

FR 47 FCC PART 15 SUBPART C

CERTIFICATION TEST REPORT

For

PAC-MANIA[™] LEGACY WITH RISER ARCADE1UP / BANDAI NAMCO ENTERTAINMENT LEGACY ARCADE GAME Pac-Man Edition with WIFI/DIG DUG[™] LEGACY WITH RISER ARCADE1UP /PAC-MAN LEGACY WITH RISER ARCADE1UP/Ms.PAC-MAN[™] LEGACY WITH RISER ARCADE1UP/ BANDAI NAMCO ENTERTAINMENT LEGACY ARCADE Ms. PAC-MAN EDITION WITH WIFI

MODEL NUMBER: PAC-A-200110, PAC-A-200114, DIG-A-213310 , PAC-A-206211, MSP-A-202210, MSP-A-202214

FCC ID: 2APXHPABALE

REPORT NUMBER: 4790284007-14

ISSUE DATE: June 6, 2022

Prepared for

WF TASTEMAKERS TRADING LIMITED Unit 05 and unit 06, 6th Floor, Greenfield Tower Concordia Plaza, 1 Science Museum Road, TST East, Hong Kong

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products.

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	6/6/2022	Initial Issue	

Summary of Test Results						
Clause	Test Items	FCC Rules	Test Results			
1	6dB Bandwidth and 99% Occupied Bandwidth	FCC Part 15.247 (a) (2)	Pass			
2	Conducted Output Power	FCC Part 15.247 (b) (3)	Pass			
3	Power Spectral Density	FCC Part 15.247 (e)	Pass			
4	Conducted Bandedge and Spurious Emission	FCC Part 15.247 (d)	Pass			
5	Radiated Bandedge and Spurious Emission	FCC Part 15.247 (d) FCC Part 15.209 FCC Part 15.205	Pass			
6	Conducted Emission Test for AC Power Port	FCC Part 15.207	Pass			
7	Antenna Requirement	FCC Part 15.203	Pass			
Note:	t non ont is only myblished to and you					

1. This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

2. The measurement result for the sample received is <Pass> according to < CFR 47 FCC PART 15 SUBPART C > when <Accuracy Method> decision rule is applied.

TABLE OF CONTENTS

1.	AT	TESTATION OF TEST RESULTS	6
2.	TES	ST METHODOLOGY	7
3.	FAC	CILITIES AND ACCREDITATION	7
4.	CAI	LIBRATION AND UNCERTAINTY	8
4	.1.	MEASURING INSTRUMENT CALIBRATION	8
4	.2.	MEASUREMENT UNCERTAINTY	8
5.	EQ	UIPMENT UNDER TEST	9
5	.1.	DESCRIPTION OF EUT	9
5	.2.	CHANNEL LIST	9
5	.3.	MAXIMUM OUTPUT POWER	10
5	.4.	TEST CHANNEL CONFIGURATION	10
5	.5.	THE WORSE CASE POWER SETTING PARAMETER	10
5	.6.	THE WORSE CASE CONFIGURATIONS	11
5	.7.	DESCRIPTION OF AVAILABLE ANTENNAS	12
5	.8.	DESCRIPTION OF TEST SETUP	13
ME	ASU	RING INSTRUMENT AND SOFTWARE USED	14
МЕ 6.		RING INSTRUMENT AND SOFTWARE USED	
6.			16
6. 6	AN	TENNA PORT TEST RESULTS	16 16
6. 6	AN ⁻ 5.1.	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE	16 16 17
6. 6 6	AN 5.1. 5.2.	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH	16 16 17 19
6. 6 6 6	AN . 1. . 2. . 3.	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH CONDUCTED OUTPUT POWER	16 16 17
6. 6 6 6	AN ⁻ 5.1. 5.2. 5.3. 5.4. 5.5.	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY	16 16 17 19 20 21
6. 6 6 6 7.	AN [•] 5.1. 5.2. 5.3. 5.4. 5.5. RAI 7.1.	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS DIATED TEST RESULTS RESTRICTED BANDEDGE	
6. 6 6 6 7.	AN 5.1. 5.2. 5.3. 5.4. 5.5. RAI 7.1.	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS DIATED TEST RESULTS RESTRICTED BANDEDGE 1. 802.11b MODE	
6. 6 6 6 7.	AN [•] 5.1. 5.2. 5.3. 5.4. 5.5. RAI 7.1.	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS DIATED TEST RESULTS RESTRICTED BANDEDGE 1. 802.11b MODE 2. 802.11g MODE	
6. 6 6 6 6 7. 7	AN 5.1. 5.2. 5.3. 5.4. 5.5. RAI 7.1. 7.1. 7.1. 7.1.	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS DIATED TEST RESULTS RESTRICTED BANDEDGE 1. 802.11b MODE 2. 802.11g MODE 3. 802.11n HT20 MODE SPURIOUS EMISSIONS (1 GHz ~ 3 GHz)	
6. 6 6 6 7 7 7	AN 5.1. 5.2. 5.3. 5.4. 5.5. RAI 7.1. 7.1. 7.1. 7.1. 7.1. 7.2. 7.2.	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS DIATED TEST RESULTS RESTRICTED BANDEDGE 1. 802.11b MODE 2. 802.11n HT20 MODE SPURIOUS EMISSIONS (1 GHz ~ 3 GHz) 1. 802.11b MODE	
6. 6 6 6 7 7 7	AN 5.1. 5.2. 5.3. 5.4. 5.5. RAI 7.1. 7.1. 7.1. 7.1. 7.1. 7.2. 7.2.	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS DIATED TEST RESULTS RESTRICTED BANDEDGE 1. 802.11b MODE 2. 802.11g MODE 3. 802.11n HT20 MODE SPURIOUS EMISSIONS (1 GHz ~ 3 GHz) 1. 802.11b MODE SPURIOUS EMISSIONS (3 GHz ~ 18 GHz)	
6. 6 6 6 7 7 7	AN 5.1. 5.2. 5.3. 5.4. 5.5. RAI 7.1. 7.2. 7.3. 7.3.	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS DIATED TEST RESULTS RESTRICTED BANDEDGE 1. 802.11b MODE 2. 802.11g MODE 3. 802.11n HT20 MODE SPURIOUS EMISSIONS (1 GHz ~ 3 GHz) 1. 802.11b MODE SPURIOUS EMISSIONS (3 GHz ~ 18 GHz) 1. 802.11b MODE 2. 802.11g MODE	
6. 6 6 6 7. 7 7 7	AN 5.1. 5.2. 5.3. 5.4. 5.5. RAI 7.1. 7.2. 7.3.	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH CONDUCTED OUTPUT POWER POWER SPECTRAL DENSITY CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS DIATED TEST RESULTS RESTRICTED BANDEDGE 1. 802.11b MODE 2. 802.11g MODE SPURIOUS EMISSIONS (1 GHz ~ 3 GHz) 1. 802.11b MODE SPURIOUS EMISSIONS (3 GHz ~ 18 GHz) 1. 802.11b MODE 2. 802.11g MODE	16 16 17 19 20 21 21 23 29 29 33 37 41 41 47 47 53 59

	7.4.1.	802.11b MODE	65
	7.5. SPI 7.5.1.	URIOUS EMISSIONS (30 MHz ~ 1 GHz) 802.11b MODE	
	7.6. SP0 7.6.1.	URIOUS EMISSIONS BELOW 30 MHz 802.11b MODE	
8.	AC POV	VER LINE CONDUCTED EMISSIONS	72
	8.1. 802	2.11b SISO MODE	74
9.	ANTEN	NA REQUIREMENTS	76
10	. Appe	ndix A	77
	10.1. A 10.1.1. 10.1.2.	ppendix A: DTS Bandwidth Test Result Test Graphs	77
	10.2. A 10.2.1. 10.2.2.	ppendix B: Occupied Channel Bandwidth Test Result Test Graphs	81
	<i>10.3. A</i> 10.3.1.	ppendix C: Maximum Average Conducted Output Power Test Result	
	<i>10.4. A</i> 10.4.1. 10.4.2.	ppendix D: Maximum power spectral density Test Result Test Graphs	86
	<i>10.5. A</i> 10.5.1. 10.5.2.	ppendix E: Band edge measurements Test Result Test Graphs	
	10.6. A 10.6.1. 10.6.2.	ppendix F: Conducted Spurious Emission Test Result Test Graphs	
	10.7. A 10.7.1. 10.7.2.	<i>ppendix G: Duty Cycle</i> Test Result Test Graphs	

1. ATTESTATION OF TEST RESULTS

Applicant Information Company Name: Address:	WF TASTEMAKERS TRADING LIMITED Unit 05 and unit 06, 6th Floor, Greenfield Tower Concordia Plaza, 1 Science Museum Road, TST East, Hong Kong
Manufacturer Information Company Name: Address:	WF TASTEMAKERS TRADING LIMITED Unit 05 and unit 06, 6th Floor, Greenfield Tower Concordia Plaza, 1 Science Museum Road, TST East, Hong Kong
EUT Information	
EUT Name:	PAC-MANIA [™] LEGACY WITH RISER ARCADE1UP / BANDAI NAMCO ENTERTAINMENT LEGACY ARCADE GAME Pac-Man Edition with WIFI/DIG DUG [™] LEGACY WITH RISER ARCADE1UP /PAC-MAN LEGACY WITH RISER ARCADE1UP/Ms.PAC-MAN [™] LEGACY WITH RISER ARCADE1UP/ BANDAI NAMCO ENTERTAINMENT LEGACY ARCADE Ms. PAC-MAN EDITION WITH WIFI
Model:	PAC-A-200110
Series Model:	PAC-A-200114, DIG-A-213310 [,] PAC-A-206211, MSP-A-202210, MSP-A-202214
Model Difference:	Please refer to clause 5.1. Description of EUT
Brand:	ARCADE 1 UP
Sample Received Date:	Feb. 10, 2022
Sample Status:	Normal
Sample ID:	4662428
Date of Tested:	Feb. 11 ~ June 6, 2022

APPLICABLE STANDARDS STANDARD TEST RESULTS CFR 47 FCC PART 15 SUBPART C PASS

Prepared By:

Dean Hua

Dean Hua Engineer Project Associate

Approved By:

Sephentino

Stephen Guo Laboratory Manager

Checked By:

henry lies

Shawn Wen Laboratory Leader

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB 558074 D01 15.247 Meas Guidance v05r02, KDB 414788 D01 Radiated Test Site v01r01, CFR 47 FCC Part 2, CFR 47 FCC Part 15, ANSI C63.10-2013.

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No.: 4102.01) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with A2LA.
	FCC (FCC Designation No.: CN1187)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. Has been recognized to perform compliance testing on equipment subject to the Commission's Delcaration of Conformity (DoC) and Certification rules
	ISED (Company No.: 21320)
Accreditation Certificate	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been registered and fully described in a report filed with ISED.
	Body Identifier (CABID) is CN0046.
	VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with VCCI, the Membership No. is 3793. Facility Name:
	Chamber D, the VCCI registration No. is G-20019 and R-20004 Shielding Room B , the VCCI registration No. is C-20012 and T-20011

Note 1: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

Note 2: The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3: For below 30 MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30 MHz had been correlated to measurements performed on an OFS.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognize national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty			
Conduction emission	3.62 dB			
Radiated Emission (Included Fundamental Emission) (9 kHz ~ 30 MHz)	2.2 dB			
Radiated Emission (Included Fundamental Emission) (30 MHz ~ 1 GHz)	4.00 dB			
Radiated Emission	5.78 dB (1 GHz ~ 18 GHz)			
(Included Fundamental Emission) (1 GHz to 26 GHz)	5.23 dB (18 GHz ~ 26 GHz)			
Duty Cycle	±0.028%			
DTS and 99% Occupied Bandwidth	±0.0196%			
Maximum Conducted Output Power	±0.686 dB			
Maximum Power Spectral Density Level	±0.743 dB			
Conducted Band-edge Compliance	±1.328 dB			
Conducted Unwanted Emissions In Non-restricted	±0.746 dB (9 kHz ~ 1 GHz)			
Frequency Bands	±1.328dB (1 GHz ~ 26 GHz)			
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.				

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	PAC-MANIA [™] LEGACY WITH RISER ARCADE1UP / BANDAI NAMCO ENTERTAINMENT LEGACY ARCADE GAME Pac-Man Edition with WIFI/DIG DUG [™] LEGACY WITH RISER ARCADE1UP /PAC-MAN LEGACY WITH RISER ARCADE1UP/Ms.PAC-MAN [™] LEGACY WITH RISER ARCADE1UP/ BANDAI NAMCO ENTERTAINMENT LEGACY ARCADE Ms. PAC-MAN EDITION WITH WIFI
Model:	PAC-A-200110
Serial Model:	PAC-A-200114, DIG-A-213310 , PAC-A-206211, MSP-A-202210, MSP-A-202214
Model Difference:	PAC-A-200114, DIG-A-213310 · PAC-A-206211, MSP-A-202210 have the same technical construction including circuit diagram, PCB Layout, components and component layout, only the color, product name and model name are different. We select "PAC-A-200110" as the representative model for compliance test. MSP-A-202214 has the same technical construction including circuit diagram, PCB Layout, components and component layout, only the outlook are different. We select "PAC-A-200110" as the representative model for compliance test.
Radio Technology	IEEE802.11b/g/n HT20
Operation frequency	IEEE 802.11b: 2412 MHz-2462 MHz IEEE 802.11g: 2412 MHz-2462 MHz IEEE 802.11n HT20: 2412 MHz-2462 MHz
Modulation	IEEE 802.11b: DSSS (CCK) IEEE 802.11g: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK, BPSK
Rated Input	AC 120 V,60 Hz

5.2. CHANNEL LIST

	Channel List for 802.11b/g/n (20 MHz)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
1	2412	4	2427	7	2442	10	2457	
2	2417	5	2432	8	2447	11	2462	
3	2422	6	2437	9	2452	/	/	

IEEE Std. 802.11	Frequency (MHz)	Channel Number	Maximum Conducted AVG Output Power (dBm)	Maximum AVG EIRP (dBm)
b	2412 ~ 2462	1-11[11]	13.96	20.36
g	2412 ~ 2462	1-11[11]	11.54	17.94
n HT20	2412 ~ 2462	1-11[11]	11.46	17.86

5.3. MAXIMUM OUTPUT POWER

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
WiFi TX(802.11b)	CH 1, CH 6, CH 11/ Low, Middle, High	2412MHz, 2437MHz, 2462MHz
WiFi TX(802.11g)	CH 1, CH 6, CH 11/ Low, Middle, High	2412MHz, 2437MHz, 2462MHz
WiFi TX(802.11n HT20)	CH 1, CH 6, CH 11/ Low, Middle, High	2412MHz, 2437MHz, 2462MHz

5.5. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band								
Test Software			putty					
	Transmit		Test Channel					
Modulation Mode	Antenna Node Number	1	NCB: 20MH	łz	NCB: 40MHz			
Widde		CH 1	CH 6	CH 11	CH 3	CH 6	CH 9	
802.11b	1	32	32	32	· · ·			
802.11g	1	42	42	Default	Not Supported		b	
802.11n HT20	1	42	42	Default]			

5.6. THE WORSE CASE CONFIGURATIONS

The EUT was tested in the following configuration(s):

Controlled in test mode using a software application on the EUT supplied by customer. The application was used to enable a continuous transmission and to select the mode, test channels, bandwidth, data rates as required.

Test channels referring to section 5.4.

Maximum power setting referring to section 5.5.

Worst case Data Rates declared by the customer:

802.11b mode: 1 Mbps 802.11g mode: 6 Mbps 802.11n HT20 mode: MCS0

The measured additional path loss was included in any path loss calculations for all RF cable used during tested.

5.7. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)
1	2412-2462	Monopole	6.4

Test Mode	Transmit and Receive Mode	Description
IEEE 802.11b	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.
IEEE 802.11g	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.
IEEE 802.11n HT20	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.

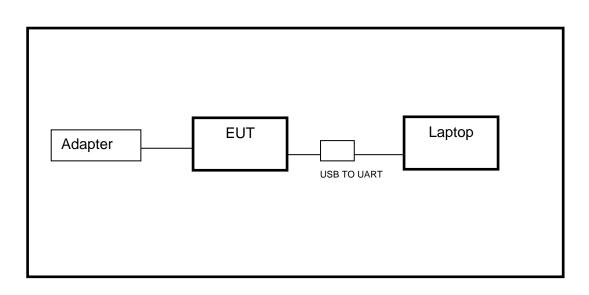
5.8. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	P/N
1	PC	Dell	Vostro 3902	8KNDDB2

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	TYPE C	/	1.0	/


ACCESSORIES

Item	Accessory	Brand Name	Model Name	Description
1	Switching Power Supply	BIron	BI36-120300-U2	Input: 100-240 V~ 50/60 Hz 1.2 A Output: 12.0 V === 3.0 A
2	Switching Power Supply	Royal	BI36L-120300-I-LED	Input: 100-240 V~ 50/60 Hz 1.2 A Output: 12.0 V === 3.0 A

TEST SETUP

The EUT can work in an engineer mode with software through a Laptop.

SETUP DIAGRAM FOR TESTS

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

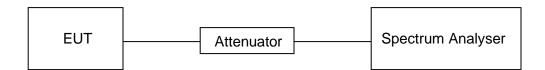
MEASURING INSTRUMENT AND SOFTWARE USED

	R&S TS 8997 Test System									
Equipment			nufac	turer	Model	No.	Serial No.	Last C	al.	Due. Date
Power sensor, Power N	leter		R&S	5	OSP1	20	100921	Mar.23,2	2021	Mar.22,2022
Vector Signal Genera	tor		R&S	5	SMBV1	00A	261637	Oct.30, 2	2021	Oct.29, 2022
Signal Generator			R&S	;	SMB10	00A	178553	Oct.30, 2	2021	Oct.29, 2022
Signal Analyzer			R&S	5	FSV4	0	101118	Oct.30, 2	2021	Oct.29, 2022
					Softwar	е			1	
Description			Ν	/lanuf	acturer		Nam	ie		Version
For R&S TS 8997 Test	Syste	em	Rol	nde 8	Schwar	z	EMC	32		10.60.10
Tonsend RF Test System										
Equipment	Man	ufac	turer	Мос	del No.	S	Serial No.	Last C	Cal.	Due. Date
Wideband Radio Communication Tester		R&S	5	CM	W500		155523	Oct.30,	2021	Oct.29, 2022
Wireless Connectivity Tester		R&S	5	CM	W270	120	1.0002N75- 102	Sep.29,	2021	Sep.28, 2022
PXA Signal Analyzer	Ke	eysig	ght	N9	030A	MY	′55410512	Oct.30,	2021	Oct.29, 2022
MXG Vector Signal Generator	Ke	eysig	ght	N5	182B	MY	′56200284	Oct.30,	2021	Oct.29, 2022
MXG Vector Signal Generator	Ke	eysig	ght	N5	172B	MY	⁄56200301	Oct.30,	2021	Oct.29, 2022
DC power supply	Ke	eysig	ght	E3	642A	MY	′55159130	Oct.30,	2021	Oct.29, 2022
Temperature & Humidity Chamber	SANMOOD SG-8			30-CC-2		2088	Nov.20,	2020	Nov.19,2022	
					Softwar	е				
Description		Man	ufact	urer			Name			Version
Tonsend SRD Test Sys	tem	Тс	onser	nd	JS11	20-3	3 RF Test S	ystem	2	.6.77.0518

Radiated Emissions						
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date	
MXE EMI Receiver	KESIGHT	N9038A	MY56400036	Oct.30, 2021	Oct.29, 2022	
Hybrid Log Periodic Antenna	TDK	HLP-3003C	130959	Aug.02, 2021	Aug.01, 2024	
Preamplifier	HP	8447D	2944A09099	Oct.30, 2021	Oct.29, 2022	
EMI Measurement Receiver	R&S	ESR26	101377	Oct.30, 2021	Oct.29, 2022	
Horn Antenna	TDK	HRN-0118	130940	July 20, 2021	July 19, 2024	
Preamplifier	TDK	PA-02-0118	TRS-305- 00067	Oct.30, 2021	Oct.29, 2022	
Horn Antenna	Schwarzbeck	BBHA9170	697	July 20, 2021	July 19, 2024	
Preamplifier	TDK	PA-02-2	TRS-307- 00003	Oct.31, 2021	Oct.30, 2022	
Preamplifier	TDK	PA-02-3	TRS-308- 00002	Oct.31, 2021	Oct.30, 2022	
Loop antenna	Schwarzbeck	1519B	00008	Dec.14, 2021	Dec.13,2024	
Preamplifier	TDK	PA-02-001- 3000	TRS-302- 00050	Oct.31, 2021	Oct.30, 2022	
Preamplifier	Mini-Circuits	ZX60-83LN- S+	SUP01201941	Oct.31, 2021	Oct.30, 2022	
High Pass Filter	Wi	WHKX10- 2700-3000- 18000-40SS	23	Oct.31, 2021	Oct.30, 2022	
Band Reject Filter	Wainwright	WRCJV8- 2350-2400- 2483.5- 2533.5-40SS	4	Oct.31, 2021	Oct.30, 2022	
Software						
[Description		Manufacturer	Name	Version	
Test Software	for Radiated E	missions	Farad	EZ-EMC	Ver. UL-3A1	

6. ANTENNA PORT TEST RESULTS

6.1. ON TIME AND DUTY CYCLE


<u>LIMITS</u>

None; for reporting purposes only

PROCEDURE

Refer to ANSI C63.10-2013 clause 11.6 Zero – Span Spectrum Analyzer method.

TEST SETUP

TEST ENVIRONMENT

Temperature	22.3 °C	Relative Humidity	53.6 %
Atmosphere Pressure	101 kPa	Test Voltage	AC 120 V, 60 Hz

RESULTS

Please refer to appendix G.

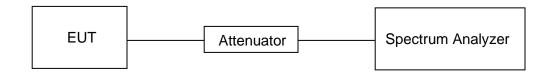
6.2. 6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH

<u>LIMITS</u>

CFR 47 FCC Part15 (15.247) Subpart C						
Section Test Item Limit Frequency Range (MHz)						
CFR 47 FCC 15.247(a)(2)	6 dB Bandwidth	≥ 500 kHz	2400-2483.5			

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.8 for DTS bandwidth and clause 6.9 for Occupied Bandwidth.


Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Frequency Span	Between 1.5 times and 5.0 times the OBW
Detector	Peak
IRRW/	For 6 dB Bandwidth: 100 kHz For 99 % Occupied Bandwidth: 1 % to 5 % of the occupied bandwidth
IV/BW/	For 6 dB Bandwidth: ≥3 × RBW For 99 % Occupied Bandwidth: ≥3 × RBW
Trace	Max hold
Sweep	Auto couple

a) Use the 99 % power bandwidth function of the instrument, allow the trace to stabilize and report the measured bandwidth.

b) Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

TEST SETUP

TEST ENVIRONMENT

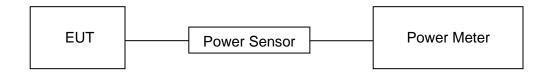
Temperature	22.3 °C	Relative Humidity	53.6 %
Atmosphere Pressure	101 kPa	Test Voltage	AC 120 V, 60 Hz

RESULTS

Please refer to appendix A & B.

6.3. CONDUCTED OUTPUT POWER

<u>LIMITS</u>


CFR 47 FCC Part15 (15.247) Subpart C					
Section Test Item Limit Frequency Range (MHz)					
CFR 47 FCC 15.247(b)(3)	AVG Output Power	0.912 watt or 29.6 dBm	2400-2483.5		

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.9.2.3.1 Method AVGPM Connect the EUT to a low loss RF cable from the antenna port to the power sensor (video bandwidth is greater than the occupied bandwidth).

Measure the average power of the transmitter, the indicated level is the average output power, after any corrections for external attenuators and cables.

TEST SETUP

TEST ENVIRONMENT

Temperature	22.3 °C	Relative Humidity	53.6 %
Atmosphere Pressure	101 kPa	Test Voltage	AC 120 V, 60 Hz

RESULTS

Please refer to appendix C.

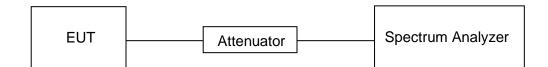
6.4. POWER SPECTRAL DENSITY

<u>LIMITS</u>

CFR 47 FCC Part15 (15.247) Subpart C			
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC §15.247 (e)	Power Spectral Density	8 dBm/3 kHz	2400-2483.5

TEST PROCEDURE

Connect the EUT to the spectrum analyser and use the following settings:


Center Frequency	The center frequency of the channel under test
Detector	RMS
RBW	3 kHz ≤ RBW ≤ 100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Trace average at least 100 traces
Sweep time	Auto couple

Refer to ANSI C63.10-2013 clause 11.10.3 Method AVGPSD-1

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST SETUP

TEST ENVIRONMENT

Temperature	22.3 °C	Relative Humidity	53.6 %
Atmosphere Pressure	101 kPa	Test Voltage	AC 120 V, 60 Hz

RESULTS

Please refer to appendix D.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

6.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

<u>LIMITS</u>

CFR 47 FCC Part15 (15.247) Subpart C		
Section Test Item Limit		
CFR 47 FCC §15.247 (d)	Conducted Bandedge and Spurious Emissions	at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power

TEST PROCEDURE

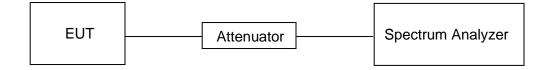
Refer to ANSI C63.10-2013 clause 11.11 and 11.13.

Connect the EUT to the spectrum analyser and use the following settings for reference level measurement:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level.

Change the settings for emission level measurement:


5040	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST SETUP

TEST ENVIRONMENT

Temperature	22.3 °C	Relative Humidity	53.6 %
Atmosphere Pressure	101 kPa	Test Voltage	AC 120 V, 60 Hz

RESULTS

Please refer to appendix E & F.

7. RADIATED TEST RESULTS

LIMITS

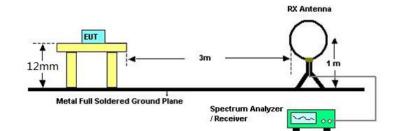
Please refer to CFR 47 FCC §15.205 and §15.209.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz ~ 1 GHz)

Emissions radiated outside of the specified frequency bands above 30 MHz			
Frequency Range	Field Strength Limit	Field Stren	•
(MHz)	(uV/m) at 3 m	(dBuV/m)	
		Quasi-I	Peak
30 - 88	100	40	
88 - 216	150	43.5	
216 - 960	200	46	
Above 960	500	54	
Above 1000	500	Peak	Average
	500	74	54

FCC Emissions radiated outside of the specified frequency bands below 30 MHz		
Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30

FCC Restricted bands of operation refer to FCC §15.205 (a):


MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

TEST SETUP AND PROCEDURE

Below 30 MHz

The setting of the spectrum analyser

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.

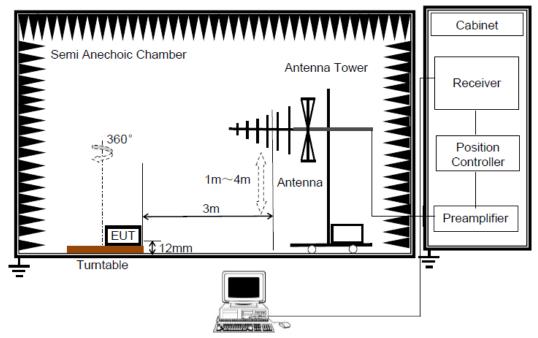
2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 12 mm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.

5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector.

6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.


7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X KHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

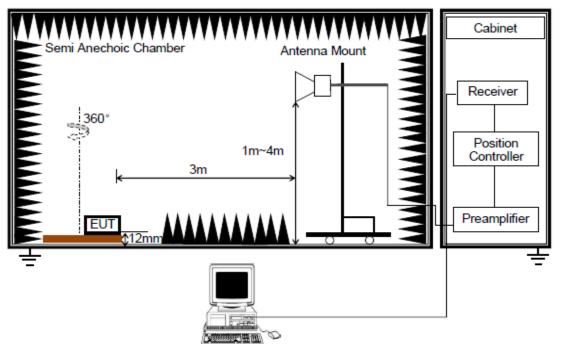
Below 1 GHz and above 30 MHz

The setting of the spectrum analyser

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.


3. The EUT was placed on a turntable with 12 mm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

Above 1 GHz

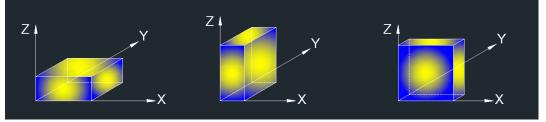
The setting of the spectrum analyser

RBW	1 MHz
IV BW	PEAK: 3 MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 12 mm above ground.


4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

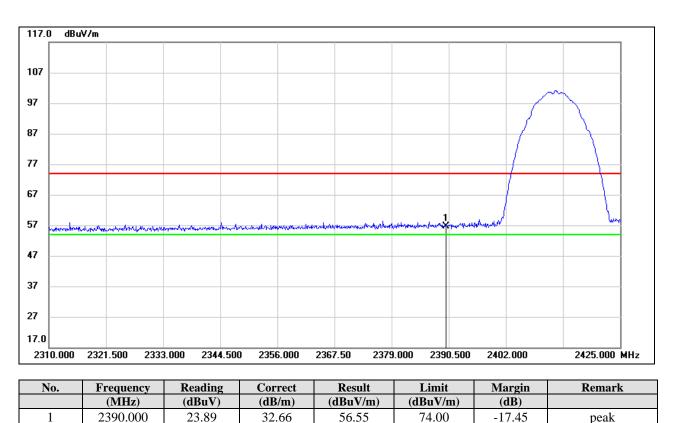
6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1. ON TIME AND DUTY CYCLE.

X axis, Y axis, Z axis positions:

Note: The manufacturer has recommended that the EUT only be used in the Floor-standing orientation; therefore, all radiated testing was performed in the orientation. The EUT was placed on normal orientation and all radiated emissions were performed with the EUT shown on the setup photo.

TEST ENVIRONMENT

Temperature	24.3 °C	Relative Humidity	61 %
Atmosphere Pressure	101 kPa	Test Voltage	AC 120 V, 60 Hz

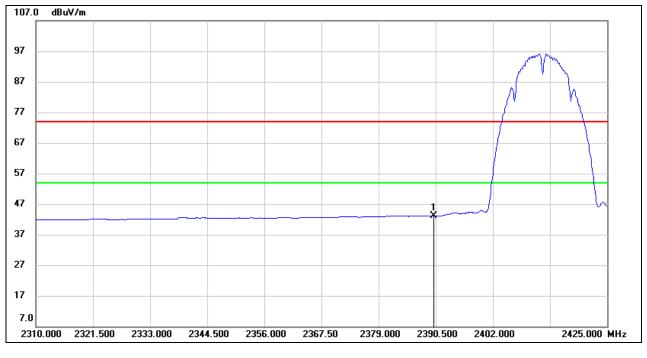

RESULTS

7.1. RESTRICTED BANDEDGE

7.1.1. 802.11b MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

PEAK


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

AVG

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	10.45	32.66	43.11	54.00	-10.89	AVG

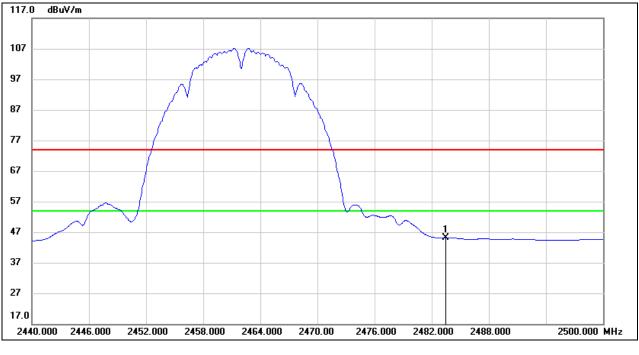
Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	24.82	33.10	57.92	74.00	-16.08	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

AVG

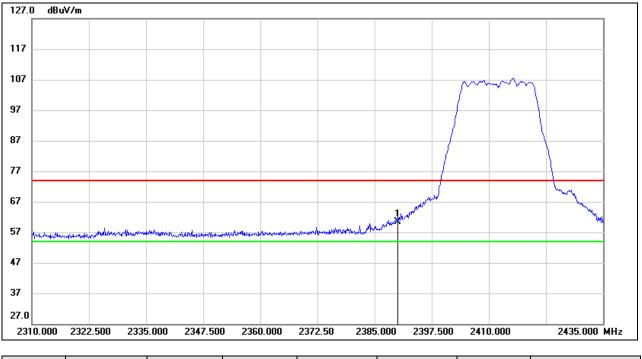
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	11.95	33.10	45.05	54.00	-8.95	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

4. For the transmitting duration, please refer to clause 7.1.


5. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

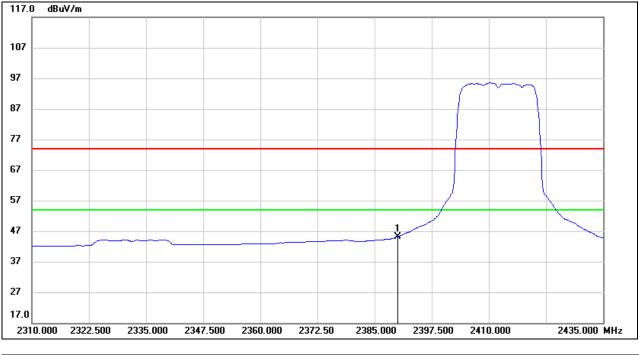
Note: Both horizontal and vertical had been tested, only the worst data was recorded in the report.

7.1.2. 802.11g MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

PEAK

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	27.81	32.66	60.47	74.00	-13.53	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

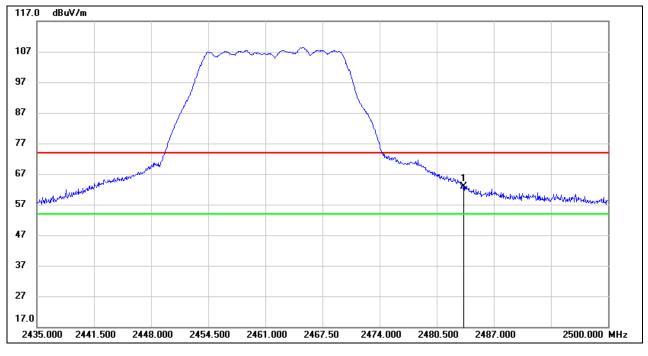
3. Peak: Peak detector.

AVG

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	12.51	32.66	45.17	54.00	-8.83	AVG

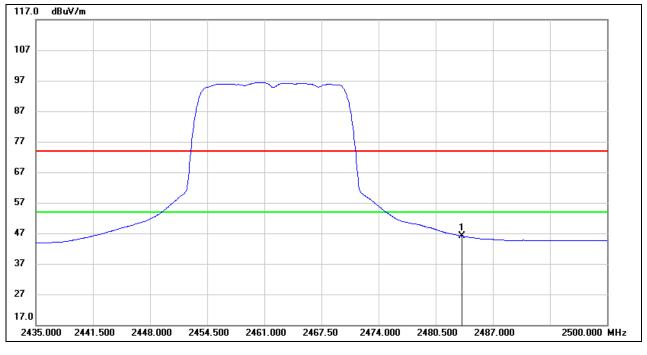
Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

4. For the transmitting duration, please refer to clause 7.1.

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	29.68	33.10	62.78	74.00	-11.22	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

AVG

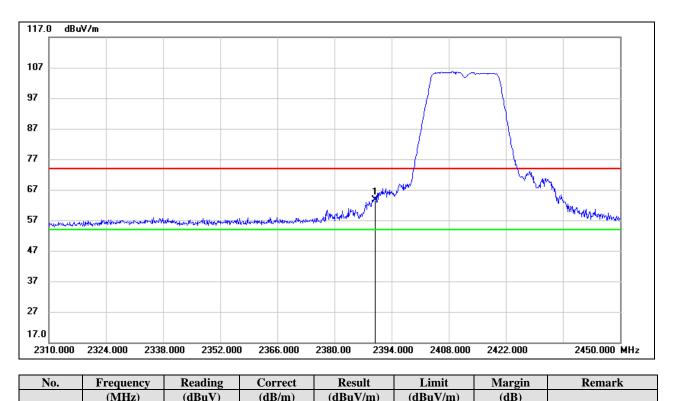
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	12.96	33.10	46.06	54.00	-7.94	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

4. For the transmitting duration, please refer to clause 7.1.


5. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

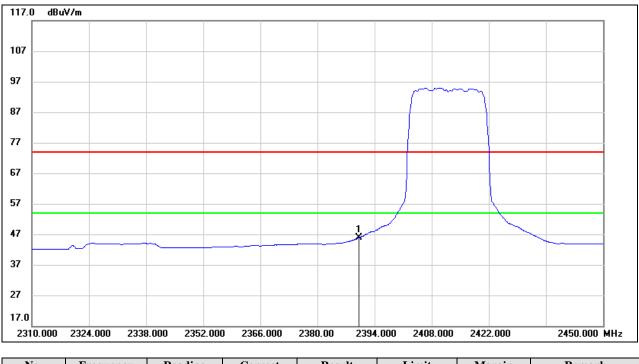
Note: Both horizontal and vertical had been tested, only the worst data was recorded in the report.

7.1.3. 802.11n HT20 MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

PEAK

	()	((===)	(======)	(*******************	()	
1	2390.000	31.09	32.66	63.75	74.00	-10.25	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

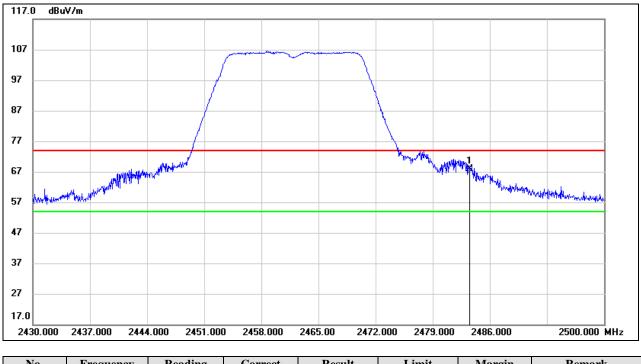
AVG

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	13.22	32.66	45.88	54.00	-8.12	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

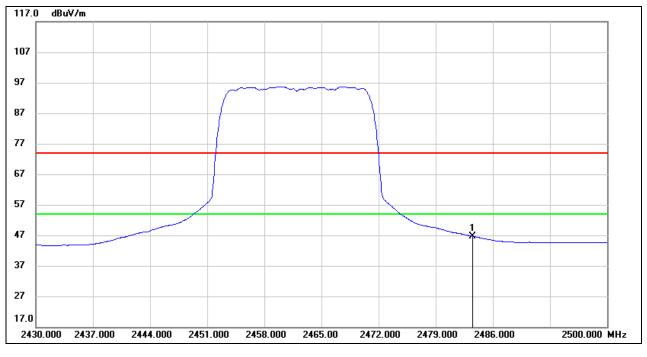

4. For the transmitting duration, please refer to clause 7.1.

5. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	34.87	33.10	67.97	74.00	-6.03	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

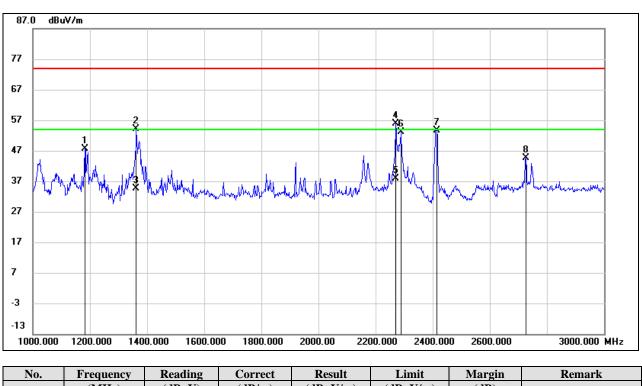
AVG

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	13.61	33.10	46.71	54.00	-7.29	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. AVG: VBW=1/Ton, where: Ton is the transmitting duration.


4. For the transmitting duration, please refer to clause 7.1.

5. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

Note: Both horizontal and vertical had been tested, only the worst data was recorded in the report.

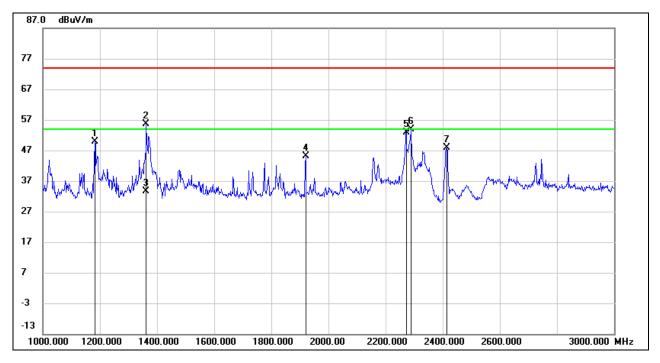
7.2. SPURIOUS EMISSIONS (1 GHz ~ 3 GHz)

7.2.1. 802.11b MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1183.000	61.57	-13.89	47.68	74.00	-26.32	peak
2	1363.000	67.34	-13.28	54.06	74.00	-19.94	peak
3	1363.000	47.84	-13.28	34.56	54.00	-19.44	AVG
4	2271.000	65.44	-9.60	55.84	74.00	-18.16	peak
5	2271.000	47.56	-9.60	37.96	54.00	-16.04	AVG
6	2289.000	62.70	-9.53	53.17	74.00	-20.83	peak
7	2412.000	62.59	-9.03	53.56	/	/	Fundamental
8	2726.000	52.77	-8.04	44.73	74.00	-29.27	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

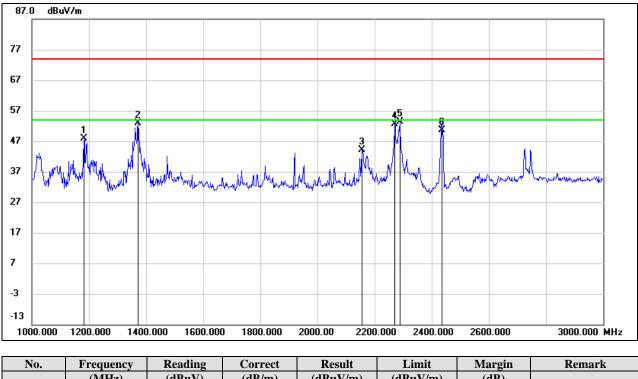
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1182.000	63.87	-13.89	49.98	74.00	-24.02	peak
2	1363.000	69.02	-13.28	55.74	74.00	-18.26	peak
3	1363.000	46.93	-13.28	33.65	54.00	-20.35	AVG
4	1920.000	56.23	-11.02	45.21	74.00	-28.79	peak
5	2272.000	62.46	-9.59	52.87	74.00	-21.13	peak
6	2289.000	63.46	-9.53	53.93	74.00	-20.07	peak
7	2412.000	56.95	-9.03	47.92	/	/	Fundamental

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

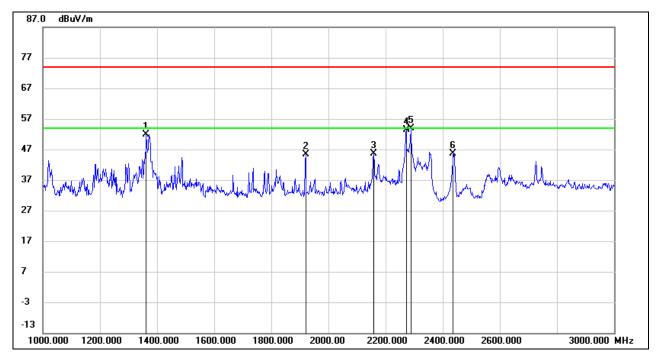
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1183.000	61.87	-13.89	47.98	74.00	-26.02	peak
2	1372.000	66.19	-13.26	52.93	74.00	-21.07	peak
3	2157.000	54.37	-10.17	44.20	74.00	-29.80	peak
4	2271.000	62.34	-9.60	52.74	74.00	-21.26	peak
5	2289.000	62.82	-9.53	53.29	74.00	-20.71	peak
6	2437.000	59.65	-8.98	50.67	/	/	Fundamental

Note: 1. Measurement = Reading Level + Correct Factor.

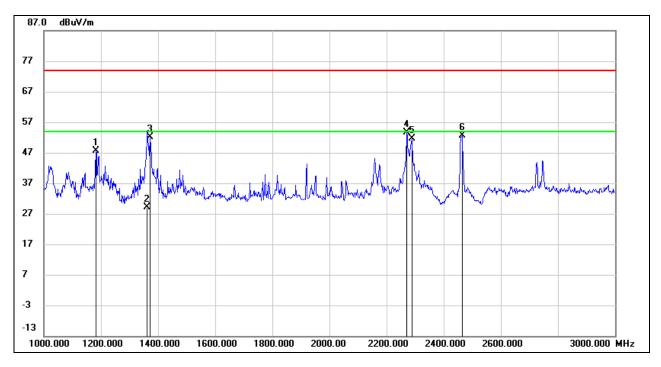

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1363.000	65.19	-13.28	51.91	74.00	-22.09	peak
2	1920.000	56.41	-11.02	45.39	74.00	-28.61	peak
3	2158.000	55.80	-10.16	45.64	74.00	-28.36	peak
4	2272.000	63.05	-9.59	53.46	74.00	-20.54	peak
5	2288.000	63.29	-9.53	53.76	74.00	-20.24	peak
6	2437.000	54.64	-8.98	45.66	/	/	Fundamental

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

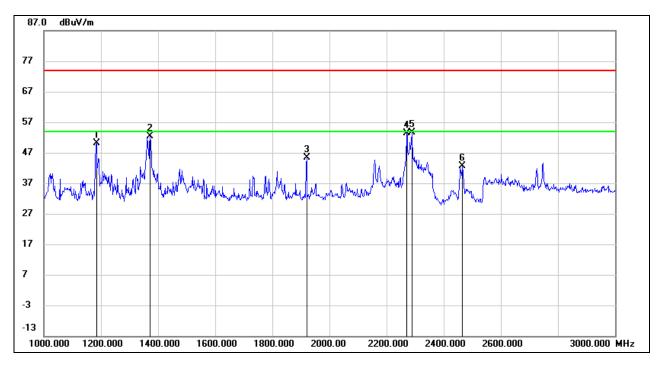
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1183.000	61.58	-13.89	47.69	74.00	-26.31	peak
2	1363.000	42.41	-13.28	29.13	54.00	-24.87	AVG
3	1373.000	65.32	-13.25	52.07	74.00	-21.93	peak
4	2271.000	63.15	-9.60	53.55	74.00	-20.45	peak
5	2289.000	61.04	-9.53	51.51	74.00	-22.49	peak
6	2462.000	61.45	-8.90	52.55	/	/	Fundamental

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1184.000	63.91	-13.87	50.04	74.00	-23.96	peak
2	1373.000	65.73	-13.25	52.48	74.00	-21.52	peak
3	1920.000	56.31	-11.02	45.29	74.00	-28.71	peak
4	2271.000	62.96	-9.60	53.36	74.00	-20.64	peak
5	2289.000	63.08	-9.53	53.55	74.00	-20.45	peak
6	2462.000	51.66	-8.91	42.75	/	/	Fundamental

Note: 1. Measurement = Reading Level + Correct Factor.

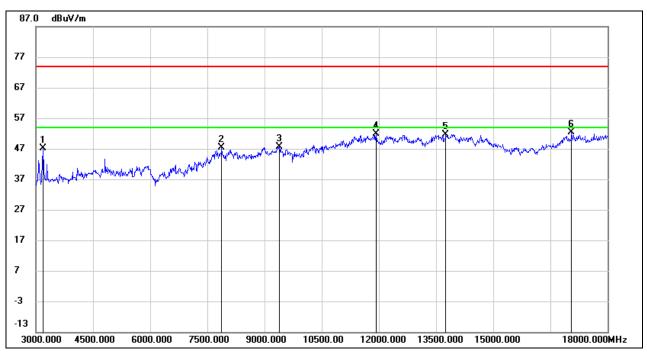
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

Note: All the modes and channels had been tested, but only the worst data was recorded in the report.


UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

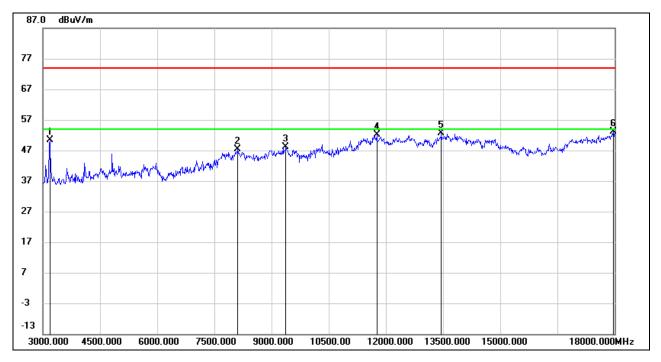
7.3. SPURIOUS EMISSIONS (3 GHz ~ 18 GHz)

7.3.1. 802.11b MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3202.500	52.29	-5.28	47.01	74.00	-26.99	peak
2	7882.500	39.04	8.33	47.37	74.00	-26.63	peak
3	9390.000	36.78	10.73	47.51	74.00	-26.49	peak
4	11932.500	34.66	17.25	51.91	74.00	-22.09	peak
5	13755.000	32.24	19.46	51.70	74.00	-22.30	peak
6	17055.000	32.42	20.01	52.43	74.00	-21.57	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

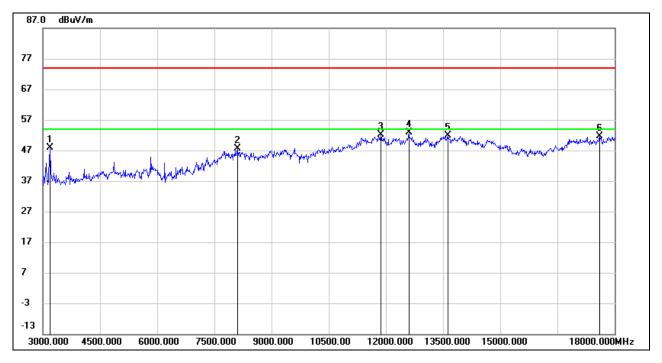

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3180.000	55.57	-5.16	50.41	74.00	-23.59	peak
2	8115.000	37.86	9.50	47.36	74.00	-26.64	peak
3	9382.500	37.53	10.67	48.20	74.00	-25.80	peak
4	11767.500	35.03	17.02	52.05	74.00	-21.95	peak
5	13462.500	33.62	19.11	52.73	74.00	-21.27	peak
6	17970.000	28.39	24.77	53.16	74.00	-20.84	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

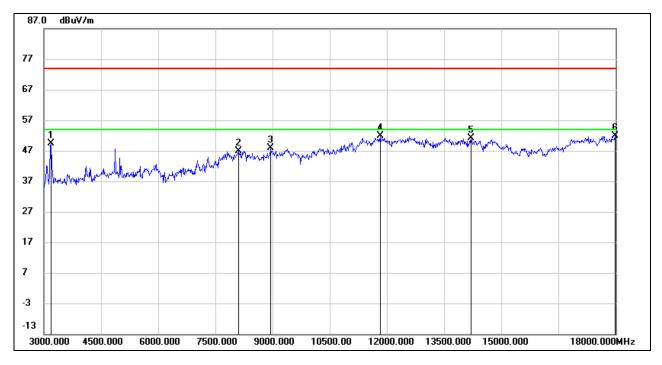
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3202.500	53.10	-5.28	47.82	74.00	-26.18	peak
2	8107.500	38.16	9.53	47.69	74.00	-26.31	peak
3	11872.500	34.84	17.17	52.01	74.00	-21.99	peak
4	12600.000	35.70	17.12	52.82	74.00	-21.18	peak
5	13620.000	32.65	19.12	51.77	74.00	-22.23	peak
6	17610.000	29.22	22.41	51.63	74.00	-22.37	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

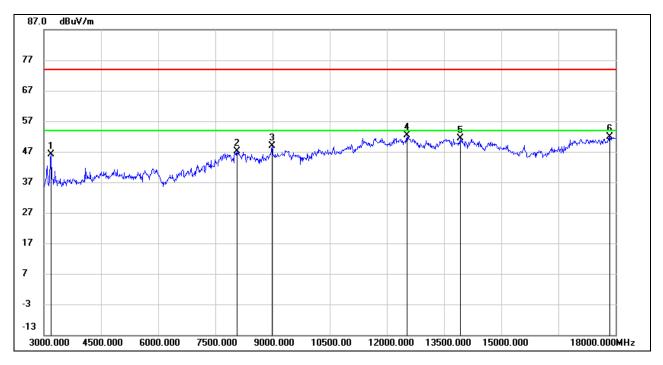
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3202.500	54.65	-5.28	49.37	74.00	-24.63	peak
2	8115.000	37.42	9.50	46.92	74.00	-27.08	peak
3	8962.500	37.78	10.04	47.82	74.00	-26.18	peak
4	11827.500	34.88	17.05	51.93	74.00	-22.07	peak
5	14205.000	32.08	18.93	51.01	74.00	-22.99	peak
6	17992.500	27.08	24.92	52.00	74.00	-22.00	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

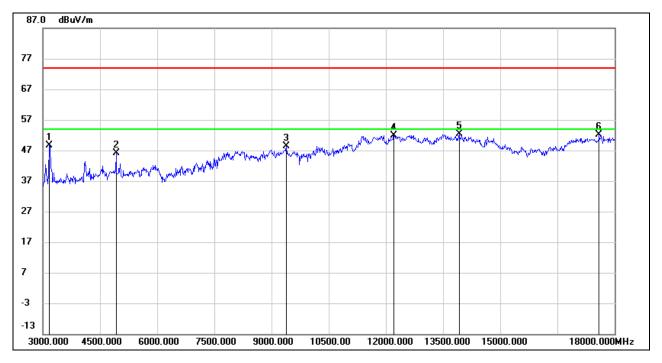
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3180.000	51.19	-5.16	46.03	74.00	-27.97	peak
2	8077.500	37.93	9.22	47.15	74.00	-26.85	peak
3	8992.500	38.16	10.62	48.78	74.00	-25.22	peak
4	12532.500	35.42	17.02	52.44	74.00	-21.56	peak
5	13920.000	32.18	19.30	51.48	74.00	-22.52	peak
6	17857.500	27.58	24.26	51.84	74.00	-22.16	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

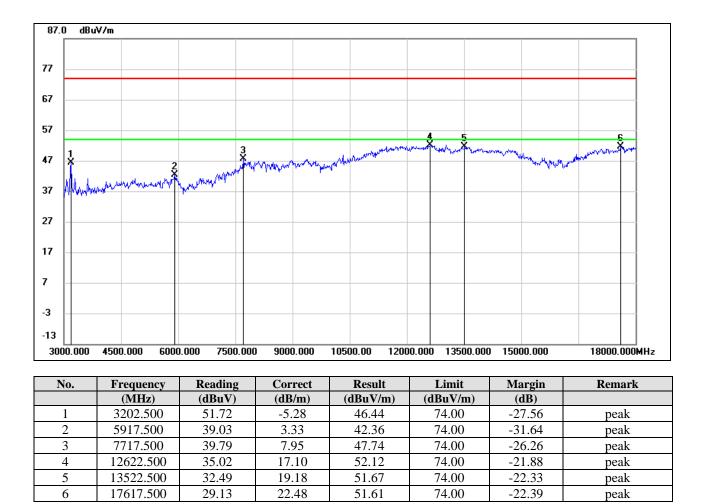
4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3172.500	53.78	-5.11	48.67	74.00	-25.33	peak
2	4920.000	45.93	0.12	46.05	74.00	-27.95	peak
3	9390.000	37.56	10.73	48.29	74.00	-25.71	peak
4	12217.500	34.42	17.51	51.93	74.00	-22.07	peak
5	13920.000	33.11	19.30	52.41	74.00	-21.59	peak
6	17595.000	29.83	22.26	52.09	74.00	-21.91	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

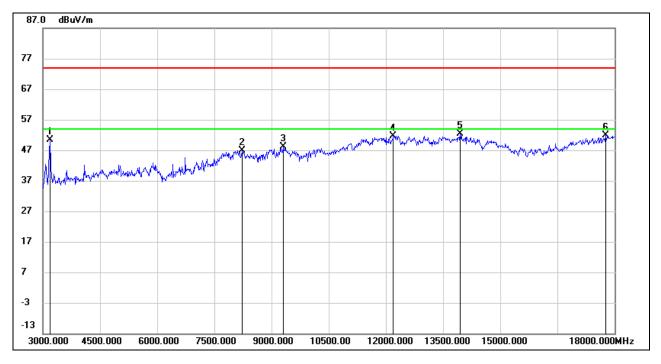
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

7.3.2. 802.11g MODE

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

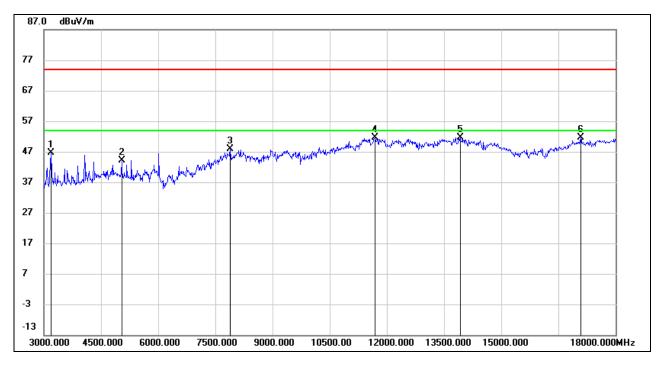
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3202.500	55.63	-5.28	50.35	74.00	-23.65	peak
2	8235.000	37.81	9.12	46.93	74.00	-27.07	peak
3	9300.000	37.89	10.14	48.03	74.00	-25.97	peak
4	12202.500	34.20	17.49	51.69	74.00	-22.31	peak
5	13950.000	33.06	19.33	52.39	74.00	-21.61	peak
6	17775.000	27.87	23.98	51.85	74.00	-22.15	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

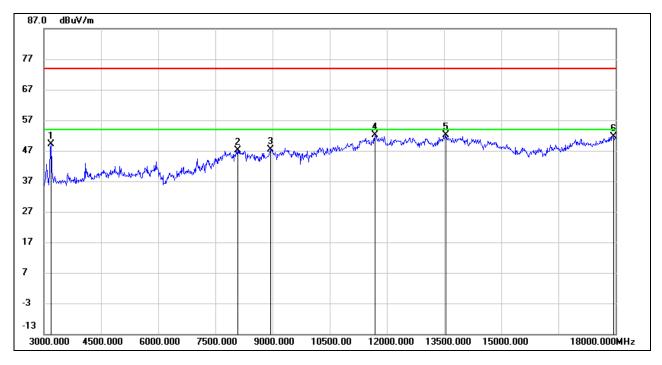
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3202.500	51.90	-5.28	46.62	74.00	-27.38	peak
2	5040.000	43.51	0.66	44.17	74.00	-29.83	peak
3	7890.000	39.52	8.28	47.80	74.00	-26.20	peak
4	11692.500	34.52	17.06	51.58	74.00	-22.42	peak
5	13927.500	32.34	19.31	51.65	74.00	-22.35	peak
6	17092.500	31.25	20.34	51.59	74.00	-22.41	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

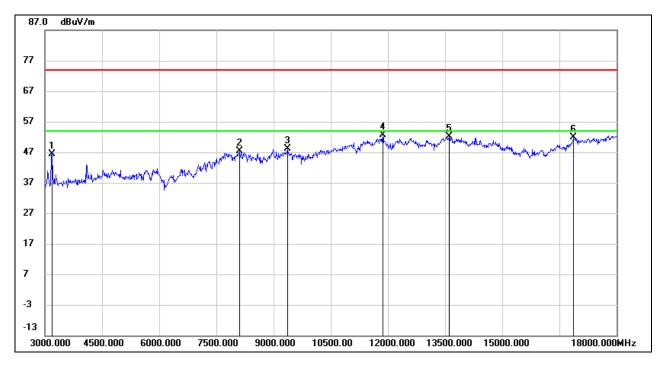
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3202.500	54.48	-5.28	49.20	74.00	-24.80	peak
2	8085.000	37.79	9.33	47.12	74.00	-26.88	peak
3	8947.500	37.57	9.75	47.32	74.00	-26.68	peak
4	11685.000	35.15	17.02	52.17	74.00	-21.83	peak
5	13552.500	32.90	19.12	52.02	74.00	-21.98	peak
6	17955.000	27.04	24.67	51.71	74.00	-22.29	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

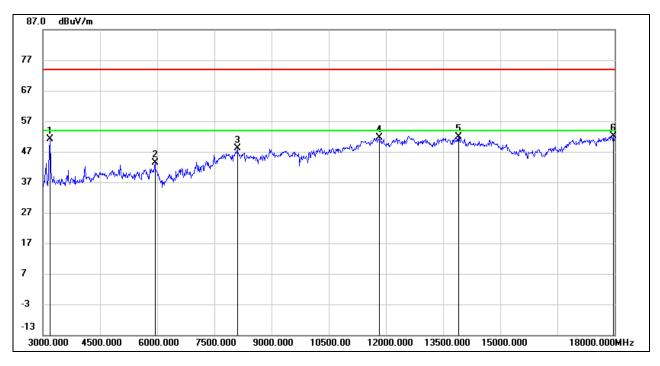
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3202.500	51.72	-5.28	46.44	74.00	-27.56	peak
2	8115.000	37.86	9.50	47.36	74.00	-26.64	peak
3	9367.500	37.45	10.58	48.03	74.00	-25.97	peak
4	11872.500	35.35	17.17	52.52	74.00	-21.48	peak
5	13605.000	32.96	19.06	52.02	74.00	-21.98	peak
6	16882.500	32.24	19.55	51.79	74.00	-22.21	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

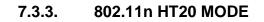
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

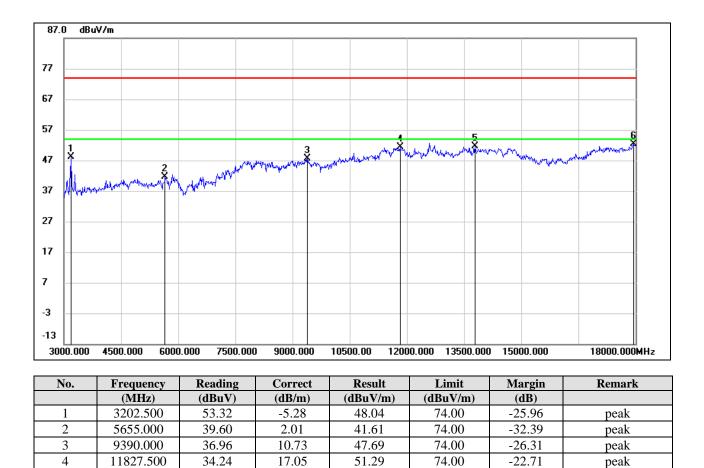
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3202.500	56.47	-5.28	51.19	74.00	-22.81	peak
2	5947.500	40.16	3.18	43.34	74.00	-30.66	peak
3	8107.500	38.61	9.53	48.14	74.00	-25.86	peak
4	11820.000	34.61	17.03	51.64	74.00	-22.36	peak
5	13912.500	32.52	19.29	51.81	74.00	-22.19	peak
6	17977.500	27.26	24.83	52.09	74.00	-21.91	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

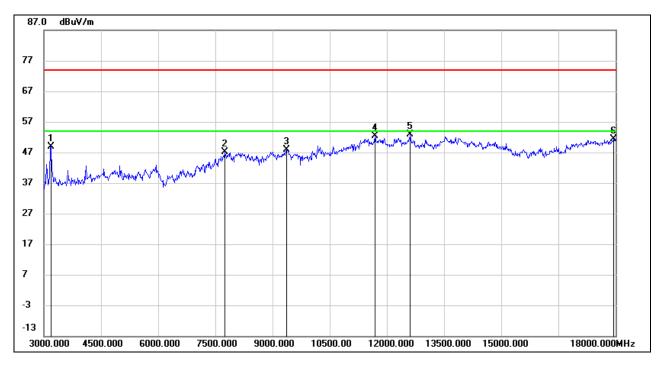
3. Peak: Peak detector.


4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

peak peak

5	13785.000	32.24	19.44	51.68	74.00	-22.32	
6	17940.000	27.81	24.57	52.38	74.00	-21.62	ĺ

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

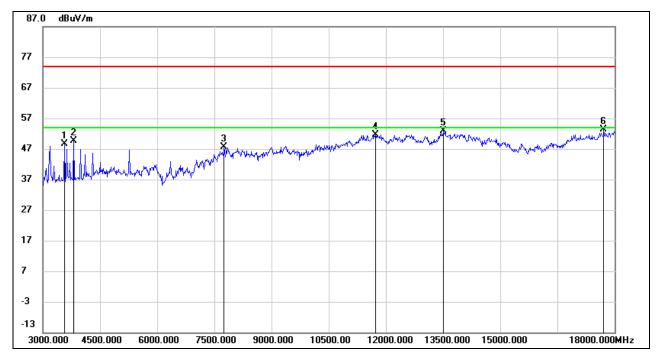
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3180.000	54.07	-5.16	48.91	74.00	-25.09	peak
2	7747.500	38.78	8.23	47.01	74.00	-26.99	peak
3	9360.000	37.36	10.54	47.90	74.00	-26.10	peak
4	11685.000	35.46	17.02	52.48	74.00	-21.52	peak
5	12615.000	35.74	17.10	52.84	74.00	-21.16	peak
6	17962.500	26.60	24.72	51.32	74.00	-22.68	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

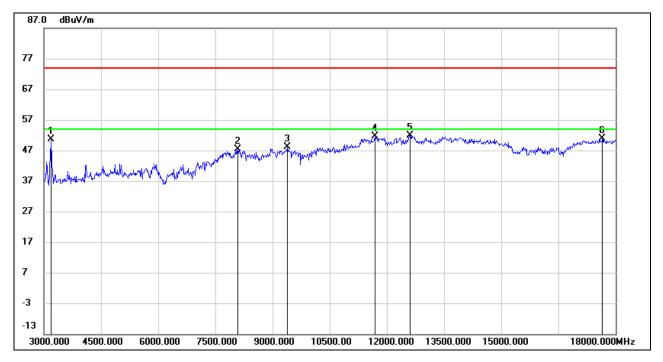
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3570.000	53.17	-4.46	48.71	74.00	-25.29	peak
2	3810.000	53.26	-3.65	49.61	74.00	-24.39	peak
3	7755.000	39.23	8.29	47.52	74.00	-26.48	peak
4	11730.000	34.59	17.07	51.66	74.00	-22.34	peak
5	13515.000	33.74	19.18	52.92	74.00	-21.08	peak
6	17715.000	29.85	23.46	53.31	74.00	-20.69	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

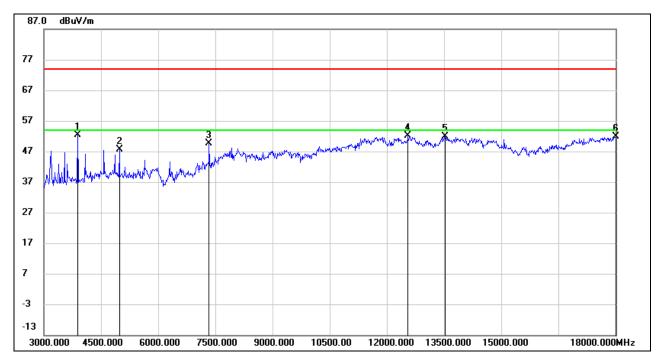

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3202.500	55.95	-5.28	50.67	74.00	-23.33	peak
2	8085.000	38.11	9.33	47.44	74.00	-26.56	peak
3	9390.000	37.36	10.73	48.09	74.00	-25.91	peak
4	11685.000	34.56	17.02	51.58	74.00	-22.42	peak
5	12622.500	34.77	17.10	51.87	74.00	-22.13	peak
6	17655.000	27.89	22.87	50.76	74.00	-23.24	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

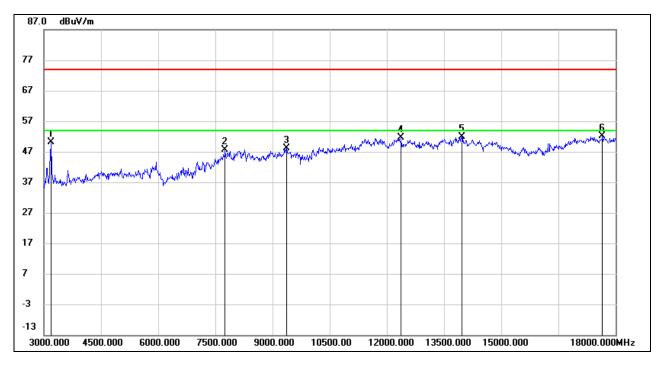
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3885.000	56.34	-3.92	52.42	74.00	-21.58	peak
2	4987.500	46.98	0.65	47.63	74.00	-26.37	peak
3	7335.000	43.05	6.61	49.66	74.00	-24.34	peak
4	12555.000	35.01	17.06	52.07	74.00	-21.93	peak
5	13537.500	32.84	19.15	51.99	74.00	-22.01	peak
6	18000.000	26.82	24.97	51.79	74.00	-22.21	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

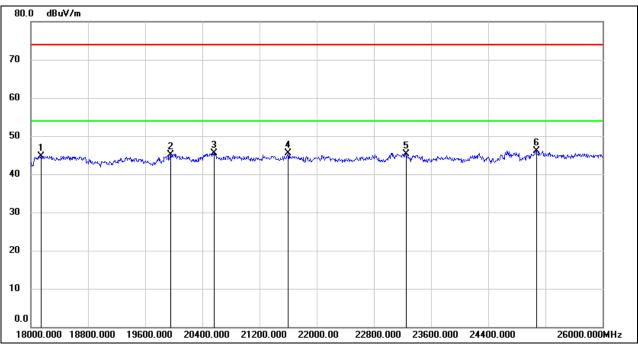
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3202.500	55.42	-5.28	50.14	74.00	-23.86	peak
2	7762.500	39.20	8.37	47.57	74.00	-26.43	peak
3	9375.000	37.46	10.63	48.09	74.00	-25.91	peak
4	12382.500	34.14	17.37	51.51	74.00	-22.49	peak
5	13972.500	32.54	19.34	51.88	74.00	-22.12	peak
6	17662.500	29.17	22.95	52.12	74.00	-21.88	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

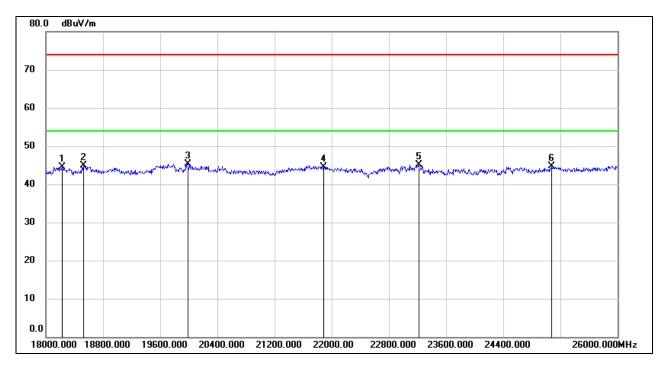

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

7.4. SPURIOUS EMISSIONS (18 GHz ~ 26 GHz)

7.4.1. 802.11b MODE

SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18144.000	50.27	-5.48	44.79	74.00	-29.21	peak
2	19952.000	50.46	-5.41	45.05	74.00	-28.95	peak
3	20560.000	50.73	-5.30	45.43	74.00	-28.57	peak
4	21600.000	50.02	-4.54	45.48	74.00	-28.52	peak
5	23256.000	48.72	-3.35	45.37	74.00	-28.63	peak
6	25072.000	48.17	-1.97	46.20	74.00	-27.80	peak

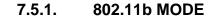

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

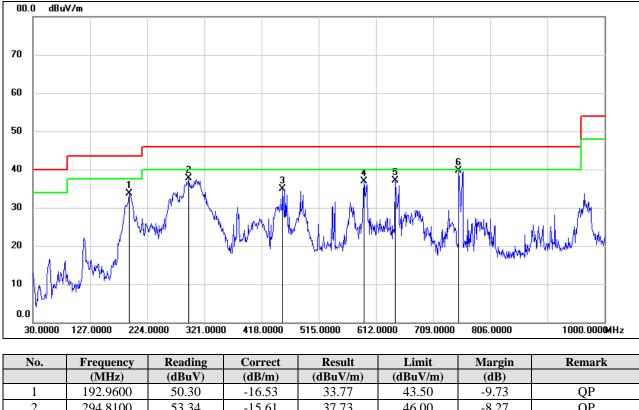
3. Peak: Peak detector.

SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18224.000	50.08	-5.53	44.55	74.00	-29.45	peak
2	18528.000	50.11	-5.26	44.85	74.00	-29.15	peak
3	19984.000	50.71	-5.44	45.27	74.00	-28.73	peak
4	21888.000	49.01	-4.41	44.60	74.00	-29.40	peak
5	23216.000	48.51	-3.38	45.13	74.00	-28.87	peak
6	25080.000	46.60	-1.96	44.64	74.00	-29.36	peak


Note: 1. Measurement = Reading Level + Correct Factor.

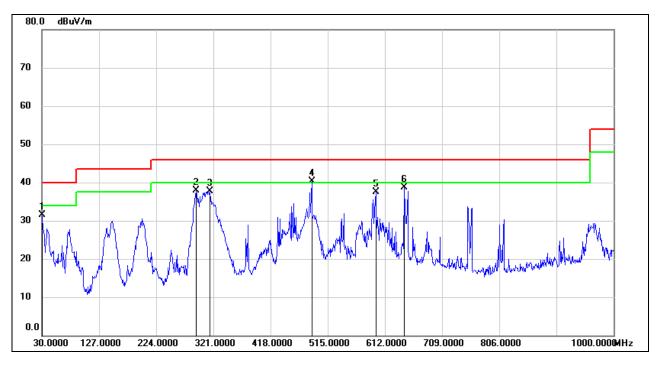
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

Note: All the modes and channels have been tested, but only the worst data was recorded in the report.

7.5. SPURIOUS EMISSIONS (30 MHz ~ 1 GHz)

2	294.8100	53.34	-15.61	37.73	46.00	-8.27	QP
3	453.8900	47.24	-12.35	34.89	46.00	-11.11	QP
4	591.6300	46.64	-9.77	36.87	46.00	-9.13	QP
5	644.9800	46.10	-9.05	37.05	46.00	-8.95	QP
6	752.6500	47.67	-7.87	39.80	46.00	-6.20	QP


Note: 1. Result Level = Read Level + Correct Factor.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

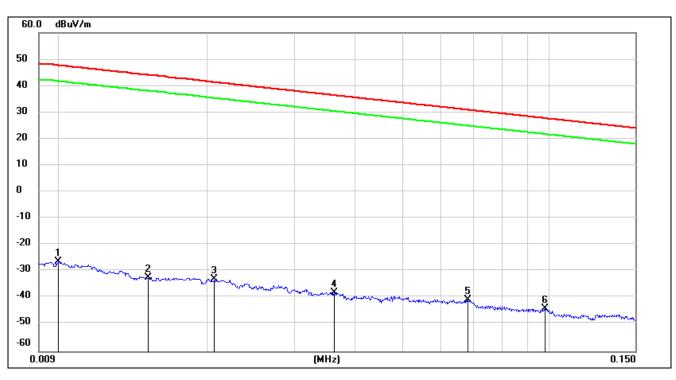
SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)	
1	30.0000	50.53	-18.94	31.59	40.00	-8.41	QP
2	291.9000	53.64	-15.80	37.84	46.00	-8.16	QP
3	315.1800	52.64	-14.92	37.72	46.00	-8.28	QP
4	487.8400	52.01	-11.72	40.29	46.00	-5.71	QP
5	596.4800	47.16	-9.64	37.52	46.00	-8.48	QP
6	644.9800	47.80	-9.05	38.75	46.00	-7.25	QP

Note: 1. Result Level = Read Level + Correct Factor.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto


Note: All the modes and channels have been tested, but only the worst data was recorded in the report.

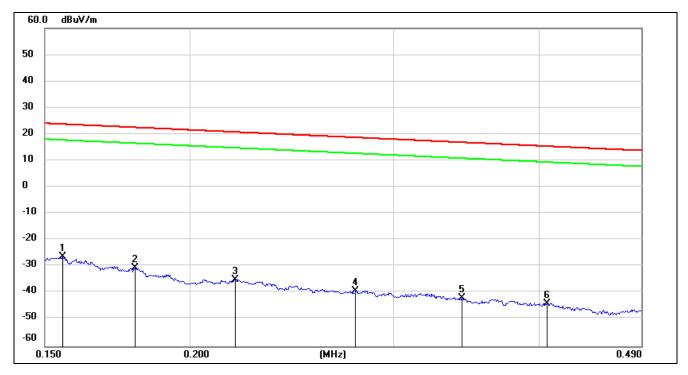
7.6. SPURIOUS EMISSIONS BELOW 30 MHz

7.6.1. 802.11b MODE

SPURIOUS EMISSIONS (LOW CHANNEL, LOOP ANTENNA FACE ON TO THE EUT, WORST-CASE CONFIGURATION)

<u>9 kHz~ 150 kHz</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.0100	75.22	-101.40	-26.18	47.6	-73.78	peak
2	0.0151	69.21	-101.37	-32.16	44.02	-76.18	peak
3	0.0206	68.42	-101.35	-32.93	41.32	-74.25	peak
4	0.0362	63.51	-101.42	-37.91	36.43	-74.34	peak
5	0.0680	61.04	-101.56	-40.52	30.95	-71.47	peak
6	0.0981	57.77	-101.78	-44.01	27.77	-71.78	peak

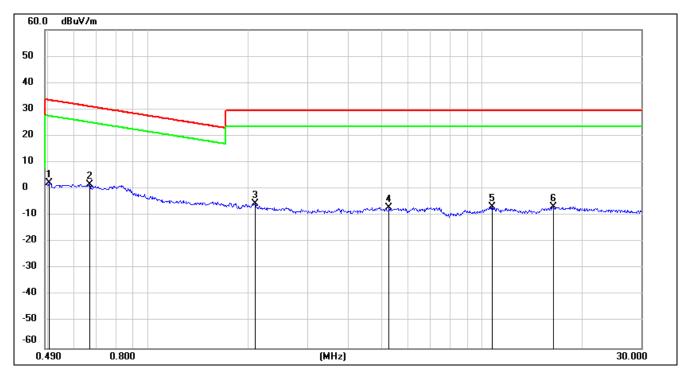

Note:

1. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

2. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

<u>150 kHz ~ 490 kHz</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.1554	75.27	-101.65	-26.38	23.77	-50.15	peak
2	0.1794	71.27	-101.68	-30.41	22.53	-52.94	peak
3	0.2190	66.77	-101.75	-34.98	20.79	-55.77	peak
4	0.2782	62.79	-101.83	-39.04	18.71	-57.75	peak
5	0.3431	60.17	-101.90	-41.73	16.89	-58.62	peak
6	0.4062	58.14	-101.96	-43.82	15.43	-59.25	peak


Note:

1. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

2. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

<u>490 kHz ~ 30 MHz</u>

No.	Frequency	Reading	Correct	FCC Result	FCC Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.5039	64.44	-62.07	2.37	33.56	-31.19	peak
2	0.6671	63.75	-62.10	1.65	31.12	-29.47	peak
3	2.0939	56.39	-61.79	-5.4	29.54	-34.94	peak
4	5.2705	54.54	-61.45	-6.91	29.54	-36.45	peak
5	10.7299	53.98	-60.83	-6.85	29.54	-36.39	peak
6	16.3959	54.17	-60.96	-6.79	29.54	-36.33	peak

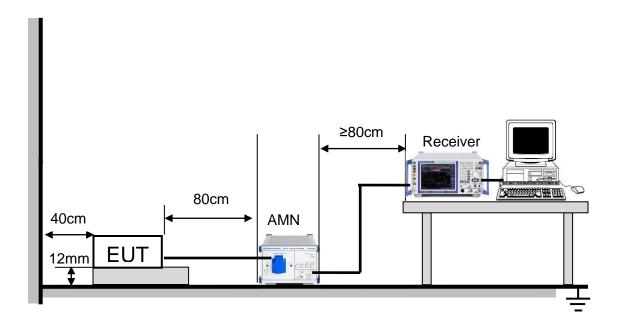
Note:

1. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

2. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

Note: All the modes had been tested, but only the worst data was recorded in the report.

8. AC POWER LINE CONDUCTED EMISSIONS


LIMITS

Please refer to CFR 47 FCC §15.207 (a)

FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

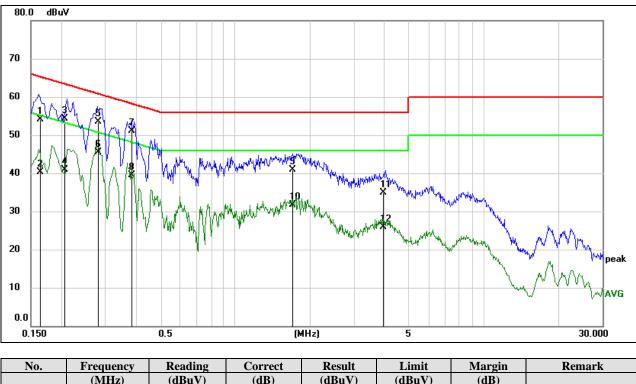
TEST SETUP AND PROCEDURE

Refer to ANSI C63.10-2013 clause 6.2.

The EUT is put on a table of non-conducting material that is 12 mm high. The vertical conducting wall of shielding is located 40 cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz.

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.


TEST ENVIRONMENT

Temperature	20.6 °C	Relative Humidity	62.1 %
Atmosphere Pressure	101 kPa		AC 100-240V, 50/60Hz

RESULTS

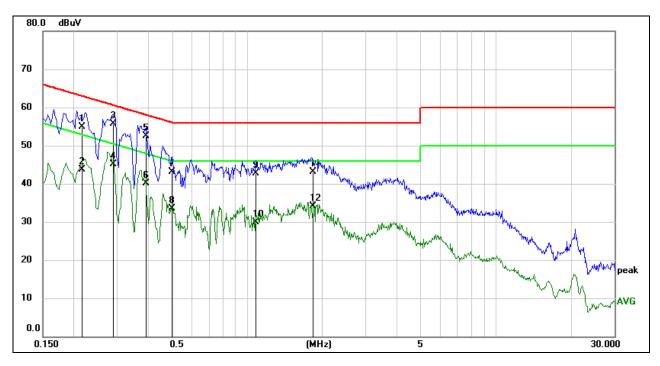
8.1. 802.11b SISO MODE LINE N RESULTS (LOW CHANNEL, WORST-CASE CONFIGURATION)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1642	44.58	9.59	54.17	65.25	-11.08	QP
2	0.1642	30.72	9.59	40.31	55.25	-14.94	AVG
3	0.2058	44.73	9.58	54.31	63.37	-9.06	QP
4	0.2058	31.24	9.58	40.82	53.37	-12.55	AVG
5	0.2813	44.06	9.51	53.57	60.78	-7.21	QP
6	0.2813	35.90	9.51	45.41	50.78	-5.37	AVG
7	0.3836	41.72	9.41	51.13	58.20	-7.07	QP
8	0.3836	30.18	9.41	39.59	48.20	-8.61	AVG
9	1.7021	31.27	9.62	40.89	56.00	-15.11	QP
10	1.7021	22.09	9.62	31.71	46.00	-14.29	AVG
11	3.9354	25.35	9.60	34.95	56.00	-21.05	QP
12	3.9354	16.33	9.60	25.93	46.00	-20.07	AVG

Note: 1. Result = Reading +Correct Factor.

2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).


4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time: auto.

Note: All the adapters, modes and channels have been tested, but only the worst data was recorded in the report.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.2170	45.42	9.57	54.99	62.93	-7.94	QP
2	0.2170	34.16	9.57	43.73	52.93	-9.20	AVG
3	0.2880	46.26	9.50	55.76	60.58	-4.82	QP
4	0.2880	35.67	9.50	45.17	50.58	-5.41	AVG
5	0.3878	43.01	9.40	52.41	58.11	-5.70	QP
6	0.3878	30.79	9.40	40.19	48.11	-7.92	AVG
7	0.4974	33.85	9.30	43.15	56.04	-12.89	QP
8	0.4974	24.17	9.30	33.47	46.04	-12.57	AVG
9	1.0844	33.02	9.61	42.63	56.00	-13.37	QP
10	1.0844	20.21	9.61	29.82	46.00	-16.18	AVG
11	1.8494	33.46	9.62	43.08	56.00	-12.92	QP
12	1.8494	24.49	9.62	34.11	46.00	-11.89	AVG

Note: 1. Result = Reading +Correct Factor.

2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).

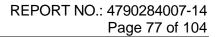
4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time: auto.

Note: All the adapters, modes and channels have been tested, but only the worst data was recorded in the report.

9. ANTENNA REQUIREMENTS

APPLICABLE REQUIREMENTS

Please refer to FCC §15.203


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

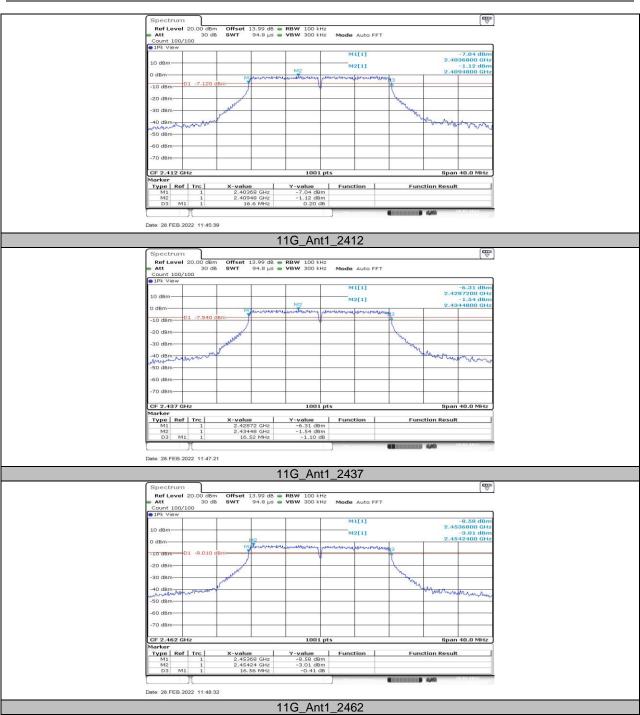
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

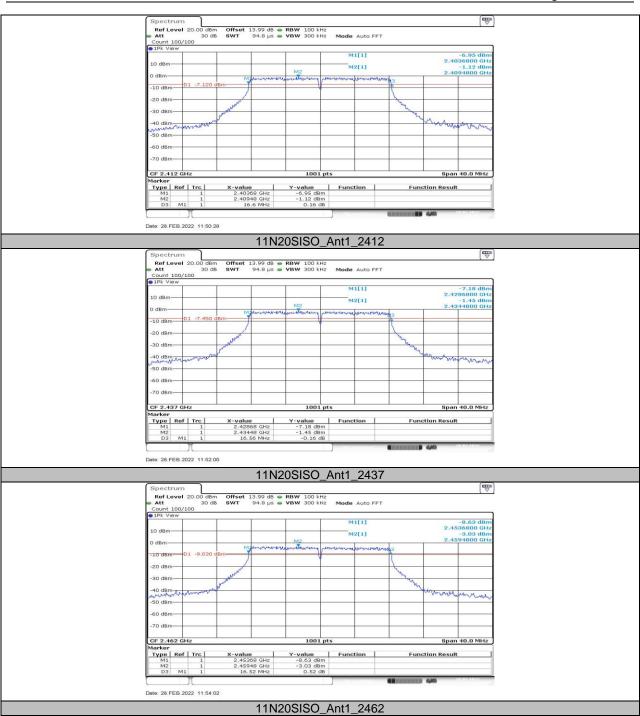
RESULTS

Complies


10. Appendix A

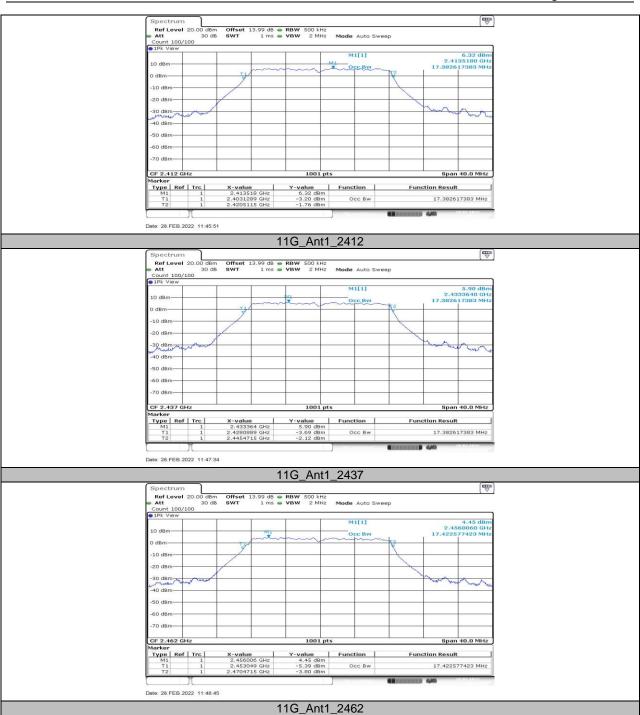
10.1. Appendix A: DTS Bandwidth 10.1.1. Test Result

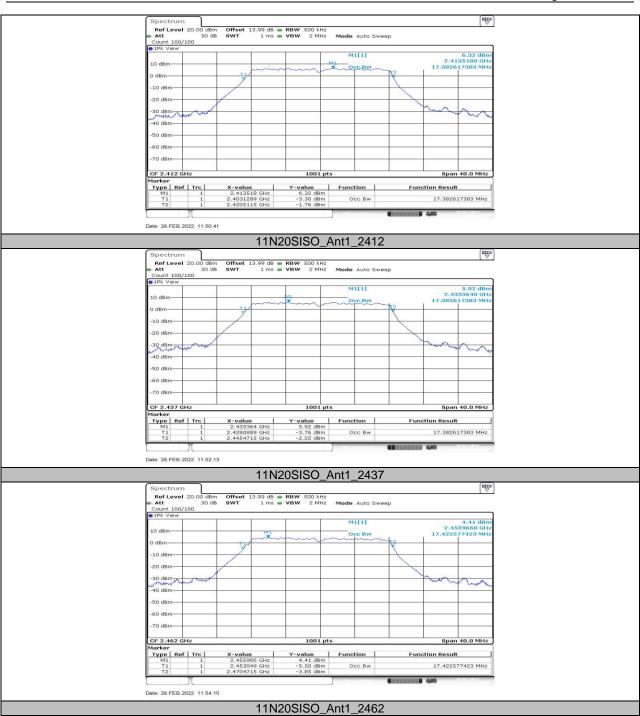

Test Mode	Antenna	Channel	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2412	9.08	2407.44	2416.52	0.5	PASS
11B	Ant1	2437	9.08	2432.44	2441.52	0.5	PASS
		2462	9.08	2457.44	2466.52	0.5	PASS
		2412	16.60	2403.68	2420.28	0.5	PASS
11G	Ant1	2437	16.52	2428.72	2445.24	0.5	PASS
		2462	16.56	2453.68	2470.24	0.5	PASS
		2412	16.60	2403.68	2420.28	0.5	PASS
11N20SISO	Ant1	2437	16.56	2428.68	2445.24	0.5	PASS
		2462	16.52	2453.68	2470.20	0.5	PASS


10.1.2. Test Graphs



Test Mode	Antenna	Channel	OCB [MHz]	FL[MHz]	FH[MHz]	Verdict
		2412	14.226	2404.927	2419.153	PASS
11B	Ant1	2437	14.226	2429.927	2444.153	PASS
		2462	14.346	2454.807	2469.153	PASS
		2412	17.383	2403.129	2420.511	PASS
11G	Ant1	2437	17.383	2428.089	2445.472	PASS
		2462	17.423	6 2404.927 6 2429.927 6 2454.807 3 2403.129 3 2428.089 3 2453.049 3 2403.129 3 2453.049 3 2403.129 3 2403.129 3 2403.129	2470.472	PASS
		2412	17.383	2403.129	2420.511	PASS
11N20SISO	Ant1	2437	17.383	2428.089	2445.472	PASS
		2462	17.423	2453.049	2470.472	PASS


10.2. Appendix B: Occupied Channel Bandwidth 10.2.1. Test Result

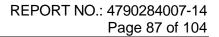

10.2.2. Test Graphs

10.3.1.	Test Re	sult			
Test Mode	Antenna	Channel	Power [dBm]	Limit [dBm]	Verdict
		2412	13.96	≤29.6	PASS
11B	Ant1	2437	13.84	≤29.6	PASS
		2462	12.30	≤29.6	PASS
		2412	11.54	≤29.6	PASS
11G	Ant1	2437	11.21	≤29.6	PASS
		2462	10.86	≤29.6	PASS
		2412	11.46	≤29.6	PASS
11N20SISO	Ant1	2437	11.13	≤29.6	PASS
		2462	10.81	≤29.6	PASS

10.3. Appendix C: Maximum Average Conducted Output Power 10.3.1. Test Result

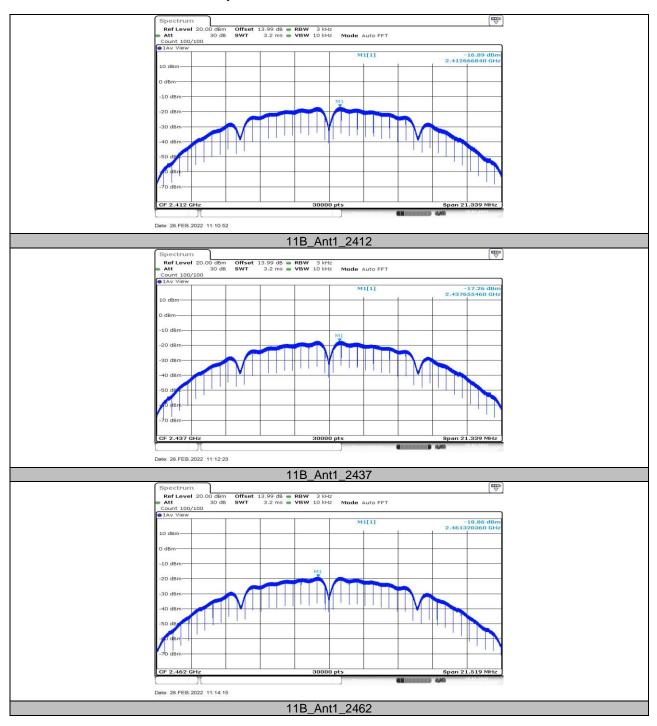
Note: 1. Conducted Power=Meas. Level+ Correction Factor

2. The Duty Cycle Factor (refer to section 7.1) had already compensated to the test data.

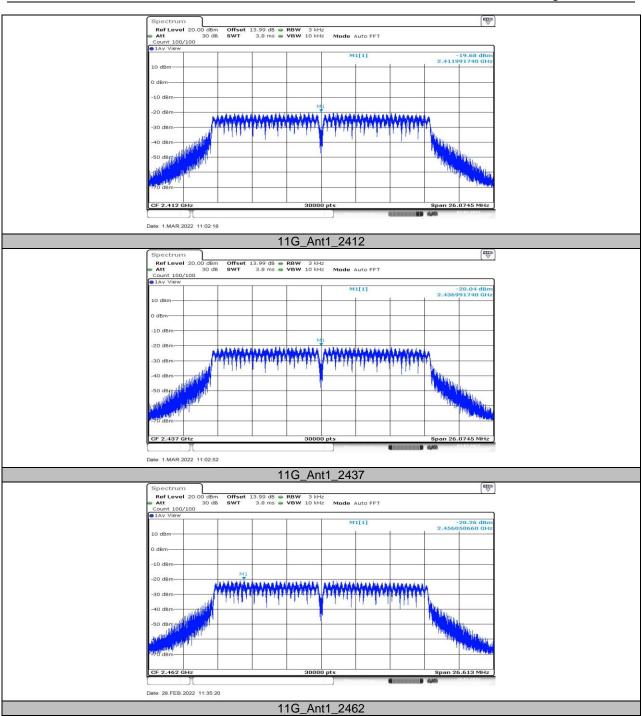


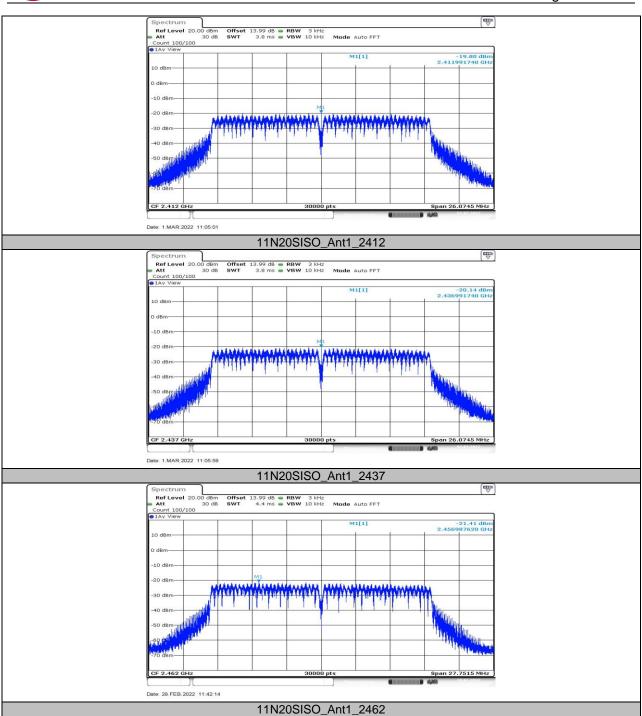
10.4. Appendix D: Maximum power spectral density 10.4.1. Test Result

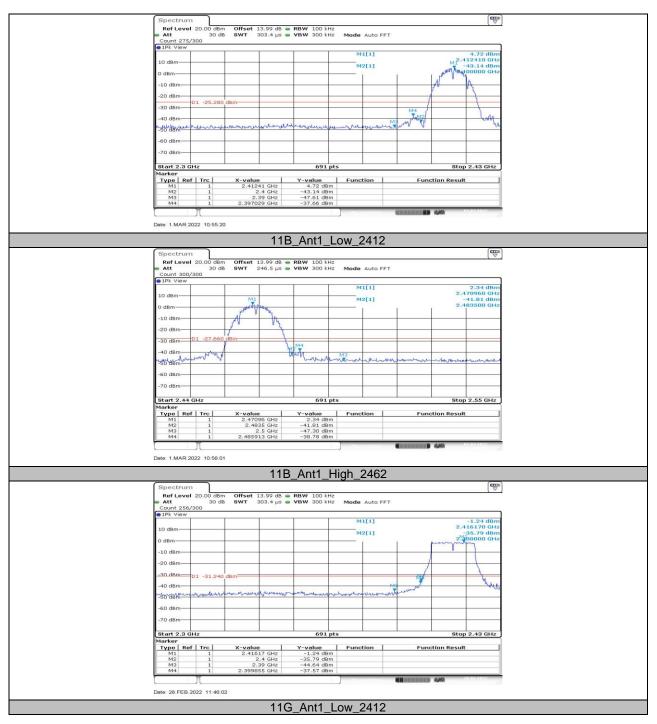
Test Mode	Antenna	Channel	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
		2412	-16.89	≤8.00	PASS
11B	Ant1	2437	-17.26	≤8.00	PASS
		2462	-18.86	≤8.00	PASS
		2412	-19.68	≤8.00	PASS
11G	Ant1	2437	-20.04	≤8.00	PASS
		2462	-20.26	≤8.00	PASS
		2412	-19.8	≤8.00	PASS
11N20SISO	Ant1	2437	-20.14	≤8.00	PASS
		2462	-21.41	≤8.00	PASS


Note:

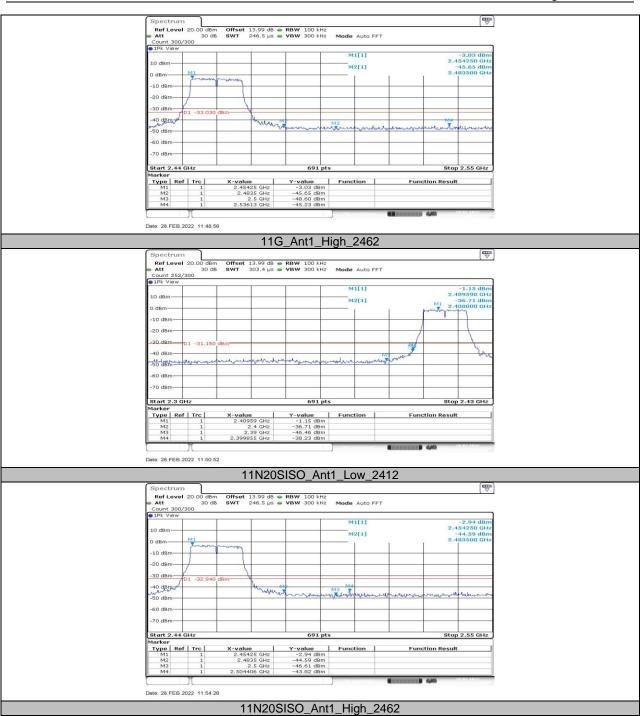
1. The Duty Cycle Factor has compensated to the Graph.



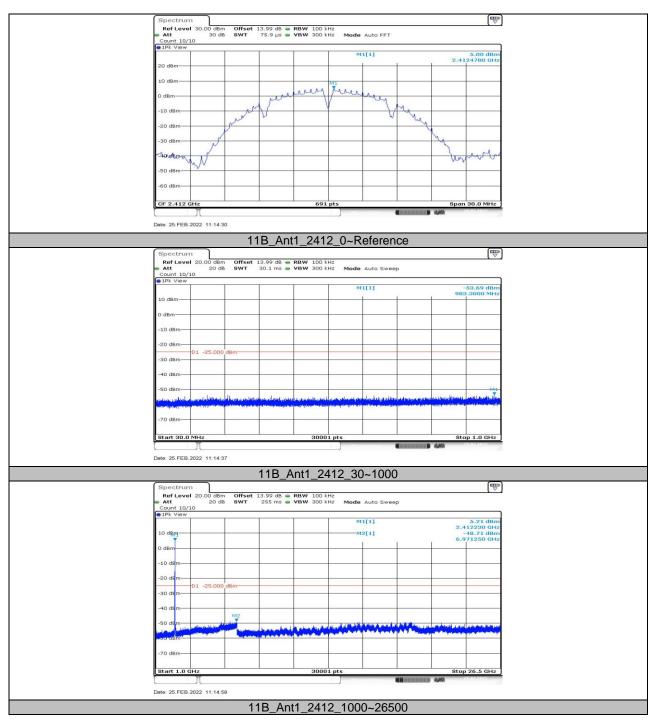

10.4.2. Test Graphs



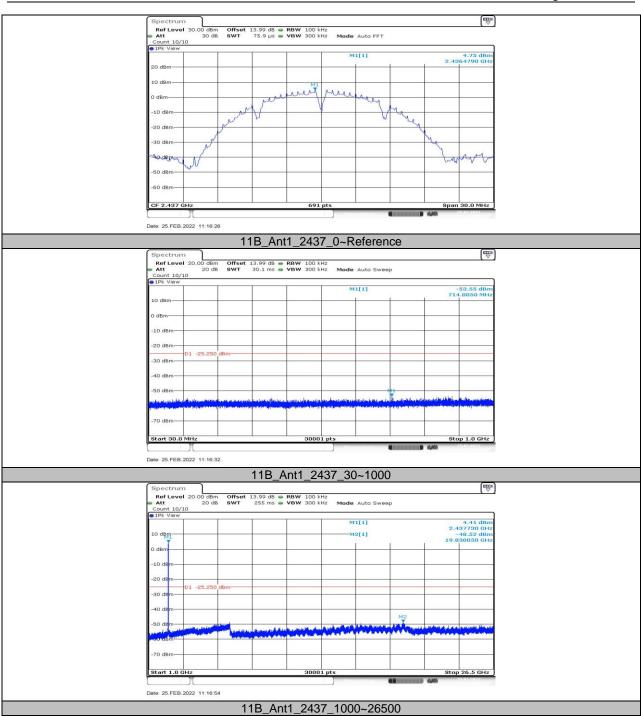
Test Mode	Antenna	ChName	Channel	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
11B Ant1	Apt1	Low	2412	4.72	-37.66	≤-25.28	PASS
	Anti	High	2462	2.34	-38.78	≤-27.66	PASS
11G	Ant1	Low	2412	-1.24	-37.57	≤-31.24	PASS
ПĞ	Anti	High	2462	-3.03	-45.23	≤-33.03	PASS
111/208180	Ant1	Low	2412	-1.15	-38.23	≤-31.15	PASS
11N20SISO	Anti	High	2462	-2.94	-43.82	≤-32.94	PASS

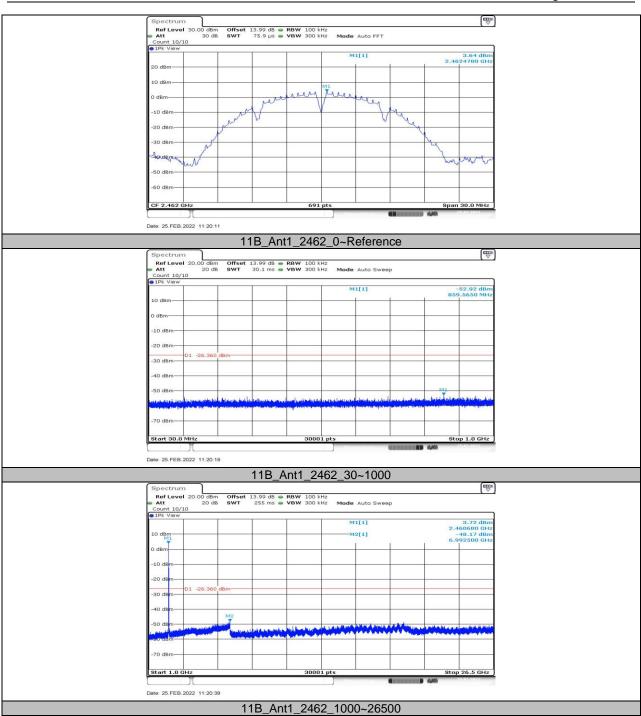

10.5. Appendix E: Band edge measurements 10.5.1. Test Result

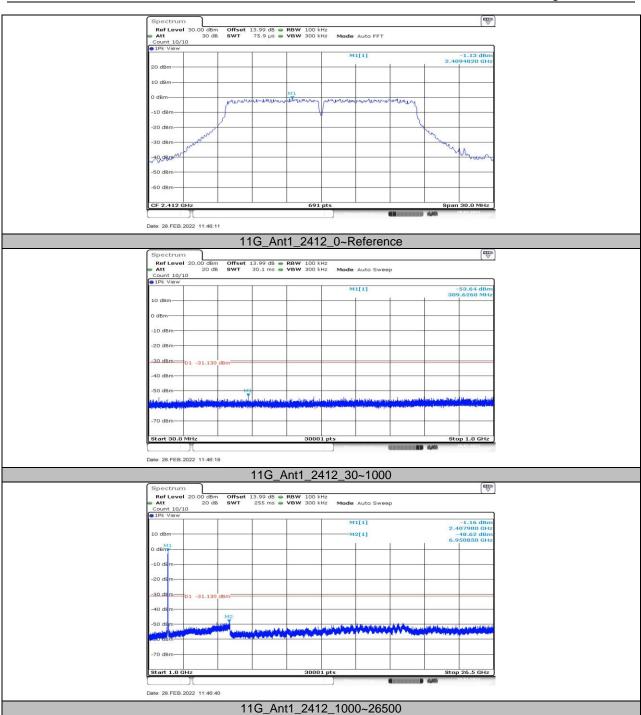
10.5.2. Test Graphs

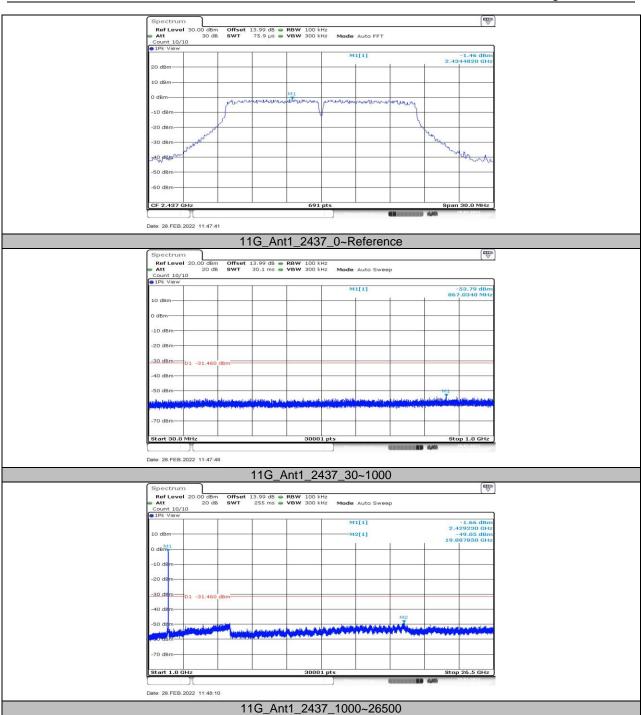


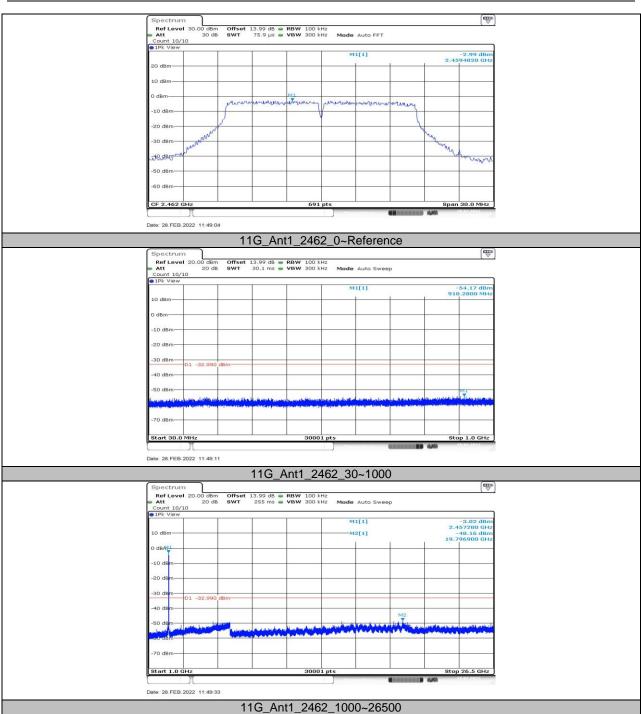
Test Mode	Antenna	Channel	FreqRange [Mhz]	Result [dBm]	Limit [dBm]	Verdict
			Reference	5.00		PASS
		2412	30~1000	-53.69	≤-25	PASS
			1000~26500	-48.71	≤-25	PASS
	Antenna Ant1 Ant1 Ant1		Reference	4.75		PASS
11B	Ant1	2437	30~1000	-53.55	≤-25.25	PASS
			1000~26500	-48.52	≤-25.25	PASS
			Reference	3.64		PASS
		2462	30~1000	-52.92	≤-26.36	PASS
			1000~26500	-48.17	≤-26.36	PASS
			Reference	-1.13		PASS
		2412	30~1000	-53.64	≤-31.13	PASS
			1000~26500	-48.62	≤-31.13	PASS
		2437	Reference	-1.46		PASS
11G	Ant1		30~1000	-53.79	≤-31.46	PASS
			1000~26500	-49.05	≤-31.46	PASS
			Reference	-2.99		PASS
		2462	30~1000	-54.17	≤-32.99	PASS
	Ant1		1000~26500	-48.16	≤-32.99	PASS
			Reference	-1.13		PASS
		2412	30~1000	-54.21	≤-31.13	PASS
			1000~26500	-47.87	≤-31.13	PASS
			Reference	-1.49		PASS
11N20SISO	Ant1	2437	30~1000	-53.46	≤-31.49	PASS
			1000~26500	-48.25	≤-31.49	PASS
			Reference	-3.04		PASS
	Ant1	2462	30~1000	-53.94	≤-33.04	PASS
			1000~26500	-48.55	≤-33.04	PASS

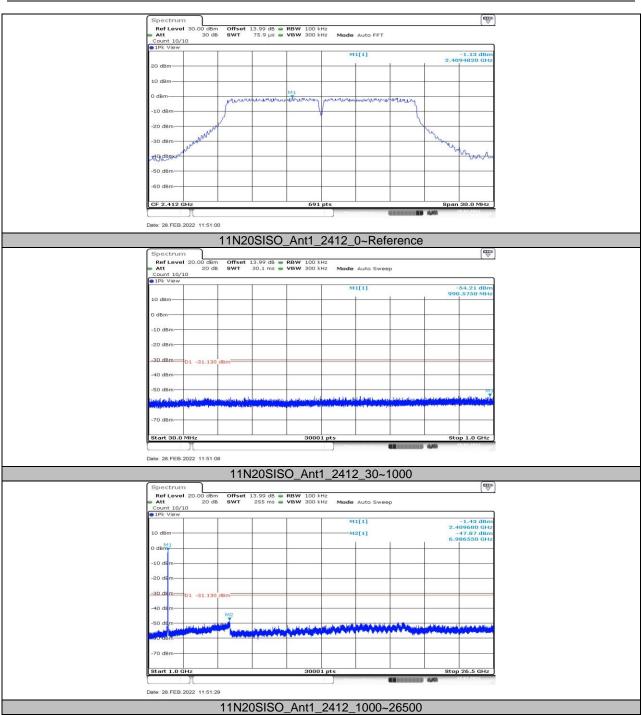

10.6. Appendix F: Conducted Spurious Emission 10.6.1. Test Result

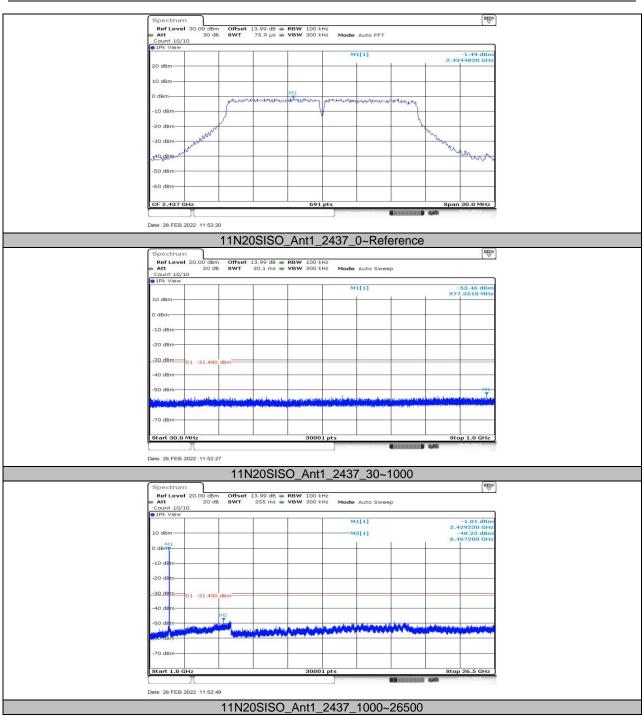

10.6.2. Test Graphs

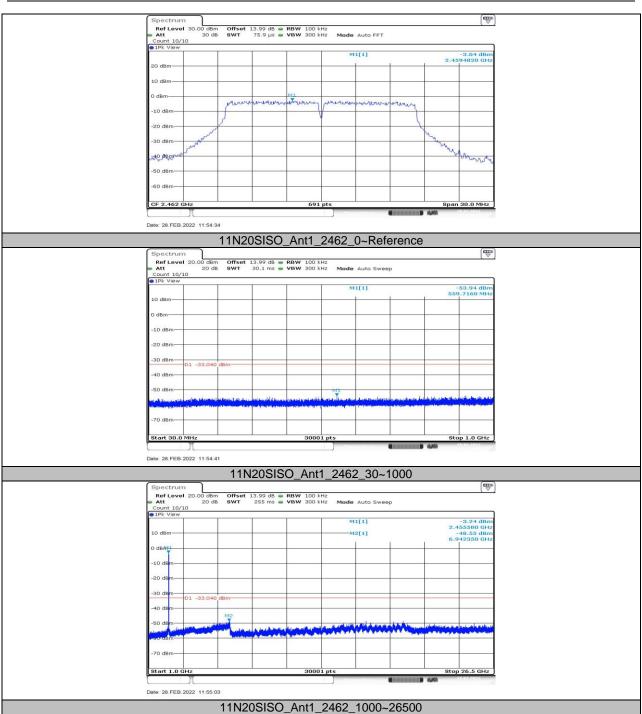










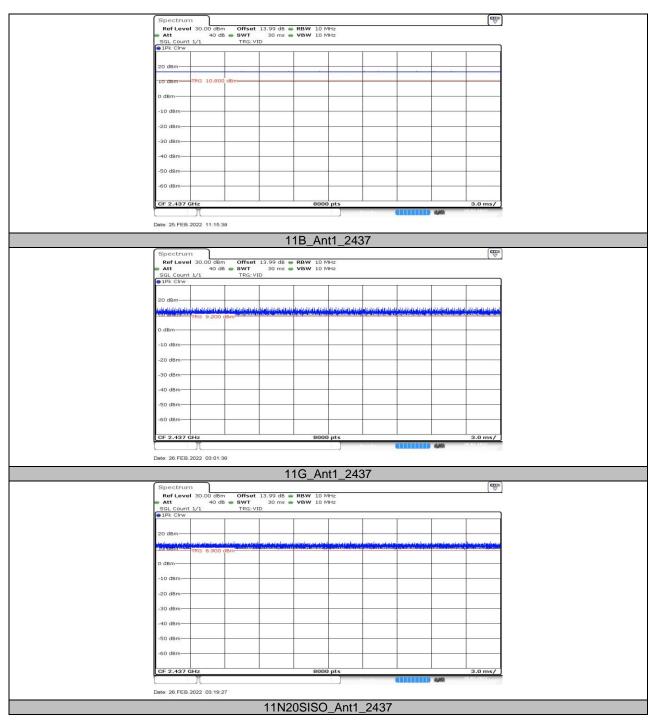


10.7. Appendix G: Duty Cycle 10.7.1. Test Result

Test Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	1/T Minimum VBW (kHz)	Final setting For VBW (kHz)
11B	30.00	30.00	1.0000	100.00	0.00	0.03	0.01
11G	30.00	30.00	1.0000	100.00	0.00	0.03	0.01
11N20SISO	30.00	30.00	1.0000	100.00	0.00	0.03	0.01

Note:

Duty Cycle Correction Factor=10log (1/x).


Where: x is Duty Cycle (Linear)

Where: T is On Time

If that calculated VBW is not available on the analyzer then the next higher value should be used.

10.7.2. Test Graphs

END OF REPORT