

RADIO TEST REPORT

S T S

Report No:STS1805169W02

Issued for

Smartbox Assistive Technology Limited

Ysobel House, Enigma Commercial Centre, Sandys Road, Malvern, WR14 1JJ, UK

Product Name:	Grid Pad 12
Brand Name:	Smartbox
Model Name:	GP12V1
Series Model:	N/A
FCC ID:	2APXM-GP12V1
Test Standard:	FCC Part 15.247

Any reproduction of this document must be done in full. No single part of this document may be reproduced we permission from STS, All Test Data Presented in this report is only applicable to presented Test sample VAL

Shenzhen STS Test Services Co., Ltd. 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China TEL: +86-755 3688 6288 FAX: +86-755 3688 6277 E-mail:sts@stsapp.com

Page 2 of 44

Report No.: STS1805169W02

TEST RESULT CERTIFICATION

Applicant's name	Smartbox Assistive Technology Limited
Address	Ysobel House, Enigma Commercial Centre, Sandys Road, Malvern, WR14 1JJ, UK
Manufacture's Name:	Smartbox Assistive Technology Limited
Address	Ysobel House, Enigma Commercial Centre, Sandys Road, Malvern, WR14 1JJ, UK
Product description	
Product Name:	Grid Pad 12
Brand Name:	Smartbox
Model Name:	GP12V1
Series Model:	N/A
Test Standards	FCC Part15.247
Test procedure	. ANSI C63.10-2013

This device described above has been tested by STS, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of STS, this document may be altered or revised by STS, personal only, and shall be noted in the revision of the document.

Date of Test

Date (s) of performance of tests 17 May 2018~07 June 2018

Date of Issue 07	7 June 2018
------------------	-------------

Test Result..... Pass

Testing Engineer (Chris chen) an She **Technical Manager** (Sean she) Authorized Signatory :

Report No.: STS1805169W02

Table of Contents

Page 3 of 44

1. SUMMARY OF TEST RESULTS	6
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF EUT	8
2.2 DESCRIPTION OF TEST MODES	10
2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	11
2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	12
2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS	13
3. EMC EMISSION TEST	15
3.1 CONDUCTED EMISSION MEASUREMENT	15
3.2 TEST PROCEDURE	16
3.3 TEST SETUP	16
3.4 EUT OPERATING CONDITIONS	16
3.5 TEST RESULTS	17
4. RADIATED EMISSION MEASUREMENT	19
4.1 RADIATED EMISSION LIMITS	19
4.2 TEST PROCEDURE	20
4.3 TEST SETUP	21
4.4 EUT OPERATING CONDITIONS	21
4.5 FIELD STRENGTH CALCULATION	22
4.6 TEST RESULTS	23
5. CONDUCTED SPURIOUS & BAND EDGE EMISSION	30
5.1 REQUIREMENT	30
5.2 TEST PROCEDURE	30
5.3 TEST SETUP	30
5.4 EUT OPERATION CONDITIONS	30
5.5 TEST RESULTS	31
6. POWER SPECTRAL DENSITY TEST	34
6.1 APPLIED PROCEDURES / LIMIT	34
6.2 TEST PROCEDURE	34
6.3 TEST SETUP	34
6.4 EUT OPERATION CONDITIONS	34

=#

Report No.: STS1805169W02

Table of Contents

Page 4 of 44

6.5 TEST RESULTS	35
7. BANDWIDTH TEST	37
7.1 APPLIED PROCEDURES / LIMIT	37
7.2 TEST PROCEDURE	37
7.3 TEST SETUP	37
7.4 EUT OPERATION CONDITIONS	37
7.5 TEST RESULTS	38
8. PEAK OUTPUT POWER TEST	40
8.1 APPLIED PROCEDURES / LIMIT	40
8.2 TEST PROCEDURE	40
8.3 TEST SETUP	40
8.4 EUT OPERATION CONDITIONS	40
8.5 TEST RESULTS	41
9. ANTENNA REQUIREMENT	42
9.1 STANDARD REQUIREMENT	42
9.2 EUT ANTENNA	42
10. EUT TEST PHOTO	43

Page 5 of 44

Report No.: STS1805169W02

Revision History

Rev.	Issue Date Report NO.		Effect Page	Contents
00	07 June 2018	STS1805169W02 ALL		Initial Issue

Shenzhen STS Test Services Co., Ltd.

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 DTS Meas Guidance v04

FCC Part 15.247,Subpart C						
Standard Section	Judgment	Remark				
15.207	Conducted Emission	PASS				
15.247 (a)(2)	6dB Bandwidth	PASS				
15.247 (b)(3)	Output Power	PASS				
15.247 (c)	Radiated Spurious Emission	PASS				
15.247 (d)	Conducted Spurious & Band Edge Emission	PASS				
15.247 (e)	Power Spectral Density	PASS				
15.205	Restricted Band Edge Emission	PASS				
Part 15.247(d)/part 15.209(a)	Band Edge Emission	PASS				
15.203	Antenna Requirement	PASS				

NOTE:

(1) "N/A" denotes test is not applicable in this Test Report

(2) All tests are according to ANSI C63.10-2013

Shenzhen STS Test Services Co., Ltd.

1.1 TEST FACTORY

Shenzhen STS Test Services Co., Ltd. Add. : 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China CNAS Registration No.: L7649; FCC Registration No.: 625569 IC Registration No.: 12108A; A2LA Certificate No.: 4338.01;

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $\ k=2$, providing a level of confidence of approximately 95 % $^{\circ}$

Page 7 of 44

No.	Item	Uncertainty
1	Conducted Emission (9KHz-150KHz)	±2.88dB
2	Conducted Emission (150KHz-30MHz)	±2.67dB
3	RF power,conducted	±0.71dB
4	Spurious emissions, conducted	±0.63dB
5	All emissions, radiated (9KHz-30MHz)	±3.02dB
6	All emissions, radiated (30MHz-200MHz)	±3.80dB
7	All emissions, radiated (200MHz-1000MHz)	±3.97dB
8	All emissions,radiated(>1G)	±3.03dB

Report No.: STS1805169W02

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Product Name	Grid Pad 12			
Trade Name	Smartbox			
Model Name	GP12V1			
Series Model	N/A			
Model Difference	N/A			
Product Description	Frequency: Modulation Type: Radio Technology Number Of Channel Antenna Designation:	2402~2480 MHz GFSK BLE		
Channel List	Please refer to the Note 2.			
Adapter	Power supply and ADP(rating): Input: AC 100V-240V, 50/60Hz, 1.0A Max Output: DC 12V, 3.33A			
Battery	Battery(rating): Rated Voltage: 7.4V Charge Limit: 8.4V Capacity :10000mAh			
Hardware version number	N/A			
Software version number	N/A			
Connecting I/O Port(s)	Please refer to the User's Manual			

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

\sim	
/	

Channel List							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequenc y (MHz)
37	2402	09	2422	18	2442	28	2462
00	2404	10	2424	19	2444	29	2464
01	2406	38	2426	20	2446	30	2466
02	2408	11	2428	21	2448	31	2468
03	2410	12	2430	22	2450	32	2470
04	2412	13	2432	23	2452	33	2472
05	2414	14	2434	24	2454	34	2474
06	2416	15	2436	25	2456	35	2476
07	2418	16	2438	26	2458	36	2478
08	2420	17	2440	27	2460	39	2480

3.

Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
1	Smartbox	GP12V1	PIFA Antenna	N/A	0	BLE ANT

Shenzhen STS Test Services Co., Ltd.

Page 10 of 44

Report No.: STS1805169W02

2.2 DESCRIPTION OF TEST MODES

For conducted test items and radiated spurious emissions

Each of these EUT operation mode(s) or test configuration mode(s) mentioned below was evaluated respectively.

Worst Mode	Description	Data/Modulation
Mode 1	TX CH37(2402MHz)	1 MHz/GFSK
Mode 2	TX CH17(2440MHz)	1 MHz/GFSK
Mode 3	TX CH39(2480MHz)	1 MHz/GFSK

Note:

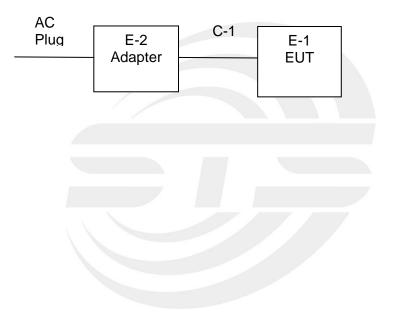
(1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported

(2) We have be tested for all avaiable U.S. voltage and frequencies(For 120V,50/60Hz and 240V, 50/60Hz) for which the device is capable of operation, and the worst case of 120V/60Hz is shown in the report

(3) Controlled using a bespoke application on the laptop PC supplied by the customer. The application was used to enable a continuous transmission mode and to select the test channels, data rates and modulation schemes as required.

For AC Conducted Emission

	Test Case
AC Conducted Emission	Mode 4 : Keeping BT TX


Page 11 of 44

2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Spurious Emission Test

Conducted Emission Test

Shenzhen STS Test Services Co., Ltd.

Page 12 of 44

Report No.: STS1805169W02

2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note
E-2	Adapter	MEGMEET	MANGO40S-12BB	N/A	EUT

Item	Shielded Type	Ferrite Core	Length	Note
C-1	USB Cable shielded line (Charging)	NO	100cm	N/A

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in ^[] Length ^[] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

Page 13 of 44

2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

adiation rest equipme					
Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
EMI Test Receiver	R&S	ESCI	102086	2017.10.15	2018.10.14
Bilog Antenna	TESEQ	CBL6111D	34678	2017.11.02	2018.11.01
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-1343	2017.10.27	2018.10.26
SHF-EHF Horn Antenna (18G-40GHz)	A-INFO	LB-180400-KF	N/A	2018.03.11	2019.03.10
Temperature & Humitidy	HH660	Mieo	N/A	2017.10.15	2018.10.14
Temperature & Humitidy	HH660	Mieo	N/A	2017.10.15	2018.10.14
Pre-mplifier (0.1M-3GHz)	EM	EM330	60538	2018.03.11	2019.03.10
PreAmplifier (1G-26.5GHz)	Agilent	8449B	60538	2017.10.15	2018.10.14
Passive Loop (9K30MHz)	ZHNAN	ZN3090C	16035	2018.03.11	2019.03.10
Low frequency cable	EM	R01	N/A	2018.03.11	2019.03.10
Low frequency cable	EM	R06	N/A	2018.03.11	2019.03.10
High frequency cable	SCHWARZBECK	R04	N/A	2018.03.11	2019.03.10
High frequency cable	SCHWARZBECK	R02	N/A	2018.03.11	2019.03.10
Semi-anechoic chamber	Changling	966	N/A	2017.10.15	2018.10.14
trun table	EM	SC100_1	60531	N/A	N/A
Antnna mast	EM	SC100	N/A	N/A	N/A
Max-full Antenna Corp	MF	MFA-440H	N/A	N/A	N/A

Conduction Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Test Receiver	R&S	ESCI	101427	2017.10.15	2018.10.14
LISN	R&S	ENV216	101242	2017.10.15	2018.10.14
conduction Cable	EM	C01	N/A	2018.03.11	2019.03.10
Temperature & Humitidy	Mieo	HH660	N/A	2017.10.15	2018.10.14

RF Connected Test

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
USB RF power sensor	DARE	RPR3006W	15100041SNO03	2017.10.15	2018.10.14
Power Meter	R&S	NRP	100510	2017.10.15	2018.10.14
Spectrum Analyzer	Agilent	N9020A	MY51110105	2018.03.08	2019.03.07
Signal Analyzer	Agilent	N9020A	MY49100060	2017.10.15	2018.10.14

Shenzhen STS Test Services Co., Ltd.

Page 15 of 44

Report No.: STS1805169W02

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

operating frequency band. In case the emission fall within the restricted band specified on Part 207(a) limit in the table below has to be followed.

FREQUENCY (MHz)	Conducted Emission limit (dBuV)		
FREQUENCT (MIDZ)	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

Note:

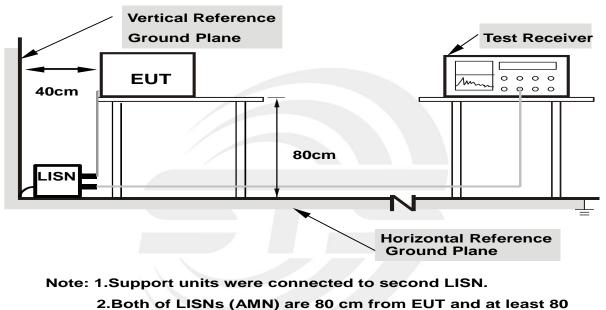
- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting		
Attenuation	10 dB		
Start Frequency	0.15 MHz		
Stop Frequency	30 MHz		
IF Bandwidth	9 kHz		

Shenzhen STS Test Services Co., Ltd.

Report No.: STS1805169W02



3.2 TEST PROCEDURE

a. The EUT was 0.8 meters from the horizontal ground plane and 0.4 meters from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

Page 16 of 44

- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.3 TEST SETUP

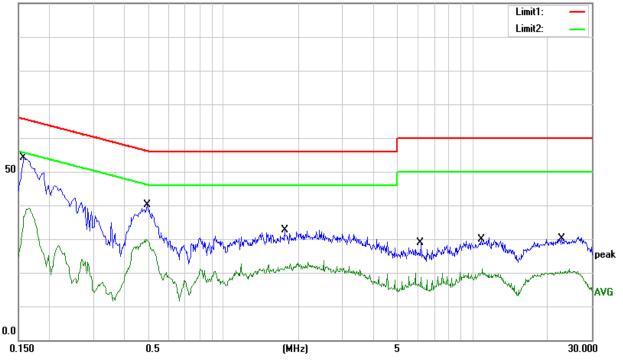
3.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

from other units and other metal planes

3.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	61%
Test Voltage:	AC 120V/60Hz	Phase:	L
Test Mode:	Mode 4		


Frequency	Reading	Correct	Result	Limit	Margin	Remark
(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	Remark
0.1580	44.44	9.79	54.23	65.57	-11.34	QP
0.1580	26.86	9.79	36.65	55.57	-18.92	AVG
0.4940	30.15	10.03	40.18	56.10	-15.92	QP
0.4940	19.27	10.03	29.30	46.10	-16.80	AVG
1.7540	22.92	9.78	32.70	56.00	-23.30	QP
1.7540	11.98	9.78	21.76	46.00	-24.24	AVG
6.2100	18.94	9.87	28.81	60.00	-31.19	QP
6.2100	8.76	9.87	18.63	50.00	-31.37	AVG
10.8260	19.53	10.22	29.75	60.00	-30.25	QP
10.8260	10.83	10.22	21.05	50.00	-28.95	AVG
22.7100	19.86	10.29	30.15	60.00	-29.85	QP
22.7100	9.51	10.29	19.80	50.00	-30.20	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Margin = Result (Result = Reading + Factor)-Limit

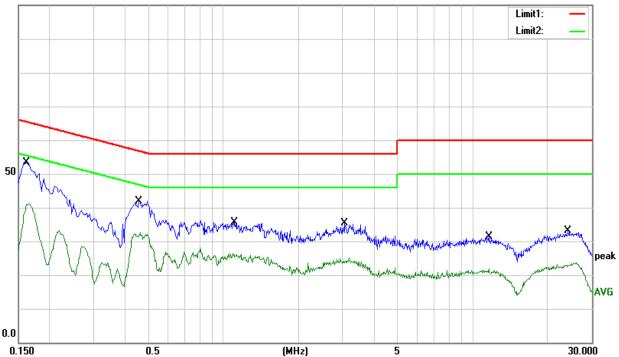
100.0 dBuV

Shenzhen STS Test Services Co., Ltd.

Page 18 of 44

Report No.: STS1805169W02

Temperature:	25 ℃	Relative Humidity:	61%
Test Voltage:	AC 120V/60Hz	Phase:	N
Test Mode:	Mode 4		


Frequency	Reading	Correct	Result	Limit	Margin	Domork
(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	Remark
0.1620	43.55	9.79	53.34	65.36	-12.02	QP
0.1620	31.15	9.79	40.94	55.36	-14.42	AVG
0.4580	31.94	10.03	41.97	56.73	-14.76	QP
0.4580	21.82	10.03	31.85	46.73	-14.88	AVG
1.1060	25.95	9.80	35.75	56.00	-20.25	QP
1.1060	15.99	9.80	25.79	46.00	-20.21	AVG
3.0580	25.52	9.81	35.33	56.00	-20.67	QP
3.0580	14.15	9.81	23.96	46.00	-22.04	AVG
11.5820	21.17	10.22	31.39	60.00	-28.61	QP
11.5820	10.50	10.22	20.72	50.00	-29.28	AVG
24.0380	22.95	10.21	33.16	60.00	-26.84	QP
24.0380	12.42	10.21	22.63	50.00	-27.37	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Margin = Result (Result = Reading + Factor)-Limit

100.0 dBuV

Page 19 of 44

4. RADIATED EMISSION MEASUREMENT

4.1 RADIATED EMISSION LIMITS

in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (Frequency Range 9kHz-1000MHz)

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	(dBuV/m) (at 3M)		
FREQUENCY (MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

For Radiated Emission

Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak/AV
Start Frequency	1000 MHz(Peak/AV)
Stop Frequency	10th carrier hamonic(Peak/AV)
RB / VB (emission in restricted	4 MUL / 2 MUL
band)	1 MHz / 3 MHz

For Band edge

Spectrum Parameter	Setting	
Detector	Peak/AV	
Stort/Stop Fraguenay	Lower Band Edge: 2300 to 2403 MHz	
Start/Stop Frequency	Upper Band Edge: 2479 to 2500 MHz	
RB / VB (emission in restricted band)	1 MHz / 3 MHz	

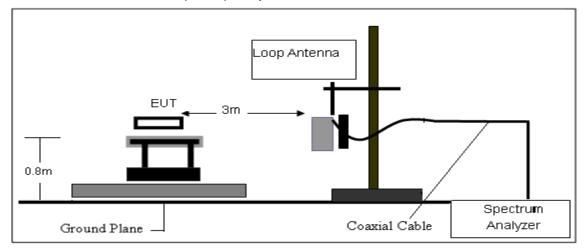
Shenzhen STS Test Services Co., Ltd.

Page 20 of 44

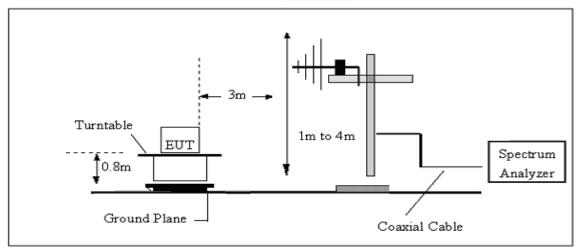
Report No.: STS1805169W02

Receiver Parameter	Setting
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

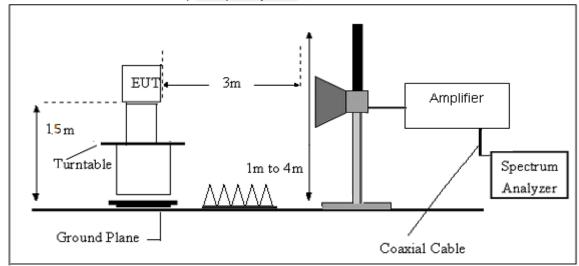
4.2 TEST PROCEDURE


- a. The measuring distance of at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 meters(above 1GHz is 1.5 m) above the ground at a 3 meter anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m(above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarizations of the antenna are set to make the measurement
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.



4.3 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

4.4 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Shenzhen STS Test Services Co., Ltd.

4.5 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AGWhere FS = Field StrengthCL = Cable Attenuation Factor (Cable Loss)RA = Reading AmplitudeAG = Amplifier GainAF = Antenna Factor

For example

Frequency	FS	RA	AF	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300	40	58.1	12.2	1.6	31.9	-18.1

Factor=AF+CL-AG

Shenzhen STS Test Services Co., Ltd.

Report No.: STS1805169W02

4.6 TEST RESULTS

(Between 9KHz - 30 MHz)

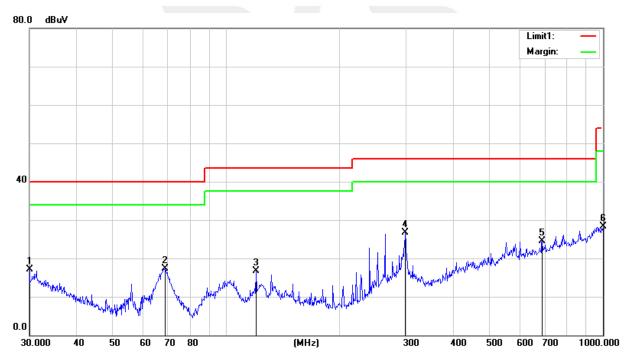
Temperature:	25 ℃	Relative Humidtity:	61%
Test Voltage:	DC 7.4V from Battery	Polarization:	
Test Mode:	TX Mode		

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB); Limit line = specific limits(dBuv) + distance extrapolation factor.


(30MHz -1000MHz)

Temperature:	25.7 ℃	Relative Humidity:	63%
Test Voltage:	DC 7.4V from Battery	Phase:	Horizontal
Test Mode:	Mode1/2/3(Mode 2-1M worst mode)		

quency Reading	Remark
/Hz) (dBuV)	
.0000 28.21	QP
.6310 41.39	QP
9.8556 34.47	QP
3.2681 41.73	QP
9.5644 30.10	QP
0.0000 28.45	QP
	_

Remark:

1. Margin = Result (Result = Reading + Factor)–Limit

Page 25 of 44 Report No.: S

Report No.: STS1805169W02

Temperature:	25.7 ℃	Relative Humidity:	63%
Test Voltage:	DC 7.4V from Battery	Phase:	Vertical
Test Mode:	Mode1/2/3(Mode 2-1M worst mode)		

Frequency	Reading	Correct	Result	Limit	Margin	Remark
(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
30.2111	27.52	-11.30	16.22	40.00	-23.78	QP
68.6310	38.65	-24.14	14.51	40.00	-25.49	QP
119.8556	43.56	-17.70	25.86	43.50	-17.64	QP
263.8190	32.35	-15.22	17.13	46.00	-28.87	QP
408.9460	31.65	-11.08	20.57	46.00	-25.43	QP
866.0880	30.85	-2.63	28.22	46.00	-17.78	QP

Remark:

1. Margin = Result (Result = Reading + Factor)-Limit

80.0 dBuV

Page 26 of 44

Report No.: STS1805169W02

(1GHz-25GHz)Restricted band and Spurious emission Requirements

Low Channel

				Antenna	Corrected	Emission				
Frequency	Reading	Amplifier	Loss	Factor	Factor	Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment
				Low	Channel (2402 I	MHz)				
3264.61	48.50	44.70	6.70	28.20	-9.80	38.70	74.00	-35.30	PK	Vertical
3264.61	39.62	44.70	6.70	28.20	-9.80	29.82	54.00	-24.18	AV	Vertical
3264.74	48.44	44.70	6.70	28.20	-9.80	38.64	74.00	-35.36	PK	Horizontal
3264.74	38.58	44.70	6.70	28.20	-9.80	28.78	54.00	-25.22	AV	Horizontal
4804.45	58.95	44.20	9.04	31.60	-3.56	55.39	74.00	-18.61	PK	Vertical
4804.45	39.27	44.20	9.04	31.60	-3.56	35.71	54.00	-18.29	AV	Vertical
4804.60	58.63	44.20	9.04	31.60	-3.56	55.07	74.00	-18.93	PK	Horizontal
4804.60	38.24	44.20	9.04	31.60	-3.56	34.68	54.00	-19.32	AV	Horizontal
5359.77	46.41	44.20	9.86	32.00	-2.34	44.07	74.00	-29.93	PK	Vertical
5359.77	37.95	44.20	9.86	32.00	-2.34	35.61	54.00	-18.39	AV	Vertical
5359.61	46.50	44.20	9.86	32.00	-2.34	44.16	74.00	-29.84	PK	Horizontal
5359.61	38.53	44.20	9.86	32.00	-2.34	36.19	54.00	-17.81	AV	Horizontal
7205.70	51.01	43.50	11.40	35.50	3.40	54.41	74.00	-19.59	PK	Vertical
7205.70	33.14	43.50	11.40	35.50	3.40	36.54	54.00	-17.46	AV	Vertical
7205.69	50.68	43.50	11.40	35.50	3.40	54.08	74.00	-19.92	PK	Horizontal
7205.69	33.79	43.50	11.40	35.50	3.40	37.19	54.00	-16.81	AV	Horizontal

Page 27 of 44

Report No.: STS1805169W02

Mid Channel

				Antenna	Corrected	Emission				
Frequency	Reading	Amplifier	Loss	Factor	Factor	Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment
				Mid	Channel (2440 N	//Hz)				
3264.89	48.16	44.70	6.70	28.20	-9.80	38.36	74.00	-35.64	PK	Vertical
3264.89	39.79	44.70	6.70	28.20	-9.80	29.99	54.00	-24.01	AV	Vertical
3264.85	48.70	44.70	6.70	28.20	-9.80	38.90	74.00	-35.10	PK	Horizontal
3264.85	39.12	44.70	6.70	28.20	-9.80	29.32	54.00	-24.68	AV	Horizontal
4880.51	58.35	44.20	9.04	31.60	-3.56	54.79	74.00	-19.21	PK	Vertical
4880.51	38.51	44.20	9.04	31.60	-3.56	34.95	54.00	-19.05	AV	Vertical
4880.37	58.50	44.20	9.04	31.60	-3.56	54.94	74.00	-19.06	PK	Horizontal
4880.37	38.85	44.20	9.04	31.60	-3.56	35.29	54.00	-18.71	AV	Horizontal
5359.73	45.54	44.20	9.86	32.00	-2.34	43.20	74.00	-30.80	PK	Vertical
5359.73	38.12	44.20	9.86	32.00	-2.34	35.78	54.00	-18.22	AV	Vertical
5359.82	45.07	44.20	9.86	32.00	-2.34	42.73	74.00	-31.27	PK	Horizontal
5359.82	38.26	44.20	9.86	32.00	-2.34	35.92	54.00	-18.08	AV	Horizontal
7310.79	51.18	43.50	11.40	35.50	3.40	54.58	74.00	-19.42	PK	Vertical
7310.79	32.64	43.50	11.40	35.50	3.40	36.04	54.00	-17.96	AV	Vertical
7310.79	51.94	43.50	11.40	35.50	3.40	55.34	74.00	-18.66	PK	Horizontal
7310.79	33.49	43.50	11.40	35.50	3.40	36.89	54.00	-17.11	AV	Horizontal

Shenzhen STS Test Services Co., Ltd.

Page 28 of 44

Report No.: STS1805169W02

High Channel

				Antenna	Corrected	Emission				
Frequency	Reading	Amplifier	Loss	Factor	Factor	Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment
				High	Channel (2480	MHz)				
3264.78	48.90	44.70	6.70	28.20	-9.80	39.10	74.00	-34.90	PK	Vertical
3264.78	39.19	44.70	6.70	28.20	-9.80	29.39	54.00	-24.61	AV	Vertical
3264.60	48.52	44.70	6.70	28.20	-9.80	38.72	74.00	-35.28	PK	Horizontal
3264.60	38.37	44.70	6.70	28.20	-9.80	28.57	54.00	-25.43	AV	Horizontal
4960.42	59.57	44.20	9.04	31.60	-3.56	56.01	74.00	-17.99	PK	Vertical
4960.42	39.25	44.20	9.04	31.60	-3.56	35.69	54.00	-18.31	AV	Vertical
4960.37	58.49	44.20	9.04	31.60	-3.56	54.93	74.00	-19.07	PK	Horizontal
4960.37	38.73	44.20	9.04	31.60	-3.56	35.17	54.00	-18.83	AV	Horizontal
5359.82	45.51	44.20	9.86	32.00	-2.34	43.17	74.00	-30.83	PK	Vertical
5359.82	38.04	44.20	9.86	32.00	-2.34	35.70	54.00	-18.30	AV	Vertical
5359.57	45.71	44.20	9.86	32.00	-2.34	43.37	74.00	-30.63	PK	Horizontal
5359.57	37.67	44.20	9.86	32.00	-2.34	35.33	54.00	-18.67	AV	Horizontal
7439.91	51.25	43.50	11.40	35.50	3.40	54.65	74.00	-19.35	PK	Vertical
7439.91	33.72	43.50	11.40	35.50	3.40	37.12	54.00	-16.88	AV	Vertical
7439.82	51.16	43.50	11.40	35.50	3.40	54.56	74.00	-19.44	PK	Horizontal
7439.82	33.84	43.50	11.40	35.50	3.40	37.24	54.00	-16.76	AV	Horizontal
Noto										

Note:

1) Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Emission Level = Reading + Factor

2) The frequency emission of peak points that did not show above the forms are at least 20dB below the limit, the frequency emission is mainly from the environment noise.

Shenzhen STS Test Services Co., Ltd.

Report No.: STS1805169W02

4.6 TEST RESULTS (Restricted Bands Requirements)

				Antenna	Corrected	Emission				
Frequency	Reading	Amplifier	Loss	Factor	Factor	Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment
					GFSK					
2390.00	68.52	43.80	4.91	25.90	-12.99	55.53	74.00	-18.47	PK	Vertical
2390.00	53.92	43.80	4.91	25.90	-12.99	40.93	54.00	-13.07	AV	Vertical
2390.00	68.54	43.80	4.91	25.90	-12.99	55.55	74.00	-18.45	PK	Horizontal
2390.00	52.35	43.80	4.91	25.90	-12.99	39.36	54.00	-14.64	AV	Horizontal
2483.50	70.08	43.80	5.12	25.90	-12.78	57.30	74.00	-16.70	PK	Vertical
2483.50	52.08	43.80	5.12	25.90	-12.78	39.30	54.00	-14.70	AV	Vertical
2483.50	69.46	43.80	5.12	25.90	-12.78	56.68	74.00	-17.32	PK	Horizontal
2483.50	52.62	43.80	5.12	25.90	-12.78	39.84	54.00	-14.16	AV	Horizontal

Low measurement frequencies is range from 2300 to 2403 MHz, high measurement frequencies is range from 2479 to 2500 MHz.

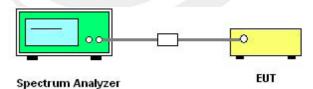
Only show the worst point data of the emissions in the frequency 2300-2403 MHz and 2479-2500 MHz.

Shenzhen STS Test Services Co., Ltd.

5. CONDUCTED SPURIOUS & BAND EDGE EMISSION

5.1 REQUIREMENT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.


5.2 TEST PROCEDURE

Spectrum Parameter	Setting			
Detector	Peak			
Start/Stop Frequency	30 MHz to 10th carrier harmonic			
RB / VB (emission in restricted band)	100 KHz/300 KHz			
Trace-Mode:	Max hold			

For Band edge

Spectrum Parameter	Setting			
Detector	Peak			
Stort/Stop Fraguener	Lower Band Edge: 2300 – 2403 MHz			
Start/Stop Frequency	Upper Band Edge: 2479 – 2500 MHz			
RB / VB (emission in restricted band)	100 KHz/300 KHz			
Trace-Mode:	Max hold			

5.3 TEST SETUP

The EUT which is powered by the Battery, is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 50 Ohm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth(RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

5.4 EUT OPERATION CONDITIONS

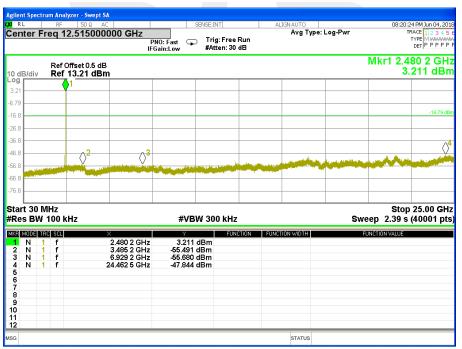
The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

5.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	50%
Test Voltage:	DC 7.4V		TX Mode /CH37, CH17, CH39

37 CH

KI RL		Analyzer - Sw RF 50 ຊ 12.515 (AC 000000 GHz	SEP	ISE:INT	Run	IGN AUTO Avg Type:	Log-Pwr		TRACE 1 2 3 4 5 TYPE M WWWW DET P P P P
10 dB/di		ef Offset 0.9	5 dB	Gain:Low	#Atten: 30	dB	1	1		102 2 GH
2.64										-17.36 dB
27.4 37.4 47.4										
57.4 57.4										
tart 30				#VBW	300 kHz			Sw	Stop eep 2.39 s	o 25.00 GH
KR MODE 1 N 2 N 3 N 4 N	1 1	CL f f f	× 2.402 2 GHz 2.677 4 GHz 5.554 6 GHz	2.641 dE -55.720 dE -55.131 dE	3m 3m 3m	CTION FUNC	TION WIDTH		FUNCTION VALUE	
5 6 7 8			24.722 8 GHz	-47.823 dE	sm					
9 10 11 12										
SG							STATUS			

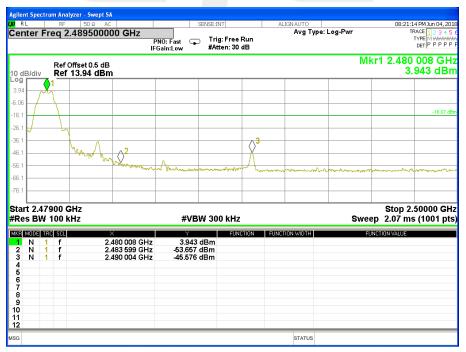

Shenzhen STS Test Services Co., Ltd.

17 CH

RL RF		AC		SENSE:INT	AL	IGN AUTO			7 PM Jun 04, 2
enter Freq	12.51500		PNO: Fast 🕞 FGain:Low	⊃ Trig: Free F #Atten: 30 d	lun B	Avg Type:	Log-Pwr	TF	RACE 1 2 3 4 TYPE M WANA DET P P P P
	f Offset 0.5 d f 15.14 dB							Mkr1 2.4	40 2 GI 138 dB
g abiaiv Re	1 15.14 UB							<u> </u>	
14	Y '								
36									
.9									-14.86
.9									
.9									
.9									
9	$\langle \rangle^2$	$\sqrt{3}$				ويعر والمعدوم م	A STREET, STRE	and a standard	a control prove from
.9						and the second second			
.9									
art 30 MHz								Stop	25.00 G
tes BW 100	kHz		#VB	W 300 kHz			Sw	eep 2.39 s	(40001 p
R MODE TRC SCL		×	Y	FUNC	FUNCT	ION WIDTH		FUNCTION VALUE	
N 1 f 2 N 1 f		2.440 2 GHz 3.327 3 GHz							
3 N 1 f		5.027 1 GHz	-56.475	dBm					
N 1 f		24.787 8 GHz	-47.889	dBm					
5									
)									
)									
						STATUS			
2									_

39 CH

Page 33 of 44



For Band edge

	50 Ω AC	SENSE:INT	ALIGN AUTO		08:15:43 PM Jun 04, 3
nter Freq 2.3		PNO: Fast	ee Run	oe: Log-Pwr	TRACE 1 2 3 4 TYPE M WAAW DET P P P F
	ffset 0.5 dB 4.54 dBm			Mkr1 2	2.401 970 G 4.543 dE
4					
3					
; 					-15.46
; 					
; 					(
					~2
; 					
and make when		and an and the second	he for many and the second	in the second second second	all all a second and a second and a second and a second a
; 					
rt 2.30000 G		#VBW 300 kH	Ηz		top 2.40300 G .87 ms (1001 p
es BW 100 kl					
MODE TRC SCL	×		UNCTION FUNCTION WIDTH	FUNCTION	VALUE
Mode TRC SCL N 1 f N 1 f	× 2.401 970 GHz 2.395 687 GHz	4.543 dBm -55.988 dBm	UNCTION FUNCTION WIDTH	FUNCTION	VALUE
Mode TRC SCL N 1 f	× 2.401 970 GHz	4.543 dBm	UNCTION FUNCTION WIDTH	FUNCTION	VALUE
Mode TRC SCL N 1 f N 1 f	× 2.401 970 GHz 2.395 687 GHz	4.543 dBm -55.988 dBm	UNCTION FUNCTION WIDTH	FUNCTION	VALUE
MODE TRC SCL N 1 f N 1 f	× 2.401 970 GHz 2.395 687 GHz	4.543 dBm -55.988 dBm	UNCTION FUNCTION WIDTH	FUNCTION	VALUE
MODE TRC SCL N 1 f N 1 f	× 2.401 970 GHz 2.395 687 GHz	4.543 dBm -55.988 dBm	UNCTION FUNCTION WIDTH	FUNCTION	VALUE
MODE TRC SCL N 1 f N 1 f	× 2.401 970 GHz 2.395 687 GHz	4.543 dBm -55.988 dBm	UNCTION FUNCTION WIDTH	FUNCTION	VALUE
Mode TRC SCL N 1 f N 1 f	× 2.401 970 GHz 2.395 687 GHz	4.543 dBm -55.988 dBm	UNCTION FUNCTION WIDTH	FUNCTION	VALDE

37 CH

39 CH

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6288
 Fax:+ 86-755
 3688
 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

6. POWER SPECTRAL DENSITY TEST

6.1 APPLIED PROCEDURES / LIMIT

FCC Part 15.247,Subpart C							
Section	Test Item	Limit	Frequency Range (MHz)	Result			
15.247(e)	Power Spectral Density	≤8 dBm (RBW≥3KHz)	2400-2483.5	PASS			

6.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW to: 100 kHz \ge RBW \ge 3 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

6.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

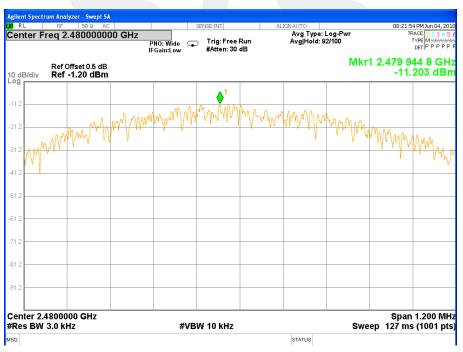
6.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 7.4V		TX Mode /CH37, CH17, CH39

Frequency	Power Density (dBm/3kHz)	Limit (dBm/3KHz)	Result
2402 MHz	-10.646	≤8	PASS
2440 MHz	-9.770	≤8	PASS
2480 MHz	-11.203	≤8	PASS

TX CH37

Shenzhen STS Test Services Co., Ltd.



TX CH17

TX CH39

7. BANDWIDTH TEST

7.1 APPLIED PROCEDURES / LIMIT

FCC Part 15.247,Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS

7.2 TEST PROCEDURE

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \ge RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \ge 6 dB.

7.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

7.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

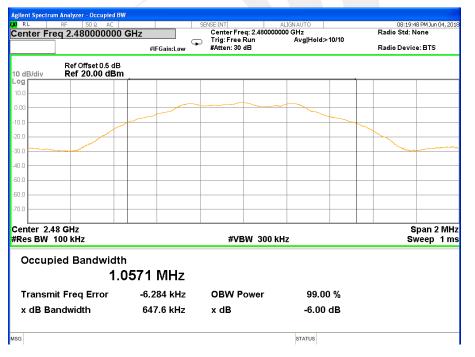
7.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 7.4V	lest Mode.	TX Mode /CH37, CH17, CH39

Frequency	6dB Bandwidth (MHz)	Channel Separation	Result
2402 MHz	0.640	>=500KHz	PASS
2440 MHz	0.644	>=500KHz	PASS
2480 MHz	0.648	>=500KHz	PASS

TX CH 37

Spectrum Analyzer - Occupied BV RF 50 Ω AC		SENSE:INT	ALIGNAUTO	08:14:17 PM Jur
er Freq 2.40200000	GHz	Center Freq: 2.402000	000 GHz	Radio Std: None
	#IFGain:Low	Trig: Free Run #Atten: 30 dB	Avg Hold>10/10	Radio Device: BTS
Ref Offset 0.5 dB div Ref 20.00 dBm	1			
				~
er 2.402 GHz BW 100 kHz		#VBW 300 k	Hz	Span : Sweep
cupied Bandwidth	1			
	0611 MHz			
nsmit Freq Error	-2.310 kHz	OBW Power	99.00 %	
B Bandwidth	640.4 kHz	x dB	-6.00 dB	
			STATUS	


Shenzhen STS Test Services Co., Ltd.

TX CH 17

TX CH 39

8. PEAK OUTPUT POWER TEST

8.1 APPLIED PROCEDURES / LIMIT

FCC Part 15.247,Subpart C				
Section Test Item Limit Frequency Range (MHz) Result				Result
15.247(b)(3)	Output Power	1 watt or 30dBm	2400-2483.5	PASS

8.2 TEST PROCEDURE

a. The EUT was directly connected to the Power Meter

8.3 TEST SETUP

8.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Shenzhen STS Test Services Co., Ltd.

8.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 7.4V		TX Mode /CH37, CH17, CH39

TX Mode					
Test Channel	Frequency	Conducted	Output Power	LIMIT	
Test Channer	(MHz)	Peak (dBm)	AVG (dBm)	dBm	
CH37	2402	5.13	4.11	30	
CH17	2440	6.10	5.08	30	
CH39	2480	4.29	2.27	30	

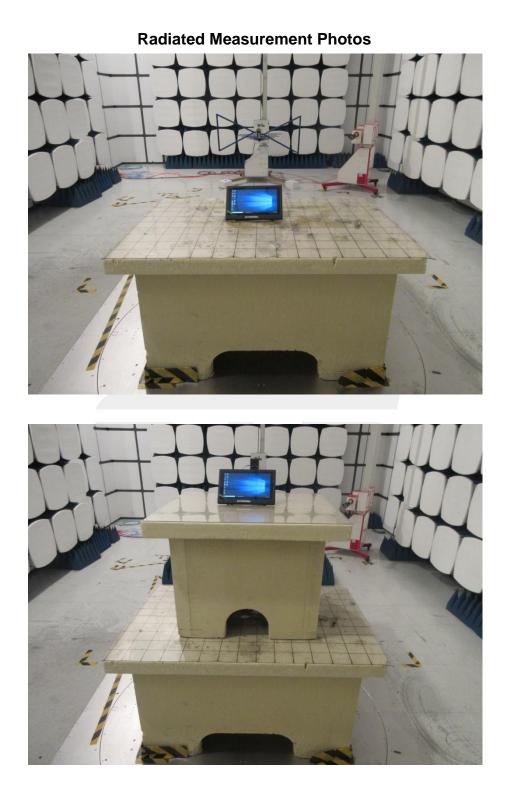
9. ANTENNA REQUIREMENT

9.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

9.2 EUT ANTENNA

The EUT antenna is PIFA Antenna. It comply with the standard requirement.


Shenzhen STS Test Services Co., Ltd.

Report No.: STS1805169W02

10. EUT TEST PHOTO

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

Page 44 of 44

Report No.: STS1805169W02

Conducted Measurement Photos

* * * * * END OF THE REPORT * * * *

Shenzhen STS Test Services Co., Ltd.