

Report No. : EED32M00138901 Page 1 of 124

TEST REPORT

Product : Grid Pad 15

Trade mark : Smartbox

Model/Type reference : GP15A

Serial Number : N/A

Report Number : EED32M00138901

FCC ID : 2APXM-GP15A

Date of Issue: : Aug. 10, 2020

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

Smartbox Assistive Technology Limited Ysobel House, Enigma Commercial Centre, Sandys Road, Malvern, Worcestershire, UK WR14 1JJ

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Sunlight Sun

Reviewed by:

Jok Yang

Sunlight Sun

Date:

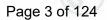
Aug.10, 2020

Sam Chuang

Check No.:3096327781

2 Version

Version No.	Date	(9)	Description	
00	Aug.10, 2020		Original	
\				
/			(6)	0




3 Test Summary

i est Sullillal y				
Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013	PASS	
20dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Carrier Frequencies Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Hopping Channel Number	47 CFR Part 15, Subpart C Section 15.247 (b)	ANSI C63.10-2013	PASS	
Dwell Time	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

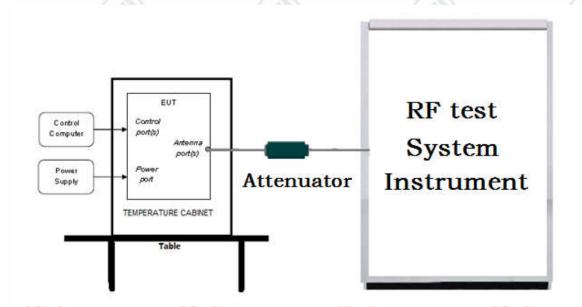
Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested samples and the sample information are provided by the client.

4 Content

1 CC	OVER PAGE	•••••	•••••	•••••	•••••	1
2 VE	RSION			•••••	•••••	2
3 TE	ST SUMMARY				•••••	3
4 CC	ONTENT		•}		•••••	4
5 TE	ST REQUIREMENT			•••••	•••••	5
5.	1 TEST SETUP 5.1.1 For Conducted test 5.1.2 For Radiated Emiss 5.1.3 For Conducted Emis 2 TEST ENVIRONMENT 3 TEST CONDITION	setup ions test setupssions test setup				5 6
6 GE	ENERAL INFORMATION			•••••		7
6. 6. 6. 6. 6.	1 CLIENT INFORMATION	F EUT SUBJECTIVE TO THIS STATE T UNITS RDS ANDARD CONDITIONS QUESTED BY THE CUSTON	NDARD			
	QUIPMENT LIST					
8 RA	ADIO TECHNICAL REQUI	REMENTS SPECIFICA	TION		•••••	13
	Appendix A): 20dB Occup Appendix B): Carrier Freq Appendix C): Dwell Time. Appendix D): Hopping Ch Appendix E): Conducted I Appendix F): Band-edge f Appendix G): RF Conduct Appendix H)Pseudorando Appendix I)Antenna Requ Appendix J)AC Power Lin	uency Separation annel Number Peak Output Power for RF Conducted Emis ted Spurious Emissions om Frequency Hopping lirement	sionss			
	Appendix K)Restricted ba Appendix L)Radiated Spu	nds around fundamenta	al frequency (Radi	iated)		55
PI	HOTOGRAPHS OF TEST					
PHO	TOGRAPHS OF EUT CO	NSTRUCTIONAL DETA	AILS	••••••	••••••	80



Report No. : EED32M00138901 Page 5 of 124

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

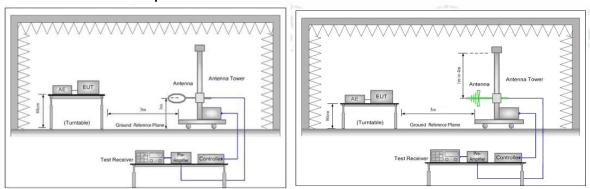


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

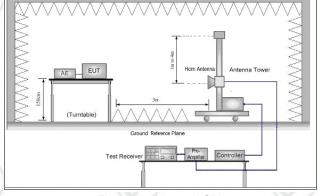
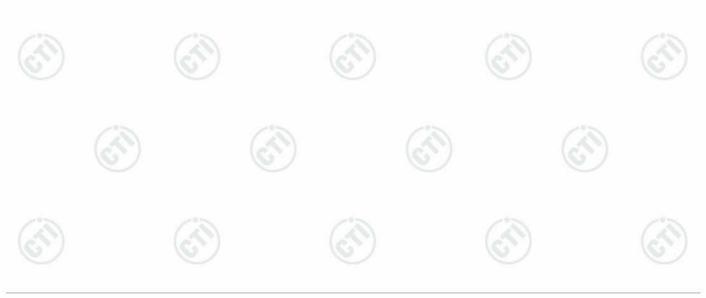



Figure 3. Above 1GHz

Report No. : EED32M00138901 Page 6 of 124

5.1.3 For Conducted Emissions test setup

Conducted Emissions setup



5.2 Test Environment

Operating Environment:				
Temperature:	23.0 °C			
Humidity:	54 % RH	(G)	(6,1)	
Atmospheric Pressure:	1010mbar			

5.3 Test Condition

Toot Made	Ty/Dy	RF Channel			
Test Mode	Tx/Rx	Low(L)	Middle(M)	High(H)	
GFSK/π/4DQPSK/	2402MHz ~2480 MHz	Channel 0	Channel 39	Channel 78	
8DPSK(DH1,DH3,DH5)	2402WI IZ 72460 WITZ	2402MHz	2441MHz	2480MHz	

Report No.: EED32M00138901 Page 7 of 124

6 General Information

6.1 Client Information

Applicant:	Smartbox Assistive Technology Limited
Address of Applicant:	Ysobel House, Enigma Commercial Centre, Sandys Road, Malvern, Worcestershire, UK WR14 1JJ
Manufacturer:	Smartbox Assistive Technology Limited
Address of Manufacturer:	Ysobel House, Enigma Commercial Centre, Sandys Road, Malvern, Worcestershire, UK WR14 1JJ
Factory:	Estone Technology LTD
Address of Factory:	2F, Building No.1, Jia'an Industrial Park, No.2 Long Chang Road, Bao'an, Shenzhen 518101, China.

6.2 General Description of EUT

Product Name:	Grid Pad 15	15		- 20
Model No.(EUT):	GP15A	(25) (25)		(41)
Tark mark:	Smartbox			(0)
EUT Supports Radios application	4.2BT Dual m	node, 2402MHz to 2480MHz		
Power Supply:	AC Adapter	MODEL:MANGO40S-12BB-ES INPUT:100-240V~,50/60Hz ,1.0A Max OUTPUT:12V3.33A	(FI)	
	Battery	Model:5080115P Capacity:10000mAh/74Wh Nominal Voltage:7.4V—— Limited Charge Voltage:8.4V——		(A)
Sample Received Date:	May. 22, 2020	0	1:0	
Sample tested Date:	May. 22, 2020	0 to Jul. 17, 2020	(63.)	

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz	
Bluetooth Version:	4.2 (BT2.1+EDR)	(3)
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)	(0)
Modulation Type:	GFSK, π/4DQPSK, 8DPSK	
Number of Channel:	79	
Hopping Channel Type:	Adaptive Frequency Hopping systems	
Test Power Grade:	DH5: LCH:6; MCH:6; HCH:6 2DH5: LCH:2; MCH:2; HCH:2 3DH5: LCH:3; MCH:3; HCH:3	
Test Software of EUT:	DRTU	
Antenna Type:	PCB antenna	(3)
Antenna Gain:	1.99 dBi	(0,)
Test Voltage:	Battery 7.4V	

Page 8 of 124

Chan nel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7 (2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz	10	(4)

Report No.: EED32M00138901 Page 9 of 124

6.4 Description of Support Units

The EUT has been tested with associated equipment below

	sociated ment name	Manufacture	model	S/N serial number	Supplied by	Certification
AE1	Notebook	DELL	DELL 3490	D245DX2	DELL	CE&FCC
			(6)			(0)

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 3368 3668 Fax:+86 (0) 755 3368 3385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty(95% confidence levels, k=2)

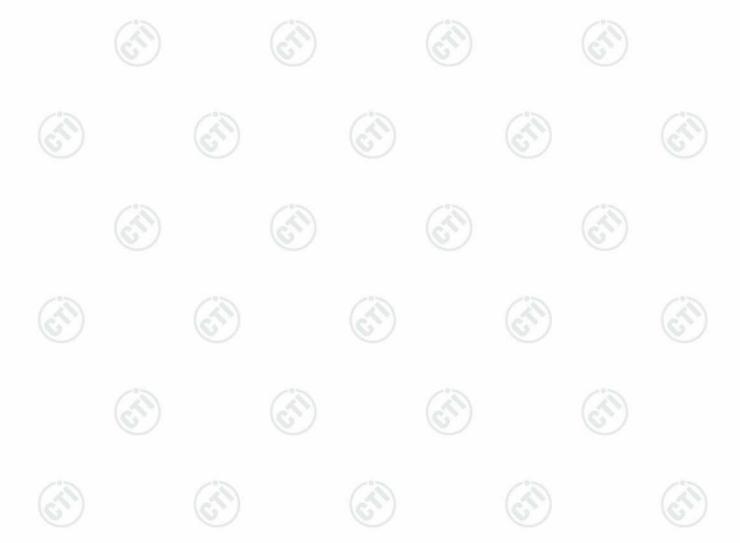
No.	Item	Measurement Uncertainty
1)	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower, conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
3	Dadiated Churique emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Report No. : EED32M00138901 Page 10 of 124

7 Equipment List

		RF test s	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	02-17-2020	02-16-2021
Signal Generator	Keysight	N5182B	MY53051549	02-17-2020	02-16-2021
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	07-26-2019	07-25-2020
High-pass filter	Sinoscite	FL3CX03WG18N M12-0398-002			
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		(A)	63
DC Power	Keysight	E3642A	MY56376072	02-17-2020	02-16-2021
PC-1	Lenovo	R4960d			
BT&WI-FI Automatic control	R&S	OSP120	101374	02-17-2020	02-16-2021
RF control unit	JS Tonscend	JS0806-2	158060006	02-17-2020	02-16-2021
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3			

	N. 21 /	V-90.70 1.7		V-95-25	
Conducted disturbance Test					
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100435	04-28-2020	04-27-2021
Temperature/ Humidity Indicator	Defu	TH128		\	<u> </u>
LISN	R&S	ENV216	100098	03-05-2020	03-04-2021
Barometer	changchun	DYM3	1188	-0-	



Page 11 of 124

1.20		* 1	1,000		1232	
	3M S	Semi/full-anecho	ic Chamber			
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022	
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-26-2019	07-25-2020	
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-24-2021	
Receiver	R&S	ESCI7	100938- 003	10-21-2019	10-20-2020	
Multi device Controller	maturo	NCD/070/107 11112	(E)		(CL)	
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	07-26-2019	07-25-2020	
Cable line	Fulai(7M)	SF106	5219/6A			
Cable line	Fulai(6M)	SF106	5220/6A			
Cable line	Fulai(3M)	SF106	5216/6A	(/1)		
Cable line	Fulai(3M)	SF106	5217/6A	(6-2)		

Page 12 of 124

Equipment	Manufacturer	Model No.	Serial	Cal. date	Cal. Due date
	Manuacturel	WIOGEI NO.	Number	(mm-dd-yyyy)	(mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-05-2020	03-04-2021
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021
Preamplifier	EMCI	EMC184055SE	980596	05-20-2020	05-19-2021
Preamplifier	EMCI	EMC001330	980563	04-22-2020	04-21-2021
Preamplifier	JS Tonscend	980380	EMC051845 SE	01-09-2020	01-08-2021
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-27-2020	04-26-2021
Fully Anechoic Chamber	TDK	FAC-3		01-17-2018	01-16-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002		6.7
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003		
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001	73	
Cable line	Times	EMC104-NMNM- 1000	SN160710	(C)	
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001		
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001		
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001		(c <u>ir</u>)
Cable line	Times	HF160-KMKM- 3.00M	393493-0001		

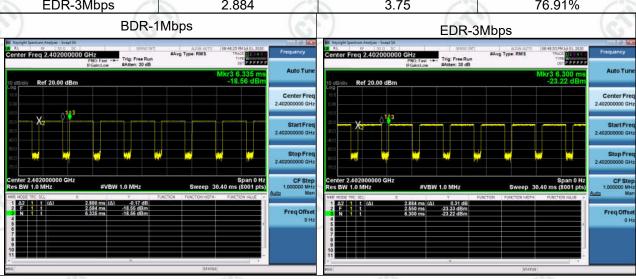
8 Radio Technical Requirements Specification

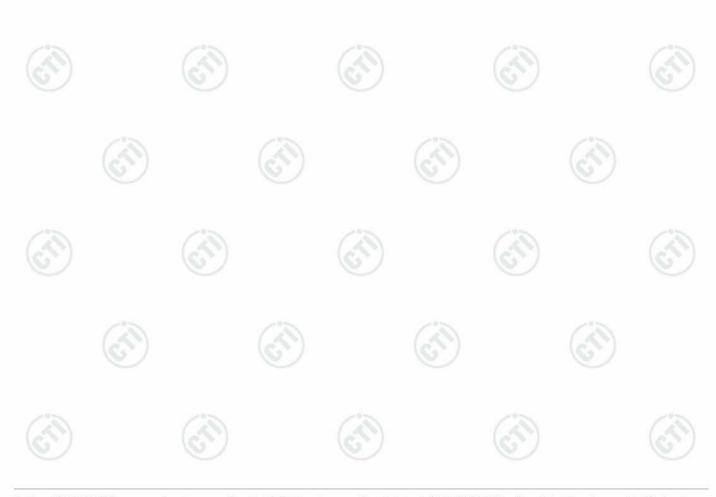
Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(1)	ANSI 63.10	20dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Carrier Frequencies Separation	PASS	Appendix B)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Dwell Time	PASS	Appendix C)
Part15C Section 15.247 (b)	ANSI 63.10	Hopping Channel Number	PASS	Appendix D)
Part15C Section 15.247 (b)(1)	ANSI 63.10	Conducted Peak Output Power	PASS	Appendix E)
Part15C Section 15.247(d)	ANSI 63.10	Band-edge for RF Conducted Emissions	PASS	Appendix F)
Part15C Section 15.247(d)	ANSI 63.10	RF Conducted Spurious Emissions	PASS	Appendix G)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Pseudorandom Frequency Hopping Sequence	PASS	Appendix H)
Part15C Section 15.203/15.247 (c)	ANSI 63.10	Antenna Requirement	PASS	Appendix I)
Part15C Section 15.207	ANSI 63.10	AC Power Line Conducted Emission	N/A	Appendix J)
Part15C Section 15.205/15.209	ANSI 63.10	Restricted bands around fundamental frequency (Radiated) Emission)	PASS	Appendix K)
Part15C Section 15.205/15.209	ANSI 63.10	Radiated Spurious Emissions	PASS	Appendix L)





Page 14 of 124

EUT DUTY CYCLE

	Duty	Cycle	
Configuration	TX ON(ms)	TX ALL(ms)	Duty Cycle(%)
BDR-1Mbps	2.880	3.751	76.78%
EDR-3Mbps	2.884	3.75	76.91%

Report No. : EED32M00138901 Page 15 of 124

Appendix A): 20dB Occupied Bandwidth& 99% Occupied Bandwidth Test Limit

According to §15.247(a) (1),

20 dB Bandwidth : For reporting purposes only.

Occupied Bandwidth(99%): For reporting purposes only.

Test Procedure

Test method Refer as Section 8.1 and ANSI C63.10: 2013 clause 7.8.7,

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW =30kHz, VBW = 100kHz and Detector = Peak, to measurement 20dB Bandwidth.
- 4. SA set RBW = 1% ~ 5% OBW, VBW = three times the RBW and Detector = Peak, to measurement 99% Bandwidth.
- 5. Measure and record the result of 20 dB Bandwidth and 99% Bandwidth. in the test report.

6.

Test Setup

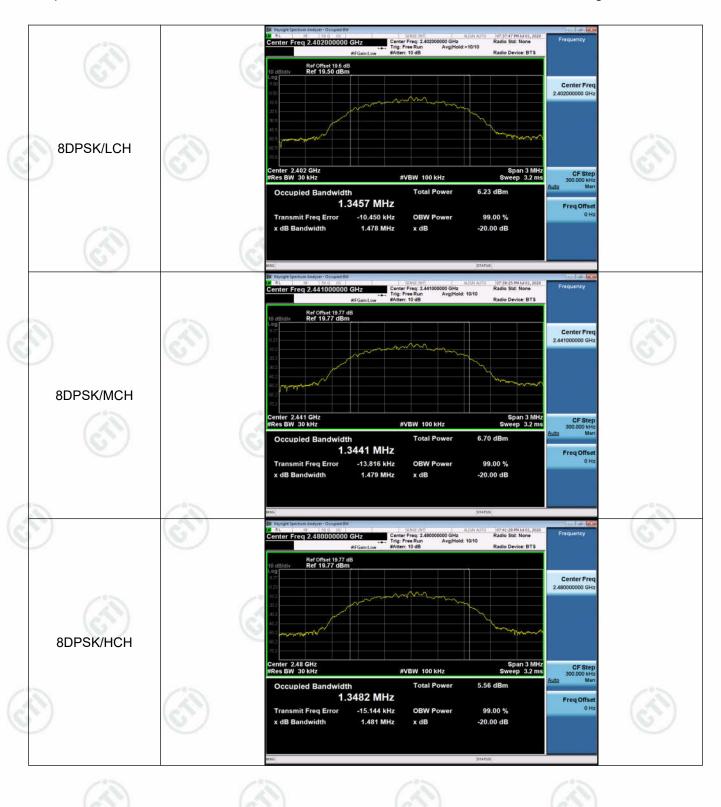
Test Result

Mode	Channel.	20dB Bandwidth [MHz]	99% OBW [MHz]	Verdict
GFSK	LCH	0.9589	0.86434	PASS
GFSK	MCH	0.9596	0.86800	PASS
GFSK	HCH	0.9569	0.85929	PASS
π/4DQPSK	LCH	1.485	1.3470	PASS
π/4DQPSK	MCH	1.443	1.3474	PASS
π/4DQPSK	HCH	1.444	1.3481	PASS
8DPSK	LCH	1.478	1.3457	PASS
8DPSK	MCH	1.479	1.3441	PASS
8DPSK	HCH	1.481	1.3482	PASS

Page 16 of 124

Test Graph

Page 17 of 124



Page 18 of 124

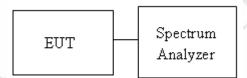
Page 19 of 124

Appendix B): Carrier Frequency Separation

Test Limit

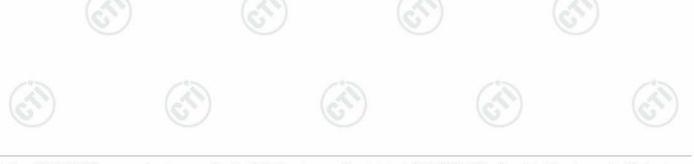
According to §15.247(a)(1),

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.


Limit	> two-thirds of the 20 dB bandwidth
-------	-------------------------------------

Test Procedure

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. EUT RF output port connected to the SA by RF cable.
- 3. Set the spectrum analyzer as RBW = 30kHz, VBW = 100kHz, Sweep = auto.


 Max hold, mark 3 peaks of hopping channel and record the 3 peaks frequency

Test Setup

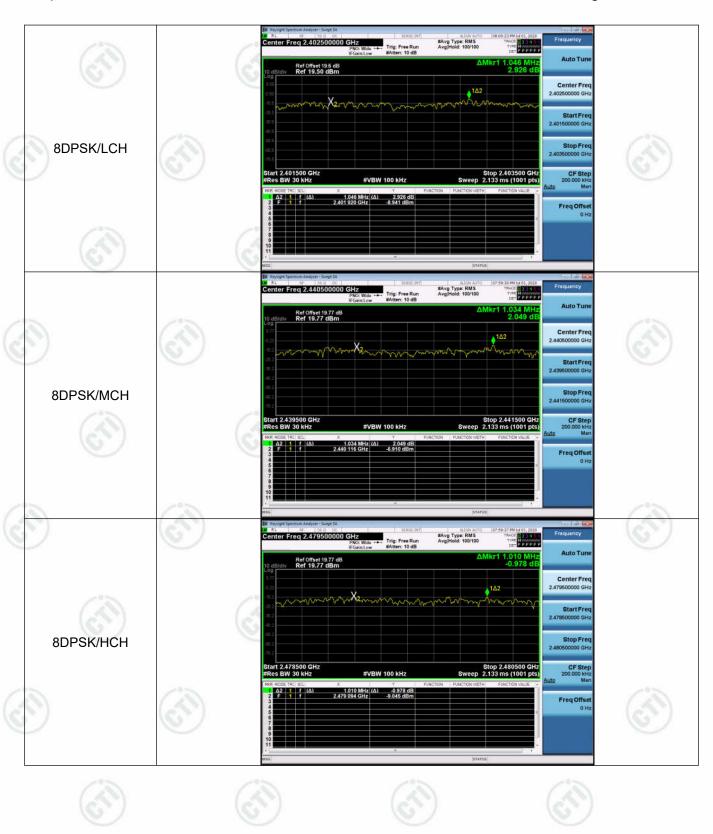
Result Table

Mode	Channel.	Carrier Frequency Separation [MHz]	Verdict
GFSK	LCH	1.142	PASS
GFSK	MCH	1.040	PASS
GFSK	HCH	1.032	PASS
π/4DQPSK	LCH	0.998	PASS
π/4DQPSK	MCH	1.038	PASS
π/4DQPSK	HCH	1.074	PASS
8DPSK	LCH	1.046	PASS
8DPSK	MCH	1.034	PASS
8DPSK	HCH	1.010	PASS

Page 20 of 124

Test Graph



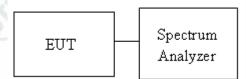

Page 21 of 124

Page 22 of 124

Page 23 of 124

Appendix C): Dwell Time

Test Limit


According to §15.247(a)(1)(iii),

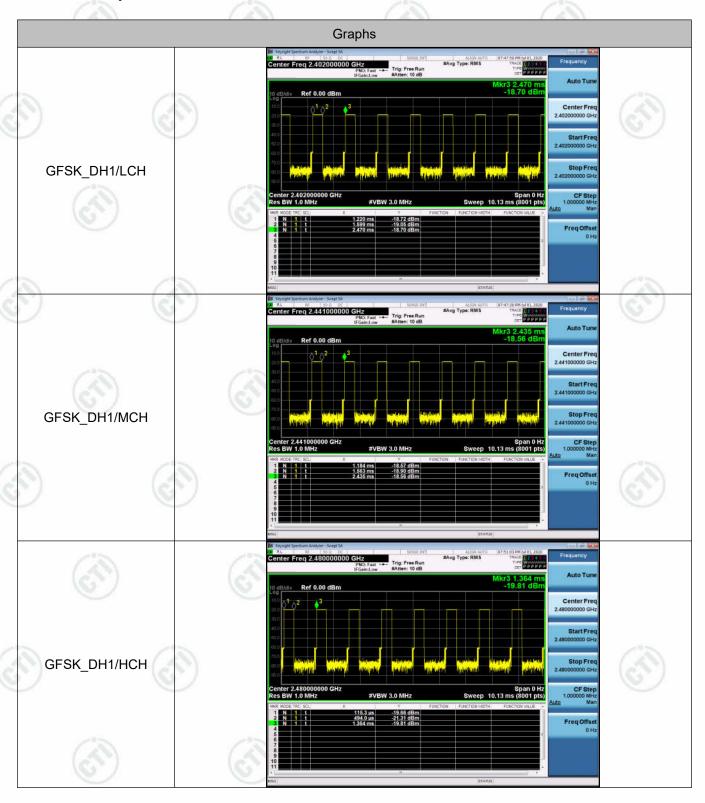
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test Procedure

- 1. EUT RF output port connected to the SA by RF cable.
- 2. Set center frequency of spectrum analyzer = operating frequency.
- 3. Set the spectrum analyzer as RBW=1MHz, VBW=3MHz, Sweep = auto

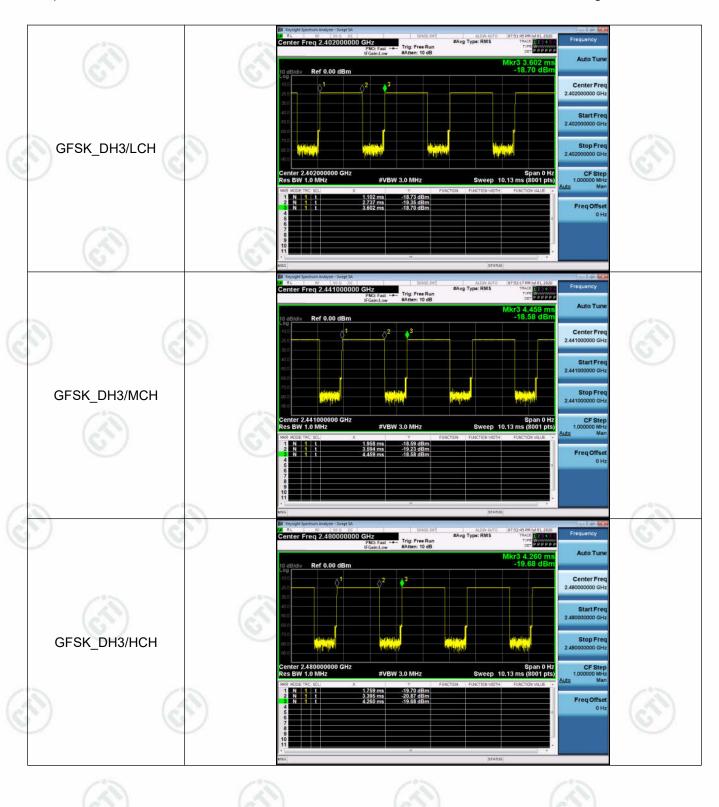
Test Setup

Result Table

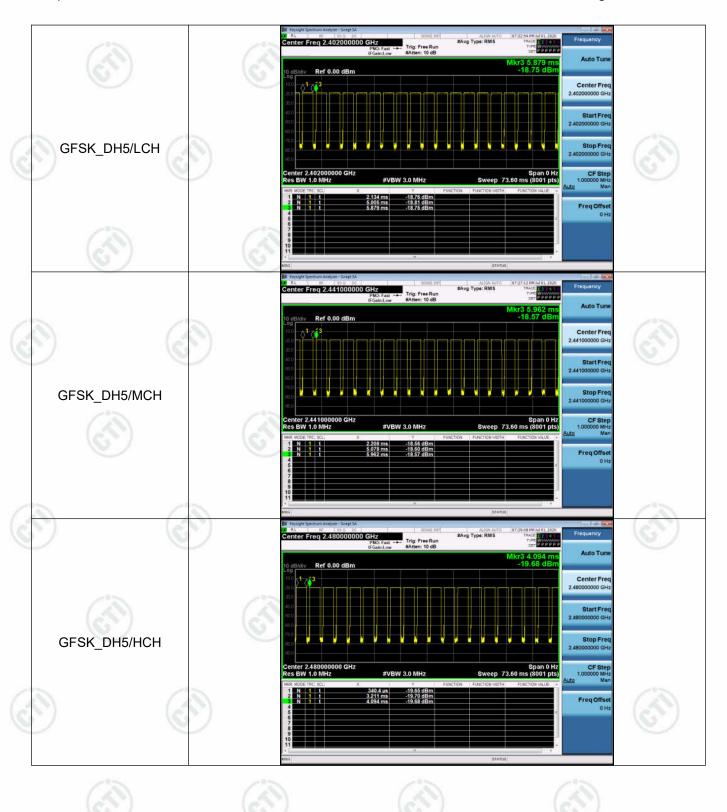

Mode	Packet	Channel	Burst Width [ms/hop/ch]	Total Hops[hop*ch]	Dwell Time[s]	Duty Cycle [%]	Verdict
GFSK	DH1	LCH	0.37873	320	0.121	0.30	PASS
GFSK	DH1	MCH	0.37874	320	0.121	0.30	PASS
GFSK	DH1	HCH	0.378733	320	0.121	0.30	PASS
GFSK	DH3	LCH	1.63527	160	0.262	0.65	PASS
GFSK	DH3	MCH	1.63526	160	0.262	0.65	PASS
GFSK	DH3	HCH	1.63527	160	0.262	0.65	PASS
GFSK	DH5	LCH	2.8704	106.7	0.306	0.77	PASS
GFSK	DH5	MCH	2.8704	106.7	0.306	0.76	PASS
GFSK	DH5	HCH	2.8704	106.7	0.306	0.76	PASS

Page 24 of 124

Test Graph



Page 25 of 124



Page 26 of 124

Page 27 of 124

Appendix D): Hopping Channel Number Test Limit

According to §15.247(a)(1)(iii)

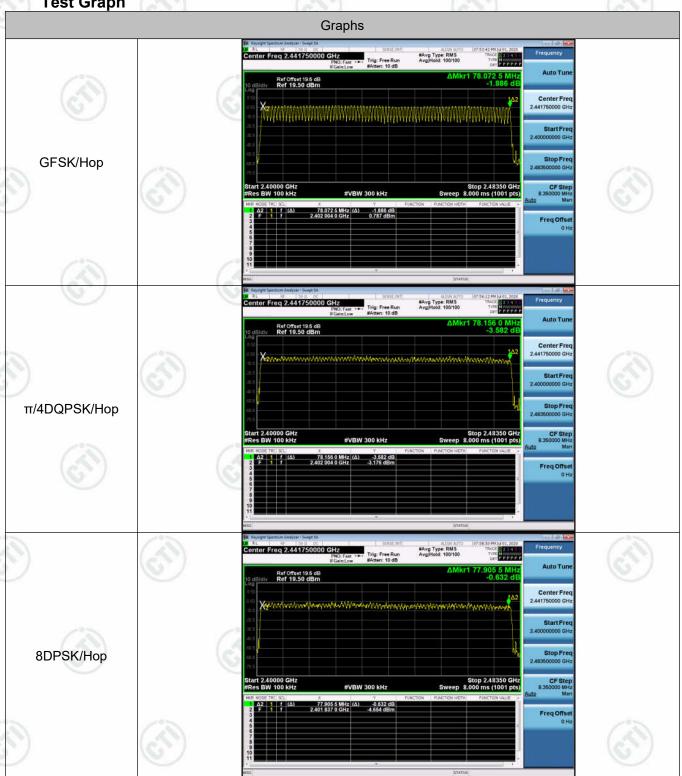
Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

Test Procedure

Test method Refer as ANSI C63.10: 2013 clause 7.8.3

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. EUT RF output port connected to the SA by RF cable.
- Set spectrum analyzer Start Freq. = 2400 MHz, Stop Freq. = 2483.5 MHz, RBW =100KHz, VBW = 300KHz.
- 4. Max hold, view and count how many channel in the band.

Test Setup



Report No.: EED32M00138901 Page 28 of 124

Result Table

Mode	Channel.	Number of Hopping Channel	Verdict
GFSK	Нор	79	PASS
π/4DQPSK	Нор	79	PASS
8DPSK	Нор	79	PASS

Test Graph

Report No.: EED32M00138901 Page 29 of 124

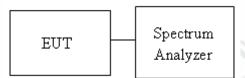
Appendix E): Conducted Peak Output Power Test Limit

According to §15.247(b)(1).

Peak output power:

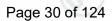
FCC

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.


(6)	
Limit	☐ Antenna with DG greater than 6 dBi : 21dBm
	[Limit = $30 - (DG - 6)$]

Average output power: For reporting purposes only.

Test Procedure


- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. Spectrum analyzer settings are as follows:
 - a) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
 - b) RBW > 20 dB bandwidth of the emission being measured.
 - c) VBW ≥ RBW.
 - d) Sweep: Auto.
 - e) Detector function: Peak.
 - f) Trace: Max hold.
 - g) Allow trace to stabilize.
 - h) Use the marker-to-peak function to set the marker to the peak of the emission
- 4. Measure and record the result in the test report.

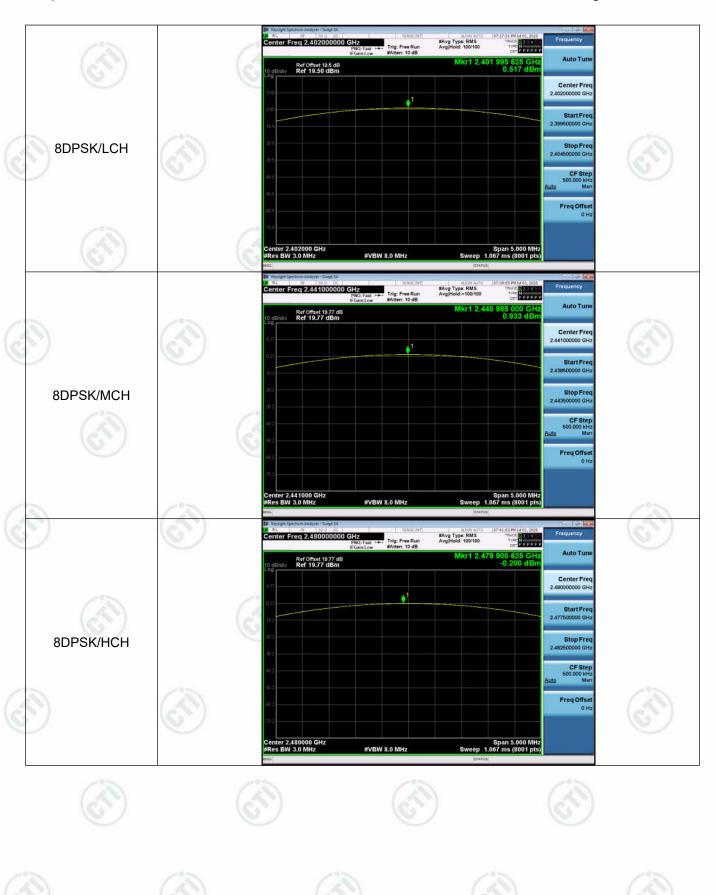
Test Setup



Result Table

Mode	Channel.	Maximum Peak Output Power [dBm]	Verdict		
GFSK	LCH	0.797	PASS		
GFSK	MCH	1.281	PASS		
GFSK	HCH	0.178	PASS		
π/4DQPSK	LCH	-0.670	PASS		
π/4DQPSK	MCH	-0.264	PASS		
π/4DQPSK	HCH	-1.380	PASS		
8DPSK	LCH	0.517	PASS		
8DPSK	MCH	0.933	PASS		
8DPSK	HCH	-0.200	PASS		

Test Graph



Page 32 of 124

Page 33 of 124

Appendix F): Band-edge for RF Conducted Emissions

Test Limit

According to §15.247(d),

Limit	-20 dBc	(4)	

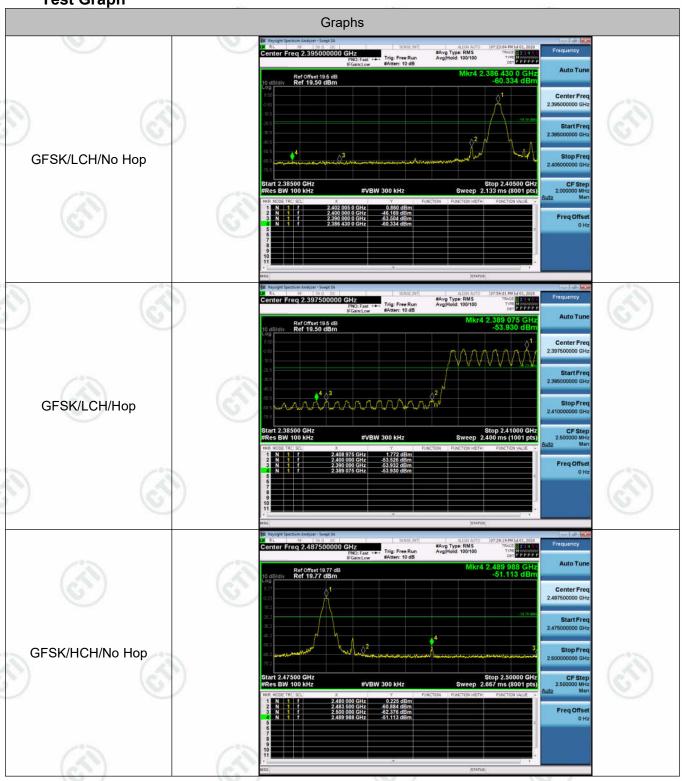
Test Procedure

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. The Band Edge at 2.4GHz and 2.4835GHz are investigated with normal hopping mode.

Test Setup

Result Table

Mode	Channel	Carrier Frequency [MHz]	Carrier Power [dBm]	Frequenc y Hopping	Max Spurious Level [dBm]	Limit [dBm]	Verdict
GFSK LCH	1.04	2402	0.860	Off	-60.334	-19.14	PASS
	LCH	2402	1.772	On	-53.930	-18.23	PASS
GFSK HCH	ПСП	2480	0.225	Off	-51.113	-19.78	PASS
	псп		0.511	On	-54.827	-19.49	PASS
π/4DQPSK LCF	LCH	2402	-3.202	Off	-60.301	-23.2	PASS
	LCH	2402	-2.129	On	-56.936	-22.13	PASS
π/4DQPSK HC	ПСП	2480	-3.618	Off	-51.664	-23.62	PASS
	псп	2400	-4.019	On	-44.206	-24.02	PASS
8DPSK LO	I CH	2402	-1.911	Off	-60.329	-21.91	PASS
	LCH		-1.335	On	-56.480	-21.34	PASS
8DPSK H	HCH	2480	-2.631	Off	-51.332	-22.63	PASS
	поп		-2.046	On	-58.910	-22.05	PASS



Page 36 of 124



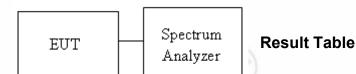
Page 37 of 124



Page 38 of 124

Page 39 of 124

Appendix G): RF Conducted Spurious Emissions

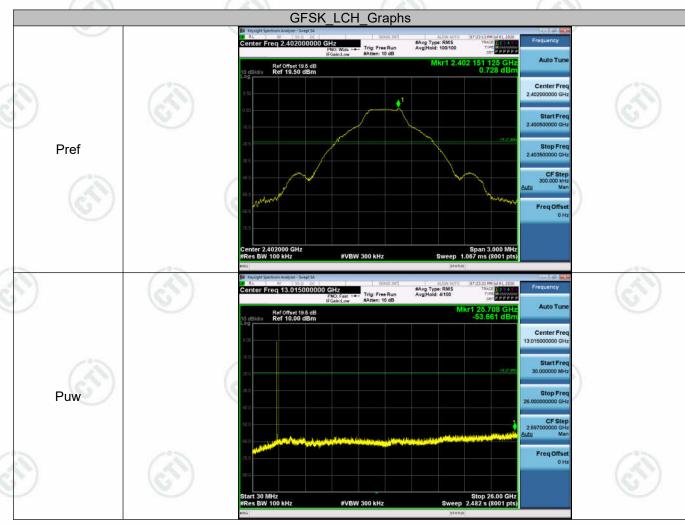

Test Limit According to §15.247(d),

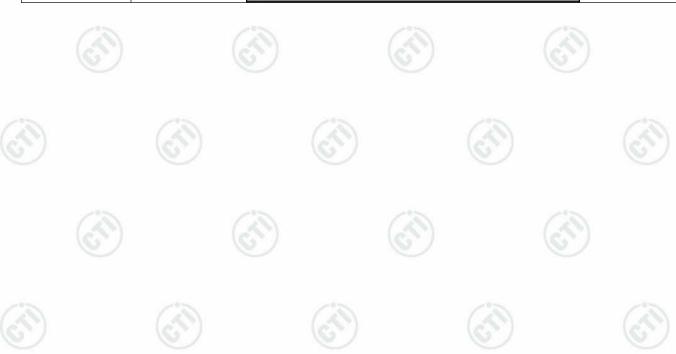
		200	700	70
Limit		-20 dBc		(41)
() - () · · · · ·	10.3	1631	16.70	(6.3

Test Procedure

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

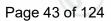
Test Setup


Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
GFSK	LCH	0.728	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	MCH	1.155	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	HCH	0.071	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	LCH	-3.152	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	MCH	-2.789	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	HCH	-3.833	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	LCH	-2.147	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	MCH	-1.638	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	HCH	-2.742	<limit< td=""><td>PASS</td></limit<>	PASS



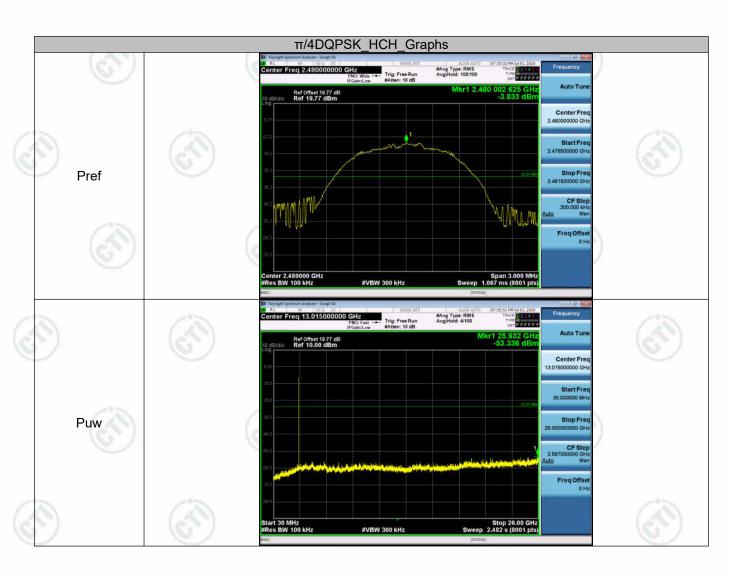
Page 41 of 124

Test Graph



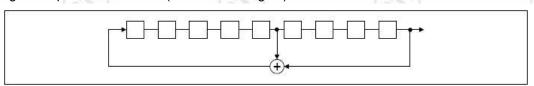





Page 45 of 124

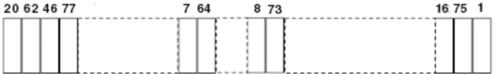
Appendix H)Pseudorandom Frequency Hopping Sequence

Test Requirement: 47 CFR Part 15**C Section 15.247 (a)(1) requirement:**


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

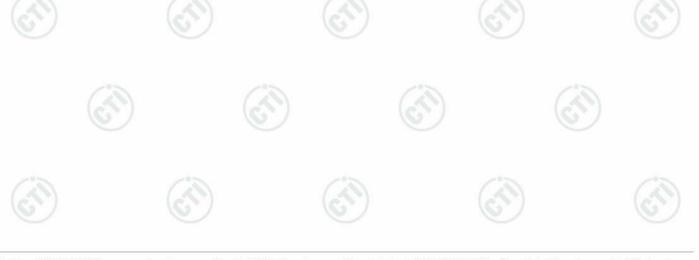
The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Page 51 of 124

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

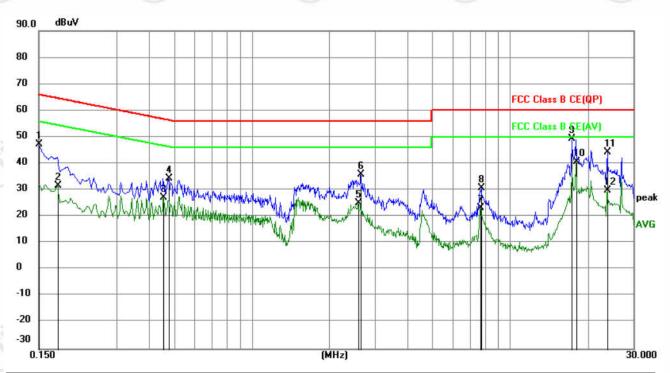

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 1.99 dBi.

	est Procedure:	Test frequency range :150KHz-	30MHz						
		The mains terminal disturbance		onducted in a shie	elded roor				
		2) The EUT was connected to AC power source through a LISN 1 (Line Impedance							
	(2	Stabilization Network) which provides a $50\Omega/50\mu\text{H} + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2,							
	(0)	which was bonded to the gro							
		for the unit being measured multiple power cables to a si	l. A multiple socket ou	tlet strip was use	d to con				
	100	exceeded.		4.11.00	41				
	(C)	 The tabletop EUT was place reference plane. And for floo horizontal ground reference 	or-standing arrangeme						
		4) The test was performed with							
	/3	EUT shall be 0.4 m from the							
	(6)	reference plane was bonded 1 was placed 0.8 m from the							
	(6)	ground reference plane for							
		plane. This distance was be	tween the closest poin	ts of the LISN 1 a	and the E				
		All other units of the EUT ar LISN 2.	nd associated equipme	nt was at least 0.	8 m from				
		5) In order to find the maximur	n emission, the relativ	e positions of ec	uinment				
	6.)	all of the interface cables							
		conducted measurement.							
Liı	mit:	Frequency range (MHz)	Limit (dB	uV)					
		requests, range (Quasi-peak	Average					
	100	0.15-0.5	66 to 56*	FC 4- 4C*					
	100	/	00 10 30	56 to 46*	61				
	0	0.5-5	56	46					
	0				(in)				
		0.5-5 5-30	56 60	46 50	e range (
		0.5-5 5-30 * The limit decreases linearly w	56 60	46 50	e range (
		0.5-5 5-30	56 60	46 50	e range (
(ونان	0.5-5 5-30 * The limit decreases linearly w	56 60 vith the logarithm of th	46 50 e frequency in th	e range (
(0.5-5 5-30 * The limit decreases linearly with MHz to 0.50 MHz.	56 60 vith the logarithm of th	46 50 e frequency in th	e range (

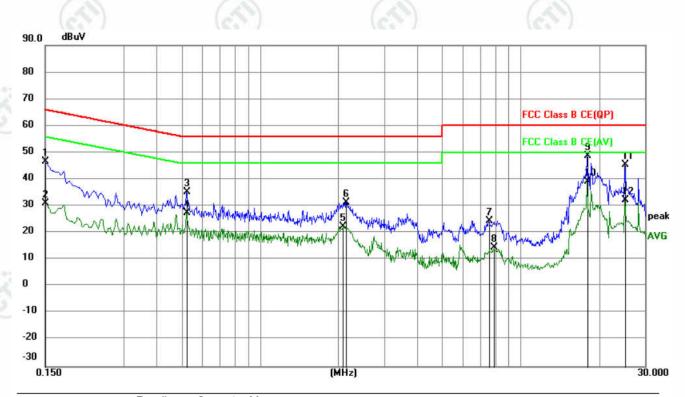

Page 53 of 124

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	37.42	9.88	47.30	66.00	-18.70	QP	
2		0.1770	21.76	9.87	31.63	54.63	-23.00	AVG	
3		0.4560	17.28	9.98	27.26	46.77	-19.51	AVG	
4		0.4785	24.26	10.02	34.28	56.37	-22.09	QP	
5		2.5889	15.36	9.79	25.15	46.00	-20.85	AVG	
6		2.6430	25.94	9.79	35.73	56.00	-20.27	QP	
7		7.6650	13.56	9.79	23.35	50.00	-26.65	AVG	
8		7.7280	20.87	9.79	30.66	60.00	-29.34	QP	
9		17.3715	39.38	9.84	49.22	60.00	-10.78	QP	
10	*	18.0015	30.89	9.84	40.73	50.00	-9.27	AVG	
11		23.8020	34.24	9.93	44.17	60.00	-15.83	QP	
12		23.8020	19.99	9.93	29.92	50.00	-20.08	AVG	



Page 54 of 124

Neutral line:

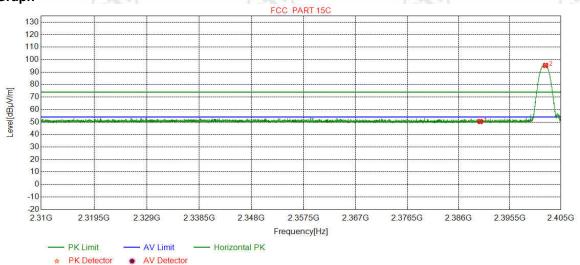
No	. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	36.70	9.88	46.58	66.00	-19.42	QP	
2		0.1500	21.27	9.88	31.15	56.00	-24.85	AVG	
3		0.5235	25.18	10.03	35.21	56.00	-20.79	QP	
4		0.5235	17.43	10.03	27.46	46.00	-18.54	AVG	
5	i	2.0805	12.53	9.79	22.32	46.00	-23.68	AVG	
- 6	i	2.1345	21.55	9.79	31.34	56.00	-24.66	QP	
7		7.5615	14.70	9.79	24.49	60.00	-35.51	QP	
8	1	7.9215	4.64	9.80	14.44	50.00	-35.56	AVG	
9)	18.0015	38.86	9.84	48.70	60.00	-11.30	QP	
10	*	18.0015	29.43	9.84	39.27	50.00	-10.73	AVG	
11		25.0980	35.55	9.95	45.50	60.00	-14.50	QP	
12		25.0980	22.40	9.95	32.35	50.00	-17.65	AVG	

Notes:

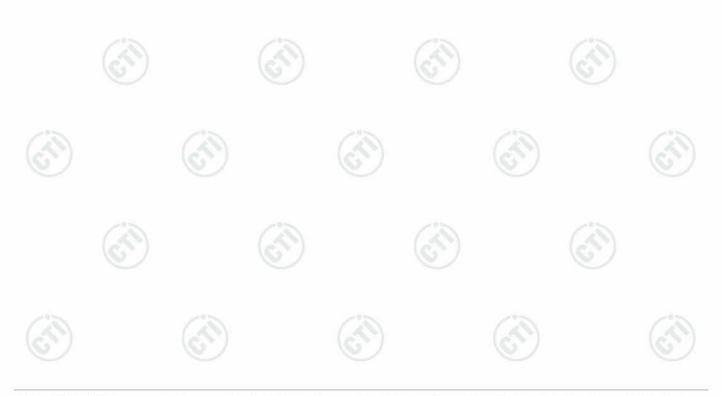
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix K)Restricted bands around fundamental frequency (Radiated)

							_
	Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
		30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak	(
		Above 4011	Peak	1MHz	3MHz	Peak	
		Above 1GHz	Peak	1MHz	10Hz	Average	60
	Test Procedure:	Below 1GHz test proced a. The EUT was placed at a 3 meter semi-and determine the position b. The EUT was set 3 m was mounted on the t c. The antenna height is determine the maximu polarizations of the ar d. For each suspected e the antenna was tune table was turned from e. The test-receiver syst Bandwidth with Maxim	lure as below: on the top of a rechoic camber. The of the highest rate eters away from top of a variable-lawaried from one turn value of the fintenna are set to emission, the EUT of to heights from 0 degrees to 36 tem was set to Peters as below the peters of the peter	otating table he table was adiation. the interference meter to fould be strength make the nawas arranal meter to degrees to	e 0.8 meter es rotated 3 ence-recei nna tower. ur meters n. Both hor neasureme ged to its v 4 meters a o find the i	rs above the 360 degrees ving antenna above the grizontal and vent. worst case along the rotate and the rotate maximum rea	to a, which ound vertica and the able
		f. Place a marker at the frequency to show co bands. Save the spector lowest and highes Above 1GHz test proced	mpliance. Also m trum analyzer plo t channel lure as below:	easure any ot. Repeat f	emissions or each po	s in the restri	dulati
		frequency to show co bands. Save the spec for lowest and highes	mpliance. Also metrum analyzer plot tehannel Iure as below: ove is the test site of the distance is 1 the lowest channel the ments are perford found the X axis.	e, change free form table meter and the Highes rmed in X, kis positioni	remissions for each po rom Semi- 0.8 metre table is 1.5 st channel Y, Z axis p ng which i	Anechoic Ch to 1.5 metre).	dulati nambe
)	Limit:	frequency to show co bands. Save the spector lowest and highes. Above 1GHz test proced g. Different between about 16Hz test proced to fully Anechoic Character (Above 18GHz h. b. Test the EUT in the i. The radiation measure Transmitting mode, at	mpliance. Also metrum analyzer plot tehannel Iure as below: ove is the test site of the distance is 1 the lowest channel the ments are perford found the X axis.	e, change free form table meter and the Higher med in X, kis positioni uencies me	remissions for each po com Semi- 0.8 metre table is 1.5 st channel Y, Z axis p ng which i	Anechoic Ch to 1.5 metre).	dulati nambe
)	Limit:	frequency to show co bands. Save the spector lowest and highest an	mpliance. Also metrum analyzer plot tehannel lure as below: ove is the test site of the distance is 1 elowest channel ements are performed found the X are ures until all frequents.	e, change free form table meter and the Highestrand in X, kis positioni uencies me	rom Semi- 0.8 metre table is 1.5 st channel Y, Z axis p ng which i	Anechoic Ch to 1.5 metre).	dulati nambo
)	Limit	frequency to show co bands. Save the spector lowest and highest Above 1GHz test proced g. Different between about to fully Anechoic Character (Above 18GHz h. b. Test the EUT in the i. The radiation measure Transmitting mode, and j. Repeat above proced	mpliance. Also metrum analyzer plot to channel dure as below: ove is the test site of the distance is 1 the distance i	e, change free form table meter and the Highest med in X, kis positioni uencies med/m @3m)	rom Semi- 0.8 metre table is 1.5 st channel Y, Z axis p ng which is easured wa	Anechoic Ch to 1.5 metre).	dulati nambo
	Limit	frequency to show co bands. Save the spector lowest and highes: Above 1GHz test proced g. Different between about 18GHz to fully Anechoic Character (Above 18GHz to EUT in the intermediation measure Transmitting mode, and intermediation measure Repeat above proced South 1860 Frequency 30MHz-88MHz	mpliance. Also metrum analyzer plot techannel fure as below: ove is the test site of the distance is 1 to lowest channel ements are performed found the X are ures until all frequency.	easure any ot. Repeat fee, change free form table meter and the Highest rmed in X, kis positioni uencies med/m @3m)	remissions for each portion of each portion of the community of the commun	Anechoic Ch to 1.5 metre). cositioning fo t is worse ca as complete.	dulati nambe
	Limit:	frequency to show co bands. Save the spector lowest and highest and highest and highest and highest and highest to fully Anechoic Character (Above 18GHz h. b. Test the EUT in the i. The radiation measure Transmitting mode, at p. Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz	mpliance. Also metrum analyzer plot tehannel Jure as below: ove is the test site of the distance is 1 the lowest channel the distance is 1 the lowest channel the distance is 1 the lowest channel the X as the X as the lowest channel the X as the	e, change free form table meter and the Highest med in X, kis positioni uencies med/m @3m)	remissions for each por rom Semi- 0.8 metre table is 1.5 st channel Y, Z axis p ng which in easured was Rer Quasi-pe Quasi-pe	Anechoic Ch to 1.5 metre). cositioning fo t is worse ca as complete. mark eak Value	dulation nambe
	Limit	frequency to show co bands. Save the spector lowest and highes: Above 1GHz test proced g. Different between about 100 to fully Anechoic Character (Above 18GHz h. b. Test the EUT in the i. The radiation measure Transmitting mode, at j. Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz	mpliance. Also metrum analyzer plot techannel fure as below: ove is the test site of the distance is 1 to lowest channel ements are performed found the X as ures until all freq Limit (dBuV 40.0 43.4 46.0 46.0 46.0 47.1 47.1 47.1 47.1 46.0 47.1 47.1 47.1 47.1 47.1 47.1 47.1 47.1	e, change free form table meter and the Highest med in X, kis positioni uencies med meter and me	remissions for each por each por each por each por 0.8 metre table is 1.5 st channel Y, Z axis programmed was reduced por each po	Anechoic Ch to 1.5 metre). cositioning fo t is worse ca as complete. mark eak Value eak Value	dulation nambe
)	Limit:	frequency to show co bands. Save the spector lowest and highes: Above 1GHz test proced g. Different between about 16Hz test proced to fully Anechoic Character (Above 18GHz h. b. Test the EUT in the i. The radiation measure Transmitting mode, and j. Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	mpliance. Also metrum analyzer plot tehannel lure as below: ove is the test site of the distance is 1 to lowest channel the distance is 1 to lowest channel the distance are performed found the X as the distance with all frequences until all frequences until all frequences are performed found the X as the distance of the X as the distance of the X as the distance of the X as th	e, change free form table meter and the Highest remed in X, kis positioni uencies meter and (m @3m)	remissions for each por for eac	Anechoic Ch to 1.5 metre). positioning fo t is worse can as complete. mark peak Value peak Value peak Value	dulation nambe



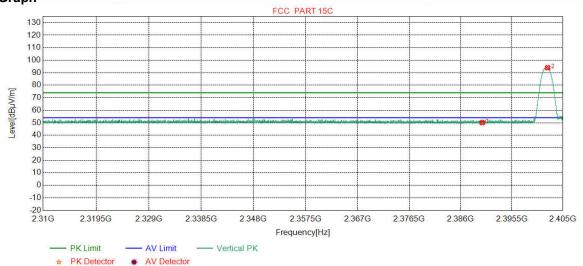
Page 56 of 124

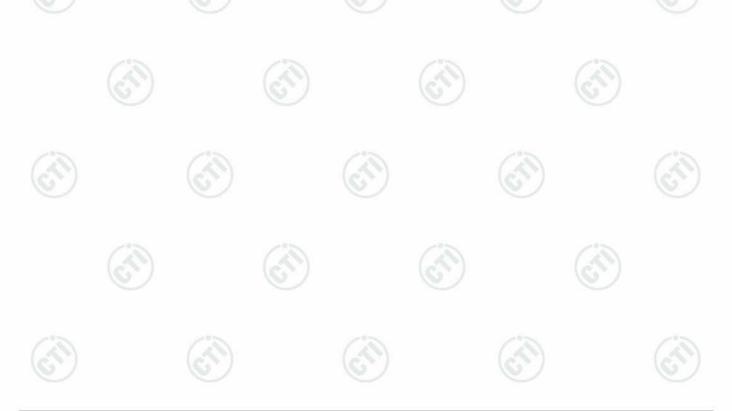

Test plot as follows:

Mode:	GFSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

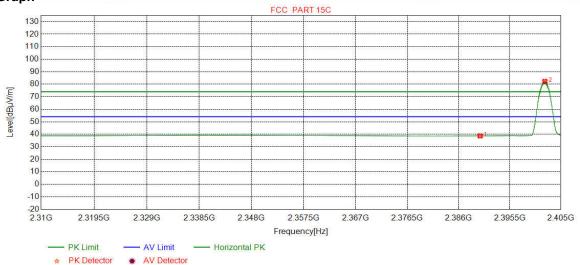
	(25)		1	100		(20)		(2	(2)	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.87	50.37	74.00	23.63	Pass	Horizontal
2	2402.1435	32.26	13.31	-43.12	92.88	95.33	74.00	-21.33	Pass	Horizontal

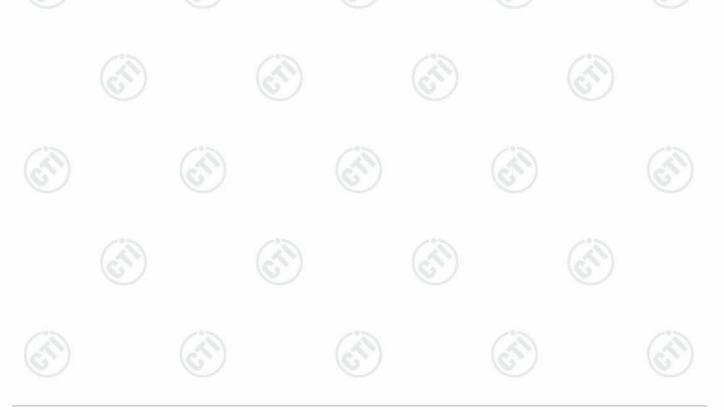




Mode:	GFSK Transmitting	Channel:	2402
Remark:	PK		

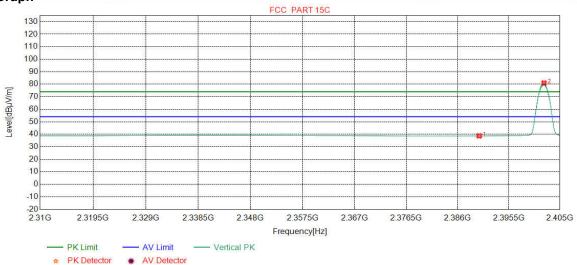
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.58	50.08	74.00	23.92	Pass	Vertical
2	2402.1561	32.26	13.31	-43.12	91.54	93.99	74.00	-19.99	Pass	Vertical

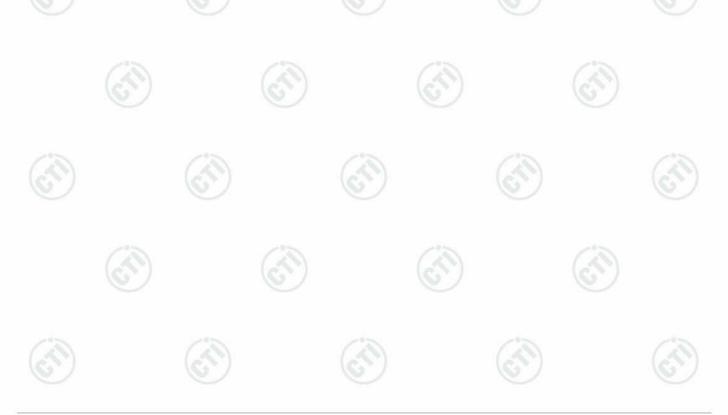




Mode:	GFSK Transmitting	Channel:	2402
Remark:	AV		

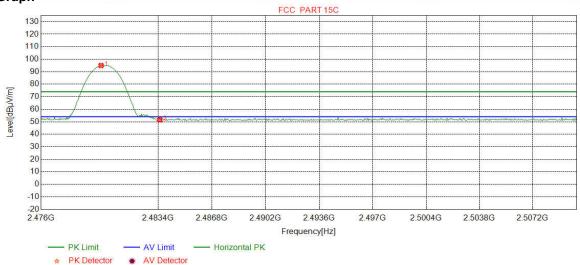
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.19	38.69	54.00	15.31	Pass	Horizontal
2	2402.0168	32.26	13.31	-43.12	79.77	82.22	54.00	-28.22	Pass	Horizontal

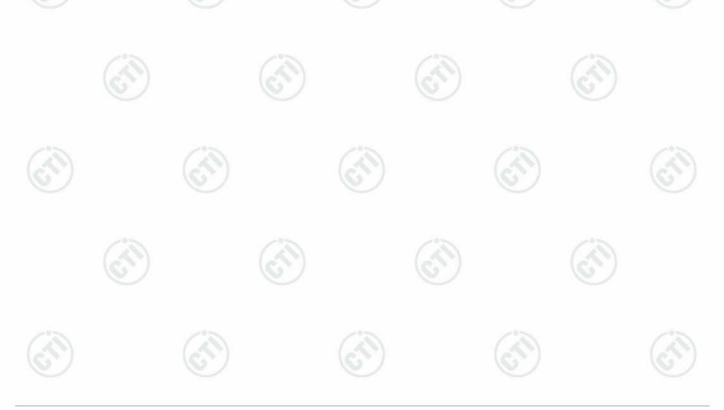




Mode:	GFSK Transmitting	Channel:	2402
Remark:	AV		

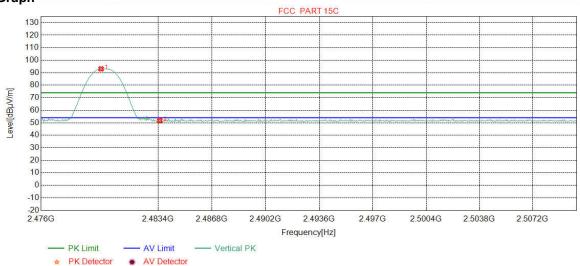
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.20	38.70	54.00	15.30	Pass	Vertical
2	2402.0421	32.26	13.31	-43.12	78.49	80.94	54.00	-26.94	Pass	Vertical

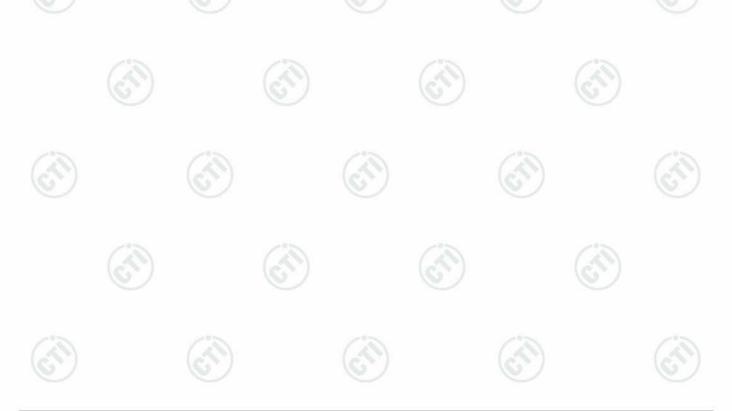




Mode:	GFSK Transmitting	Channel:	2480
Remark:	PK		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7872	32.37	13.39	-43.10	92.29	94.95	74.00	-20.95	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	48.91	51.56	74.00	22.44	Pass	Horizontal

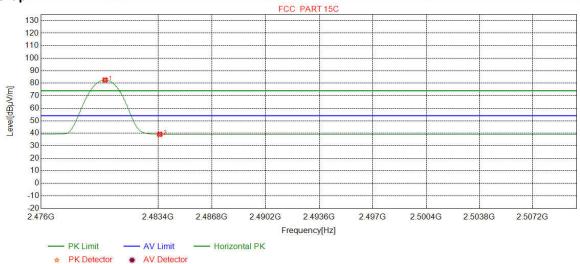


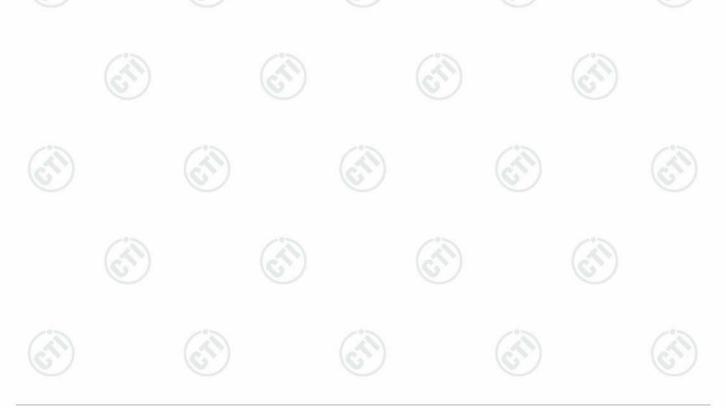

Page 61 of 124

Mode:	GFSK Transmitting	Channel:	2480
Remark:	PK		

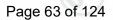
Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7872	32.37	13.39	-43.10	90.41	93.07	74.00	-19.07	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	49.00	51.65	74.00	22.35	Pass	Vertical

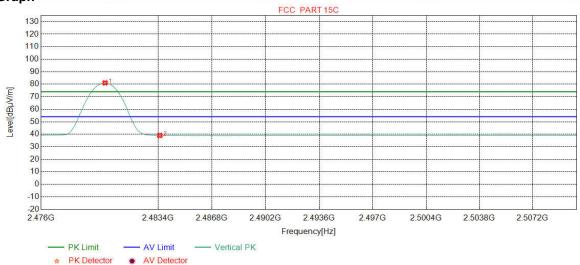


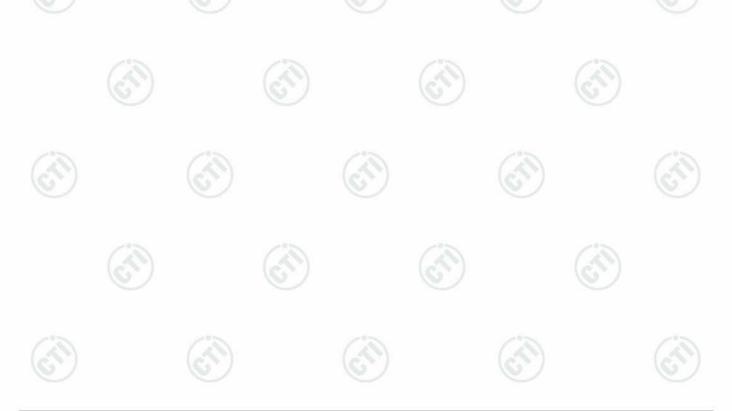


Mode:	GFSK Transmitting	Channel:	2480
Remark:	AV		



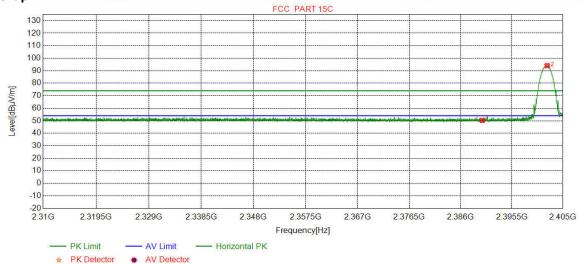
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0426	32.37	13.39	-43.10	79.93	82.59	54.00	-28.59	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	36.52	39.17	54.00	14.83	Pass	Horizontal





Mode:	GFSK Transmitting	Channel:	2480
Remark:	AV		

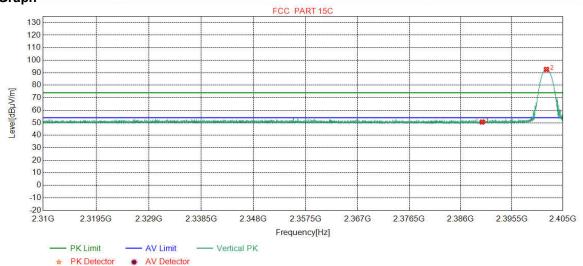
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0426	32.37	13.39	-43.10	78.41	81.07	54.00	-27.07	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	36.41	39.06	54.00	14.94	Pass	Vertical

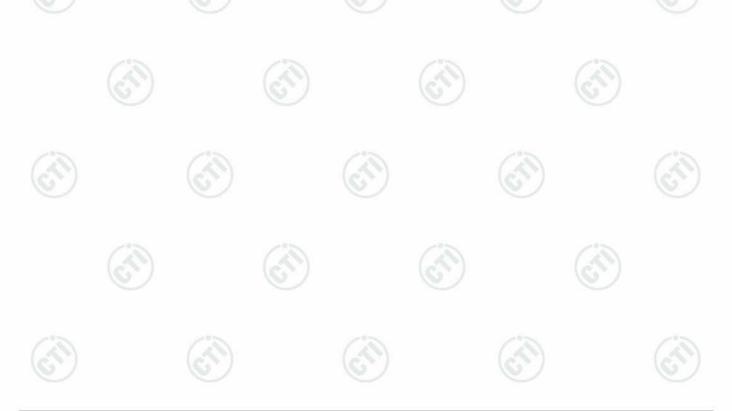


Mode:	8DPSK Transmitting	Channel:	2402
Remark:	PK		



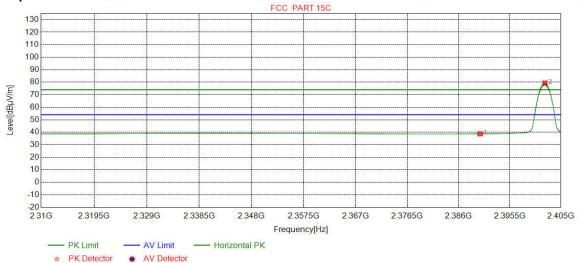
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.74	50.24	74.00	23.76	Pass	Horizontal
2	2402.0675	32.26	13.31	-43.12	91.60	94.05	74.00	-20.05	Pass	Horizontal

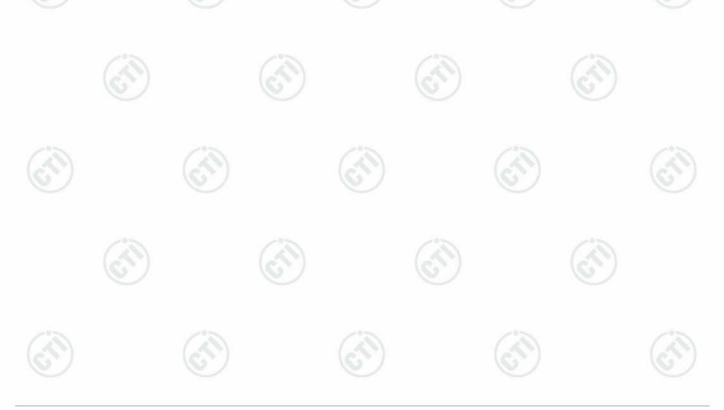




Mode:	8DPSK Transmitting	Channel:	2402
Remark:	PK		

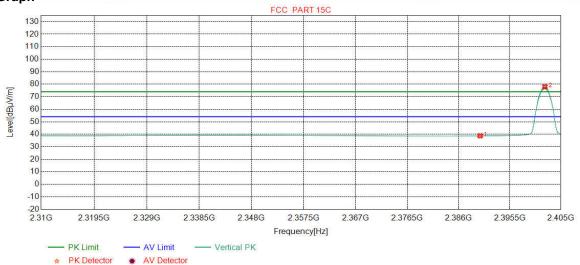
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	48.02	50.52	74.00	23.48	Pass	Vertical
2	2401.9345	32.26	13.31	-43.12	90.18	92.63	74.00	-18.63	Pass	Vertical

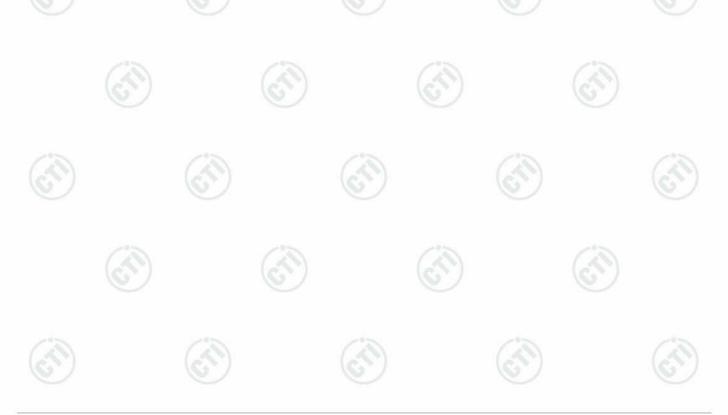




Mode:	8DPSK Transmitting	Channel:	2402
Remark:	AV		

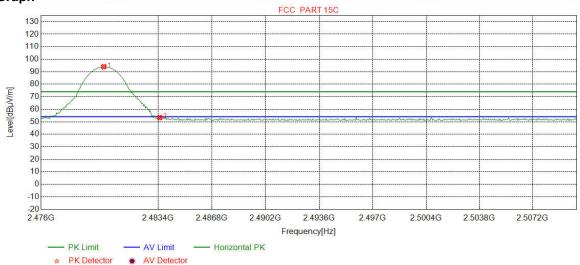
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.27	38.77	54.00	15.23	Pass	Horizontal
2	2402.0231	32.26	13.31	-43.12	76.84	79.29	54.00	-25.29	Pass	Horizontal

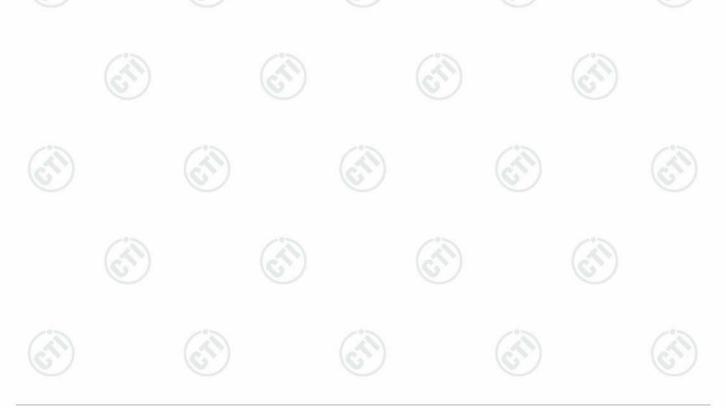




Mode:	8DPSK Transmitting	Channel:	2402
Remark:	AV		

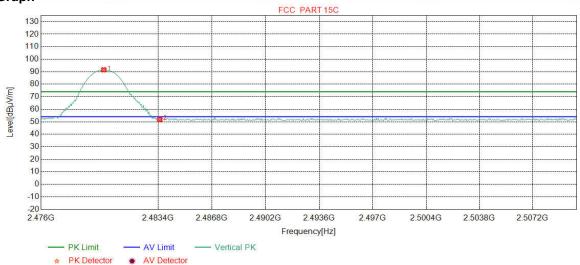
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.30	38.80	54.00	15.20	Pass	Vertical
2	2402.0105	32.26	13.31	-43.12	75.48	77.93	54.00	-23.93	Pass	Vertical

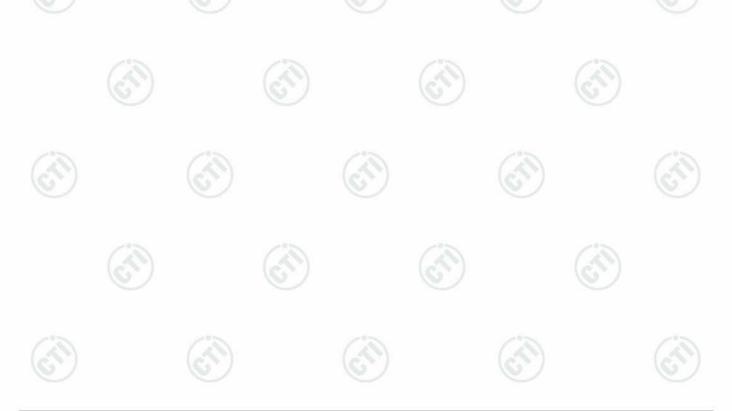




Mode:	8DPSK Transmitting	Channel:	2480
Remark:	PK		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9574	32.37	13.39	-43.10	91.34	94.00	74.00	-20.00	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	50.67	53.32	74.00	20.68	Pass	Horizontal

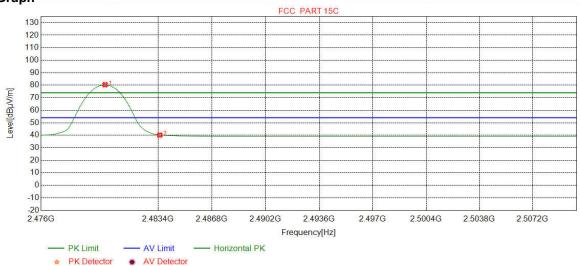


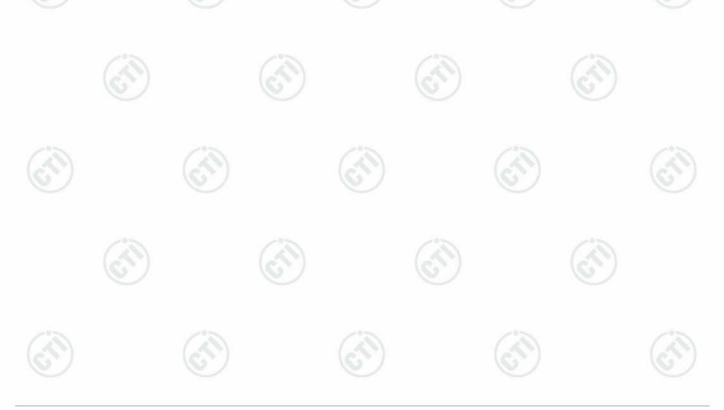


Mode:	8DPSK Transmitting	Channel:	2480
Remark:	PK		



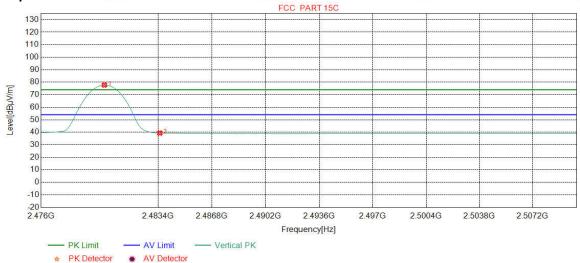
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9574	32.37	13.39	-43.10	88.87	91.53	74.00	-17.53	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	49.18	51.83	74.00	22.17	Pass	Vertical





Mode:	8DPSK Transmitting	Channel:	2480
Remark:	AV		

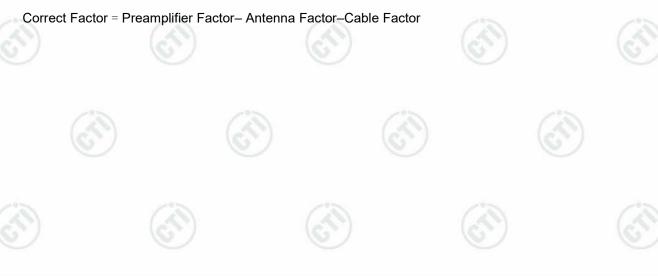
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0426	32.37	13.39	-43.10	77.71	80.37	54.00	-26.37	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	37.49	40.14	54.00	13.86	Pass	Horizontal



Page	71	of 124	
ı auc	, ,	01 127	

Mode:	8DPSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph



NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0000	32.37	13.39	-43.10	75.07	77.73	54.00	-23.73	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	36.72	39.37	54.00	14.63	Pass	Vertical

Note

- 1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of modulation and all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Average

Appendix L)Radiated Spurious Emissions

Receiver Setup:		6			
	Frequency	Detector	RBW	VBW	Remark
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
1	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
)	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
(63)	30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak
	AL 4011-	Peak	1MHz	3MHz	Peak
	Above 1GHz				

Test Procedure:

Limit:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

Peak

1MHz

10Hz

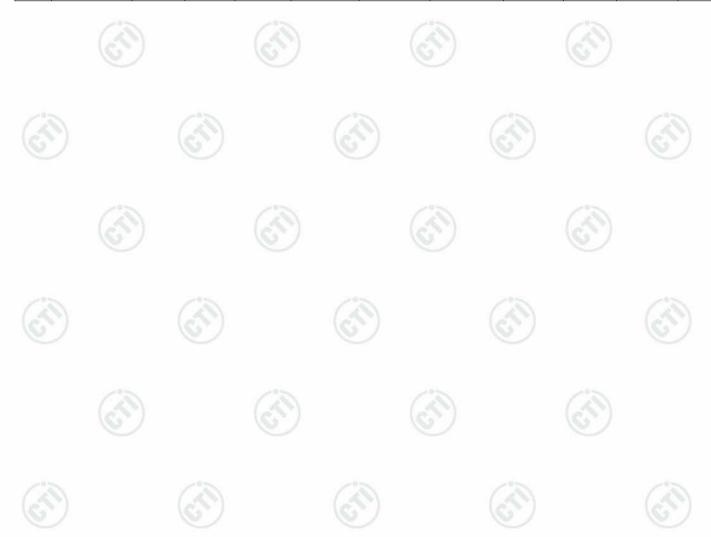
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

j. Repeat above procedures until all frequencies measured was complete.

_					
	Frequency	Field strength (microvolt/met er)	Limit (dBuV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	-		300
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
	1.705MHz-30MHz	30	-	-	30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3


Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Mode	:		GFSK T	Transmitti	ng			Channel:		2441	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	59.9760	11.60	0.90	-31.80	49.05	29.75	40.00	10.25	Pass	Н	PK
2	120.0250	9.20	1.30	-32.07	45.66	24.09	43.50	19.41	Pass	Н	PK
3	240.0260	11.94	1.84	-31.90	45.48	27.36	46.00	18.64	Pass	Н	PK
4	383.9884	15.05	2.33	-31.86	44.39	29.91	46.00	16.09	Pass	Н	PK
5	649.9890	19.40	3.10	-32.07	46.58	37.01	46.00	8.99	Pass	Н	PK
6	904.9305	22.13	3.60	-31.44	44.74	39.03	46.00	6.97	Pass	Н	PK
7	59.9760	11.60	0.90	-31.80	45.70	26.40	40.00	13.60	Pass	V	PK
8	150.0010	7.55	1.45	-32.01	47.28	24.27	43.50	19.23	Pass	V	PK
9	240.0260	11.94	1.84	-31.90	42.42	24.30	46.00	21.70	Pass	V	PK
10	493.7064	16.90	2.66	-31.90	43.64	31.30	46.00	14.70	Pass	V	PK
11	649.9890	19.40	3.10	-32.07	46.56	36.99	46.00	9.01	Pass	V	PK
12	905.9006	22.14	3.60	-31.45	41.95	36.24	46.00	9.76	Pass	V	PK

Transmitter Emission above 1GHz

Mode	:		GFSK T	ransmitting	3			Channel:		2402	
NO	Freq. [MHz]	Ant Fact or [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1417.4417	28.3	2.92	-42.76	51.96	40.44	74.00	33.56	Pass	Н	PK
2	4092.0728	33.9	4.32	-42.96	50.50	45.79	74.00	28.21	Pass	Н	PK
3	4804.0000	34.5	4.55	-42.80	47.15	43.40	74.00	30.60	Pass	Н	PK
4	7206.0000	36.3	5.81	-42.16	46.29	46.25	74.00	27.75	Pass	Н	PK
5	9608.0000	37.6	6.63	-42.10	47.18	49.35	74.00	24.65	Pass	Н	PK
6	12010.0000	39.3	7.60	-41.90	46.27	51.28	74.00	22.72	Pass	Н	PK
7	1319.6320	28.2	2.78	-42.77	54.14	42.37	74.00	31.63	Pass	V	PK
8	3333.0222	33.3	4.54	-43.10	50.80	45.57	74.00	28.43	Pass	V	PK
9	4804.0000	34.5	4.55	-42.80	47.14	43.39	74.00	30.61	Pass	V	PK
10	7206.0000	36.3	5.81	-42.16	47.11	47.07	74.00	26.93	Pass	V	PK
11	9608.0000	37.6	6.63	-42.10	45.89	48.06	74.00	25.94	Pass	V	PK
12	12010.0000	39.3	7.60	-41.90	48.00	53.01	74.00	20.99	Pass	V	PK

Mode	::		GFSK T	ransmitting	3			Channel:		2441	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1590.6591	29.00	3.06	-42.92	51.45	40.59	74.00	33.41	Pass	Н	PK
2	3800.0533	33.64	4.37	-43.04	49.88	44.85	74.00	29.15	Pass	Н	PK
3	4882.0000	34.50	4.81	-42.80	47.54	44.05	74.00	29.95	Pass	Н	PK
4	7323.0000	36.42	5.85	-42.13	46.74	46.88	74.00	27.12	Pass	Н	PK
5	9764.0000	37.71	6.71	-42.10	47.65	49.97	74.00	24.03	Pass	Н	PK
6	12205.000	39.42	7.67	-41.89	46.20	51.40	74.00	22.60	Pass	Н	PK
7	1322.0322	28.22	2.78	-42.76	54.02	42.26	74.00	31.74	Pass	V	PK
8	3796.0531	33.64	4.37	-43.05	50.74	45.70	74.00	28.30	Pass	V	PK
9	4882.0000	34.50	4.81	-42.80	46.38	42.89	74.00	31.11	Pass	V	PK
10	7323.0000	36.42	5.85	-42.13	46.36	46.50	74.00	27.50	Pass	V	PK
11	9764.0000	37.71	6.71	-42.10	48.24	50.56	74.00	23.44	Pass	V	PK
12	12205.000	39.42	7.67	-41.89	45.50	50.70	74.00	23.30	Pass	V	PK

Page 75 of 124

Mode):		GFSK T	ransmitting]			Channel:		2480	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1763.8764	30.14	3.25	-42.69	51.39	42.09	74.00	31.91	Pass	Н	PK
2	3000.0000	33.20	4.93	-43.10	50.74	45.77	74.00	28.23	Pass	Н	PK
3	4960.0000	34.50	4.82	-42.80	48.25	44.77	74.00	29.23	Pass	Н	PK
4	7440.0000	36.54	5.85	-42.11	47.36	47.64	74.00	26.36	Pass	Н	PK
5	9920.0000	37.77	6.79	-42.10	46.81	49.27	74.00	24.73	Pass	Н	PK
6	12400.000	39.54	7.86	-41.90	46.96	52.46	74.00	21.54	Pass	Н	PK
7	1322.0322	28.22	2.78	-42.76	54.13	42.37	74.00	31.63	Pass	V	PK
8	3405.0270	33.36	4.55	-43.10	49.86	44.67	74.00	29.33	Pass	V	PK
9	4960.0000	34.50	4.82	-42.80	48.27	44.79	74.00	29.21	Pass	V	PK
10	7440.0000	36.54	5.85	-42.11	46.57	46.85	74.00	27.15	Pass	V	PK
11	9920.0000	37.77	6.79	-42.10	46.42	48.88	74.00	25.12	Pass	V	PK
12	12400.000	39.54	7.86	-41.90	46.43	51.93	74.00	22.07	Pass	V	PK

Mode	:		8DPSK	Transmit	ting			Channel:		2402	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1533.2533	28.62	3.02	-43.04	51.88	40.48	74.00	33.52	Pass	Н	PK
2	3071.0047	33.23	4.78	-43.10	50.56	45.47	74.00	28.53	Pass	Н	PK
3	4804.0000	34.50	4.55	-42.80	48.49	44.74	74.00	29.26	Pass	Н	PK
4	7206.0000	36.31	5.81	-42.16	46.24	46.20	74.00	27.80	Pass	Н	PK
5	9608.0000	37.64	6.63	-42.10	46.50	48.67	74.00	25.33	Pass	Н	PK
6	12010.000	39.31	7.60	-41.90	46.88	51.89	74.00	22.11	Pass	Н	PK
7	1321.6322	28.22	2.78	-42.76	54.25	42.49	74.00	31.51	Pass	V	PK
8	3832.0555	33.67	4.36	-43.03	50.18	45.18	74.00	28.82	Pass	V	PK
9	4804.0000	34.50	4.55	-42.80	47.75	44.00	74.00	30.00	Pass	V	PK
10	7206.0000	36.31	5.81	-42.16	46.79	46.75	74.00	27.25	Pass	V	PK
11	9608.0000	37.64	6.63	-42.10	47.13	49.30	74.00	24.70	Pass	V	PK
12	12010.000	39.31	7.60	-41.90	46.73	51.74	74.00	22.26	Pass	V	PK

_			404
Page	76	OŤ.	124

Mode:			8DPSK Transmitting					Channel:		2441	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1317.8318	28.22	2.77	-42.76	52.29	40.52	74.00	33.48	Pass	Н	PK
2	3274.0183	33.31	4.51	-43.10	51.64	46.36	74.00	27.64	Pass	Н	PK
3	4882.0000	34.50	4.81	-42.80	47.61	44.12	74.00	29.88	Pass	Н	PK
4	7323.0000	36.42	5.85	-42.13	46.52	46.66	74.00	27.34	Pass	Н	PK
5	9764.0000	37.71	6.71	-42.10	46.62	48.94	74.00	25.06	Pass	Н	PK
6	12205.000	39.42	7.67	-41.89	45.88	51.08	74.00	22.92	Pass	Н	PK
7	1319.8320	28.22	2.78	-42.77	54.48	42.71	74.00	31.29	Pass	V	PK
8	4198.0799	34.08	4.48	-42.92	50.75	46.39	74.00	27.61	Pass	V	PK
9	4882.0000	34.50	4.81	-42.80	48.42	44.93	74.00	29.07	Pass	V	PK
10	7323.0000	36.42	5.85	-42.13	46.01	46.15	74.00	27.85	Pass	V	PK
11	9764.0000	37.71	6.71	-42.10	46.86	49.18	74.00	24.82	Pass	V	PK
12	12205.000	39.42	7.67	-41.89	46.01	51.21	74.00	22.79	Pass	V	PK

Mode:			8DPSK	Transmit	ting		Channel:		2480		
N O	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1734.4734	29.95	3.22	-42.68	51.49	41.98	74.00	32.02	Pass	Н	PK
2	3185.0123	33.27	4.63	-43.10	50.69	45.49	74.00	28.51	Pass	Н	PK
3	4960.0000	34.50	4.82	-42.80	48.46	44.98	74.00	29.02	Pass	Н	PK
4	7440.0000	36.54	5.85	-42.11	46.68	46.96	74.00	27.04	Pass	Н	PK
5	9920.0000	37.77	6.79	-42.10	47.46	49.92	74.00	24.08	Pass	Н	PK
6	12400.0000	39.54	7.86	-41.90	46.22	51.72	74.00	22.28	Pass	Н	PK
7	1440.0440	28.34	2.94	-42.85	53.82	42.25	74.00	31.75	Pass	V	PK
8	3207.0138	33.28	4.62	-43.10	50.08	44.88	74.00	29.12	Pass	V	PK
9	4960.0000	34.50	4.82	-42.80	48.22	44.74	74.00	29.26	Pass	V	PK
10	7440.0000	36.54	5.85	-42.11	47.45	47.73	74.00	26.27	Pass	V	PK
11	9920.0000	37.77	6.79	-42.10	45.27	47.73	74.00	26.27	Pass	V	PK
12	12400.0000	39.54	7.86	-41.90	46.39	51.89	74.00	22.11	Pass	V	PK

Note:

- 1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of modulation and all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.