

WF TASTEMAKERS TRADING LIMITED

TEST REPORT

SCOPE OF WORK FCC TESTING-8205

REPORT NUMBER SZHH01472486-001

ISSUE DATE AUGUST 26, 2020 [REVISED DATE]

PAGES

63

DOCUMENT CONTROL NUMBER FCC ID 247_b © 2017 INTERTEK

Intertek Report No.: SZHH01472486-001

WF TASTEMAKERS TRADING LIMITED

Application For Certification

FCC ID: 2APXH82058280

X-Men vs Street Fighter (Cokem Edition) Additional name: X-Men vs Street Fighter (with riser and light up marquee), X-Men vs Street Fighter (Standard Edition), X-Men vs Street Fighter (Sam's Club Edition), Marvel vs Capcom

> Model: 8205 Additional Model: 8280, 8198, Xmn-B-8320-SM, 8210

Brand Name: ARCADE 1 UP

2.4GHz Wi-Fi Transceiver

Report No.: SZHH01472486-001

We hereby certify that the sample of the above item is considered to comply with the requirements of FCC Part 15, Subpart C for Intentional Radiator, mention 47 CFR [10-1-19]

Prepared and Checked by:

Approved by:

Sign on file

Terry Tang Assistant Supervisor Kidd Yang Technical Supervisor Date: August 26, 2020

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Intertek Testing Service Shenzhen Ltd. Longhua Branch

101, 201, Building B, No. 308 Wuhe Avenue, Zhangkengjing Community GuanHu Subdistrict, LongHua District, Shenzhen, People's Republic of China Tel: (86 755) 8601 6288 Fax: (86 755) 8601 6751

MEASUREMENT/TECHNICAL REPORT

X-Men vs Street Fighter (Cokem Edition)

Model: 8205

FCC ID: 2APXH82058280

This report concerns (check one) Origir	al Grant <u>X</u> Class II Change
Equipment Type: <u>DTS - Part 15 Digital -</u> portion)	<u>Fransmission Systems (Wi-Fi transmitter</u>
Deferred grant requested per 47 CFR 0.45	7(d)(1)(ii)? Yes NoX
Company Name agrees to notify the Comr	If yes, defer until : date date
of the intended date of announcement of th on that date.	e product so that the grant can be issued
Transition Rules Request per 15.37?	Yes NoX
If no, assumed Part 15, Subpart C for inte 01-19] Edition] provision.	ntional radiator - the new 47 CFR [10-
Report prepared by:	
Long i 101, 2 Zhang LongF China	ek Testing Services Shenzhen Ltd. hua Branch :01, Building B, No. 308 Wuhe Avenue, jkengjing Community GuanHu Subdistrict, łua District, Shenzhen, People's Republic of

Table of Contents

1.0	Summary of Test results	4
2.0	General Description	5
2.1 2.2 2.3 2.4	Product Description Related Submittal(s) Grants Test Methodology Test Facility	5 5
3.0	System Test Configuration	6
3.1 3.2 3.3 3.4 3.5 3.6	Justification EUT Exercising Software Special Accessories Measurement Uncertainty Equipment Modification Support Equipment List and Description	6 7 7 7
4.0	Measurement Results	8
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11	Transmitter Duty Cycle Calculation and Measurements6	9 16 23 12 13 14 15 57 50 51
5.0	Equipment Photographs6	52
6.0	Product Labelling	
7.0	Technical Specifications	
8.0	Instruction Manual	
9.0	Confidentiality Request	
10.0	Discussion of Pulse Desensitization	
11.0	Test Equipment List	;3

1.0 Summary of Test Results

Applicant: WF TASTEMAKERS TRADING LIMITED Applicant Address: Unit 05 and unit 06, 6th Floor, Greenfield Tower Concordia Plaza, 1 Science Museum Road, TST East Hong Kong

Manufacturer: WF TASTEMAKERS TRADING LIMITED Manufacturer Address: Unit 05 and unit 06, 6th Floor, Greenfield Tower Concordia Plaza, 1 Science Museum Road, TST East Hong Kong

Model: 8205

FCC ID: 2APXH82058280

TEST ITEM	REFERENCE	RESULTS
Max. Output power	15.247(b)(3)	Pass
6 dB Bandwidth	15.247(a)(2)	Pass
Max. Power Density	15.247(e)	Pass
Out of Band Antenna Conducted Emission	15.247(d)	Pass
Radiated Emission in Restricted Bands	15.247(d)	Pass
AC Conducted Emission	15.207	Pass
Antenna Requirement	15.203	Pass (See Notes)

Notes: The EUT uses an Integral Antenna which in accordance to Section 15.203 is considered sufficient to comply with the provisions of this section.

General Description

2.1 Product Description

The Equipment Under Test (EUT) is a X-Men vs Street Fighter (Cokem Edition) with Wi-Fi function operating at 2412-2462MHz for 802.11b/g/n-HT20, 11 channels with 5MHz channel spacing. The EUT is powered by DC 12V with AC/DC adaptor. For more detailed features description, please refer to the user's manual.

The Models: 8280, 8198, Xmn-B-8320-SM, 8210 are the same as the Model: 8205 in hardware and electrical aspect. The difference in appearance and model number serves as marketing strategy.

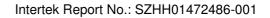
Type of Modulation: CCK, BPSK, QPSK, 16QAM, 64QAM. Antenna Type: Integral Antenna. Antenna Gain: 6dBi.

For electronic filing, the brief circuit description is saved with filename: descri.pdf.

2.2 Related Submittal(s) Grants

This is an application for certification of: DTS- Part 15 Digital Transmission Systems (2.4GHz Wi-Fi transmitter portion).

Remaining portions are subject to the following procedures:


- 1. Receiver portion of WiFi: exempt from technical requirement of this Part.
- 2. Other Digital Function: Subject to FCC Part 15B SDOC.

2.3 Test Methodology

Both AC mains line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.10 (2013) and KDB 558074 D01 v05r02. Radiated emission measurement was performed in semi-anechoic chamber and conducted emission measurement was performed in shield room. For radiated emission measurement, preliminary scans were performed in the semi-anechoic chamber only to determine the worst case modes. All radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "Justification Section" of this Application.

2.4 Test Facility

The Semi-anechoic chamber and shielded room used to collect the radiated data and conducted data are **Intertek Testing Services Shenzhen Ltd. Longhua Branch** and located at 101, 201, Building B, No. 308 Wuhe Avenue, Zhangkengjing Community GuanHu Subdistrict, LongHua District, Shenzhen, People's Republic of China. This test facility and site measurement data have been fully placed on file with the FCC (Registration Number: CN1188).

3.0 System Test Configuration

3.1 Justification

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, all cables were manipulated to produce worst case emissions. The EUT was powered by DC 12V with AC/DC adaptor during the test. Only the worst case mode is shown in the report.

On 802.11b/g/n-HT20 mode, only one antenna is used, and all data rate were tested and only the worst case data is shown in the report.

For maximizing emissions, the EUT was rotated through 360°, the EUT was placed on a wooden turntable which is four feet in diameter, 12mm in height above the ground plane. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance.

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater for frequencies below 1000 MHz. The resolution is 1 MHz or greater for frequencies above 1000 MHz. The spurious emissions more than 20 dB below the permissible value are not reported.

The rear of unit shall be flushed with the rear of the table.

Radiated emission measurement were performed the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

3.2 EUT Exercising Software

The EUT exercise program (provided by applicant) used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use. The worst case configuration is used in all specified testing. Test software: MTK-Engineermode

The parameters of test software setting:

During the test, Channel and power controlling software provided by the applicant was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the application and is going to be fixed on the firmware of the end product.

3.3 Special Accessories

AC/DC adaptor output cable with a ferrite core.

3.4 Measurement Uncertainty

When determining of the test conclusion, the Measurement Uncertainty of test has been considered.

Uncertainty and Compliance - Unless the standard specifically states that measured values are to be extended by the measurement uncertainty in determining compliance, all compliance determinations are based on the actual measured value.

3.5 Equipment Modification

Any modifications installed previous to testing by WF TASTEMAKERS TRADING LIMITED will be incorporated in each production model sold / leased in the United States.

No modifications were installed by Intertek Testing Services Shenzhen Ltd. Longhua Branch.

3.6 Support Equipment List and Description

This product was tested in the following configuration:

Refer List:

	Description	Manufacturer	Model No.
ſ	AC-DC adaptor (Provided by Applicant)	BLUE IRON HOLDINGS LIMITED	BI36-120300-U2

Applicant: WF TASTEMAKERS TRADING LIMITED Date of Test: August 15, 2020 Model: 8205

4.0 Measurement Results

4.1 Maximum Conducted Output Power at Antenna Terminals, FCC Rules 15.247(b)(3):

The antenna power of the EUT was connected to the input of a broadband peak RF power meter. The power meter have a video bandwidth that is greater than DTS bandwidth and utilize a fast-responding diode detector. Power was read directly at the EUT antenna terminals with cable loss added.

For antennas with gains of 6 dBi or less, maximum allowed Transmitter output is 1 watt (+30 dBm).

IEEE 802.11b (Antenna Gain = 6 dBi) (16QAM, 6Mbps)						
Frequency (MHz)	Output in dBm (Peak Reading)	Output in mWatt				
Low Channel: 2412	15.9	38.9				
Middle Channel: 2437	15.8	38.0				
High Channel: 2462	15.6	36.3				

IEEE 802.11g (Ante	enna Gain = 6 dBi) (16QAN	И, 6Mbps)
Frequency (MHz)	Output in dBm (Peak Reading)	Output in mWatt
Low Channel: 2412	25.1	323.6
Middle Channel: 2437	25.1	323.6
High Channel: 2462	25.3	338.8

IEEE 802.11n-HT20 (A	Antenna Gain = 6 dBi) (640	QAM, 6Mbps)
Frequency (MHz)	Output in dBm (Peak Reading)	Output in mWatt
Low Channel: 2412	25.2	331.1
Middle Channel: 2437	25.4	346.7
High Channel: 2462	25.6	363.1

Cable loss: 2.5 dB External Attenuation: 0 dB

Cable loss, external attenuation has been included in OFFSET function

EUT max. output level = 25.6dBm EUT max. E.I.R.P= 25.6dBm + 6dBi =31.6dBm =1445.4mW

For RF Exposure, the information is saved with filename: RF exposure.pdf.

Applicant: WF TASTEMAKERS TRADING LIMITED Date of Test: August 15, 2020 Model: 8205

4.2 Minimum 6 dB RF Bandwidth, FCC Rule 15.247(a) (2):

The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer RES BW was set to 100 KHz according to FCC KDB 558074 D01 v05r02. For each RF output channel investigated, the spectrum analyzer center frequency was set to the channel carrier. A PEAK output reading was taken, a DISPLAY line was drawn 6 dB lower than PEAK level. The 6dB bandwidth was determined from where the channel output spectrum intersected the display line.

Limit: The 6 dB Bandwidth is at least 500 kHz.

IEEE 802.11b (16QAM, 6Mbps)				
Frequency (MHz)	6 dB Bandwidth (MHz)			
2412	10.029			
2437	10.029			
2462	10.029			

IEEE 802.11g (1	IEEE 802.11g (16QAM, 6Mbps)				
Frequency (MHz)	6 dB Bandwidth (MHz)				
2412	16.020				
2437	16.020				
2462	16.020				

IEEE 802.11n-HT20 (64QAM, 6Mbps)				
Frequency (MHz)	6 dB Bandwidth (MHz)			
2412	17.236			
2437	17.062			
2462	17.062			

The test plots are attached as below.

802.11b

₩ Spectrum Ref Level 22.50 dBm Offset 2.50 dB 👄 RBW 100 kHz 75.9 μs 😑 VBW 300 kHz 30 dB SWT Mode Auto FFT Att ●1Pk Max 20 dBm· -D1[1] 1.35 dB 10.0290 MHz -2.06 dBm 2.4069200 GHz M1[1] 10 dBm-MM MMAN M 0 dBm-ÌJ. D1 -2.060 -10 dBm-N ٨. -20 dBm--30 dBm--40 dBm _{-គ្}ល dB_ph--60 dBm--70 dBm-CF 2.412 GHz 691 pts Span 30.0 MHz Marker Type Ref Trc Y-value -2.06 dBm **Function Result** X-value Function 2.40692 GHz 1 Μ1 D1 10.029 MHz 1.35 dB M1 M2 1 2.410958 GHz 3.94 dBm [₩ Spectrum Ref Level 22.50 dBm Offset 2.50 dB 👄 RBW 100 kHz 75.9 µs 👄 **VBW** 300 kHz Att 30 dB SWT Mode Auto FFT 😑 1Pk Max 20 dBm -D1[1] 1.54 dB 10.0290 MHz M1[1] -2.27 dBm 10 dBm-2.4319200 GHz 6. **1** 6. 6 6 1 MM 0 dBm-D1 -2.170 dBm ú -10 dBmð. -20 dBm--30 dBm--40 dBm--59.d8m 5.10 -60 dBm--70 dBm-691 pts CF 2.437 GHz Span 30.0 MHz Marker Type Ref Trc X-value Y-value Function **Function Result** 2.43192 GHz Μ1 -2.27 dBm 1.54 dB 1 1 1 D1 M1 10.029 MHz M2 2.437955 GHz 3.83 dBm

Intertek Report No.: SZHH01472486-001

Spect	rum									
	evel :	22.50		_	RBW 100 kHz					
Att		30) dB SWT	75.9 µs 👄	VBW 300 kHz	Mode .	Auto FFT			
●1Pk M				1						
20 dBm-						D	1[1]		10	1.50 dB).0290 MHz
10 dBm-						м	1[1]			-2.14 dBm
TO aBW-						M2	-[-]		2.45	69200 GHz
0 40				M1 ,	Muny	MMN	1 . D1			
0 dBm—	D	1 -2.1	50 dBm	- William		/	WWW			
-10 dBm			a M		V	r		Mi		
-10 UBII			M	\mathbb{N}			1	J Wy.		
-20 dBm			كماليها	·				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
-20 ubii	·		V							
-30 dBm			Y						Y	
-30 001	'	ļ.							M	
-40 dBm									4	
10 001										
-50 dBn	M									pro
my	· Υ_	Jac							hun	/ Jam
-60 dBm										W .
00 000										
-70 dBm										
CF 2.40	52 GH	z		1	691	pts	1		Span	30.0 MHz
Marker										
Туре	Ref	Trc	X-value	e	Y-value	Func	tion	Fund	tion Result	
M1		1		92 GHz	-2.14 dBr					
D1	M1	1		29 MHz	1.50 d					
M2		1	2.4629	55 GHz	3.85 dBr	n]

802.11g

	um	ך							
	vel 22.				● RBW 100 kHz				
Att 1Pk Ma		30 dB	SWT	75.9 µs	● VBW 300 kHz	Mode Auto F	FT		
20 dBm-	X					D1[1]			1.02 di
20 ubiii-						01[1]		10	1.02 ui 5.0200 MH
10 dBm-						M1[1]			-1.30 dBn
								2.40	38380 GH
) dBm—		0.480 c	M1 Bm Ja/C^{rear}	<u>dan bas</u>	rennanny	walnestrehaler	Marchample_		
					_ _ ¥				
10 dBm			5						
		لم ا	r					Υ.	
20 dBm		- Com						1	
N	www	کس السم						www	man
ja hem								Ň	Langer
40 dBm									
40 UBIII									
-50 dBm									
60 dBm									
70 dBm									
CF 2.41	2 GHz				691 p	ots		Spar	1 30.0 MHz
larker					•	1			
Type M1	Ref T	rc	X-valu 2 403	1838 GHz	<u>Y-value</u> -1.30 dBr	Function	Fun	ction Result	t
D1	M1	1	16),UZ MIHZ	1.02 di	5			
D1 M2	M1	1		6.02 MHz 216 GHz	1.02 di 5.52 dBr				
M2 Spectr			2.413 Offset	216 GHz 2.50 dB		n	FT		
M2 Spectr Ref Le Att	um vel 22.	1 	2.413 Offset	216 GHz 2.50 dB	5.52 dBn • RBW 100 kHz	n	FT		(IIII)
M2 Spectr Ref Le	um vel 22.	1 	2.413 Offset	216 GHz 2.50 dB	5.52 dBn • RBW 100 kHz	n	FT		1.48 di
M2 Spectr Ref Le Att 1Pk Ma 20 dBm-	um vel 22.	1 	2.413 Offset	216 GHz 2.50 dB	5.52 dBn • RBW 100 kHz	Mode Auto F	FT	10	(⊽ 1.48 d 5.0200 MH
M2 Spectr Ref Le Att)1Pk Ma 20 dBm-	um vel 22.	1 	2.413 Offset	216 GHz 2.50 dB	5.52 dBn • RBW 100 kHz	n Mode Auto F	FT		1.48 di 5.0200 MH -1.76 dBr
M2 Spectr Ref Le Att) 1Pk Ma 20 dBm- 10 dBm-	um vel 22, x	1 50 dBm 30 dB	2.413 Offset SWT	2.50 dB 75.9 µs	5.52 dBr • RBW 100 kHz • VBW 300 kHz	Mode Auto F D1[1]			1.48 di 5.0200 MH -1.76 dBr
M2 Spectr Ref Le Att)1Pk Ma	um vel 22, x	1 50 dBm 30 dB	2.413 Offset SWT	2.50 dB 75.9 µs	5.52 dBn • RBW 100 kHz	Mode Auto F D1[1]			1.48 di 5.0200 MH -1.76 dBr
M2 Spectr Ref Le Att 1Pk Ma 20 dBm- L0 dBm-	um vvel 22. ×	1 50 dBm 30 dB	2.413 Offset SWT	2.50 dB 75.9 µs	5.52 dBr • RBW 100 kHz • VBW 300 kHz	Mode Auto F D1[1]			1.48 di 5.0200 MH -1.76 dBr
M2 Spectr Ref Le Att 1Pk Ma 20 dBm- L0 dBm-	um vvel 22. ×	1 50 dBm 30 dB	2.413 Offset SWT	2.50 dB 75.9 µs	5.52 dBr • RBW 100 kHz • VBW 300 kHz	Mode Auto F D1[1]			1.48 di 5.0200 MH -1.76 dBn
M2 Spectr Ref Le Att 1Pk Ma 20 dBm- 10 dBm- 10 dBm-	um vel 22. ×	1 50 dBm 30 dB	2.413 Offset SWT	2.50 dB 75.9 µs	5.52 dBr • RBW 100 kHz • VBW 300 kHz	Mode Auto F D1[1]			1.48 di 5.0200 MH -1.76 dBr
M2 Spectr Ref Le Att 10 dBm- 0 dBm- 10 dBm- 10 dBm- 20 dBm	um vel 22. ×	1 50 dBm 30 dB 0.640 c	2.413 Offset SWT	2.50 dB 75.9 µs	5.52 dBr • RBW 100 kHz • VBW 300 kHz	Mode Auto F D1[1]		2.42	1.48 dl 5.0200 MH -1.76 dBn 88380 GH
M2 Spectr Ref Le Att 10 dBm- 0 dBm- 10 dBm- 10 dBm- 20 dBm	um vel 22. ×	1 50 dBm 30 dB 0.640 c	2.413 Offset SWT	2.50 dB 75.9 µs	5.52 dBr • RBW 100 kHz • VBW 300 kHz	Mode Auto F D1[1]			1.48 dl 5.0200 MH -1.76 dBn 288380 GH

-40 dBm--50 dBm--60 dBm--70 dBm-CF 2.437 GHz

Marker

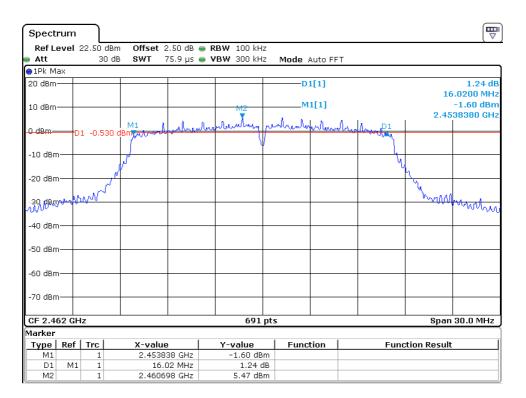
M1 D1

Type Ref Trc

1 1 1 Μ1 M2

691 pts

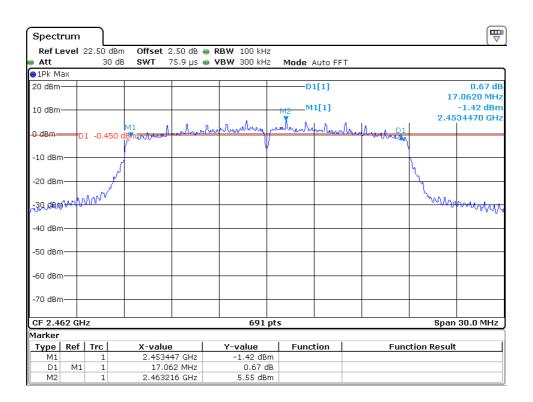
Function


Y-value -1.76 dBm 1.48 dB 5.36 dBm

X-value 2.428838 GHz 16.02 MHz 2.438216 GHz

Span 30.0 MHz

Function Result



802.11n-HT20

Specti	rum							Ē
					- PRUL 100 LU-			(v
Att	evera	22.50 dBn 30 dB			 RBW 100 kHz VBW 300 kHz 	Manda Auto D		
● 1Pk Ma	211	30 U	3 3 1 1	(9,9 µ5 🦷	YDYY JUU KHZ	Mode Auto FI		
20 dBm-						Datal		1.00 40
20 uBm-						D1[1]		1.23 dB 17.2360 MHz
10 -10						M1[1]		-1.55 dBm
10 dBm-					M2			2.4032300 GHz
			M1 A	A	Russelward .	wellen John M.	Marille DI	1 1
0 dBm-	D	1 -0.350 (مېرىسىركىش اش <mark>ا</mark> لا	1. 6/ × 1. 60			- Martin Constant	N I
			ſ		- I - Y			
-10 dBm	ד ו	1	-					
		1						X = 1
-20 dBm		. /						
~ 30,⊎6 ₩	work	M						massauch
~30,₩B₩	1 7 							- Vanna Anna Anna Anna Anna Anna Anna Ann
-40 dBm) — 							
-50 dBm	ì−+				+ +			
-60 dBm	∩—							
-70 dBm	1							
CF 2.4	12 GH	z			691 p	ts		Span 30.0 MHz
Marker								
Type	Ref		X-value		Y-value	Function	Fur	ction Result
M1		1		23 GHz	-1.55 dBm			
D1 M2	M1	1	2.4106	B6 MHz	1.23 dB 5.65 dBm			
		1	2.1100.	50 GHZ	3.05 UBI	1		
Spect	rum		2,1100.	50 GH2	3.03 001	1		
Spect		22.50 dBn	n Offset 2	2.50 dB 🧉	• RBW 100 kHz	1		
Specti Ref Le Att	evel :		n Offset 2	2.50 dB 🧉		Mode Auto FI	FT	
Specti Ref Le Att	evel : ax	22.50 dBn	n Offset 2	2.50 dB 🧉	• RBW 100 kHz		FT	
Specti Ref Le Att	evel : ax	22.50 dBn	n Offset 2	2.50 dB 🧉	• RBW 100 kHz		FT	(⊽ 0.29 dB
Specti Ref Le Att 1Pk Ma 20 dBm-	evel : ax	22.50 dBn	n Offset 2	2.50 dB 🧉	• RBW 100 kHz	Mode Auto Fi	FT	(⊽ 0.29 dB 17.0620 MHz
Specti Ref Le Att	evel : ax	22.50 dBn	n Offset 2	2.50 dB 🧉	• RBW 100 kHz	Mode Auto FI	FT	(⊽ 0.29 dB 17.0620 MHz -1.11 dBm
Specti Ref Le Att 1Pk Ma 20 dBm	ax	22.50 dBm 30 dE	n Offset 2 3 SWT 7	2.50 dB (75.9 µs (RBW 100 kHz	Mode Auto Fi	FT	(⊽ 0.29 dB 17.0620 MHz
Specti Ref Le Att 1Pk Ma 20 dBm-	ax	22.50 dBm 30 dE	n Offset 2 3 SWT 7	2.50 dB (75.9 µs (• RBW 100 kHz	Mode Auto Fi	FT	(⊽ 0.29 dB 17.0620 MHz -1.11 dBm
Spectr Ref Le Att 1Pk Ma 20 dBm- 10 dBm-	ax	22.50 dBm 30 dE	n Offset 2 3 SWT 7	2.50 dB (75.9 µs (RBW 100 kHz	Mode Auto Fi	FT	(⊽ 0.29 dB 17.0620 MHz -1.11 dBm
Specti Ref La Att 1Pk Ma 20 dBm- 10 dBm-	ax	22.50 dBm 30 dE	n Offset 2 3 SWT 7	2.50 dB (75.9 µs (RBW 100 kHz	Mode Auto Fi	FT	(⊽ 0.29 dB 17.0620 MHz -1.11 dBm
Spectr Ref Le Att 1Pk Ma 20 dBm- 10 dBm-	ax	22.50 dBm 30 dE	n Offset 2 3 SWT 7	2.50 dB (75.9 µs (RBW 100 kHz	Mode Auto Fi	FT	(⊽ 0.29 dB 17.0620 MHz -1.11 dBm
Spectr Ref Le Att 1Pk Ma 20 dBm- 10 dBm-	ax	22.50 dBm 30 dE	n Offset 2 3 SWT 7	2.50 dB (75.9 µs (RBW 100 kHz	Mode Auto Fi	FT	(⊽ 0.29 dB 17.0620 MHz -1.11 dBm
Specti Ref Le Att 1Pk Ma 20 dBm- 10 dBm- -10 dBm- -20 dBm	ax	22.50 dBm 30 dE 1 -0.560 d	n Offset 2 3 SWT 7	2.50 dB (75.9 µs (RBW 100 kHz	Mode Auto Fi	FT	0.29 dB 17.0620 MHz -1.11 dBm 2.4284470 GHz
Specti Ref Le Att 1Pk Ma 20 dBm- 10 dBm- -10 dBm- -20 dBm	ax	22.50 dBm 30 dE	n Offset 2 3 SWT 7	2.50 dB (75.9 µs (RBW 100 kHz	Mode Auto Fi	FT	0.29 dB 17.0620 MHz -1.11 dBm 2.4284470 GHz
Specti Ref Le Att 1Pk Ma 20 dBm- 10 dBm- -10 dBm- -20 dBm	ax	22.50 dBm 30 dE 1 -0.560 d	n Offset 2 3 SWT 7	2.50 dB (75.9 µs (RBW 100 kHz	Mode Auto Fi	FT	(⊽ 0.29 dB 17.0620 MHz -1.11 dBm
Specti Ref Le Att 1Pk Ma 20 dBm- 10 dBm- -10 dBm- -20 dBm		22.50 dBm 30 dE 1 -0.560 d	n Offset 2 3 SWT 7	2.50 dB (75.9 µs (RBW 100 kHz	Mode Auto Fi	FT	0.29 dB 17.0620 MHz -1.11 dBm 2.4284470 GHz
Specta Ref La Att 10 dBm 10 dBm -10 dBm -20 dBm		22.50 dBm 30 dE 1 -0.560 d	n Offset 2 3 SWT 7	2.50 dB (75.9 µs (RBW 100 kHz	Mode Auto Fi	FT	0.29 dB 17.0620 MHz -1.11 dBm 2.4284470 GHz
Specta Ref Le Att 10 dBm 10 dBm -10 dBm -20 dBm		22.50 dBm 30 dE 1 -0.560 d	n Offset 2 3 SWT 7	2.50 dB (75.9 µs (RBW 100 kHz	Mode Auto Fi	FT	0.29 dB 17.0620 MHz -1.11 dBm 2.4284470 GHz
Spectu Ref Le Att 1Pk M3 20 dBm- 10 dBm- -10 dBm- -20 dBm -30-dBm -40 dBm		22.50 dBm 30 dE 1 -0.560 d	n Offset 2 3 SWT 7	2.50 dB (75.9 µs (RBW 100 kHz	Mode Auto Fi	FT	0.29 dB 17.0620 MHz -1.11 dBm 2.4284470 GHz
Spectu Ref Le Att 1Pk M3 20 dBm- 10 dBm- -10 dBm- -20 dBm -30-dBm -40 dBm		22.50 dBm 30 dE 1 -0.560 d	n Offset 2 3 SWT 7	2.50 dB (75.9 µs (RBW 100 kHz	Mode Auto Fi	FT	0.29 dB 17.0620 MHz -1.11 dBm 2.4284470 GHz
Spectu Ref Le Att 10 dBm- 10 dBm- -10 dBm- -20 dBm -20 dBm -40 dBm		22.50 dBm 30 dE 1 -0.560 d	n Offset 2 3 SWT 7	2.50 dB (75.9 µs (RBW 100 kHz	Mode Auto Fi	FT	0.29 dB 17.0620 MHz -1.11 dBm 2.4284470 GHz
Spectu Ref Le Att 10 dBm- 10 dBm- -10 dBm- -20 dBm -20 dBm -40 dBm		22.50 dBm 30 dE 1 -0.560 d	n Offset 2 3 SWT 7	2.50 dB (75.9 µs (RBW 100 kHz	Mode Auto Fi		0.29 dB 17.0620 MHz -1.11 dBm 2.4284470 GHz
Specta Ref Le Att 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -40 dBm -50 dBm -50 dBm		22.50 dBm 30 dE 1 -0.560 d	n Offset 2 3 SWT 7	2.50 dB (75.9 µs (RBW 100 kHz	Mode Auto Fi	FT	0.29 dB 17.0620 MHz -1.11 dBm 2.4284470 GHz
Spectu Ref Le Att 1Pk Ma 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm		22.50 dBm 30 dE 1 -0.560 (n Offset 2 3 SWT 7	2.50 dB (75.9 µs (RBW 100 kHz	Mode Auto Fl	FT	0.29 dB 17.0620 MHz -1.11 dBm 2.4284470 GHz
Spectu Ref Le Att 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm		22.50 dBm 30 dE 1 -0.560 (n Offset 2 3 SWT 7	2.50 dB (75.9 µs (RBW 100 kHz	Mode Auto Fl	FT	0.29 dB 17.0620 MHz -1.11 dBm 2.4284470 GHz
Spectu Ref Le Att 1Pk M3 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -40 dBm -50 dBm -60 dBm -70 dBm CF 2.43		22.50 dBm 30 dE 1 -0.560 (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	n Offset 2 3 SWT 7	2.50 dB 75.9 μs 	RBW 100 kHz	Mode Auto Fl		0.29 dB 17.0620 MHz -1.11 dBm 2.4284470 GHz
Spectu Ref Le Att 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm		22.50 dBm 30 dE 1 -0.560 (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	M1 BINGGARGO	2.50 dB (75.9 µs (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	RBW 100 kHz VBW 300 kHz	Mode Auto FI D1[1] M2 M1[1] MM2 M1 M1		0.29 dB 17.0620 MHz -1.11 dBm 2.4284470 GHz
Spectu Ref Lo Att 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -20 dBm -40 dBm -50 dBm -50 dBm -70 dBm CF 2.4 Marker Type		22.50 dBm 30 dE 1 -0.560 (, // , // , // , // , // , // , // ,	M1 B000000000000000000000000000000000000	2.50 dB (75.9 µs (75.9 µ	RBW 100 kHz VBW 300 kHz Image: state st	Mode Auto FI D1[1] M2 M1[1] M1 I		0.29 dB 17.0620 MHz -1.11 dBm 2.4284470 GHz

Applicant: WF TASTEMAKERS TRADING LIMITEDDate of Test: August 15, 2020Model: 8205

4.3 Maximum Power Density Reading, FCC Rule 15.247(e):

The Measurement Procedure PKPSD was set according to the FCC KDB 558074 D01 v05r02.

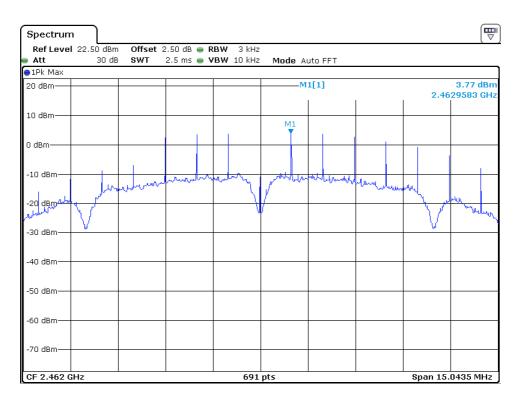
Antenna output of the EUT was coupled directly to spectrum analyzer; if an external attenuator and/or cable was used, these losses are compensated for with the analyzer OFFSET function.

Limit: The Power Density does not exceed 8dBm/3 kHz.

IEEE 802.11b (16QAM, 6Mbps)								
Frequency (MHz) Power Density with RBW 3KHz								
2412	3.66							
2437	3.69							
2462	3.77							

IEEE 802.11g (16QAM, 6Mbps)							
Frequency (MHz)	Power Density with RBW 3KHz						
2412	-6.28						
2437	-7.91						
2462	-6.03						

IEEE 802.11n-HT20 (64QAM, 6Mbps)							
Frequency (MHz)	Power Density with RBW 3KHz						
2412	-7.42						
2437	-7.87						
2462	-8.18						

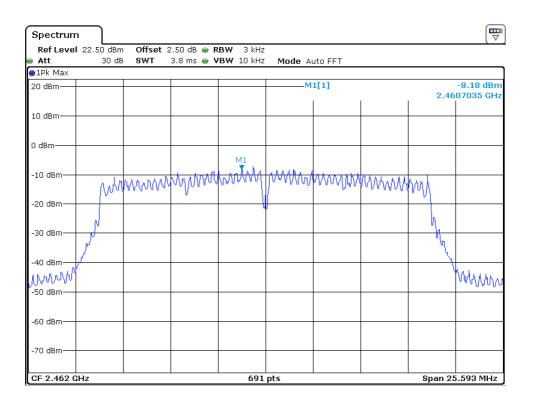

The test plots are attached as below.

802.11b

Spectrum Ref Level 22.50 dBm Offset 2.50 dB 😑 RBW 3 kHz 30 dB SWT 2.5 ms 👄 **VBW** 10 kHz Mode Auto FFT 🗎 Att ●1Pk Max 20 dBm--M1[1] 3.66 dBm 2.4129583 GHz 10 dBm-М1 0 dBm--10 dBmhar w Auto Na ANN ih. -20 dBm -30 dBm--40 dBm--50 dBm--60 dBm--70 dBm-CF 2.412 GHz 691 pts Span 15.0435 MHz ₽ Spectrum Ref Level 22.50 dBm Offset 2.50 dB 🖷 RBW 3 kHz 2.5 ms 😑 VBW 10 kHz Att 30 dB SWT Mode Auto FFT 😑 1Pk Max -M1[1] 3.69 dBm 20 dBm· 2.4379583 GHz 10 dBm-М1 0 dBm -10 dBm· Withour տեր - my hun houte A. -20 dBm -30 dBm--40 dBm--50 dBm--60 dBm--70 dBm-Span 15.0435 MHz CF 2.437 GHz 691 pts

802.11g

₩ Spectrum Ref Level 22.50 dBm Offset 2.50 dB 🖷 RBW 3 kHz 30 dB SWT 3.8 ms 🖷 **VBW** 10 kHz Mode Auto FFT Att 🔵 1Pk Max 20 dBm--M1[1] -6.28 dBn 2.4132170 GHz 10 dBm-0 dBm-And h Manan PAAN -10 dBm WWWWWW WWWWWWW -20 dBm N, -30 dBm -40 dBmJ MAN -50 dBm--60 dBm--70 dBm-CF 2.412 GHz Span 24.03 MHz 691 pts Spectrum Ref Level 22.50 dBm Offset 2.50 dB 🖷 RBW 3 kHz 🛛 Att 30 dB SWT 3.8 ms 👄 **VBW** 10 kHz Mode Auto FFT IPk Max 20 dBm--M1[1] -7.91 dBn 2.4384610 GHz 10 dBm-0 dBmм1 "Ъ MWWWWWWWWWW WH you faran when when -10 dBm -20 dBmln. -30 dBm 40 dBm WWW MM -50 dBm· -60 dBm--70 dBm-Span 24.03 MHz CF 2.437 GHz 691 pts


Spectrum	'n								
	22.50 dBm		2.50 dB 🥃 R						
Att	30 dB	SWT	3.8 ms 🖷 🏼	'BW 10 KHZ	Mode A	uto FFT			
⊖1Pk Max		1							
20 dBm					M	1[1]	I		-6.03 dBm 50950 GHz
10 dBm									
0 dBm						M1			
-10 dBm		1 Johnt	Nak kdada	. NAAN	Anna.	T	dadad to	h.n.	
-20 dBm	Mar	VWUVVV	WWW			WWWWM	rvvvvvvvv	VVN	
	N							h.	
-30 dBm	p							Ny.	ሳ
-40 dBm 📈									hy
Mr.M.									WWW
-50 dBm									
-60 dBm									
-70 dBm									
CF 2.462 G	iHz			691	pts			Span 2	4.03 MHz

802.11n-HT20

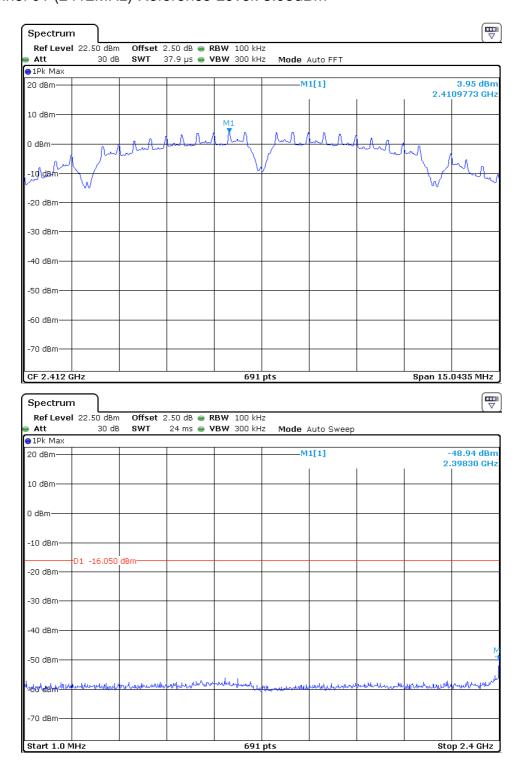
Spectrum Offset 2.50 dB 👄 RBW 3 kHz Ref Level 22.50 dBm 3.8 ms 👄 **VBW** 10 kHz 🔵 Att 30 dB SWT Mode Auto FFT ●1Pk Max 20 dBm--M1[1] -7.42 dBn 2.4144690 GHz 10 dBm-0 dBm-Manualation montownthere -10 dBm--20 dBm--30 dBm--40 dBm· MMM www -50 dBm--60 dBm--70 dBm-CF 2.412 GHz 691 pts Span 25.854 MHz ₩ Spectrum Ref Level 22.50 dBm Offset 2.50 dB 🖷 RBW 3 kHz 30 dB SWT 3.8 ms 👄 **VBW** 10 kHz Att Mode Auto FFT ●1Pk Max -7.87 dBm 2.4378885 GHz -M1[1] 20 dBm· 10 dBm· 0 dBm Marinana moundang -10 dBm--20 dBm--30 dBm--40 dBm-Marray MMM -50 dBm--60 dBm--70 dBm-CF 2.437 GHz 691 pts Span 25.593 MHz

Applicant: WF TASTEMAKERS TRADING LIMITED Date of Test: August 15, 2020 Model: 8205

4.4 Out of Band Conducted Emissions, FCC Rule 15.247(d)

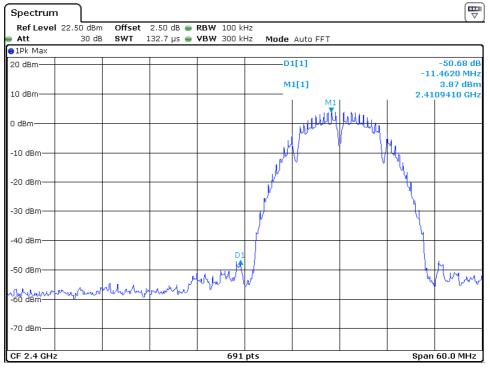
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. The Measurement Procedure was set according to the FCC KDB 558074 D01 v05r02.

All other types of emissions from the EUT shall meet the general limits for radiated frequencies outside the passband.


Refer to the attached test plots for out of band conducted emissions data with rate of 6Mbps for 802.11b/g and 6Mbps for 802.11n-HT20.

The test plots showed all spurious emission up to the tenth harmonic were measured and they were found to be at least 20 dB below the highest level of the desired power in the passband.

The test plots are attached as below.



802.11b Channel 01 (2412MHz) Reference Level: 3.95dBm

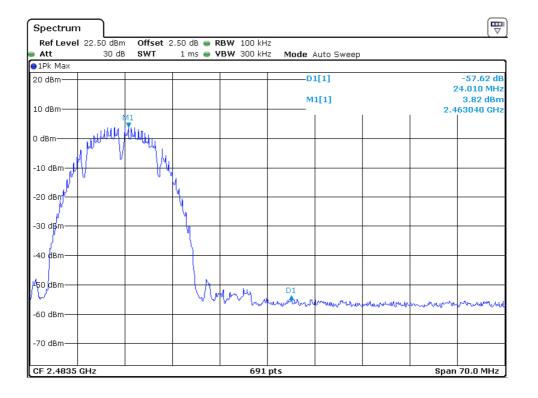
Spectrum	'n								
	22.50 dBm			BW 100 kH					
e Att	30 dB	SWT :	226 ms 👄 V	' BW 300 kH	z Mode /	Auto Sweep			
⊖1Pk Max									
20 dBm					M	1[1]			49.12 dBm
								1	1.8135 GHz
10 dBm									
0 dBm									
U UBIII									
-10 dBm									
	D1 -16.050	dBm							
-20 dBm—									
-30 dBm—									
-40 dBm—									
-50 dBm	1								
-50 dBm	Malalana	whichwork	www.huh	walkende	matring	whenon	handertry	alour week and	how he have an
-60 dBm									
-70 dBm									
Start 2.48	35 GHz			691	pts			Stop	25.0 GHz

Date: 15.AUG.2020 15:13:04

₩ Spectrum Ref Level 22.50 dBm Offset 2.50 dB 👄 RBW 100 kHz Att 30 dB SWT 37.9 µs 👄 **VBW** 300 kHz Mode Auto FFT 1Pk Max 3.77 dBm -M1[1] 20 dBm 2.4379583 GH 10 dBm-M1 Ă ٨. ٨. 0 dBm .۸ -10 dBm -20 dBm· -30 dBm--40 dBm· -50 dBm--60 dBm--70 dBm-Span 15.0435 MHz CF 2.437 GHz 691 pts ₩ Spectrum Ref Level 22.50 dBm Offset 2.50 dB 👄 RBW 100 kHz 30 dB SWT 24 ms 😑 VBW 300 kHz Mode Auto Sweep Att ⊖1Pk Max 20 dBm--M1[1] 57.24 dBn 2.27330 GHz 10 dBm-0 dBm--10 dBm-D1 -16.230 dBm -20 dBm--30 dBm--40 dBm--50 dBm· м1 "М. MO-HBIN -70 dBm-Start 1.0 MHz 691 pts Stop 2.4 GHz

Channel 06 (2437MHz) Reference Level: 3.77dBm

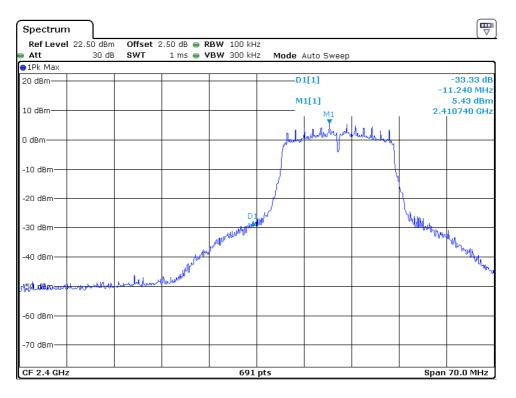
Spectrum	'n								
	1 22.50 dBm			BW 100 kH					
Att	30 dB	SWT :	226 ms 👄 V	' BW 300 kH	z Mode /	Auto Sweep			
⊖1Pk Max									
20 dBm					M	1[1]	I		51.27 dBm I.8785 GHz
10 dBm									
0 dBm									
-10 dBm—									
-20 dBm	D1 -16.230	dBm							
-30 dBm									
-40 dBm									
-50 dBm	11					unar ka sa s			
	thathan	houdharandfar	younger	munulli	Cherry Cherry		nannal	www.uhhr	monoralite
-70 dBm									
Start 2.48	35 GHz			691	pts			Stop	25.0 GHz



₽ Spectrum Ref Level 22.50 dBm Offset 2.50 dB 曼 RBW 100 kHz 30 dB SWT 37.9 µs 👄 **VBW** 300 kHz Mode Auto FFT Att 😑 1Pk Max -M1[1] 3.86 dBn 20 dBm-2.4629583 GH 10 dBm· M1 J Δ An ſ ſ Λ 0 dBm M ٨. Α -10 dBm -20 dBm--30 dBm--40 dBm--50 dBm--60 dBm--70 dBm-CF 2.462 GHz 691 pts Span 15.0435 MHz ₩ Spectrum Ref Level 22.50 dBm Offset 2.50 dB 👄 RBW 100 kHz Att 30 dB SWT 24 ms 👄 **VBW** 300 kHz Mode Auto Sweep ⊖1Pk Max 20 dBm--M1[1] 56.32 dBn 905.40 MHz 10 dBm· 0 dBm--10 dBm-D1 -16.140 dBm -20 dBm--30 dBm--40 dBm--50 dBm· м1 М. ~eonfientin -70 dBm· Start 1.0 MHz 691 pts Stop 2.4 GHz

Channel 11 (2462MHz) Reference Level: 3.86dBm

Spectrun	n								
Ref Leve Att	l 22.50 dBm 30 dB		2.50 dB 👄 R 226 ms 👄 V			Auto Sweep			
●1Pk Max					_				
20 dBm					M	1[1]	1		51.03 dBm 9.4115 GHz
10 dBm									
0 dBm									
-10 dBm—									
-20 dBm—	D1 -16.140	dBm							
-30 dBm—									
-40 dBm—									
-50 dBm							M1		
-60 dBm-	burrowshin	Lugnulutu	how when added	uh March	have	low When when		provement	handlandered
-70 dBm—									
Start 2.48	35 GHz	1	1	691	pts	1	I	Stop	25.0 GHz


802.11g Channel 01 (2412MHz) Reference Level: 5.51dBm

Spectrum	ı)								₩
Ref Level	L 22.50 dBm	Offset	2.50 dB 👄 R	BW 100 kH:	2				(.)
Att 🗧	30 dB	SWT	56.9 µs 👄 ٧	'BW 300 kH:	2 Mode /	Auto FFT			
⊖1Pk Max									
20 dBm					M	1[1]			5.51 dBm
						I	1	2.41	07130 GHz
10 dBm									
				M1					
	٨	Δ.	hanner	a partitions	montyre	Mercon	A 8	1	
0 dBm	well	and prilling				With the second se	an water and the case	1 my	
	ſ			1					
-10 dBm	- N							4	
	N							Jun Jun	
-20 dBm	M ^r							<u>ل لر</u>	
, J									No. 1
∿96°68m—									money
-30 0011									
-40 dBm									
-50 dBm									
-60 dBm									
00 00.00									
70.10									
-70 dBm—									
CF 2.412 C	Hz			691	pts			Span 2	24.03 MHz
Con a strength									
Spectrum									
Ref Level	L 22.50 dBm		2.50 dB 👄 R						
Ref Level				:BW 100 kH: /BW 300 kH:		Auto Sweep			
• Ref Level • Att • 1Pk Max	L 22.50 dBm				2 Mode /				
Ref Level	L 22.50 dBm				2 Mode /	Auto Sweep			(⊽) 28.06 dBm
Ref Level Att 1Pk Max 20 dBm	L 22.50 dBm				2 Mode /				
• Ref Level • Att • 1Pk Max	L 22.50 dBm				2 Mode /				(⊽) 28.06 dBm
Ref Level Att 1Pk Max 20 dBm	L 22.50 dBm				2 Mode /				(⊽) 28.06 dBm
Ref Level Att 1Pk Max 20 dBm	L 22.50 dBm				2 Mode /				(⊽) 28.06 dBm
Ref Level Att 1Pk Max 20 dBm 10 dBm	L 22.50 dBm				2 Mode /				(⊽) 28.06 dBm
Ref Level Att PIPK Max 20 dBm 10 dBm 0 dBm	L 22.50 dBm				2 Mode /				(⊽) 28.06 dBm
Ref Level Att 1Pk Max 20 dBm 10 dBm 0 dBm	1 22.50 dBm 30 dB	SWT			2 Mode /				(⊽) 28.06 dBm
Ref Level Att 1Pk Max 20 dBm 10 dBm 0 dBm	L 22.50 dBm	SWT			2 Mode /				(⊽) 28.06 dBm
Ref Level Att 1Pk Max 20 dBm 10 dBm 0 dBm	1 22.50 dBm 30 dB	SWT			2 Mode /				(⊽) 28.06 dBm
Ref Level Att 1Pk Max 20 dBm 10 dBm 0 dBm	1 22.50 dBm 30 dB	SWT			2 Mode /				(⊽) 28.06 dBm
Ref Level Att 1Pk Max 20 dBm 10 dBm 0 dBm	1 22.50 dBm 30 dB	SWT			2 Mode /				(⊽) 28.06 dBm
Ref Level Att 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	1 22.50 dBm 30 dB	SWT			2 Mode /				(⊽) 28.06 dBm
Ref Level Att 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	1 22.50 dBm 30 dB	SWT			2 Mode /				(⊽) 28.06 dBm
Ref Level Att 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	1 22.50 dBm 30 dB	SWT			2 Mode /				(⊽) 28.06 dBm
Ref Level Att 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	1 22.50 dBm 30 dB	SWT			2 Mode /				(⊽) 28.06 dBm
Ref Level Att 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	1 22.50 dBm 30 dB	SWT			2 Mode /				(⊽) 28.06 dBm
Ref Level Att 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	D1 -14.490	dBm	24 ms • V	28W 300 kH	2 Mode /			2.	(∇) 28.06 dBm 39830 GHz
Ref Level Att 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	D1 -14.490	SWT	24 ms • V	28W 300 kH	2 Mode /			2.	(∇) 28.06 dBm 39830 GHz
Ref Level Att 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	D1 -14.490	dBm	24 ms • V	28W 300 kH	2 Mode /			2.	(∇) 28.06 dBm 39830 GHz
Ref Level Att 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	D1 -14.490	dBm	24 ms • V	28W 300 kH	2 Mode /			2.	(∇) 28.06 dBm 39830 GHz
Ref Level Att 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	D1 -14.490	dBm	24 ms • V	28W 300 kH	2 Mode /			2.	(∇) 28.06 dBm 39830 GHz
Ref Level Att 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	D1 -14.490	dBm	24 ms • V	28W 300 kH	2 Mode /			2.	(∇) 28.06 dBm 39830 GHz

Intertek Report No.: SZHH01472486-001

Spectrum	r)								
Ref Level	l 22.50 dBm	Offset	2.50 dB 👄 🛙	RBW 100 kH	z				
Att	30 dB	SWT	226 ms 😑 🕻	/BW 300 kH	z Mode	Auto Sweep			
⊖1Pk Max]
20 dBm					M	1[1]	I		49.73 dBm 2.4995 GHz
10 dBm									
0 dBm									
-10 dBm—	D1 -14.490	dBm							
-20 dBm									
-30 dBm									
-40 dBm									
1 -50 dBm -60 dBm	ار المعاملة			and a com	W uch where	Lounnary C.	Autoralian		
-60 dBm		worrouger	where her where a little a	100				phinane v	0~~~ 0000,0,0,0,0
-70 dBm									
Start 2.48	35 GHz			691	pts			Stop	25.0 GHz

Channel 06 (2437MHz) Reference Level: 5.32dBm

Spectrum									[₩
Ref Level	22.50 dBm	Offset	2.50 dB 😑	RBW 100 kH	lz				
🛛 Att	30 dB	SWT	56.9 µs 👄	VBW 300 kH	z Mode	Auto FFT			
⊖1Pk Max			1						
20 dBm					M	1[1]		0.49	5.32 dBm 82170 GHz
						1	1	Z.43	82170 GHZ
10 dBm					M1				
					—				
0 dBm	mh	Ann	Leo Aspan	Junhary	montina	March	An An	1	
U UBIII	Mult	and tallow.	4000			00~		Hury	
				1	1				
-10 dBm	7			-				١.	
	NV I							<u> </u>	
-20 dBm	ſv								
									h.
haduaek									Minana
6-polabili									
-40 dBm				-					
-50 dBm									
-60 dBm									
-ou ubili									
-70 dBm									
CF 2.437 GI	Ηz			691	pts			Span 2	24.03 MHz
CF 2.437 G	lz			691	pts			Span 2	24.03 MHz
CF 2.437 GI				691	pts	1		Span 2	24.03 MHz
Spectrum		Offset	2.50 dB 🖷	691 RBW 100 k⊦				Span 2	_
Spectrum	1z 22.50 dBm 30 dB	Offset SWT			łz	I Auto Sweep	<u> </u>	Span 2	_
Spectrum Ref Level	22.50 dBm			RBW 100 kH	łz	Auto Sweep		Span 2	_
Spectrum Ref Level Att	22.50 dBm			RBW 100 kH	iz Iz Mode	Auto Sweep			(₩ ▼ 51.97 dBm
Spectrum Ref Level Att 1Pk Max	22.50 dBm			RBW 100 kH	iz Iz Mode		1		
Spectrum Ref Level Att 1Pk Max 20 dBm	22.50 dBm			RBW 100 kH	iz Iz Mode				(₩ ▼ 51.97 dBm
Spectrum Ref Level Att 1Pk Max	22.50 dBm			RBW 100 kH	iz Iz Mode		 		(₩ ▼ 51.97 dBm
Spectrum Ref Level Att 1Pk Max 20 dBm	22.50 dBm			RBW 100 kH	iz Iz Mode				(₩ ▼ 51.97 dBm
Spectrum Ref Level Att 1Pk Max 20 dBm	22.50 dBm			RBW 100 kH	iz Iz Mode				(₩ ▼ 51.97 dBm
Spectrum Ref Level Att 1Pk Max 20 dBm 10 dBm	22.50 dBm			RBW 100 kH	iz Iz Mode				(₩ ▼ 51.97 dBm
Spectrum Ref Level Att 1Pk Max 20 dBm 10 dBm 0 dBm	22.50 dBm			RBW 100 kH	iz Iz Mode				(₩ ▽ 51.97 dBm
Spectrum Ref Level Att 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm	22.50 dBm 30 dB	SWT		RBW 100 kH	iz Iz Mode				(₩ ▽ 51.97 dBm
Spectrum Ref Level Att 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm	22.50 dBm	SWT		RBW 100 kH	iz Iz Mode				(₩ ▽ 51.97 dBm
Spectrum Ref Level Att 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm	22.50 dBm 30 dB	SWT		RBW 100 kH	iz Iz Mode				(₩ ▽ 51.97 dBm
Spectrum Ref Level Att 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm	22.50 dBm 30 dB	SWT		RBW 100 kH	iz Iz Mode				(₩ ▽ 51.97 dBm
Spectrum Ref Level Att 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm	22.50 dBm 30 dB	SWT		RBW 100 kH	iz Iz Mode				(₩ ▽ 51.97 dBm
Spectrum Ref Level Att 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm	22.50 dBm 30 dB	SWT		RBW 100 kH	iz Iz Mode				(₩ ▽ 51.97 dBm
Spectrum Ref Level Att 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm	22.50 dBm 30 dB	SWT		RBW 100 kH	iz Iz Mode				(₩ ▽ 51.97 dBm
Spectrum Ref Level Att 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm	22.50 dBm 30 dB	SWT		RBW 100 kH	iz Iz Mode				(₩ ▽ 51.97 dBm
Spectrum Ref Level Att 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -40 dBm	22.50 dBm 30 dB	SWT		RBW 100 kH	iz Iz Mode				(₩ ▽ 51.97 dBm
Spectrum Ref Level Att 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm	22.50 dBm 30 dB	SWT		RBW 100 kH	iz Iz Mode				(₩ ▼ 51.97 dBm
Spectrum Ref Level Att 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm	22.50 dBm 30 dB	SWT	24 ms	RBW 100 kH	iz Iz Mode			2.	51.97 dBm 39830 GHz
Spectrum Ref Level Att 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -40 dBm	22.50 dBm 30 dB	SWT	24 ms	RBW 100 kH	iz Iz Mode				(₩ ▼ 51.97 dBm
Spectrum Ref Level Att 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	22.50 dBm 30 dB	SWT	24 ms	RBW 100 kH	iz Iz Mode			2.	51.97 dBm 39830 GHz
Spectrum Ref Level Att 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	22.50 dBm 30 dB	SWT	24 ms	RBW 100 kH	iz Iz Mode			2.	51.97 dBm 39830 GHz
Spectrum Ref Level Att 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	22.50 dBm 30 dB	SWT	24 ms	RBW 100 kH	iz Iz Mode			2.	51.97 dBm 39830 GHz
Spectrum Ref Level Att 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	22.50 dBm 30 dB	SWT	24 ms	RBW 100 kH	iz iz Mode			2.	51.97 dBm 39830 GHz

Intertek Report No.: SZHH01472486-001

Spectrun	Γ								
Ref Leve	1 22.50 dBm	Offset 2	2.50 dB 👄 R						<u>`</u>
Att	30 dB	SWT	226 ms 🔵 V	' BW 300 kH	z Mode .	Auto Sweep			
⊖1Pk Max									
20 dBm					M	1[1]	I		48.89 dBm .5325 GHz
10 dBm									
0 dBm									
-10 dBm	·D1 -14.680	dBm							
-20 dBm—									
-30 dBm——									
-40 dBm									
-50 dBm									
\ _ա ատարերու -60 dBm——	dhow believed	www.uu	moundury	withunorton	Kontonal	wanne	handrundy	hunder	milanor
-70 dBm									
				601				01-11	95.9.00
Start 2.48	aa GHZ			691	pes			acop	25.0 GHz

Channel 11 (2462MHz) Reference Level: 5.47dBm

Ref Level 22.50 dBm Offset 2.50 dB RBW 100 kHz Att 30 dB SWT 56.9 µs VBW 300 kHz Mode Auto FFT IPk Max 20 dBm Max M1[1] 5.47 d 20 dBm M1[1] 2.4632170 c 10 dBm M1 2.4632170 c 10 dBm M1 4.4632170 c -10 dBm M1 4.4642170 c -20 dBm Max M1 -20 dBm Max Max -40 dBm Max Max -50 dBm Max Max -70 dBm Max Max -70 dBm Max Max -70 dBm Max Max
•••••••••••••••••••••••••
20 dBm
10 dBm M1 M1 0 dBm M1 M1 -10 dBm M1 M1 -20 dBm M1 M1 -30 dBm M1 M1 -40 dBm M1 M1 -50 dBm M1 M1 -70 dBm M1 M1
10 dBm M1 M1 M1 0 dBm M1 M1 M1 -10 dBm M1 M1 M1 -20 dBm M1 M1 M1 -40 dBm M1 M1 M1 -50 dBm M1 M1 M1 M1 -60 dBm M1 M1 M1 M1 -70 dBm M1 M1 M1 M1
0 dBm
-10 dBm -20 dBm -20 dBm -20 dBm -40 dBm -40 dBm -50 dBm -70 dBm -70 dBm -70 dBm -70 dBm -10
-10 dBm -20 dBm -20 dBm -20 dBm -40 dBm -40 dBm -50 dBm -70 dBm -70 dBm -70 dBm -70 dBm -10
-20 dBm
-20 dBm
-20 dBm -40 dBm -50 dBm -60 dBm -70 dBm
-20 dBm -40 dBm -50 dBm -60 dBm -70 dBm
-40 dBm
-40 dBm
-50 dBm
-50 dBm
-60 dBm
-60 dBm
-70 dBm
-70 dBm
-70 dBm
CF 2.462 GHz 691 pts Span 24.03 MI
· · · · · · · · · · · · · · · · · · ·
Spectrum
Ref Level 22.50 dBm Offset 2.50 dB 🖷 RBW 100 kHz
● Att 30 dB SWT 24 ms ● VBW 300 kHz Mode Auto Sweep ● 1Pk Max
20 dBmM1[1] -52.14 d
2.39830 0
10 dBm
0 dBm
-10 dBm
D1 -14.530 dBm
-20 dBm
-30 dBm
-40 dBm
-50 dBm
no berne and many and the second and the second of the second and
-70 dBm
-70 dBm

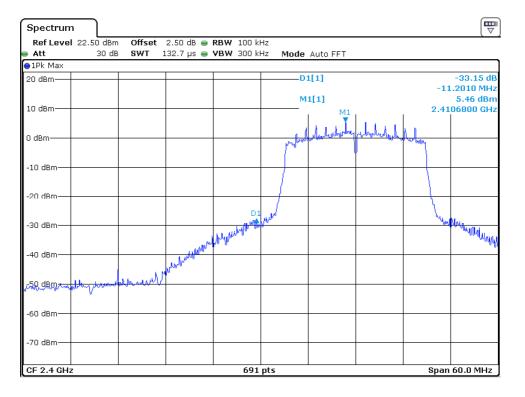
Intertek Report No.: SZHH01472486-001

Spectrun									Ē
	l 22.50 dBm	Offset	2.50 dB 👄 R	28W 100 kH	7				(▽
Att	30 dE		226 ms 🖷 🖌			Auto Sweep			
⊖1Pk Max									
20 dBm					M	1[1]			44.91 dBm 2.4995 GHz
10 dBm									
0 dBm									
-10 dBm—	D1 -14.530	dBm							
-20 dBm	DI -14.330	ubili							
-20 0011									
-30 dBm									
00 40111									
-40 dBm									
1									
-50 dBm									
workowho	and the second	h u uh s A	hundred	warder	mouther	Manner	mantertry	number	whenne
-60 dBm		0-00 - W-Q 0						, ·	
-70 dBm—									
Start 2.48	35 GHz			601					0F 0 011
				091	pts			stop	25.0 GHz
				091	pts			stop	25.0 GHZ
Spectrun				091	pts			stop	
Spectrun Ref Leve		n Offset	2.50 dB 🕳 R					<u> </u>	0 25.0 GH2
Ref Leve Att	n				z	Auto Sweep		Stop	
Ref Leve Att	n I 22.50 dBm			88W 100 kH	z z Mode .			Stop	Ţ
Ref Leve Att	n I 22.50 dBm			88W 100 kH	z z Mode .	Auto Sweep 1[1]			
Ref Leve Att 1Pk Max 20 dBm	n I 22.50 dBm			100 kH	z z Mode . D			2	-48.22 dB 22.890 MHz 5.62 dBm
Ref Leve Att	n I 22.50 dBm	SWT		100 kH	z z Mode . D	1[1]		2	-48.22 dB 22.890 MHz
Ref Leve Att 1Pk Max 20 dBm 10 dBm	n 1 22.50 dBm 30 dE			100 kH	z z Mode . D	1[1]		2	-48.22 dB 22.890 MHz 5.62 dBm
Ref Leve Att 1Pk Max 20 dBm	n 1 22.50 dBm 30 dE	SWT		100 kH	z z Mode . D	1[1]		2	-48.22 dB 22.890 MHz 5.62 dBm
Ref Leve Att 1Pk Max 20 dBm- 10 dBm- 0 dBm-	n 1 22.50 dBm 30 dE	SWT		100 kH	z z Mode . D	1[1]		2	-48.22 dB 22.890 MHz 5.62 dBm
Ref Leve Att 1Pk Max 20 dBm 10 dBm	n 1 22.50 dBm 30 dE	SWT		100 kH	z z Mode . D	1[1]		2	-48.22 dB 22.890 MHz 5.62 dBm
Ref Leve Att 1Pk Max 20 dBm 10 dBm 0 dBm	n 1 22.50 dBm 30 dE	SWT	1 ms 🖷 🗸	28W 100 kH /8W 300 kH	z Mode . DM	1[1]		2	-48.22 dB 22.890 MHz 5.62 dBm
Ref Leve Att 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	n 1 22.50 dBm 30 dE	SWT	1 ms 🖷 🗸	28W 100 kH /8W 300 kH	z Mode . DM	1[1]		2	-48.22 dB 22.890 MHz 5.62 dBm
Ref Leve Att 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	n 1 22.50 dBm 30 dE	SWT	1 ms 🖷 🗸	28W 100 kH /8W 300 kH	z Mode . DM	1[1]		2	-48.22 dB 22.890 MHz 5.62 dBm
Ref Leve Att 1Pk Max 20 dBm 10 dBm 0 dBm	n 1 22.50 dBm 30 dE	SWT	1 ms 🖷 🗸	28W 100 kH /8W 300 kH	z Mode . DM	1[1]		2	-48.22 dB 22.890 MHz 5.62 dBm
Ref Leve Att 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	n 1 22.50 dBm 30 dE	SWT	1 ms 🖷 🗸	28W 100 kH /8W 300 kH	z Mode . DM	1[1]		2	-48.22 dB 22.890 MHz 5.62 dBm
Ref Leve Att 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -20 dBm	n 1 22.50 dBm 30 dE	SWT	1 ms 🖷 🗸	28W 100 kH /8W 300 kH	z Mode . DM	1[1]		2.4	-48.22 dB 22.890 MHz 5.62 dBm 60710 GHz
Ref Leve Att 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -20 dBm	n 1 22.50 dBm 30 dE	SWT	1 ms 🖷 🗸	28W 100 kH /8W 300 kH	z Mode . DM	1[1]		2	-48.22 dB 22.890 MHz 5.62 dBm 60710 GHz
Ref Leve Att 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -40 dBm	n 1 22.50 dBm 30 dE	SWT	1 ms 🖷 🗸	100 kH	z Mode . DM	1[1]	and have the start free free	2.4	-48.22 dB 22.890 MHz 5.62 dBm 60710 GHz
Ref Leve Att 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -40 dBm	n 1 22.50 dBm 30 dE	SWT	1 ms 🖷 🗸	28W 100 kH /8W 300 kH	z Mode . DM	1[1]	enhaven Meil Ray Law	2.4	-48.22 dB 22.890 MHz 5.62 dBm 60710 GHz
Ref Level Att 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -40 dBm -50 dBm	n 1 22.50 dBm 30 dE	SWT	1 ms 🖷 🗸	28W 100 kH /8W 300 kH	z Mode . DM	1[1]	ehundhangha	2.4	-48.22 dB 22.890 MHz 5.62 dBm 60710 GHz

CF 2.4835 GHz

691 pts

Span 70.0 MHz



802.11n-HT20 Channel 01 (2412MHz) Reference Level: 5.62dBm

Spectrun	n)								
Ref Leve	1 22.50 dBm	Offset	2.50 dB 👄 R	BW 100 kH	z				
Att 🛛	30 dB	SWT	56.8 µs 👄 🖌	/BW 300 kH	z Mode A	Auto FFT			
⊖1Pk Max									
20 dBm					M	1[1]			5.62 dBm
								2.41	32350 GHz
10 dBm									
					M1				
		a 8.	A Buch	howbry	andread	M. Anna	1 1 1		
0 dBm	LM W	Routres	A CONTRACTOR		1	W W W	ოგე_სოქხოე ე	hing	
					/				
-10 dBm									
	Ĵ								
-20 dBm	Ĵ							<u> </u>	
20 00.00	N							ો	
AGABA <u>W</u>	V								Maryan
∖/3)0^¢ Bm									A KL AA MA
-40 dBm									
-50 dBm									
-30 ubiii									
-60 dBm—									
-70 dBm									
Spectrun	n I 22.50 dBm		2.50 dB 👄 R	691 88W 100 kH	-			Span 25	5.854 MHz
Att 🛛	ı 🗋				z	Auto Sweep		Span 25	Ē
Spectrun Ref Leve Att 1Pk Max	n I 22.50 dBm			RBW 100 kH	z z Mode 4	Auto Sweep			(₩ 29.67 dBm
Spectrun Ref Leve Att 1Pk Max	n I 22.50 dBm			RBW 100 kH	z z Mode 4				
Spectrun Ref Leve	ח ו 22.50 dBm			RBW 100 kH	z z Mode 4				(₩ 29.67 dBm
Spectrun Ref Leve Att 1Pk Max 20 dBm-	ח ו 22.50 dBm			RBW 100 kH	z z Mode 4				(₩ 29.67 dBm
Spectrun Ref Leve Att 1Pk Max 20 dBm	ח ו 22.50 dBm			RBW 100 kH	z z Mode 4				(₩ 29.67 dBm
Spectrun Ref Leve Att 1Pk Max 20 dBm	ח ו 22.50 dBm			RBW 100 kH	z z Mode 4				(₩ 29.67 dBm
Spectrun Ref Leve Att 1Pk Max 20 dBm 10 dBm 0 dBm	ח ו 22.50 dBm			RBW 100 kH	z z Mode 4				(₩ 29.67 dBm
Spectrun Ref Leve Att 1Pk Max 20 dBm 10 dBm 0 dBm	1 22.50 dBm 30 dB	SWT		RBW 100 kH	z z Mode 4				(₩ 29.67 dBm
Spectrun Ref Leve Att 1Pk Max 20 dBm 10 dBm 0 dBm	n I 22.50 dBm	SWT		RBW 100 kH	z z Mode 4				(₩ 29.67 dBm
Spectrun Ref Leve Att 1Pk Max 20 dBm	1 22.50 dBm 30 dB	SWT		RBW 100 kH	z z Mode 4				(₩ 29.67 dBm
Spectrun Ref Leve Att 1Pk Max 20 dBm	1 22.50 dBm 30 dB	SWT		RBW 100 kH	z z Mode 4				(₩ 29.67 dBm
Spectrun Ref Leve Att 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	1 22.50 dBm 30 dB	SWT		RBW 100 kH	z z Mode 4				(₩ 29.67 dBm
Spectrun Ref Leve Att 1Pk Max 20 dBm	1 22.50 dBm 30 dB	SWT		RBW 100 kH	z z Mode 4				(₩ 29.67 dBm
Spectrun Ref Leve Att 1Pk Max 20 dBm	1 22.50 dBm 30 dB	SWT		RBW 100 kH	z z Mode 4				(₩ 29.67 dBm
Spectrun Ref Leve Att 1Pk Max 20 dBm	1 22.50 dBm 30 dB	SWT		RBW 100 kH	z z Mode 4				(₩ 29.67 dBm
Spectrun Ref Leve Att 1Pk Max 20 dBm	1 22.50 dBm 30 dB	SWT		RBW 100 kH	z z Mode 4				(₩ 29.67 dBm
Spectrun Ref Leve Att 1Pk Max 20 dBm	1 22.50 dBm 30 dB	SWT		RBW 100 kH	z z Mode 4				(₩ 29.67 dBm
Spectrun Ref Leve Att 1Pk Max 20 dBm	1 22.50 dBm 30 dB	SWT		RBW 100 kH	z z Mode 4				(₩ 29.67 dBm
Spectrun Ref Leve Att 1Pk Max 20 dBm	1 22.50 dBm 30 dB	SWT		88W 100 kH /8W 300 kH	z z Mode 4			2.	29.67 dBm 39830 GHz
Spectrun Ref Leve Att 1Pk Max 20 dBm	1 22.50 dBm 30 dB	dBm	24 ms	28 W 100 kH /8 W 300 kH	z z Mode 4			2.	29.67 dBm 39830 GHz
Spectrun Ref Leve Att 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	1 22.50 dBm 30 dB	dBm	24 ms	28 W 100 kH /8 W 300 kH	z z Mode 4		eq. ciluleta lug Aut	2.	29.67 dBm 39830 GHz
Spectrun Ref Leve Att 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	1 22.50 dBm 30 dB	dBm	24 ms	28 W 100 kH /8 W 300 kH	z z Mode 4			2.	29.67 dBm 39830 GHz
Spectrun Ref Leve Att 1Pk Max 20 dBm	1 22.50 dBm 30 dB	dBm	24 ms	28 W 100 kH /8 W 300 kH	z z Mode 4			2.	29.67 dBm 39830 GHz

Spectrum									
	22.50 dBm		2.50 dB 😑 R						
Att	30 dB	SWT 2	226 ms 😑 V	' BW 300 kH	z Mode /	Auto Sweep			
⊖1Pk Max									
20 dBm					M	1[1]	I		45.27 dBm 2.4995 GHz
10 dBm									
0 dBm									
-10 dBm									
-20 dBm	D1 -14.380	dBm							
-30 dBm									
-40 dBm									
¢ -50 dBm						a la du la d	n al dauba		
-50 dBm \	duringhand	trunnel	www.huh	nhurmante	mble	annan an tara	ruwer woo	hunnam	brokakawan
-70 dBm									
Start 2.483	5 GHz			691	pts			Stop	25.0 GHz

Channel 06 (2437MHz) Reference Level: 5.36dBm

₽ Spectrum Ref Level 22.50 dBm Offset 2.50 dB 🖷 RBW 100 kHz 57 µs 🕳 **VBW** 300 kHz Att 30 dB SWT Mode Auto FFT 😑 1Pk Max -M1[1] 5.36 dBn 20 dBm 2.4382225 GH 10 dBm· M1 0 dBm AL. -10 dBm--20 dBm-ASOLOBA 22Mpga -40 dBm--50 dBm· -60 dBm--70 dBm-CF 2.437 GHz 691 pts Span 25.593 MHz [₩ Spectrum Ref Level 22.50 dBm Offset 2.50 dB 🖷 RBW 100 kHz 30 dB SWT 24 ms 👄 VBW 300 kHz Att Mode Auto Sweep 😑 1Pk Max M1[1] 49.05 dBn 20 dBm· 2.37050 GHz 10 dBm-0 dBm -10 dBm-D1 -14.640 dBm -20 dBm--30 dBm--40 dBm-M -50 dBm· Jul. лI. to deh Montallo -70 dBm· Stop 2.4 GHz Start 1.0 MHz 691 pts

Spectrum	'n								
	22.50 dBm			BW 100 kH					
Att Att	30 dB	SWT 2	226 ms 👄 V	' BW 300 kH	z Mode/	Auto Sweep			
🔵 1Pk Max									
20 dBm								45.21 dBm 2.4995 GHz	
10 dBm									
0 dBm									
-10 dBm									
	D1 -14.510	dBm							
-20 dBm—									
-30 dBm—									
-40 dBm 1 ►									
-50 dBm									
-50 dBm	Mannahaman	within	www.www.	withink	Mullin	htter	www.www.	almouth at lang	www.who
-70 dBm—									
Start 2.48	35 GHz			691	pts	1		Stop	25.0 GHz

₽ Spectrum Ref Level 22.50 dBm Offset 2.50 dB 🖷 RBW 100 kHz 30 dB SWT 57 µs 👄 🛛 🗛 300 kHz Mode Auto FFT Att 🔵 1 Pk Max -M1[1] 5.49 dBn 20 dBm 2.4632225 GH 10 dBm· Δ 0 dBm MN -10 dBm--20 dBm-MAR AND 4300abhh¥ -40 dBm--50 dBm· -60 dBm· -70 dBm-CF 2.462 GHz 691 pts Span 25.593 MHz [₩ Spectrum Ref Level 22.50 dBm Offset 2.50 dB 🖷 RBW 100 kHz 30 dB 226 ms 👄 VBW 300 kHz Att SWT Mode Auto Sweep 😑 1Pk Max -M1[1] 45.21 dBm 20 dBm· 2.4995 GHz 10 dBm-0 dBm--10 dBm-D1 -14.510 dBm -20 dBm--30 dBm--40 dBm· -50 dBm· plur you have allow our many many work . dereberry warnan Mahan when لالسلالي -60 dBm -70 dBm· Start 2.4835 GHz 691 pts Stop 25.0 GHz

Channel 11 (2462MHz) Reference Level: 5.49dBm

	n]								
Ref Leve Att	el 22.50 dBm 30 dB		2.50 dB 👄 R	BW 100 kH BW 300 kH		Auto Swaan			
● 1Pk Max	50 GD	3111	27 113 🖝 🕇	D44 300 KH	- moue	auto Sweep			
20 dBm					M	1[1]		-	52.56 dBm
									39480 GHz
10 dBm									
10 uBiii									
0 dBm									
-10 dBm—									
	D1 -14.510	dBm							
-20 dBm—									
-30 dBm—									
-40 dBm									
-50 dBm									м
-50 uBIII									
	Martinal gray whe	مل	and at and at Longa	en diant	A 1 1 1	M.	A SHOLD BE A	يعادين بريان	and man and Malling
1480 d816	ANTHONIAN TON	and the reven	0.000/0.00	COLOR O CAL	بالالمدادة الماريس الكروا كال	a the state of the second	PODIO MANA	oru dallo-t-o-stor - 40	0.~00.0000
-70 dBm—									
Start 1.0	MHz		1	691	pts			Sto	p 2.4 GHz
Spectrur									
Ref Leve	el 22.50 dBm		2.50 dB 👄 R						
Ref Leve Att				:BW 100 kH 'BW 300 kH		Auto Sweep			
Ref Leve Att 1Pk Max	el 22.50 dBm				z Mode .				
Ref Leve Att	el 22.50 dBm				z Mode .	Auto Sweep 1[1]		2	-47.63 dB
Ref Leve Att 1Pk Max 20 dBm-	el 22.50 dBm				z Mode . D				-47.63 dB 22.890 MHz 5.47 dBm
Ref Leve Att 1Pk Max	el 22.50 dBm				z Mode . D	1[1]			-47.63 dB 22.890 MHz
Ref Leve Att 1Pk Max 20 dBm 10 dBm	el 22.50 dBm 30 dB	SWT			z Mode . D	1[1]			-47.63 dB 22.890 MHz 5.47 dBm
Ref Leve Att 1Pk Max 20 dBm-	22.50 dBm 30 dB				z Mode . D	1[1]			-47.63 dB 22.890 MHz 5.47 dBm
Ref Leve Att 1Pk Max 20 dBm 10 dBm	el 22.50 dBm 30 dB	SWT			z Mode . D	1[1]			-47.63 dB 22.890 MHz 5.47 dBm
Ref Leve Att 1Pk Max 20 dBm 10 dBm	el 22.50 dBm 30 dB	SWT			z Mode . D	1[1]			-47.63 dB 22.890 MHz 5.47 dBm
Ref Leve Att 1Pk Max 20 dBm 10 dBm 0 dBm	el 22.50 dBm 30 dB	SWT			z Mode . D	1[1]			-47.63 dB 22.890 MHz 5.47 dBm
Ref Leve Att 1Pk Max 20 dBm 10 dBm 0 dBm	el 22.50 dBm 30 dB	SWT			z Mode . D	1[1]			-47.63 dB 22.890 MHz 5.47 dBm
Ref Leve Att 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm	el 22.50 dBm 30 dB	SWT	1 ms • V		z Mode . D	1[1]			-47.63 dB 22.890 MHz 5.47 dBm
Ref Leve Att 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm	el 22.50 dBm 30 dB	SWT	1 ms • V	/8W 300 kH	z Mode . D M	1[1]			-47.63 dB 22.890 MHz 5.47 dBm
Ref Leve Att 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm	el 22.50 dBm 30 dB	SWT	1 ms • V	/8W 300 kH	z Mode . D M	1[1]			-47.63 dB 22.890 MHz 5.47 dBm
Ref Level Att 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	el 22.50 dBm 30 dB	SWT	1 ms • V	/8W 300 kH	z Mode . D M	1[1]			-47.63 dB 22.890 MHz 5.47 dBm
Ref Level Att 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm	el 22.50 dBm 30 dB	SWT	1 ms • V	/8W 300 kH	z Mode . D M	1[1]			-47.63 dB 22.890 MHz 5.47 dBm
Ref Level Att 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -40 dBm	el 22.50 dBm 30 dB	SWT	1 ms • V	/8W 300 kH	z Mode . D M	1[1]		2.4	-47.63 dB 22.890 MHz 5.47 dBm 60710 GHz
Ref Level Att 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	el 22.50 dBm 30 dB	SWT	1 ms • V	/8W 300 kH	z Mode . D M	1[1]			-47.63 dB 22.890 MHz 5.47 dBm 60710 GHz
Ref Level Att 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -40 dBm	el 22.50 dBm 30 dB	SWT	1 ms • V		z Mode . D M	1[1]		2.4	-47.63 dB 22.890 MHz 5.47 dBm 60710 GHz
Ref Level Att 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -40 dBm	el 22.50 dBm 30 dB	SWT	1 ms • V	/8W 300 kH	z Mode . D M	1[1]		2.4	-47.63 dB 22.890 MHz 5.47 dBm 60710 GHz
Ref Level Att 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -20 dBm -50 dBm	el 22.50 dBm 30 dB	SWT	1 ms • V	/8W 300 kH	z Mode . D M	1[1]		2.4	-47.63 dB 22.890 MHz 5.47 dBm 60710 GHz
Ref Level Att 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -20 dBm -50 dBm	el 22.50 dBm 30 dB	SWT	1 ms • V	/8W 300 kH	z Mode . D M	1[1]		2.4	-47.63 dB 22.890 MHz 5.47 dBm 60710 GHz
Ref Level Att 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -50 dBm -60 dBm	el 22.50 dBm 30 dB	SWT	1 ms • V	/8W 300 kH	z Mode . D M	1[1]		2.4	-47.63 dB 22.890 MHz 5.47 dBm 60710 GHz

Applicant: WF TASTEMAKERS TRADING LIMITED Date of Test: August 15, 2020 Model: 8205

4.5 Out of Band Radiated Emissions (for emissions in 4.4 above that are less than 20dB below carrier), FCC Rule 15.247(d):

For out of band emissions that are close to or that exceed the 20dB attenuation requirement described in the specification, radiated measurements were performed at a 3m separation distance to determine whether these emissions complied with the general radiated emission requirement.

- [X] Not required, since all emissions are more than 20dB below fundamental
- [] See attached data sheet

Applicant: WF TASTEMAKERS TRADING LIMITED Date of Test: August 15, 2020 Model: 8205

4.6 Transmitter Radiated Emissions in Restricted Bands, FCC Rule 15.35(b) (c):

Data is included of the worst case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included. All measurements were performed with peak detection unless otherwise specified.

The data on the following pages list the significant emission frequencies, the limit and the margin of compliance.

Applicant: WF TASTEMAKERS TRADING LIMITEDDate of Test: August 15, 2020Model: 8205

4.7 Field Strength Calculation

The field strength is calculated by adding the reading on the Spectrum Analyzer to the factors associated with preamplifiers (if any), antennas, cables, pulse desensitization and average factors (when specified limit is in average and measurements are made with peak detectors). A sample calculation is included below.

FS = RA + AF + CF - AG + PD

 $\begin{array}{ll} Where & FS = Field \ Strength \ in \ dB\mu V/m \\ RA = Receiver \ Amplitude \ (including \ preamplifier) \ in \ dB\mu V \\ CF = Cable \ Attenuation \ Factor \ in \ dB \\ AF = Antenna \ Factor \ in \ dB \\ AG = Amplifier \ Gain \ in \ dB \\ PD = Pulse \ Desensitization \ in \ dB \end{array}$

In the radiated emission table which follows, the reading shown on the data table may reflect the preamplifier gain. An example of the calculations, where the reading does not reflect the preamplifier gain, follows:

FS = RA + AF + CF - AG + PD

Example

Assume a receiver reading of 62.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted. The pulse desensitization factor of the spectrum analyzer was 0 dB. The net field strength for comparison to the appropriate emission limit is 42 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = $62.0 \text{ dB}\mu\text{V}$ AF = 7.4 dBCF = 1.6 dBAG = 29.0 dBPD = 0 dBFS = $62 + 7.4 + 1.6 - 29 + 0 = 42 \text{ dB}\mu\text{V/m}$

Level in mV/m = Common Antilogarithm [(42 dB μ V/m)/20] = 125.9 μ V/m

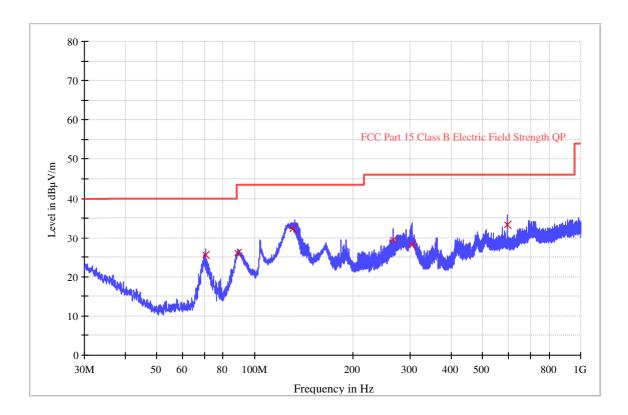
TEST REPORT

Intertek Report No.: SZHH01472486-001

Applicant: WF TASTEMAKERS TRADING LIMITED Date of Test: August 15, 2020 Model: 8205

4.8 Radiated Spurious Emission

Worst Case Radiated Spurious Emission (802.11b-Channel 01) at 70.284067MHz

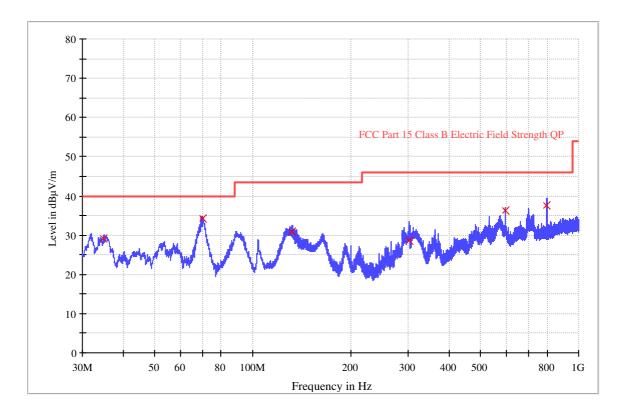

Judgement: Passed by 5.8dB margin.

For the electronic filing, the worst case radiated emission configuration photographs are saved with filename: radiated photos.pdf.

Applicant: WF TASTEMAKERS TRADING LIMITED Date of Test: August 15, 2020 Model: 8205 Worst Case Operating Mode: Transmitting (802.11b-Channel 01)

ANT Polarity: Horizontal

Frequency (MHz)	QuasiPeak (dBuV/m)	Meas. Time (ms)	Bandwidth (kHz)	Polarization	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBuV/m)
70.546000	25.5	1000.0	120.000	Н	8.9	14.5	40.0
88.911333	26.2	1000.0	120.000	Н	9.6	17.3	43.5
131.268000	32.1	1000.0	120.000	Н	10.3	11.4	43.5
266.324333	29.3	1000.0	120.000	Н	15.3	16.7	46.0
303.152000	28.0	1000.0	120.000	Н	16.7	18.0	46.0
597.999667	33.2	1000.0	120.000	Н	23.7	12.8	46.0


Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V)
- 3. Margin (dB) = Limit Line(dBµV/m) Level (dBµV/m)

Applicant: WF TASTEMAKERS TRADING LIMITED Date of Test: August 15, 2020 Model: 8205 Worst Case Operating Mode: Transmitting (802.11b-Channel 01)

ANT Polarity: Vertical

Frequency (MHz)	QuasiPeak (dBuV/m)	Meas. Time (ms)	Bandwidth (kHz)	Polarization	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBuV/m)
34.914667	29.0	1000.0	120.000	V	16.0	11.0	40.0
70.284067	34.2	1000.0	120.000	V	8.8	5.8	40.0
131.720667	31.0	1000.0	120.000	V	10.3	12.5	43.5
302.020333	28.7	1000.0	120.000	V	16.7	17.3	46.0
597.999667	36.2	1000.0	120.000	V	23.7	9.8	46.0
799.986000	37.5	1000.0	120.000	V	26.4	8.5	46.0

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Limit Line(dB μ V/m) Level (dB μ V/m)

Applicant: WF TASTEMAKERS TRADING LIMITED Date of Test: August 15, 2020 Model: 8205 Operating Mode: Transmitting (802.11b-Channel 01)

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Peak Limit at 3m (dBµV/m)	Margin (dB)
Vertical	*4824.000	53.9	36.1	34.2	52.0	74.0	-22.0
Vertical	*2384.120	35.7	34.7	33.1	34.1	74.0	-39.9

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Average Limit at 3m (dBµV/m)	Margin (dB)
Vertical	*4824.000	47.2	36.1	34.2	45.3	54.0	-8.7
Vertical	*2384.120	25.1	34.7	33.1	23.5	54.0	-30.5

- NOTES: 1. Peak detector is used, RBW=1MHz/VBW=3MHz for peak value and RBW=1MHz/VBW=10Hz for average value.
 - 2. All measurements were made at 3 meters. Radiated emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other radiated emissions than those reported were detected at a test distance of 0.3-meter.
 - 3. Negative value in the margin column shows emission below limit.
 - 4. Horn antenna used for the emission over 1000MHz.
 - * Emission within the restricted band meets the requirement of section 15.205. The corresponding limit as per 15.209 is based on Quasi peak limit for frequencies below 1000 MHz and average limit for frequencies over 1000 MHz. The radio frequency emissions above 1GHz also meet corresponding 20dB permitted peak limit with a peak detector function.

Applicant: WF TASTEMAKERS TRADING LIMITED Date of Test: August 15, 2020 Model: 8205 Operating Mode: Transmitting (802.11b-Channel 06)

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Peak Limit at 3m (dBµV/m)	Margin (dB)
Vertical	*4874.000	52.9	36.1	34.6	51.4	74.0	-22.6

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Average Limit at 3m (dBµV/m)	Margin (dB)
Vertical	*4874.000	37.5	36.1	34.6	36.0	54.0	-18.0

- NOTES: 1. Peak detector is used, RBW=1MHz/VBW=3MHz for peak value and RBW=1MHz / VBW=10Hz for average value.
 - 2. All measurements were made at 3 meters. Radiated emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other radiated emissions than those reported were detected at a test distance of 0.3-meter.
 - 3. Negative value in the margin column shows emission below limit.
 - 4. Horn antenna used for the emission over 1000MHz.
 - * Emission within the restricted band meets the requirement of section 15.205. The corresponding limit as per 15.209 is based on Quasi peak limit for frequencies below 1000 MHz and average limit for frequencies over 1000 MHz. The radio frequency emissions above 1GHz also meet corresponding 20dB permitted peak limit with a peak detector function.

Applicant: WF TASTEMAKERS TRADING LIMITED Date of Test: August 15, 2020 Model: 8205 Operating Mode: Transmitting (802.11b-Channel 11)

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Peak Limit at 3m (dBµV/m)	Margin (dB)
Vertical	*4924.000	55.3	36.1	34.6	53.8	74.0	-20.2
Vertical	*2488.100	30.5	35.6	37.2	32.1	74.0	-41.9

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Average Limit at 3m (dBµV/m)	Margin (dB)
Vertical	*4924.000	36.2	36.1	34.6	34.7	54.0	-19.3
Vertical	*2488.100	21.8	35.6	37.2	23.4	54.0	-30.6

- NOTES: 1. Peak detector is used, RBW=1MHz/VBW=3MHz for peak value and RBW=1MHz / VBW=10Hz for average value.
 - 2. All measurements were made at 3 meters. Radiated emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other radiated emissions than those reported were detected at a test distance of 0.3-meter.
 - 3. Negative value in the margin column shows emission below limit.
 - 4. Horn antenna used for the emission over 1000MHz.
 - * Emission within the restricted band meets the requirement of section 15.205. The corresponding limit as per 15.209 is based on Quasi peak limit for frequencies below 1000 MHz and average limit for frequencies over 1000 MHz. The radio frequency emissions above 1GHz also meet corresponding 20dB permitted peak limit with a peak detector function.

Applicant: WF TASTEMAKERS TRADING LIMITED Date of Test: August 15, 2020 Model: 8205 Operating Mode: Transmitting (802.11g-Channel 01)

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Peak Limit at 3m (dBµV/m)	Margin (dB)
Vertical	*4824.000	50.8	36.1	34.2	48.9	74.0	-25.1
Vertical	*2381.230	33.7	34.7	33.1	32.1	74.0	-41.9

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Average Limit at 3m (dBµV/m)	Margin (dB)
Vertical	*4824.000	37.1	36.1	34.2	35.2	54.0	-18.8
Vertical	*2381.230	22.7	34.7	33.1	21.1	54.0	-32.9

- NOTES: 1. Peak detector is used, RBW=1MHz/VBW=3MHz for peak value and RBW=1MHz/VBW=10Hz for average value.
 - 2. All measurements were made at 3 meters. Radiated emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other radiated emissions than those reported were detected at a test distance of 0.3-meter.
 - 3. Negative value in the margin column shows emission below limit.
 - 4. Horn antenna used for the emission over 1000MHz.
 - * Emission within the restricted band meets the requirement of section 15.205. The corresponding limit as per 15.209 is based on Quasi peak limit for frequencies below 1000 MHz and average limit for frequencies over 1000 MHz. The radio frequency emissions above 1GHz also meet corresponding 20dB permitted peak limit with a peak detector function.

Applicant: WF TASTEMAKERS TRADING LIMITED Date of Test: August 15, 2020 Model: 8205 Operating Mode: Transmitting (802.11g-Channel 06)

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Peak Limit at 3m (dBµV/m)	Margin (dB)
Vertical	*4874.000	50.2	36.1	34.6	48.7	74.0	-25.3

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Average Limit at 3m (dBµV/m)	Margin (dB)
Vertical	*4874.000	36.6	36.1	34.6	35.1	54.0	-18.9

- NOTES: 1. Peak detector is used, RBW=1MHz/VBW=3MHz for peak value and RBW=1MHz / VBW=10Hz for average value.
 - 2. All measurements were made at 3 meters. Radiated emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other radiated emissions than those reported were detected at a test distance of 0.3-meter.
 - 3. Negative value in the margin column shows emission below limit.
 - 4. Horn antenna used for the emission over 1000MHz.
 - * Emission within the restricted band meets the requirement of section 15.205. The corresponding limit as per 15.209 is based on Quasi peak limit for frequencies below 1000 MHz and average limit for frequencies over 1000 MHz. The radio frequency emissions above 1GHz also meet corresponding 20dB permitted peak limit with a peak detector function.

Applicant: WF TASTEMAKERS TRADING LIMITED Date of Test: August 15, 2020 Model: 8205 Operating Mode: Transmitting (802.11g-Channel 11)

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Peak Limit at 3m (dBµV/m)	Margin (dB)
Vertical	*4924.000	49.8	36.1	34.6	48.3	74.0	-25.7
Vertical	*2487.200	30.8	35.6	37.2	32.4	74.0	-41.6

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Average Limit at 3m (dBµV/m)	Margin (dB)
Vertical	*4924.000	37.1	36.1	34.6	35.6	54.0	-18.4
Vertical	*2487.200	20.5	35.6	37.2	22.1	54.0	-31.9

- NOTES: 1. Peak detector is used, RBW=1MHz/VBW=3MHz for peak value and RBW=1MHz / VBW=10Hz for average value.
 - 2. All measurements were made at 3 meters. Radiated emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other radiated emissions than those reported were detected at a test distance of 0.3-meter.
 - 3. Negative value in the margin column shows emission below limit.
 - 4. Horn antenna used for the emission over 1000MHz.
 - * Emission within the restricted band meets the requirement of section 15.205. The corresponding limit as per 15.209 is based on Quasi peak limit for frequencies below 1000 MHz and average limit for frequencies over 1000 MHz. The radio frequency emissions above 1GHz also meet corresponding 20dB permitted peak limit with a peak detector function.

Applicant: WF TASTEMAKERS TRADING LIMITEDDate of Test: August 15, 2020Model: 8205Operating Mode: Transmitting (802.11n-HT20-Channel 01)

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Peak Limit at 3m (dBµV/m)	Margin (dB)
Vertical	*4824.000	49.9	36.1	34.2	48.0	74.0	-26.0
Vertical	*2384.108	32.0	34.7	33.1	30.4	74.0	-43.6

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Average Limit at 3m (dBµV/m)	Margin (dB)
Vertical	*4824.000	36.8	36.1	34.2	34.9	54.0	-19.1
Vertical	*2384.108	26.7	34.7	33.1	25.1	54.0	-28.9

NOTES: 1. Peak detector is used, RBW=1MHz/VBW=3MHz for peak value and RBW=1MHz/VBW=10Hz for average value.

- 2. All measurements were made at 3 meters. Radiated emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other radiated emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna used for the emission over 1000MHz.
- * Emission within the restricted band meets the requirement of section 15.205. The corresponding limit as per 15.209 is based on Quasi peak limit for frequencies below 1000 MHz and average limit for frequencies over 1000 MHz. The radio frequency emissions above 1GHz also meet corresponding 20dB permitted peak limit with a peak detector function.

Applicant: WF TASTEMAKERS TRADING LIMITEDDate of Test: August 15, 2020Model: 8205Operating Mode: Transmitting (802. 11n-HT20-Channel 06)

	Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Peak Limit at 3m (dBµV/m)	Margin (dB)
ſ	Vertical	*4874.000	49.2	36.1	34.6	47.7	74.0	-26.3

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Average Limit at 3m (dBµV/m)	Margin (dB)
Vertical	*4874.000	36.1	36.1	34.6	34.6	54.0	-19.4

- NOTES: 1. Peak detector is used, RBW=1MHz/VBW=3MHz for peak value and RBW=1MHz / VBW=10Hz for average value.
 - 2. All measurements were made at 3 meters. Radiated emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other radiated emissions than those reported were detected at a test distance of 0.3-meter.
 - 3. Negative value in the margin column shows emission below limit.
 - 4. Horn antenna used for the emission over 1000MHz.
 - * Emission within the restricted band meets the requirement of section 15.205. The corresponding limit as per 15.209 is based on Quasi peak limit for frequencies below 1000 MHz and average limit for frequencies over 1000 MHz. The radio frequency emissions above 1GHz also meet corresponding 20dB permitted peak limit with a peak detector function.

Applicant: WF TASTEMAKERS TRADING LIMITED Date of Test: August 15, 2020 Model: 8205 Operating Mode: Transmitting (802. 11n-HT20-Channel 11)

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Peak Limit at 3m (dBµV/m)	Margin (dB)
Vertical	*4924.000	50.2	36.1	34.6	48.7	74.0	-25.3
Vertical	*2487.130	30.8	35.6	37.2	32.4	74.0	-41.6

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Average Limit at 3m (dBµV/m)	Margin (dB)
Vertical	*4924.000	37.0	36.1	34.6	35.5	54.0	-18.5
Vertical	*2487.130	20.7	35.6	37.2	22.3	54.0	-31.7

- NOTES: 1. Peak detector is used, RBW=1MHz/VBW=3MHz for peak value and RBW=1MHz / VBW=10Hz for average value.
 - 2. All measurements were made at 3 meters. Radiated emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other radiated emissions than those reported were detected at a test distance of 0.3-meter.
 - 3. Negative value in the margin column shows emission below limit.
 - 4. Horn antenna used for the emission over 1000MHz.
 - * Emission within the restricted band meets the requirement of section 15.205. The corresponding limit as per 15.209 is based on Quasi peak limit for frequencies below 1000 MHz and average limit for frequencies over 1000 MHz. The radio frequency emissions above 1GHz also meet corresponding 20dB permitted peak limit with a peak detector function.

Applicant: WF TASTEMAKERS TRADING LIMITED Date of Test: August 15, 2020 Model: 8205

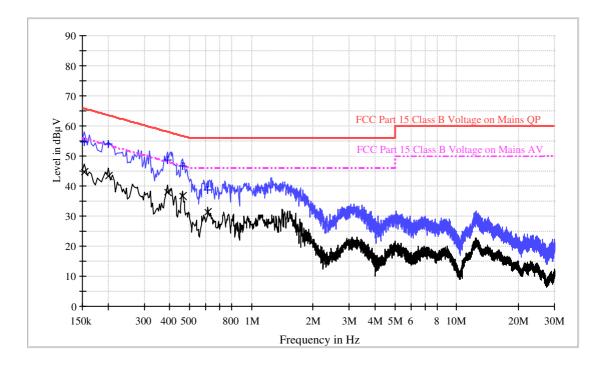
4.9 Conducted Emission at Mains Terminal

For electronic filing, the worst case conducted emission configuration photograph is saved with filename: conducted photos.pdf.

Worst Case Conducted Configuration

at 0.402000 MHz

Judgement: Passed by 8.3 dB margin



TEST REPORT

Intertek Report No.: SZHH01472486-001

Applicant: WF TASTEMAKERS TRADING LIMITED Date of Test: August 15, 2020 Model: 8205 Worst Case Operating Mode: Transmitting (802.11b-Channel 01) Phase: Neutral

Graphic / Data Table Conducted Emissions Pursuant to FCC 15.207: Emissions Requirement

Result Table QP

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.154000	54.7	9.000	Ν	9.7	11.1	65.8
0.202000	54.0	9.000	Ν	9.7	9.5	63.5
0.390000	48.6	9.000	Ν	9.7	9.5	58.1
0.462000	46.7	9.000	Ν	9.7	10.0	56.7
0.614000	38.7	9.000	Ν	9.7	17.3	56.0

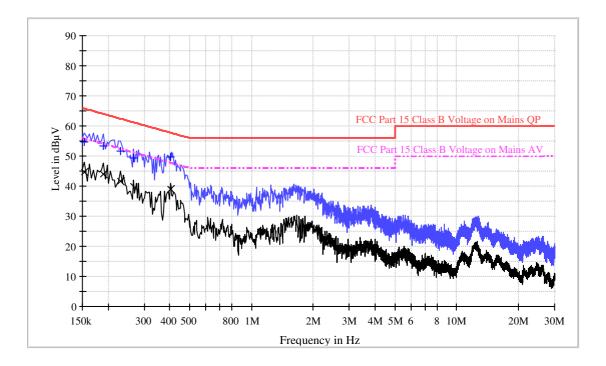
Result Table AV

Frequency (MHz)	Average (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.154000	44.7	9.000	Ν	9.7	11.1	55.8
0.202000	43.3	9.000	Ν	9.7	10.2	53.5
0.390000	38.1	9.000	Ν	9.7	10.0	48.1
0.462000	36.7	9.000	Ν	9.7	10.0	46.7
0.614000	31.4	9.000	Ν	9.7	14.6	46.0

Remark:

1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)

2. Margin (dB) = Limit (dBuV) – Level (dBuV)



TEST REPORT

Intertek Report No.: SZHH01472486-001

Applicant: WF TASTEMAKERS TRADING LIMITED Date of Test: August 15, 2020 Model: 8205 Worst Case Operating Mode: Transmitting (802.11b-Channel 01) Phase: Live

Graphic / Data Table Conducted Emissions Pursuant to FCC 15.207: Emissions Requirement

Result Table QP

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.154000	54.5	9.000	L1	9.7	11.3	65.8
0.190000	53.3	9.000	L1	9.7	10.7	64.0
0.230000	51.6	9.000	L1	9.7	10.8	62.4
0.266000	49.2	9.000	L1	9.7	12.0	61.2
0.402000	49.5	9.000	L1	9.7	8.3	57.8

Result Table AV

Frequency (MHz)	Average (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.154000	44.6	9.000	L1	9.7	11.2	55.8
0.190000	43.9	9.000	L1	9.7	10.1	54.0
0.230000	41.7	9.000	L1	9.7	10.7	52.4
0.266000	39.9	9.000	L1	9.7	11.3	51.2
0.402000	39.0	9.000	L1	9.7	8.8	47.8

Remark:

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) = Limit (dBuV) Level (dBuV)

Applicant: WF TASTEMAKERS TRADING LIMITED Date of Test: August 15, 2020 Model: 8205

4.10 Radiated Emissions from Digital Section of Transceiver, FCC Ref: 15.109

- [] Not required No digital part
- [] Test results are attached
- [x] Included in the separated report.

Applicant: WF TASTEMAKERS TRADING LIMITED Date of Test: August 15, 2020 Model: 8205

4.11 Transmitter Duty Cycle Calculation and Measurements, FCC Rule 15.35(b), (c)

The EUT antenna output port was connected to the input of the spectrum analyzer. The analyzer center frequency was set to EUT RF channel carrier. The SWEP function on the analyzer was set to ZERO SPAN. The Transmitter ON time was determined from the resultant time-amplitude display:

	See attached spectrum analyzer chart (s) for Transmitter timing
	See Transmitter timing diagram provided by manufacturer
Х	Not applicable, duty cycle was not used.

5.0 Equipment Photographs

For electronic filing, the photographs are saved with filename: external photos.pdf & internal photos.pdf.

6.0 **Product Labeling**

For electronic filing, the FCC ID label artwork and location is saved with filename: label.pdf.

7.0 <u>Technical Specifications</u>

For electronic filing, the block diagram and circuit diagram are saved with filename: block.pdf and circuit.pdf respectively.

8.0 Instruction Manual

For electronic filing, a preliminary copy of the Instruction Manual is saved with filename: manual.pdf.

This manual will be provided to the end-user with each unit sold/leased in the United States.

9.0 <u>Confidentiality Request</u>

For electronic filing, the confidentiality request of the tested EUT is saved with filename: request.pdf.

10.0 Discussion of Pulse Desensitization

The determination of pulse desensitivity was made in accordance with Hewlett Packard Application Note 150-2, *Spectrum Analysis ... Pulsed RF.*

Pulse desensitivity is not applicable for this device since the transmitter transmits the RF signal continuously.

11.0 Test Equipment List

Equipment No.	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due Date
SZ182-02	RF Power Meter	Anritsu	ML2496A	1302005	27-May-2020	27-May-2021
SZ182-02-01	Power Sensor	Anritsu	MA2411B	1207429	27-May-2020	27-May-2021
SZ061-12	BiConiLog Antenna	ETS	3142E	00166158	14-Sep-2018	14-Sep-2020
SZ185-01	EMI Receiver	R&S	ESCI	100547	24-Dec-2019	24-Dec-2020
SZ061-08	Horn Antenna	ETS	3115	00092346	7-Sep-2019	7-Sep-2021
SZ061-06	Active Loop Antenna	Electro-Metrics	EM-6876	217	27-May-2020	27-May-2021
SZ056-03	Spectrum Analyzer	R&S	FSP 30	101148	27-May-2020	27-May-2021
SZ056-06	Signal Analyzer	R&S	FSV 40	101101	27-May-2020	27-May-2021
SZ181-04	Preamplifier	Agilent	8449B	3008A0247 4	27-May-2020	27-May-2021
SZ188-05	Anechoic Chamber	ETS	FACT 3- 2.0	CT001880- Q1391	5-Jun-2018	5-Jun-2021
SZ062-12	RF Cable	RADIALL	RG 213U		26-Feb-2020	26-Aug-2020
SZ062-05	RF Cable	RADIALL	0.04- 26.5GHz		26-Feb-2020	26-Aug-2020
SZ062-13	RF Cable	Habia	0.026- 26.5GHz		26-Feb-2020	26-Aug-2020
SZ067-04	Notch Filter	Micro-Tronics	BRM5070 2-02		27-May-2020	27-May-2021
SZ185-02	EMI Test Receiver	R&S	ESCI	100692	29-Oct-2019	29-Oct-2020
SZ187-01	Two-Line V- Network	R&S	ENV216	100072	29-Oct-2019	29-Oct-2020
SZ187-02	Two-Line V- Network	R&S	ENV216	100073	27-May-2020	27-May-2021
SZ188-03	Shielding Room	ETS	RFD-100	4100	7-Jan-2020	7-Jan-2022