 Version

Version No.	Date	Description
00	Aug.10, 2020	Original


Page 3 of 49

3 Test Summary

o rest outilitially				
Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS	
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS	
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS	
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

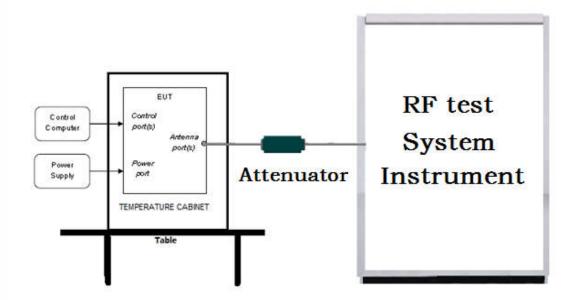
Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013. The tested sample(s) and the sample information are provided by the client.

Report No.: EED32M00138902 Page 4 of 49

4 Content

1 C	OVER PAGE	•••••	•••••	•••••	1
2 VI	ERSION		•••••		
3 TI	EST SUMMARY	•••••			
4 C	ONTENT				
5 TI	EST REQUIREMENT			<u> </u>	5
5	.1 TEST SETUP 5.1.1 For Conducted test setuents. 5.1.2 For Radiated Emissions. 5.1.3 For Conducted Emissions. 2 TEST ENVIRONMENT	ups test setupns test setup			
6 G	ENERAL INFORMATION	•••••			
6 6 6 6 6	.1 CLIENT INFORMATION	JT JJECTIVE TO THIS STAN NITS ARD CONDITIONS STED BY THE CUSTOME	IDARD		
7 E	QUIPMENT LIST			•••••	10
8 R	ADIO TECHNICAL REQUIRE	MENTS SPECIFICAT	TON	•••••	13
	Appendix A): 6dB Occupied B Appendix B): Conducted Pea Appendix C): Band-edge for I Appendix D): RF Conducted Appendix E): Power Spectral Appendix F): Antenna Requir Appendix G): AC Power Line Appendix H): Restricted band Appendix I) Radiated Spurious	k Output Power RF Conducted Emiss Spurious Emissions Density ement Conducted Emission Is around fundament	ions		
PHO	OTOGRAPHS OF TEST SETU	P		•••••	40
PHO	OTOGRAPHS OF EUT CONST	RUCTIONAL DETA	ILS		49



Report No.: EED32M00138902 Page 5 of 49

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

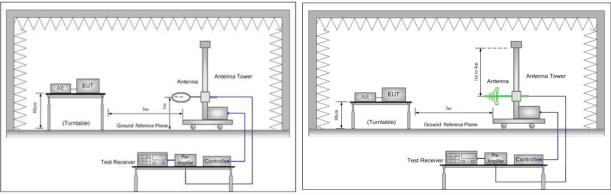
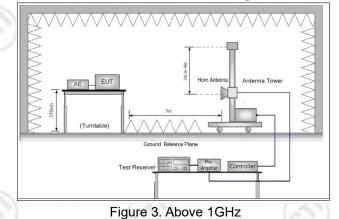
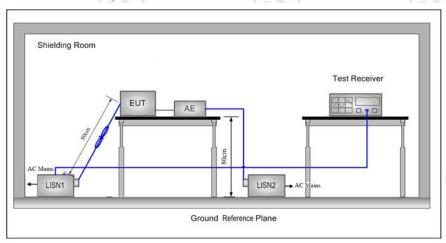
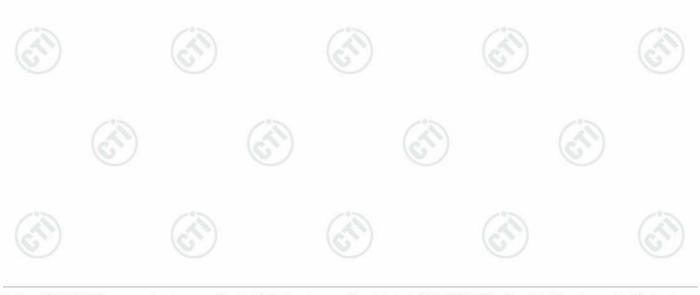



Figure 1. Below 30MHz


Figure 2. 30MHz to 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup


5.2 Test Environment

Operating Environment:		(6)
Temperature:	23.0 °C	
Humidity:	54 % RH	
Atmospheric Pressure:	1010mbar	9

5.3 Test Condition

Test channel:

Test Mode	Tx/Rx		RF Channel	_°>	
Test Mode	TX/KX	Low(L)	Middle(M)	High(H)	
05014	0.4001411 0.400.1411	Channel 0	Channel 19	Channel 39	
GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz	
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.				

Report No. : EED32M00138902 Page 7 of 49

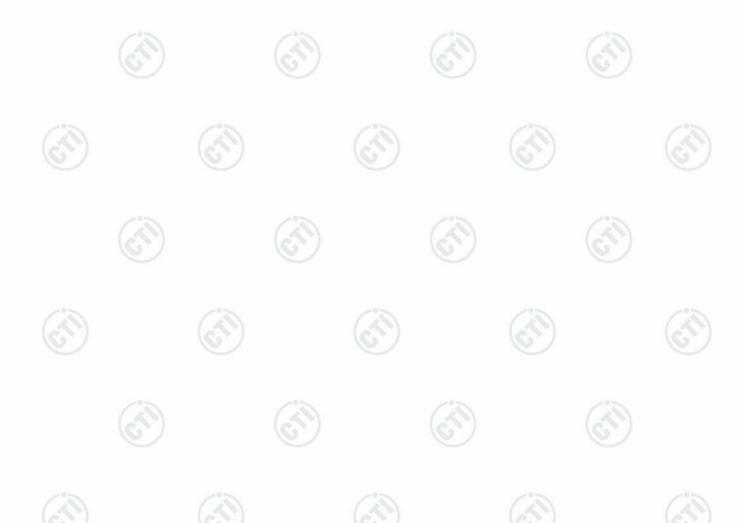
6 General Information

6.1 Client Information

Applicant:	Smartbox Assistive Technology Limited		
Address of Applicant:	Ysobel House, Enigma Commercial Centre, Sandys Road, Malvern, Worcestershire, UK WR14 1JJ		
Manufacturer:	Smartbox Assistive Technology Limited		
Address of Manufacturer:	Ysobel House, Enigma Commercial Centre, Sandys Road, Malvern, Worcestershire, UK WR14 1JJ		
Factory:	Estone Technology LTD		
Address of Factory: 2F, Building No.1, Jia'an Industrial Park, No.2 Long Chang Road, Bao'a Shenzhen 518101, China.			

6.2 General Description of EUT

Product Name:	Grid Pad 15			
Model No.(EUT):	GP15A			13
Trade mark:	Smartbox			(6,2)
EUT Supports Radios application:	BT4.2 Dual r	node 2402MHz to 2480MHz		
(cin)	AC Adapter	MODEL:MANGO40S-12BB-ES INPUT:100-240V~,50/60Hz ,1.0A Max OUTPUT:12V3.33A		
Power Supply:	Battery	Model:5080115P Capacity:10000mAh/74Wh Nominal Voltage:7.4V—— Limited Charge Voltage:8.4V——		(A)
Sample Received Date:	May. 22, 2020			
Sample tested Date:	May. 22, 202	20 to Jul. 17, 2020	(20)	


6.3 Product Specification subjective to this standard

<u>-</u>			
Operation Frequency:	2402MHz~2480MHz		
Bluetooth Version:	4.2(BLE)	705	-05
Modulation Technique:	DSSS	(2)	(34)
Modulation Type:	GFSK		
Number of Channel:	40		
Test Power Grade:	LCH/MCH/HCH: -13		~ ~
Test Software of EUT:	DRTU	(4/2)	(3/2)
Antenna Type and Gain:	Type:PCB antenna Gain: 1.99 dBi		
Test Voltage:	Battery 7.4V	70%	_0

_	_		
Page	8	of 49	

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Report No. : EED32M00138902 Page 9 of 49

6.4 Description of Support Units

The EUT has been tested with associated equipment below

	sociated ment name	Manufacture	model	S/N serial number	Supplied by	Certification
AE1	Notebook	DELL	DELL 3490	D245DX2	DELL	CE&FCC
)	<u>(é</u>	9	(E))	(0)	(c)

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
	DE novem conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
3	Dadiated Spurious emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Report No. : EED32M00138902 Page 10 of 49

7 Equipment List

A Barrier I	A SC	DE toot o	watam	./.6	1 A T 1 A
		RF test s	system	1	
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	02-17-2020	02-16-2021
Signal Generator	Keysight	N5182B	MY53051549	02-17-2020	02-16-2021
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	07-26-2019	07-25-2020
High-pass filter	Sinoscite	FL3CX03WG18N M12-0398-002	(0.)		ــ ک
High-pass filter	MICRO- TRONICS	SPA-F-63029-4			
DC Power	Keysight	E3642A	MY56376072	02-17-2020	02-16-2021
PC-1	Lenovo	R4960d		(O)	(0)
BT&WI-FI Automatic control	R&S	OSP120	101374	02-17-2020	02-16-2021
RF control unit	JS Tonscend	JS0806-2	158060006	02-17-2020	02-16-2021
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	(6.)		5)


Conducted disturbance Test						
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Receiver	R&S	ESCI	100435	04-28-2020	04-27-2021	
Temperature/ Humidity Indicator	Defu	TH128		((ii)	
LISN	R&S	ENV216	100098	03-05-2020	03-04-2021	
Barometer	changchun	DYM3	1188			

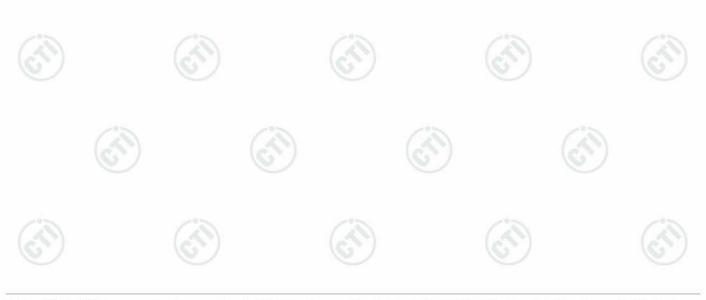
Report No. : EED32M00138902 Page 11 of 49

(2000)	1.5	~)	1000		(200
	3M S	Semi/full-anecho	ic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-26-2019	07-25-2020
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-24-2021
Receiver	R&S	ESCI7	100938- 003	10-21-2019	10-20-2020
Multi device Controller	maturo	NCD/070/107 11112			(CL)
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	07-26-2019	07-25-2020
Cable line	Fulai(7M)	SF106	5219/6A		
Cable line	Fulai(6M)	SF106	5220/6A	378	
Cable line	Fulai(3M)	SF106	5216/6A	(- <u>-</u> -())	
Cable line	Fulai(3M)	SF106	5217/6A	(C-)	

Page 12 of 49

Equipment	Manufacturer	Model No.	Serial	Cal. date	Cal. Due date
Equipment	Wanulacturer	woder no.	Number	(mm-dd-yyyy)	(mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166)
Receiver	Keysight	N9038A	MY57290136	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-05-2020	03-04-2021
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021
Preamplifier	EMCI	EMC184055SE	980596	05-20-2020	05-19-2021
Preamplifier	EMCI	EMC001330	980563	04-22-2020	04-21-2021
Preamplifier	JS Tonscend	980380	EMC051845 SE	01-09-2020	01-08-2021
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-27-2020	04-26-2021
Fully Anechoic Chamber	TDK	FAC-3		01-17-2018	01-16-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001		COT.
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002		(G.)
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003		
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001		
Cable line	Times	EMC104-NMNM- 1000	SN160710		
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001		
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001		
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001		(c <u>ir</u>)
Cable line	Times	HF160-KMKM- 3.00M	393493-0001		

Report No. : EED32M00138902 Page 13 of 49

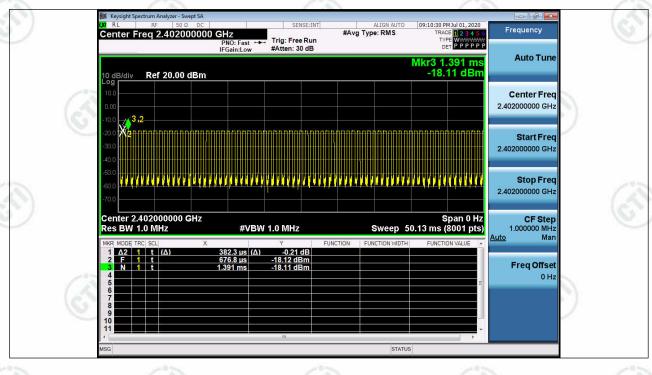

8 Radio Technical Requirements Specification

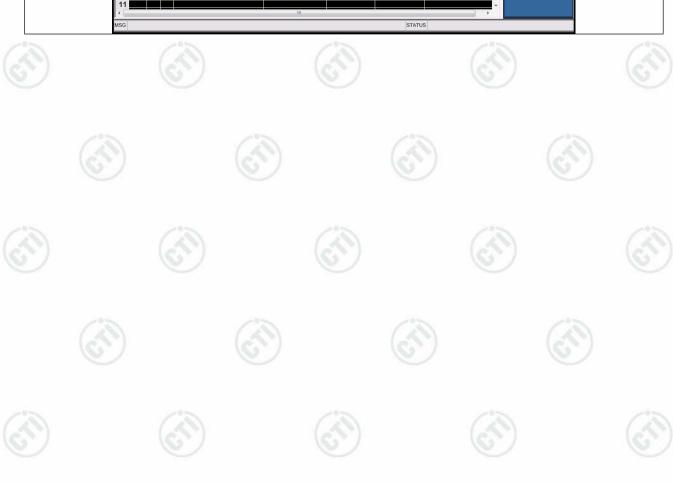
Reference documents for testing:

-			-9-
	No.	Identity	Document Title
	1	FCC Part15C	Subpart C-Intentional Radiators
1	2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)





Report No. : EED32M00138902 Page 14 of 49

DUTY CYCLE

	Duty	Cycle	
Configuration	TX ON(ms)	TX ALL(ms)	Duty Cycle(%)
BLE	0.3823	0.7142	53.53%

Report No. : EED32M00138902 Page 15 of 49

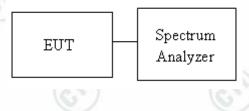
Appendix A): 6dB Occupied Bandwidth & 99% Occupied Bandwidth

Test Limit

According to §15.247(a)(2) and RSS-247 section 5.2(a)

6 dB Bandwidth:

		100
Limit	Shall be at least 500kHz	


Occupied Bandwidth(99%): For reporting purposes only.

Test Procedure

Test method Refer as KDB 558074 D01, section 8.1 and ANSI 63.10:2013 clause 6.9.2 & 6.9.3.

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 100kHz, VBW = 300kHz and Detector = Peak, to measurement 6 dB Bandwidth.
- 4. SA set RBW = 30kHz, VBW = 100kHz and Detector = Peak, to measurement 99% Bandwidth.
- 5. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.


Test Setup

Test Result

6dB Bandwidth

Mode	Channel	6dB Bandwidth [MHz]	Verdict
BLE	LCH	0.6414	PASS
BLE	MCH	0.6443	PASS
BLE	HCH	0.6448	PASS

99% OBW

Mode	Channel	99% OBW[MHz]	Verdict
BLE	LCH	1.0423	PASS
BLE	MCH	1.0409	PASS
BLE	HCH	1.0382	PASS

Report No.: EED32M00138902 Page 17 of 49

6dB Bandwidth

Test Graphs

Page 18 of 49

99% OBW

Report No. : EED32M00138902 Page 19 of 49

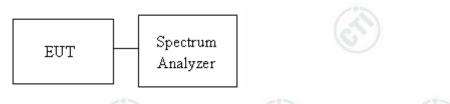
Appendix B): Conducted Peak Output Power

Test Limit

According to §15.247(b) and RSS-247 section 5.4(d)

Peak output power:

For systems using digital modulation in the 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

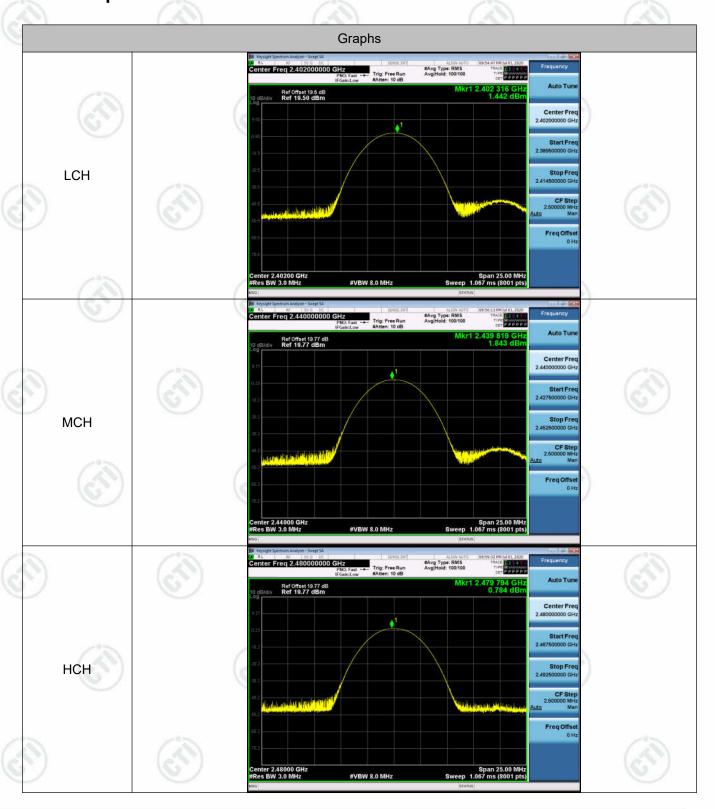

Limit	 ✓ Antenna not exceed 6 dBi : 30dBm ☐ Antenna with DG greater than 6 dBi [Limit = 30 – (DG – 6)]
	☐ Point-to-point operation

Test Procedure

Test method Refer as KDB 558074 D01, section 9.1.2.

- 1. The EUT RF output connected to spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. Spectrum analyzer settings are as follows:
 - a) Set the RBW ≥ DTS bandwidth.
 - b) Set VBW ≥ [3×RBW].
 - c) Set span ≥[3×RBW].
 - d) Sweep time = auto couple.
 - e) Detector = peak.
 - f) Trace mode = max hold.
 - g) Allow trace to fully stabilize.
 - h) Use peak marker function to determine the peak amplitude level
- 4. Measure and record the result in the test report.

Test Setup



Report No. : EED32M00138902 Page 20 of 49

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	1.442	PASS
BLE	MCH	1.843	PASS
BLE	HCH	0.784	PASS

Test Graphs

Report No. : EED32M00138902 Page 21 of 49

Appendix C): Band-edge for RF Conducted Emissions

Test Limit

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01, Section 11.

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Setup

Report No. : EED32M00138902 Page 22 of 49

Result Table

Mode	Channel Carrier Power[dBm]		Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	1.499	-60.845	-18.5	PASS
BLE	HCH	0.800	-51.824	-19.2	PASS

Test Graphs

Report No. : EED32M00138902 Page 23 of 49

Appendix D): RF Conducted Spurious Emissions Test Limit

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

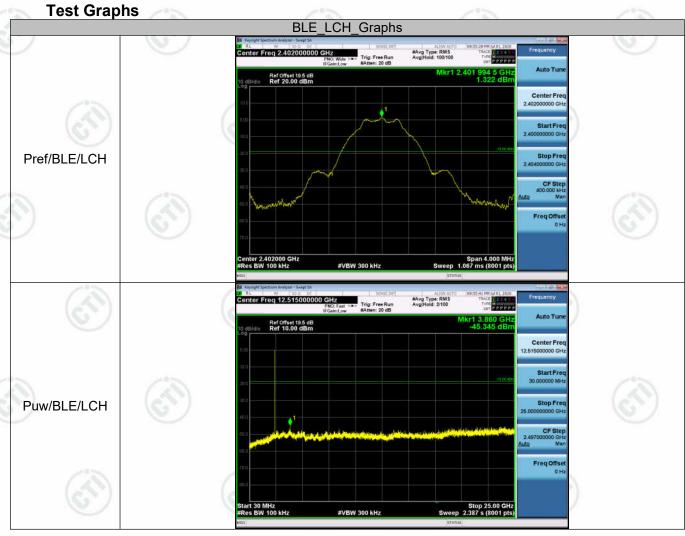
Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

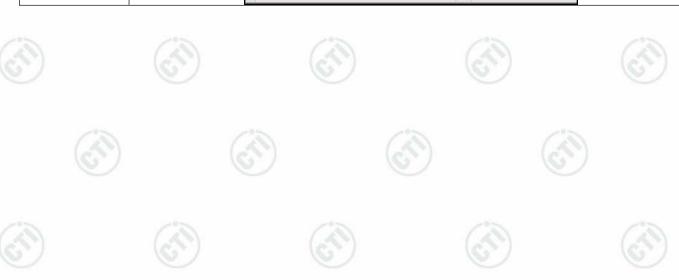
Test Procedure

Test method Refer as KDB 558074 D01, Section 11.

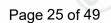
- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Setup





Report No.: EED32M00138902 Page 24 of 49


Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	1.322	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	1.653	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	HCH	0.588	<limit< td=""><td>PASS</td></limit<>	PASS

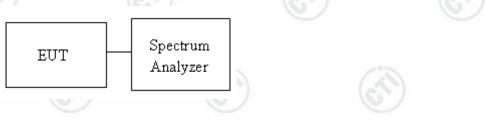
Report No. : EED32M00138902 Page 27 of 49

Appendix E): Power Spectral Density

Test Limit

According to §15.247(e) and RSS-247 section 5.2(b)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


Limit	☐ Antenna with DG greater than 6 dBi [Limit = 8 – (DG – 6)]
(0,	☐ Point-to-point operation :

Test Procedure

Test method Refer as KDB 558074 D01 v04, Section 10.2

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 10kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss and Duty Factor were compensated to the results for each measurement by SA.
- Mark the maximum level.
 Measure and record the result of power spectral density. in the test report.

Test Setup

Report No. : EED32M00138902 Page 28 of 49

Result Table

Mode	Channel	PSD [dBm]	Verdict
BLE	LCH	-13.740	PASS
BLE	MCH	-13.349	PASS
BLE	HCH	-14.299	PASS

Test Graphs Graphs Ref Offset 19.5 dB Ref 10.00 dBm LCH MCH #Avg Type: RMS AvgiHold: 26/100 Ref Offset 19.77 dB Ref 10.00 dBm **HCH**

Report No. : EED32M00138902 Page 29 of 49

Appendix F): Antenna Requirement

15.203 requirement:

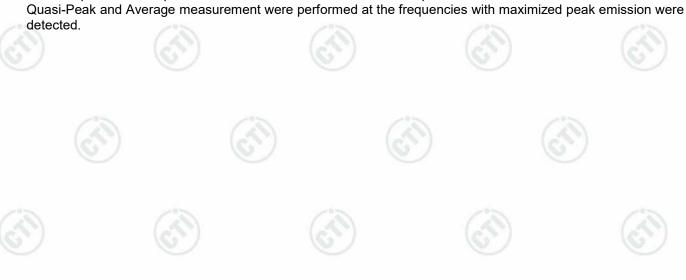
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

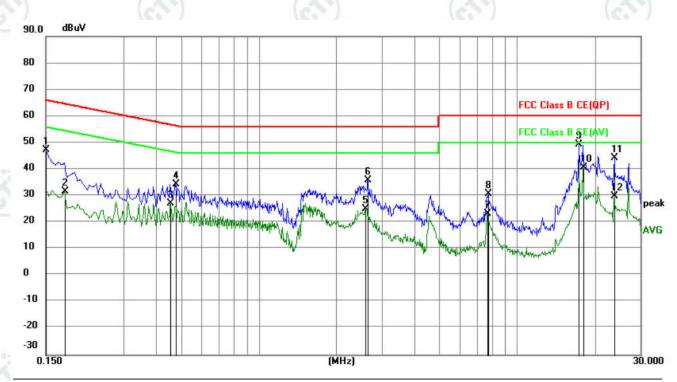
The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 1.99 dBi.



Report No.: EED32M00138902 Page 30 of 49

Test Procedure:	Test frequency range :150KHz-30MHz								
	1)The mains terminal disturbance voltage test was conducted in a shielded room.2) The EUT was connected to AC power source through a LISN 1 (Line Impedance								
	Stabilization Network) whic								
	power cables of all other up								
	which was bonded to the gr	ound reference plane	in the same way a	s the LISN					
	for the unit being measured multiple power cables to a sexceeded.								
	3)The tabletop EUT was place reference plane. And for flo horizontal ground reference	or-standing arrangem							
	4) The test was performed wit EUT shall be 0.4 m from the reference plane was bonde	h a vertical ground refer	ence plane. The ve	ertical groun					
	1 was placed 0.8 m from t								
	ground reference plane fo	or LISNs mounted or	n top of the grour	nd reference					
	plane. This distance was be All other units of the EUT a LISN 2.								
(GTI)	 In order to find the maximum of the interface cables r conducted measurement. 								
Limit:		1247	ID. MA	\neg					
	Frequency range (MHz)	Limit (c							
		Quasi-peak	Average	(3)					
	0.15-0.5	66 to 56*	56 to 46*	(60)					
	0.5-5	56 46							
	5-30	60 50							
-15-	* The limit decreases linearly with MHz to 0.50 MHz.	with the logarithm of	the frequency in the	e range 0.1					
	NOTE : The lower limit is applic		180						

An initial pre-scan was performed on the live and neutral lines with peak detector.



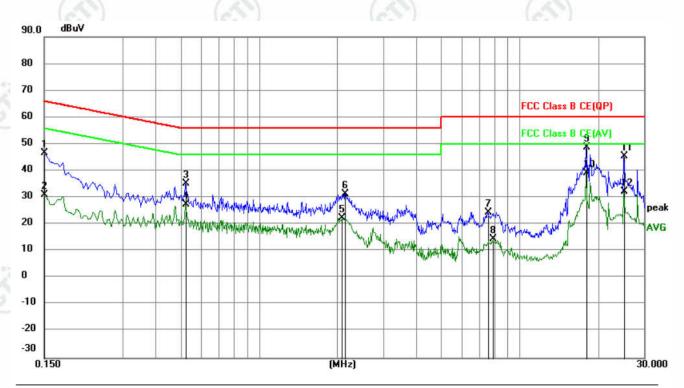
Page 31 of 49

Product : Grid Pad 15 Model/Type reference : GP15A

Temperature : 23° **Humidity** : 54%

Live line:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	37.42	9.88	47.30	66.00	-18.70	QP	
2		0.1770	21.76	9.87	31.63	54.63	-23.00	AVG	
3		0.4560	17.28	9.98	27.26	46.77	-19.51	AVG	
4		0.4785	24.26	10.02	34.28	56.37	-22.09	QP	
5		2.5889	15.36	9.79	25.15	46.00	-20.85	AVG	
6		2.6430	25.94	9.79	35.73	56.00	-20.27	QP	
7		7.6650	13.56	9.79	23.35	50.00	-26.65	AVG	
8		7.7280	20.87	9.79	30.66	60.00	-29.34	QP	
9		17.3715	39.38	9.84	49.22	60.00	-10.78	QP	
10	*	18.0015	30.89	9.84	40.73	50.00	-9.27	AVG	
11		23.8020	34.24	9.93	44.17	60.00	-15.83	QP	
12		23.8020	19.99	9.93	29.92	50.00	-20.08	AVG	



Report No.: EED32M00138902 Page 32 of 49

Neutral line:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	36.70	9.88	46.58	66.00	-19.42	QP	
2		0.1500	21.27	9.88	31.15	56.00	-24.85	AVG	
3		0.5235	25.18	10.03	35.21	56.00	-20.79	QP	
4		0.5235	17.43	10.03	27.46	46.00	-18.54	AVG	
5		2.0805	12.53	9.79	22.32	46.00	-23.68	AVG	
6		2.1345	21.55	9.79	31.34	56.00	-24.66	QP	
7		7.5615	14.70	9.79	24.49	60.00	-35.51	QP	
8		7.9215	4.64	9.80	14.44	50.00	-35.56	AVG	
9		18.0015	38.86	9.84	48.70	60.00	-11.30	QP	
10	*	18.0015	29.43	9.84	39.27	50.00	-10.73	AVG	
11		25.0980	35.55	9.95	45.50	60.00	-14.50	QP	
12		25.0980	22.40	9.95	32.35	50.00	-17.65	AVG	

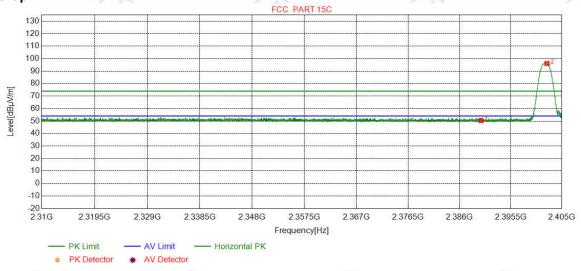
Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

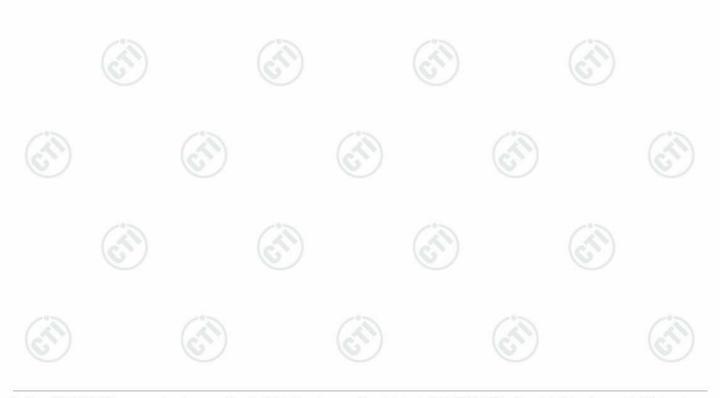
Report No. : EED32M00138902 Page 33 of 49

Appendix H): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	AL 4011-	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	
est Procedure:	Below 1GHz test proced	ure as below:				
	Test method Refer as KDI a. The EUT was placed at a 3 meter semi-ane determine the position b. The EUT was set 3 m was mounted on the to c. The antenna height is determine the maximu polarizations of the and d. For each suspected e the antenna was tuned was turned from 0 deg e. The test-receiver systems	on the top of a rochoic camber. The of the highest rates away from op of a variable-highest from one am value of the firstenna are set to mission, the EUT to heights from prees to 360 degination of the to heights from the to 360 degination of the to a set to 360 degination.	tating table the table was adiation. The interfer neight anter to found the table the make the make the make the make to find the to frees to find	e 0.8 meter is rotated 3 ence-recei nna tower. our meters n. Both hor neasurement ged to its v 4 meters a the maxin	iving antennal above the grantal and vent. worst case are and the rotate and the rotate and many reading.	to , which ound the ertica
	Bandwidth with Maxim f. Place a marker at the frequency to show cor	num Hold Mode. end of the restric npliance. Also m	easure any	emissions	s in the restri	
	Bandwidth with Maxim f. Place a marker at the frequency to show cor bands. Save the spec for lowest and highest	num Hold Mode. end of the restric npliance. Also m trum analyzer plo channel	easure any	emissions	s in the restri	
	Bandwidth with Maxim f. Place a marker at the frequency to show cor bands. Save the spec	num Hold Mode. end of the restrict inpliance. Also me trum analyzer plot channel ure as below: ve is the test site in the change form 1 meter and table to the channel, the test site in the test site in the channel, the test site in the test si	easure any ot. Repeat f e, change fi n table 0.8 le is 1.5 me the Highest rmed in X, kis positioni	remissions for each por rom Semi- meter to 1 ter). channel Y, Z axis p ng which i	s in the restriction of the control	dulation ambe ove
imit:	Bandwidth with Maxim f. Place a marker at the frequency to show cor bands. Save the spec for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Char 18GHz the distance is h. Test the EUT in the I i. The radiation measure Transmitting mode, ar	num Hold Mode. end of the restrict inpliance. Also me trum analyzer plot channel ure as below: ve is the test site in the change form 1 meter and table to the channel, the test site in the test site in the channel, the test site in the test si	easure any ot. Repeat f e, change fi n table 0.8 le is 1.5 me the Highest rmed in X, kis positioni uencies me	remissions for each por form Semi- meter to 1 ter). channel Y, Z axis p ng which i	s in the restriction of the control	dulation ambe ove
mit:	Bandwidth with Maxim f. Place a marker at the frequency to show cor bands. Save the spec for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Char 18GHz the distance is h. Test the EUT in the I i. The radiation measure Transmitting mode, ar j. Repeat above proced	num Hold Mode. end of the restrict inpliance. Also m trum analyzer plot channel ure as below: ve is the test site inber change form 1 meter and tabl towest channel, it ements are perfort and found the X ax ures until all frequence.	e, change fin table 0.8 le is 1.5 methe Highest rmed in X, kis positioniuencies methem (@3m)	rom Semi- meter to 1 ter). channel Y, Z axis p ng which i	Anechoic Ch .5 meter(Abo positioning for t is worse cases complete.	dulation ambeove
mit:	Bandwidth with Maxim f. Place a marker at the frequency to show cor bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between about of fully Anechoic Char 18GHz the distance is h. Test the EUT in the I i. The radiation measure Transmitting mode, ar j. Repeat above proced	num Hold Mode. end of the restrict inpliance. Also metrum analyzer plot channel ure as below: ve is the test site inber change form 1 meter and tabl bowest channel, it ements are perfort ind found the X ax ures until all frequents (dBµV)	easure any ot. Repeat for table 0.8 le is 1.5 met the Highest rmed in X, kis positioniquencies med/m @3m)	remissions for each portion Semi-meter to 1 ter). c channel Y, Z axis programming which it easured was Rer Quasi-per second seco	Anechoic Ch .5 meter(Abo positioning for t is worse cases complete.	dulation ambeove
mit:	Bandwidth with Maxim f. Place a marker at the frequency to show cor bands. Save the spec for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Char 18GHz the distance is h. Test the EUT in the I i. The radiation measure Transmitting mode, ar j. Repeat above proced Frequency 30MHz-88MHz	num Hold Mode. end of the restrict inpliance. Also me trum analyzer plot channel ure as below: ve is the test site in the change form 1 meter and table to west channel, the ments are perforted found the X axis ures until all frequency. Limit (dBµV) 40.6	easure any ot. Repeat for table 0.8 le is 1.5 method in X, kis positioni uencies med/m @3m)	remissions for each portion Semi-meter to 1 ter). channel Y, Z axis programmed was red was red was red was red was red was red Quasi-pe	Anechoic Ch.5 meter(Aboositioning for tis worse cases complete.	dulation ambeove
mit:	Bandwidth with Maxim f. Place a marker at the frequency to show cor bands. Save the spec for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Char 18GHz the distance is h. Test the EUT in the I i. The radiation measure Transmitting mode, ar j. Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz	num Hold Mode. end of the restrict inpliance. Also m trum analyzer plot channel ure as below: ve is the test site inber change form 1 meter and tabl owest channel , it ements are perfort d found the X ax ures until all frequency Limit (dBµV/ 40.0 43.5	easure any ot. Repeat for table 0.8 le is 1.5 method in X, kis positioni uencies method (m @3m)	remissions for each portion Semi-meter to 1 ter). It channel Y, Z axis programmed was red wasi-pe Quasi-pe Quasi-pe Quasi-pe	Anechoic Ch .5 meter(Abo cositioning for t is worse cas as complete. mark eak Value eak Value	dulation ambeove
imit:	Bandwidth with Maxim f. Place a marker at the frequency to show cor bands. Save the spec for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Char 18GHz the distance is h. Test the EUT in the I i. The radiation measure Transmitting mode, ar j. Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	num Hold Mode. end of the restrict inpliance. Also m trum analyzer plot channel ure as below: ve is the test site inber change form 1 meter and tabl owest channel , it ements are perfort ad found the X avaires until all frequency Limit (dBµV/ 40.0 43.5	easure any ot. Repeat for table 0.8 le is 1.5 method in X, kis positioni uencies medion (m @3m)	remissions for each portion Semi-meter to 1 ter). channel Y, Z axis programmed was red was red was red was red Quasi-pe Quasi-pe Quasi-pe Quasi-pe Quasi-pe Quasi-pe	Anechoic Ch. 5 meter (Above Stioning for tis worse cases complete. mark eak Value eak Value	dulation ambe ove



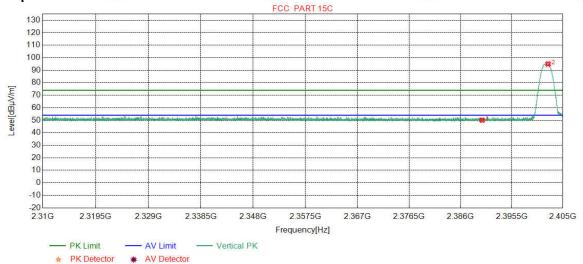
Report No.: EED32M00138902 Page 34 of 49

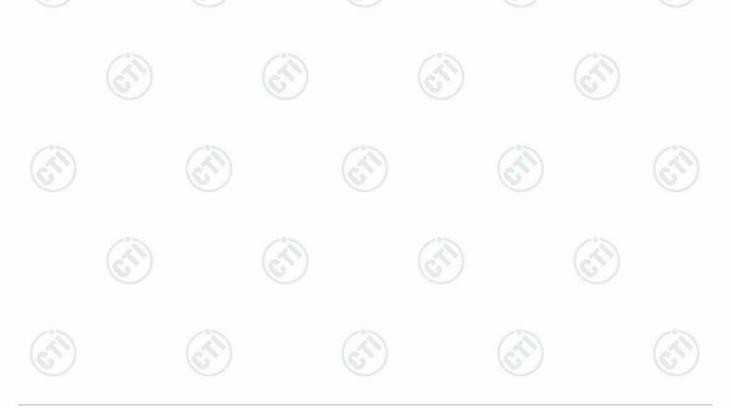

Test plot as follows:

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

Ant Cable Pream Reading Limit Freq. Margin Level Factor NO loss Result gain **Polarity** [MHz] [dBµV] [dBµV/m] [dBµV/m] [dB] [dB] [dB] [dB] **Pass** 23.67 1 2390.0000 32.25 13.37 -43.12 47.83 74.00 Horizontal 50.33 **Pass** 2 32.26 13.31 -43.12 74.00 2402.2258 93.65 96.10 -22.10Horizontal

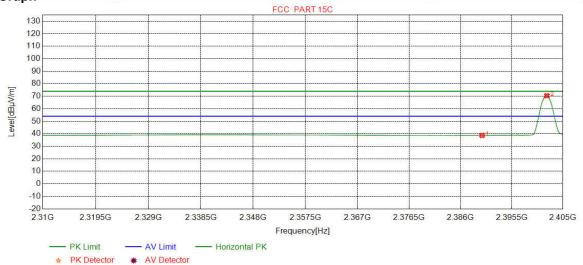


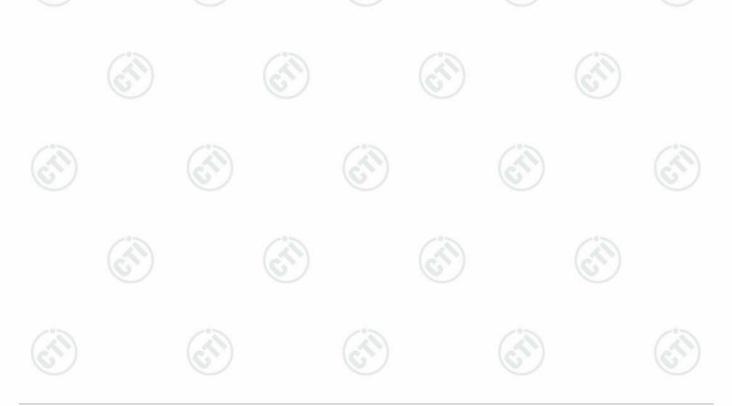

Page	35	of	49	
------	----	----	----	--

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.59	50.09	74.00	23.91	Pass	Vertical
2	2402.2512	32.26	13.31	-43.12	92.50	94.95	74.00	-20.95	Pass	Vertical

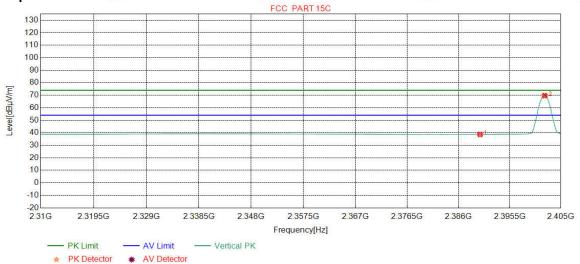


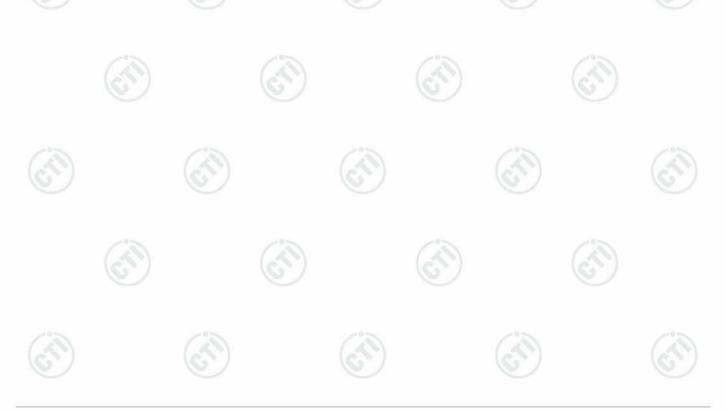

Page	36	of	49	
------	----	----	----	--

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.16	38.66	54.00	15.34	Pass	Horizontal
2	2402.0105	32.26	13.31	-43.12	67.97	70.42	54.00	-16.42	Pass	Horizontal

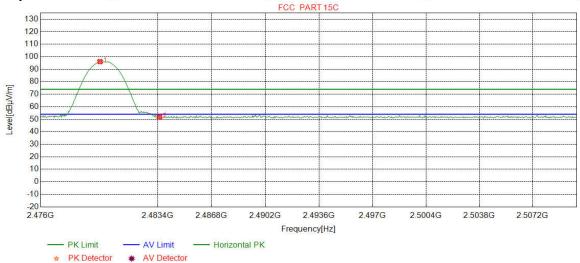


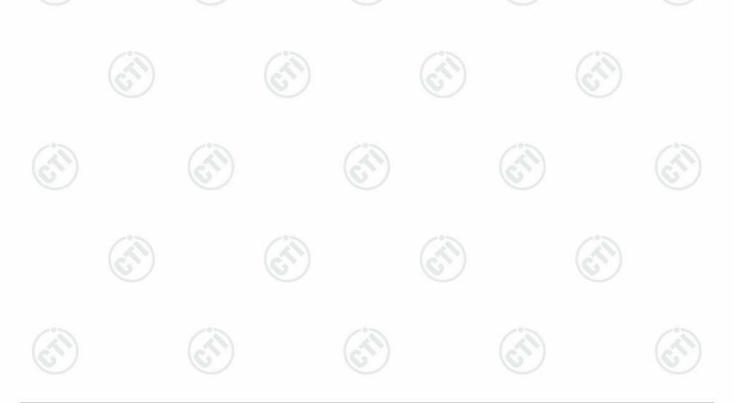

	Page	37	of 49	
--	------	----	-------	--

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.16	38.66	54.00	15.34	Pass	Vertical
2	2402.0041	32.26	13.31	-43.12	67.23	69.68	54.00	-15.68	Pass	Vertical

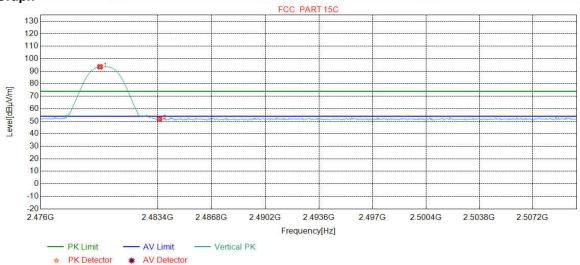


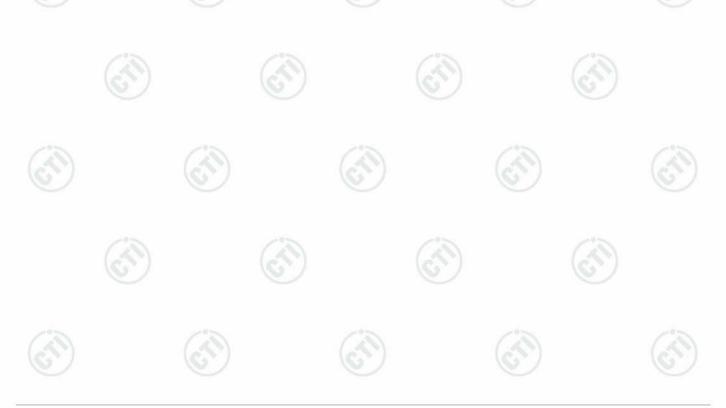

Page	38	of 49	
------	----	-------	--

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7447	32.37	13.39	-43.10	93.41	96.07	74.00	-22.07	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	49.26	51.91	74.00	22.09	Pass	Horizontal

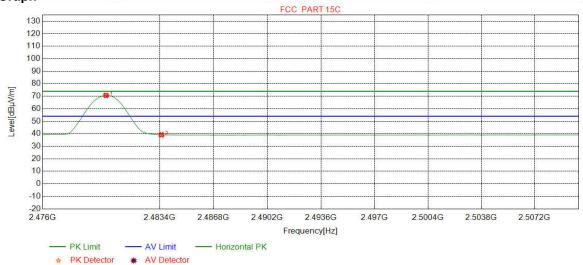


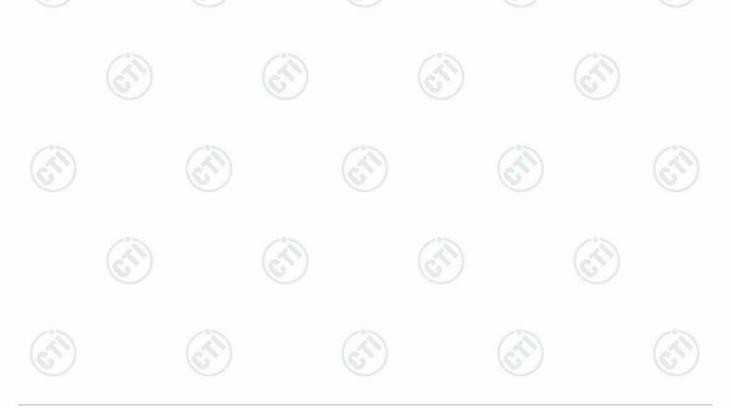

Page	39	of 49	
------	----	-------	--

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7447	32.37	13.39	-43.10	90.87	93.53	74.00	-19.53	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	49.35	52.00	74.00	22.00	Pass	Vertical

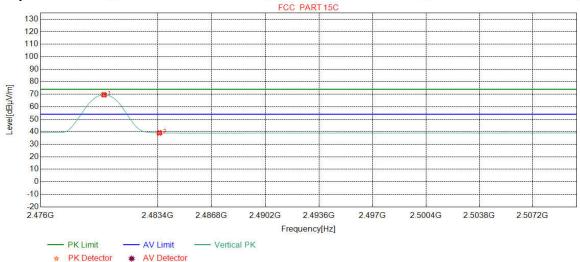



Page	40	of 49	

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

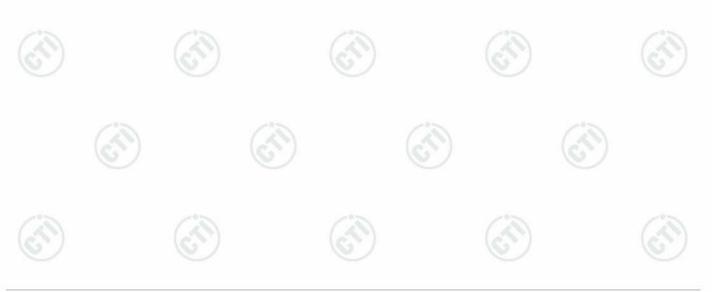
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0000	32.37	13.39	-43.10	68.02	70.68	54.00	-16.68	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	36.53	39.18	54.00	14.82	Pass	Horizontal



	Page	41	of 49
--	------	----	-------

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0000	32.37	13.39	-43.10	66.91	69.57	54.00	-15.57	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	36.45	39.10	54.00	14.90	Pass	Vertical

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No. : EED32M00138902 Page 42 of 49

Appendix I) Radiated Spurious Emissions

Frequency	Detector	RBW	VBW	Remark	
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	100
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	(6)
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
Above 1CUz	Peak	1MHz	3MHz	Peak	
Above IGHZ	Peak	1MHz	10Hz	Average	
	0.009MHz-0.090MHz 0.009MHz-0.090MHz 0.090MHz-0.110MHz 0.110MHz-0.490MHz 0.110MHz-0.490MHz 0.490MHz -30MHz	0.009MHz-0.090MHz Peak 0.009MHz-0.090MHz Average 0.090MHz-0.110MHz Quasi-peak 0.110MHz-0.490MHz Peak 0.110MHz-0.490MHz Average 0.490MHz -30MHz Quasi-peak 30MHz-1GHz Quasi-peak Above 1GHz	0.009MHz-0.090MHz Peak 10kHz 0.009MHz-0.090MHz Average 10kHz 0.090MHz-0.110MHz Quasi-peak 10kHz 0.110MHz-0.490MHz Peak 10kHz 0.110MHz-0.490MHz Average 10kHz 0.490MHz -30MHz Quasi-peak 10kHz 30MHz-1GHz Quasi-peak 120kHz Above 1GHz Peak 1MHz	0.009MHz-0.090MHz Peak 10kHz 30kHz 0.009MHz-0.090MHz Average 10kHz 30kHz 0.090MHz-0.110MHz Quasi-peak 10kHz 30kHz 0.110MHz-0.490MHz Peak 10kHz 30kHz 0.110MHz-0.490MHz Average 10kHz 30kHz 0.490MHz -30MHz Quasi-peak 10kHz 30kHz 30MHz-1GHz Quasi-peak 120kHz 300kHz Above 1GHz Peak 1MHz 3MHz	0.009MHz-0.090MHzPeak10kHz30kHzPeak0.009MHz-0.090MHzAverage10kHz30kHzAverage0.090MHz-0.110MHzQuasi-peak10kHz30kHzQuasi-peak0.110MHz-0.490MHzPeak10kHz30kHzPeak0.110MHz-0.490MHzAverage10kHz30kHzAverage0.490MHz -30MHzQuasi-peak10kHz30kHzQuasi-peak30MHz-1GHzQuasi-peak120kHz300kHzQuasi-peakAbove 1GHzPeak1MHz3MHzPeak

Test Procedure:

Below 1GHz test procedure as below:

Test method Refer as KDB 558074 D01, Section 12.1

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

Repeat above procedures until all frequencies measured was complete.

	n	าเ	t.
_,		ш	ι.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	(49)	300
0.490MHz-1.705MHz	24000/F(kHz)	-	(0)	30
1.705MHz-30MHz	30	-	-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3


Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Mode	Mode:			SK Trans	smitting		Channel:		2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	59.9760	11.60	0.90	-31.80	49.64	30.34	40.00	9.66	Pass	Н	PK
2	152.8143	7.65	1.46	-32.01	46.90	24.00	43.50	19.50	Pass	Н	PK
3	265.3455	12.51	1.94	-31.88	45.30	27.87	46.00	18.13	Pass	Н	PK
4	383.9884	15.05	2.33	-31.86	45.26	30.78	46.00	15.22	Pass	Н	PK
5	649.9890	19.40	3.10	-32.07	47.13	37.56	46.00	8.44	Pass	Н	PK
6	959.9350	22.46	3.71	-31.09	42.67	37.75	46.00	8.25	Pass	Н	PK
7	59.9760	11.60	0.90	-31.80	46.41	27.11	40.00	12.89	Pass	V	PK
8	150.0010	7.55	1.45	-32.01	47.40	24.39	43.50	19.11	Pass	V	PK
9	240.0260	11.94	1.84	-31.90	41.93	23.81	46.00	22.19	Pass	V	PK
10	438.7989	16.02	2.48	-31.88	44.38	31.00	46.00	15.00	Pass	V	PK
11	649.9890	19.40	3.10	-32.07	47.24	37.67	46.00	8.33	Pass	V	PK
12	844.9785	21.44	3.50	-31.82	39.62	32.74	46.00	13.26	Pass	V	PK

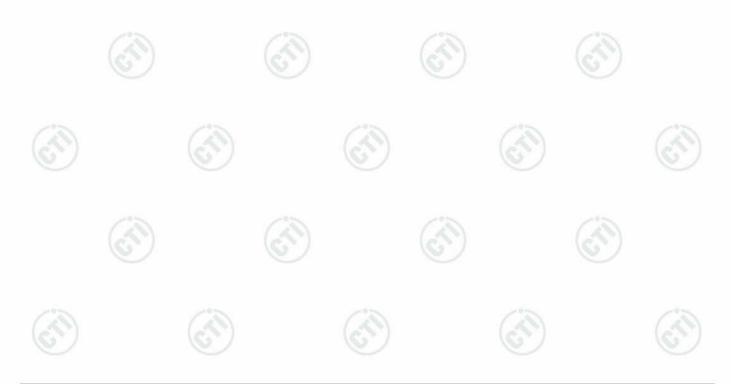
Transmitter Emission above 1GHz

Mode	Mode:			SK Transm	nitting		Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1421.6422	28.32	2.92	-42.77	52.01	40.48	74.00	33.52	Pass	Н	PK
2	3042.0028	33.22	4.85	-43.11	50.83	45.79	74.00	28.21	Pass	Н	PK
3	4804.0000	34.50	4.55	-42.80	48.60	44.85	74.00	29.15	Pass	Н	PK
4	7206.0000	36.31	5.81	-42.16	47.62	47.58	74.00	26.42	Pass	Н	PK
5	9608.0000	37.64	6.63	-42.10	46.61	48.78	74.00	25.22	Pass	Н	PK
6	12010.000	39.31	7.60	-41.90	47.06	52.07	74.00	21.93	Pass	Н	PK
7	1320.0320	28.22	2.78	-42.77	54.21	42.44	74.00	31.56	Pass	V	PK
8	3008.0005	33.20	4.91	-43.09	50.24	45.26	74.00	28.74	Pass	V	PK
9	4804.0000	34.50	4.55	-42.80	47.78	44.03	74.00	29.97	Pass	V	PK
10	7206.0000	36.31	5.81	-42.16	46.10	46.06	74.00	27.94	Pass	V	PK
11	9608.0000	37.64	6.63	-42.10	46.47	48.64	74.00	25.36	Pass	V	PK
12	12010.000	39.31	7.60	-41.90	45.93	50.94	74.00	23.06	Pass	V	PK

Mode	:		BLE GF	SK Transn	nitting			Channel:		2440	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1728.0728	29.91	3.22	-42.68	51.64	42.09	74.00	31.91	Pass	Н	PK
2	2928.5929	33.09	4.39	-43.10	51.75	46.13	74.00	27.87	Pass	Н	PK
3	4880.0000	34.50	4.80	-42.80	46.95	43.45	74.00	30.55	Pass	Н	PK
4	7320.0000	36.42	5.85	-42.14	46.47	46.60	74.00	27.40	Pass	Н	PK
5	9760.0000	37.70	6.73	-42.10	46.41	48.74	74.00	25.26	Pass	Н	PK
6	12200.000	39.42	7.67	-41.90	46.98	52.17	74.00	21.83	Pass	Н	PK
7	1322.2322	28.22	2.78	-42.76	52.32	40.56	74.00	33.44	Pass	V	PK
8	3803.0535	33.64	4.37	-43.04	50.19	45.16	74.00	28.84	Pass	V	PK
9	4880.0000	34.50	4.80	-42.80	47.67	44.17	74.00	29.83	Pass	V	PK
10	7320.0000	36.42	5.85	-42.14	46.46	46.59	74.00	27.41	Pass	V	PK
11	9760.0000	37.70	6.73	-42.10	47.20	49.53	74.00	24.47	Pass	V	PK
12	12200.000	39.42	7.67	-41.90	45.54	50.73	74.00	23.27	Pass	V	PK

_	4 -		40
Page	45	O†	49

Mode:			BLE GFSK Transmitting				Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1800.0800	30.38	3.32	-42.71	51.12	42.11	74.00	31.89	Pass	Н	PK
2	3048.0032	33.22	4.83	-43.10	50.46	45.41	74.00	28.59	Pass	Н	PK
3	4960.0000	34.50	4.82	-42.80	48.40	44.92	74.00	29.08	Pass	Н	PK
4	7440.0000	36.54	5.85	-42.11	47.34	47.62	74.00	26.38	Pass	Н	PK
5	9920.0000	37.77	6.79	-42.10	47.00	49.46	74.00	24.54	Pass	Н	PK
6	11017.5345	38.61	7.53	-41.99	49.02	53.17	74.00	20.83	Pass	Н	PK
7	1440.4440	28.34	2.94	-42.85	53.67	42.10	74.00	31.90	Pass	V	PK
8	3354.0236	33.34	4.52	-43.10	50.97	45.73	74.00	28.27	Pass	V	PK
9	4960.0000	34.50	4.82	-42.80	47.48	44.00	74.00	30.00	Pass	V	PK
10	7440.0000	36.54	5.85	-42.11	47.80	48.08	74.00	25.92	Pass	V	PK
11	9920.0000	37.77	6.79	-42.10	46.17	48.63	74.00	25.37	Pass	V	PK
12	12400.0000	39.54	7.86	-41.90	46.33	51.83	74.00	22.17	Pass	V	PK


Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

