

FCC PART 15.247 TEST REPORT

For

KRIPTO MOBILE CORPORATION

7236 NW 31ST ST., MIAMI Florida United States

FCC ID: 2APX7K55H

Report Type:		Product Type:
Original Report		Mobile phone
Report Number:	RSZ190917001	-00B
Report Date:	2019-10-14	
Reviewed By:	Jacob Kong Engineer	Jacob Gong
Prepared By:	Bay Area Compliance Laboratories Corp. (Shenzhen) 6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone, Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn	

Note: This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA* or any agency of the Federal Government. This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk " \star ".

The information marked # is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature.

Report No.: RSZ190917001-00B

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
Objective	
RELATED SUBMITTAL(S)/GRANT(S)	
Test Methodology Measurement Uncertainty	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EUT Exercise Software	
EQUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS	
External I/O Cable	6
BLOCK DIAGRAM OF TEST SETUP	7
SUMMARY OF TEST RESULTS	8
TEST EQUIPMENT LIST	0
FCC §15.247 (i), §1.1307 (b) (1) & §2.1093 – RF EXPOSURE	11
APPLICABLE STANDARD	11
FCC §15.203 – ANTENNA REQUIREMENT	12
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	12
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	13
APPLICABLE STANDARD	13
EUT SETUP	
EMI TEST RECEIVER SETUP	
TEST PROCEDURE Corrected Factor & Margin Calculation	
CORRECTED FACTOR & MARGIN CALCULATION TEST RESULTS SUMMARY	
TEST RESOLTS SOMMART	
FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS	
Applicable Standard	
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
Test Procedure	
CORRECTED AMPLITUDE & MARGIN CALCULATION	18
TEST RESULTS SUMMARY	
TEST DATA	
FCC §15.247(a) (1)-CHANNEL SEPARATION TEST	25
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	

APPLICABLE STANDARD 32 TEST PROCEDURE 32 TEST DATA 32 FCC \$15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST 38 APPLICABLE STANDARD 38 TEST PROCEDURE 38 TEST DATA 38 TEST PROCEDURE 38 TEST DATA 38 FCC \$15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME) 41 APPLICABLE STANDARD 41 TEST DATA 38 FCC \$15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME) 41 TEST PROCEDURE 41 TEST DATA 70 TEST DATA 70 FCC \$15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT 70 TEST PROCEDURE 70 TEST PROCEDURE 70 TEST PROCEDURE 70 TEST DATA 70 FCC \$15.247(d) - BAND EDGES TESTING 71 APPLICABLE STANDARD 71 APPLICABLE STANDARD 71 TEST PROCEDURE 71 TEST PROCEDURE 71 TEST PROCEDURE 71 TEST PROCEDURE	FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH	
Test Procedure 32 Test Data 32 FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST 38 Applicable Standard 38 Test Procedure 38 Test Data 38 Test Data 38 FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME) 41 Applicable Standard 41 Test Procedure 41 Test Procedure 41 Test Data 41 FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME) 41 Test Procedure 41 Test Data 70 FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT 70 Applicable Standard 70 Test Data 70 FCC §15.247(d) - BAND EDGES TESTING 71 Applicable Standard 71 Applicable Standard 71 Test Procedure 71 Applicable Standard 71 Applicable Standard 71 Applicable Standard 71 Test Procedure 71	APPLICABLE STANDARD	
TEST DATA 32 FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST 38 APPLICABLE STANDARD 38 TEST PROCEDURE 38 TEST DATA 38 FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME) 41 APPLICABLE STANDARD 41 TEST PROCEDURE 41 TEST PROCEDURE 41 TEST PROCEDURE 41 TEST DATA 41 FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT 41 FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT 70 APPLICABLE STANDARD 70 TEST DATA 70 FCC §15.247(d) - BAND EDGES TESTING 71 APPLICABLE STANDARD 71 TEST PROCEDURE 71 APPLICABLE STANDARD 71 TEST PROCEDURE 71		
APPLICABLE STANDARD 38 TEST PROCEDURE 38 TEST DATA 38 FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME) 41 APPLICABLE STANDARD 41 TEST PROCEDURE 41 TEST PROCEDURE 41 TEST PROCEDURE 41 TEST DATA 41 FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT 70 APPLICABLE STANDARD 70 TEST PROCEDURE 70 TEST PROCEDURE 70 TEST DATA 70 FCC §15.247(d) - BAND EDGES TESTING 71 APPLICABLE STANDARD 71 TEST PROCEDURE 71 TEST PROCEDURE 71 TEST PROCEDURE 71		
Test Procedure 38 Test Data 38 FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME) 41 Applicable Standard 41 Test Procedure 41 Test Data 41 FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT 41 FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT 70 Applicable Standard 70 Test Procedure 70 FCC §15.247(d) - BAND EDGES TESTING 71 Applicable Standard 71 Test Procedure 71 Applicable Standard 71 Test Procedure 71 Applicable Standard 71 Test Procedure 71	FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST	
Test Procedure 38 Test Data 38 FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME) 41 Applicable Standard 41 Test Procedure 41 Test Data 41 FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT 41 FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT 70 Applicable Standard 70 Test Procedure 70 FCC §15.247(d) - BAND EDGES TESTING 71 Applicable Standard 71 Test Procedure 71 Applicable Standard 71 Test Procedure 71 Applicable Standard 71 Test Procedure 71	APPLICABLE STANDARD	
Test Data		
FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME) 41 APPLICABLE STANDARD 41 TEST PROCEDURE 41 TEST DATA 41 FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT 70 APPLICABLE STANDARD 70 TEST PROCEDURE 70 TEST PROCEDURE 70 FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT 70 FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT 70 FCC §15.247(d) - BAND EDGES TESTING 71 APPLICABLE STANDARD 71 TEST PROCEDURE 71 TEST PROCEDURE 71 APPLICABLE STANDARD 71 TEST PROCEDURE 71		
TEST PROCEDURE .41 TEST DATA .41 FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT .70 APPLICABLE STANDARD .70 TEST PROCEDURE .70 TEST DATA .70 FCC §15.247(d) - BAND EDGES TESTING .71 APPLICABLE STANDARD .71 TEST PROCEDURE .71 TEST PROCEDURE .71		
TEST PROCEDURE .41 TEST DATA .41 FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT .70 APPLICABLE STANDARD .70 TEST PROCEDURE .70 TEST DATA .70 FCC §15.247(d) - BAND EDGES TESTING .71 APPLICABLE STANDARD .71 TEST PROCEDURE .71 TEST PROCEDURE .71	APPLICABLE STANDARD	41
FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT 70 APPLICABLE STANDARD 70 TEST PROCEDURE 70 TEST DATA 70 FCC §15.247(d) - BAND EDGES TESTING 71 APPLICABLE STANDARD 71 TEST PROCEDURE 71 APPLICABLE STANDARD 71 TEST PROCEDURE 71		
APPLICABLE STANDARD .70 TEST PROCEDURE .70 TEST DATA .70 FCC \$15.247(d) - BAND EDGES TESTING .71 APPLICABLE STANDARD .71 TEST PROCEDURE .71	TEST DATA	41
TEST PROCEDURE 70 TEST DATA 70 FCC §15.247(d) - BAND EDGES TESTING 71 APPLICABLE STANDARD 71 TEST PROCEDURE 71	FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT	70
TEST PROCEDURE 70 TEST DATA 70 FCC §15.247(d) - BAND EDGES TESTING 71 APPLICABLE STANDARD 71 TEST PROCEDURE 71	APPLICABLE STANDARD	
FCC §15.247(d) - BAND EDGES TESTING 71 Applicable Standard 71 Test Procedure 71		
Applicable Standard	TEST DATA	
Applicable Standard	FCC §15.247(d) - BAND EDGES TESTING	71
Test Procedure		

GENERAL INFORMATION

Product	Mobile phone	
Tested Model	K55h	
Voltage Range	DC 3.8V from battery or DC 5.0V from adapter	
Frequency Range	Bluetooth: 2402~2480MHz	
Transmit Power	Bluetooth: 4.91dBm	
Modulation Technique	Bluetooth: GFSK, $\pi/4$ -DQPSK, 8DPSK	
Antenna Specification	PIFA Antenna: 1.74dBi	
Date of Test	2019-09-21 to 2019-10-08	
Sample serial number	19091700102 (Assigned by BACL, Shenzhen)	
Received date	2019-09-17	
Sample/EUT Status	Good condition	
Adapter information	Model:C55h Input: AC 100-240V, 50/60Hz, 0.2A Output: DC 5V, 1.0A	

Product Description for Equipment under Test (EUT)

Objective

This test report is prepared on behalf of *KRIPTO MOBILE CORPORATION* in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commissions rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

FCC Part 15.247 DTS, Part 22H /24E / 27 PCE and Part15.407 NII submissions with FCC ID: 2APX7K55H.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

For Radiated Emissions testing, please refer to DA 00-705 Released March 30, 2000, Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Parameter		Uncertainty
Occupied Channel Bandwidth		±5%
RF Output Power	with Power meter	±0.73dB
RF conducted test with spectrum		±1.6dB
AC Power Lines Conducted Emissions		±1.95dB
Emissions,	Below 1GHz	±4.75dB
Radiated	Above 1GHz	±4.88dB
Temperature		±1 °C
Humidity		±6%
Supply	voltages	±0.4%

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone, Shenzhen, Guangdong, China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 342867, the FCC Designation No.: CN1221.

The test site has been registered with ISED Canada under ISED Canada Registration Number 3062B.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode.

EUT Exercise Software

No exercise software was made to the EUT tested.

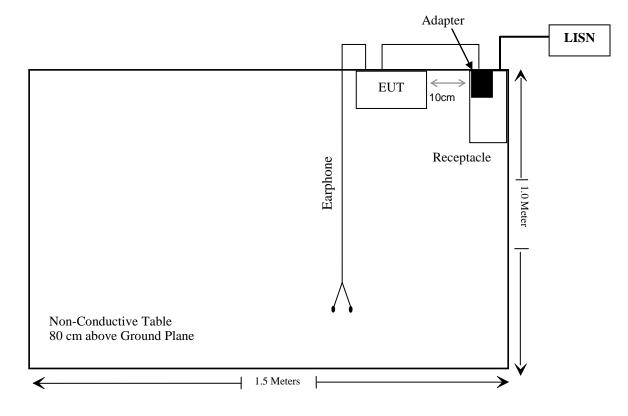
Special Accessories

No special accessory.

Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number	
/	/	/	/	

External I/O Cable

Cable Description	Length (m)	From Port	То
Un-shielding Un-detachable DC Cable	1.0	EUT	Adapter

Block Diagram of Test Setup

For conducted emission:

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §1.1307 (b) (1)& §2.1093	RF Exposure	Compliance
§15.203	Antenna Requirement	Compliance
§15.207(a)	AC Line Conducted Emissions	Compliance
§15.205, §15.209 & §15.247(d)	Radiated Emissions	Compliance
§15.247(a)(1)	20 dB Emission Bandwidth	Compliance
§15.247(a)(1)	Channel Separation Test	Compliance
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliance
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliance
§15.247(b)(1)	Peak Output Power Measurement	Compliance
§15.247(d)	Band edges Compliance	

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date		
Conducted Emissions Test							
Rohde & Schwarz	EMI Test Receiver	ESCS30	100176	2019-07-11	2020-07-11		
Rohde & Schwarz	LISN	ENV216	3560.6650.12- 101613-Yb	2019-01-25	2020-01-25		
Rohde & Schwarz	Transient Limiter	ESH3Z2	DE25985	2019-03-02	2020-03-01		
Rohde & Schwarz	CE Test software	EMC 32	V8.53.0	NCR	NCR		
Un-known	Conducted Emission Cable	78652	UF A210B-1- 0720-504504	2018-11-12	2019-11-12		
	Radia	ated Emission T	est				
A.H. System	Horn Antenna	SAS-200/571	135	2018-09-01	2021-08-31		
Rohde & Schwarz	Spectrum Analyzer	FSV40-N	102259	2019-07-22	2020-07-21		
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2017-12-22	2020-12-21		
COM-POWER	Pre-amplifier	PA-122	181919	2018-11-12	2019-11-12		
Sonoma Instrument	Amplifier	310N	186238	2018-11-12	2019-11-12		
Rohde & Schwarz	EMI Test Receiver	ESR3	102455	2019-07-09	2020-07-08		
Ducommun technologies	RF Cable	UFA147A- 2362-100100	MFR64639 231029-003	2018-11-12	2019-11-12		
Ducommun technologies	RF Cable	104PEA	218124002	2018-11-12	2019-11-12		
Ducommun technologies	RF Cable	RG-214	1	2019-05-21	2019-11-19		
Ducommun technologies	RF Cable	RG-214	2	2018-11-12	2019-11-12		
Ducommun Technologies	Horn Antenna	ARH-4223- 02	1007726-04	2017-12-29	2020-12-28		
Heatsink Required	Amplifier	QLW- 18405536-J0	15964001002	2018-11-12	2019-11-12		
Sinoscite	Notch Filter	BSF2402- 2480MN- 0898-001	99632	2018-11-12	2019-11-12		
Rohde & Schwarz	Auto test software	EMC 32	V9.10	NCR	NCR		

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
	RF	Conducted Tes	t		
Agilent	USB wideband power meter	U2021XA	MY54250003	2019-07-10	2020-07-09
WEINSCHEL	10dB Attenuator	5324	AU 3842	Each	Time
Rohde & Schwarz	Signal and Spectrum Analyzer	FSV40	101473	2019-07-22	2020-07-22
Tonscend Corporation	SRD/Bluetooth/Wi-Fi	JS0806-2	19D8060154	2019-07-10	2020-07-09
Rohde & Schwarz	EMI Test Receiver	ESR3	102455	2019-07-09	2020-07-08
Ducommun technologies	RF Cable	RG-214	3	Each	Time

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §15.247 (i), §1.1307 (b) (1) & §2.1093 – RF EXPOSURE

Applicable Standard

According to FCC §2.1093 and §1.1307(b) (1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB 447498 D01 General RF Exposure Guidance

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] ·

 $\left[\sqrt{f(GHz)}\right] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

1. f(GHz) is the RF channel transmit frequency in GHz.

2. Power and distance are rounded to the nearest mW and mm before calculation.

3. The result is rounded to one decimal place for comparison.

4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

For worst case:

Frequency	Maximum pov	-	Calculated Distance	Calculated	Threshold	SAR Test
(MHz)	(dBm)	(mW)	(mm)	Value	(1-g SAR)	Exclusion
2480	5.5	3.55	5	1.1	3.0	Yes

Result: No Standalone SAR test is required

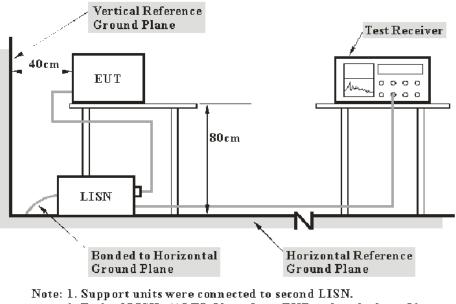
FCC §15.203 – ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Antenna Connector Construction

The EUT has one integrated antenna arrangement, which was permanently attached and the antenna gain is 1.74 dBi, fulfill the requirement of this section. Please refer to the EUT photos.


Result: Compliance.

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

EUT Setup

Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W	
150 kHz – 30 MHz	9 kHz	

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Corrected Factor & Margin Calculation

The Corrected factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Correction Factor = LISN VDF + Cable Loss + Transient Limiter Attenuation

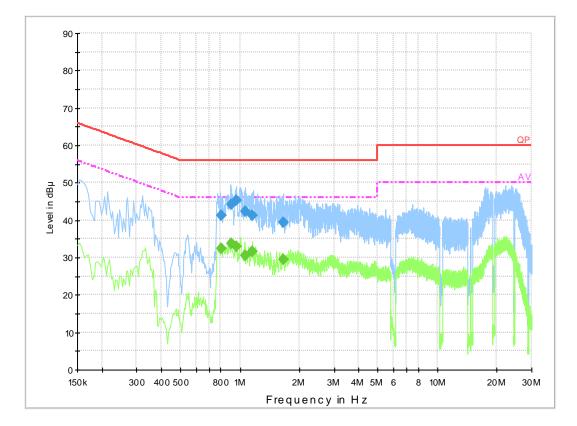
The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Results Summary

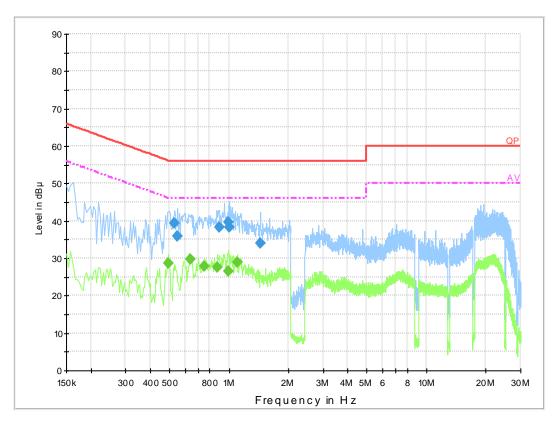
According to the EUT complied with the FCC Part 15.207,

Test Data


Environmental Conditions

Temperature:	25 °C
Relative Humidity:	50 %
ATM Pressure:	101.0 kPa

The testing was performed by Kiki Geng on 2019-09-27.


EUT operation mode: Transmitting & charging (the worst case is GFSK Mode, Low channel)

AC 120V/60 Hz, Line

Frequency (MHz)	Corrected Amplitude (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/Ave./QP)
0.802090	41.3	19.8	56.0	14.7	QP
0.900530	44.3	19.8	56.0	11.7	QP
0.955690	45.3	19.8	56.0	10.7	QP
1.070070	42.2	19.9	56.0	13.8	QP
1.160450	41.2	19.8	56.0	14.8	QP
1.661190	39.5	19.9	56.0	16.5	QP
0.802090	32.5	19.8	46.0	13.5	Ave.
0.900530	33.7	19.8	46.0	12.3	Ave.
0.955690	32.9	19.8	46.0	13.1	Ave.
1.070070	30.5	19.9	46.0	15.5	Ave.
1.160450	31.6	19.8	46.0	14.4	Ave.
1.661190	29.4	19.9	46.0	16.6	Ave.

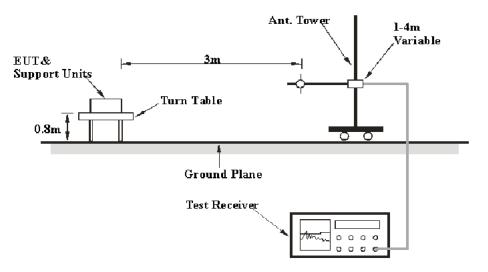
AC 120V/60 Hz, Neutral

Frequency (MHz)	Corrected Amplitude (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/Ave./QP)
0.530050	39.3	19.8	56.0	16.7	QP
0.545750	36.0	19.8	56.0	20.0	QP
0.899290	38.2	19.7	56.0	17.8	QP
0.998970	39.7	19.8	56.0	16.3	QP
1.010670	38.4	19.8	56.0	17.6	QP
1.440310	33.9	19.8	56.0	22.1	QP
0.494000	28.8	19.8	46.1	17.3	Ave.
0.638000	29.8	19.8	46.0	16.2	Ave.
0.754000	27.8	19.8	46.0	18.2	Ave.
0.874000	27.7	19.7	46.0	18.3	Ave.
0.998000	26.6	19.8	46.0	19.4	Ave.
1.098000	28.8	19.8	46.0	17.2	Ave.

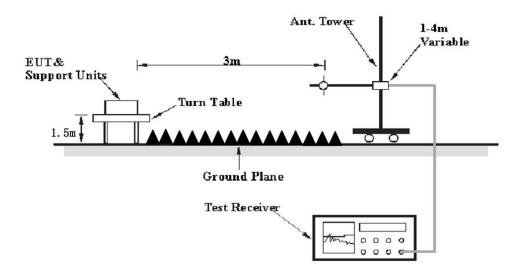
Note:

1) Correction Factor =LISN VDF (Voltage Division Factor) + Cable Loss + Transient Limiter Attenuation

2) Corrected Amplitude = Reading + Correction Factor3) Margin = Limit - Corrected Amplitude


FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS

Applicable Standard


FCC §15.205; §15.209; §15.247(d)

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209 and FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, according to the DA 00-705 Released March 30, 2000, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1 MHz	3 MHz	/	РК
Above I GHZ	1 MHz	10 Hz	/	Average

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz and peak and Average detection modes for frequencies above 1 GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

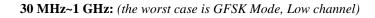
Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

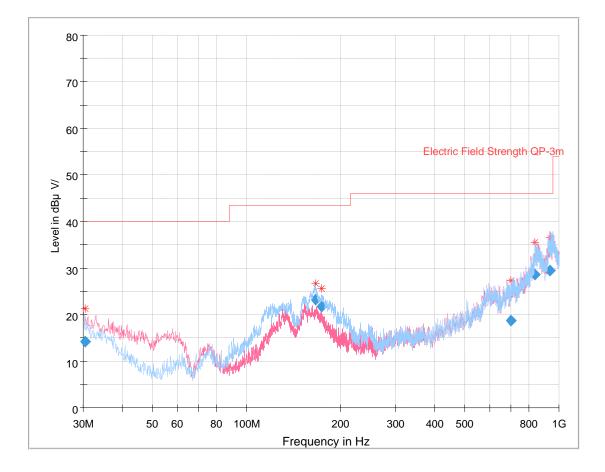
The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Results Summary

According to the EUT complied with the FCC Title 47, Part 15, Subpart C, section 15.205, 15.209 and 15.247.


Test Data


Environmental Conditions

Temperature:	24~25 °C
Relative Humidity:	50~52 %
ATM Pressure:	100.9~101.0 kPa

The testing was performed by Charlie Cha on 2019-10-08 for below 1G and Curry Xiang on 2019-09-24 for above 1G.

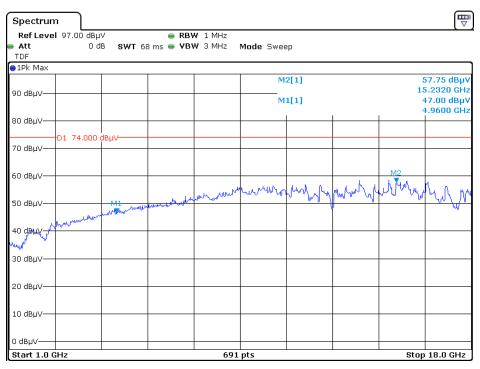
EUT operation mode: Transmitting (Scan with GFSK, \pi/4-DQPSK, 8DPSK mode, the worst case is GFSK Mode)

Frequency (MHz)	Corrected Amplitude (dBµV/m)	Antenna height (cm)	Antenna Polarity	Turntable position (degree)	Correction Factor (dB/m)	Limit (dBµV/m)	Margin (dB)
30.773375	14.42	150.0	V	67.0	-8.1	40.00	25.58
38.019750	16.58	127.0	V	113.0	-12.5	40.00	23.42
172.186625	28.08	149.0	Н	285.0	-15.0	43.50	15.42
176.817625	27.41	154.0	Н	285.0	-15.1	43.50	16.09
838.420500	28.61	146.0	Н	87.0	5.8	46.00	17.39
956.139875	29.46	366.0	Н	24.0	9.5	46.00	16.54

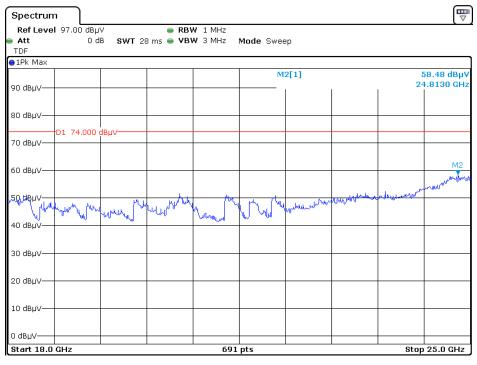
E	Re	eceiver	T 4 - 1-1 -	Rx An	tenna	Corrected	Corrected	T : :4	Manala
Frequency (MHz)	Reading (dBµV)	PK/QP/Ave.	Turntable Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
	Low Channel (2402 MHz)								
2329.28	28.56	PK	20	2.0	Н	31.64	60.20	74	13.80
2329.28	14.53	Ave.	20	2.0	Н	31.64	46.17	54	7.83
2497.55	28.76	РК	52	2.5	Н	32.13	60.89	74	13.11
2497.55	14.61	Ave.	52	2.5	Н	32.13	46.74	54	7.26
4804.00	43.70	РК	324	1.7	Н	6.28	49.98	74	24.02
4804.00	28.64	Ave.	324	1.7	Н	6.28	34.92	54	19.08
			Middle C	hannel	(2441 N	(Hz)			
4882.00	43.80	РК	155	1.4	Н	6.76	50.56	74	23.44
4882.00	28.66	Ave.	155	1.4	Н	6.76	35.42	54	18.58
			High Ch	nannel (2	2480 M	Hz)			
2335.41	28.26	РК	166	2.2	Н	31.64	59.90	74	14.10
2335.41	14.33	Ave.	166	2.2	Н	31.64	45.97	54	8.03
2498.34	28.52	РК	171	2.0	Н	32.13	60.65	74	13.35
2498.34	14.70	Ave.	171	2.0	Н	32.13	46.83	54	7.17
4960.00	44.03	РК	204	2.0	Н	6.80	50.83	74	23.17
4960.00	29.11	Ave.	204	2.0	Н	6.80	35.91	54	18.09

1 GHz - 25 GHz:

Note:

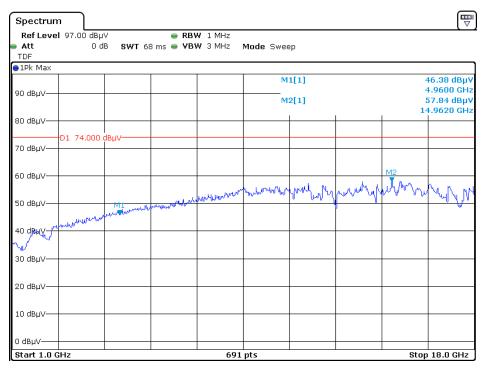

Corrected Factor = Antenna factor (RX) + Cable Loss - Amplifier Factor

Corrected Amplitude = Corrected Factor + Reading

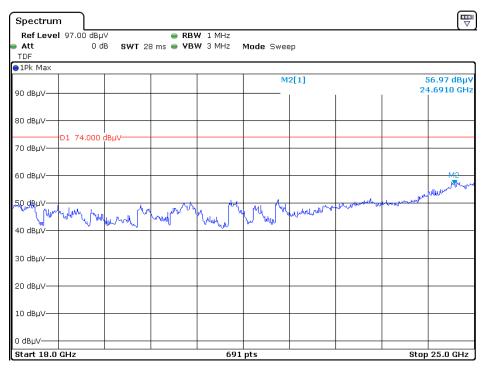

Margin = Limit - Corrected. Amplitude

The other spurious emission which is 20dB to the limit was not recorded. And for the pre-scan is performed with the 2400-2483.5MHz band filter.

Pre-scan with high channel Peak Horizontal



Date: 24.SEP.2019 20:23:49



Date: 24.SEP.2019 19:14:04

Date: 24.SEP.2019 20:30:48

Date: 24.SEP.2019 19:21:12

Pre-scan for Average Horizontal

Spectrum						
RefLevel 97.00 dBµV ● RBW 1 MHz ● Att 0 dB SWT 4 s ● VBW 10 Hz Mode Sweep TDF						
●1Pk Max						
90 dBµV		M2[1]	45.84 dBµV 15.2416380 GHz			
80 dBµV						
70 dBµV						
60 dBµV						
D1 54.000 dBµV			MZ			
40 dBµV						
30 dBµV						
20 dBµV						
10 dBµV						
0 dBµV						
CF 15.232 GHz	691	pts	Span 20.0 MHz			

Date: 24.SEP.2019 20:27:17

Spectrum			
Ref Level 97.00 Att	dBµV ● RBW 0 dB SWT 4 s ● VBW		
TDF			
●1Pk Max			
90 dBµV		M2[1]	45.67 dBμV 24.8032750 GHz
80 dBµV			
70 dBµV			
60 dBµV			
D1 54. ,≨0 dBµV	000 dBµV		
V12			
40 dBµV			
30 dBµV			
20 dBµV			
10 dBµV			
0 dвµV			
CF 24.813 GHz		691 pts	Span 20.0 MHz

Date: 24.SEP.2019 19:17:41

Spectrum						
Ref Level 97.00 dBµV ● RBW 1 MHz Att 0 dB SWT 4 s ● VBW 10 Hz Mode Sweep TDF						
●1Pk Max						
90 dBµV			M2[1]	14	45.27 dBµV 4.9712620 GHz 	
80 dBµV						
70 dBµV						
60 dBµV						
D1 54.00	0 dBµV				M2	
40 dBµV	^					
30 dвµV						
20 dBµV						
10 dBµV						
0 dBµV						
CF 14.962 GHz		691 p	ts	S	pan 20.0 MHz	

Date: 24.SEP.2019 20:35:17

Spectrun	n							
Att TDF	Ι 97.00 dBμ Ο α		● RBW s ● VBW		de Sweep			
●1Pk Max 90 dвµV					M	2[1]	1	15.50 dBµV 00590 GHz
80 dBµV								
70 dBµV								
60 dBµV								
50 dBµV	D1 54.000	dвµV						M2
40 dBµV								
30 dBµV								
20 dBµV—								
10 dBµV—								
0 dBµV				691				20.0 MHz

Date: 24.SEP.2019 19:24:50

FCC §15.247(a) (1)-CHANNEL SEPARATION TEST

Applicable Standard

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

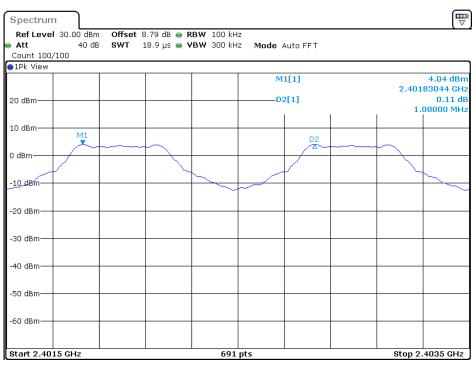
Test Procedure

- 1. Set the EUT in transmitting mode, maxhold the channel.
- 2. Set the adjacent channel of the EUT and maxhold another trace.
- 3. Measure the channel separation.

Test Data

Environmental Conditions

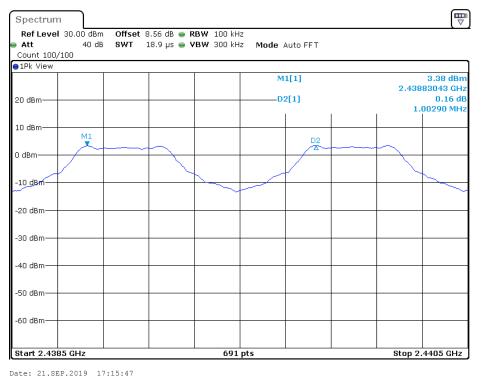
Temperature:	26 °C
Relative Humidity:	56 %
ATM Pressure:	101.0 kPa

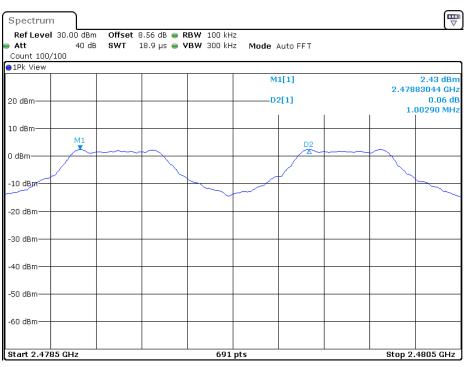

The testing was performed by Kerion Luo on 2019-09-21.

EUT operation mode: Transmitting

Test Result: Compliance. Please refer to following table and plots.

TestMode	Channel	Result[MHz]	Limit[MHz]	Verdict
GFSK	Hop_2402	1.000	>=0.634	PASS
	Hop_2441	1.003	>=0.634	PASS
	Hop_2480	1.003	>=0.634	PASS
π/4-DQPSK	Hop_2402	1.003	>=0.836	PASS
	Hop_2441	1.003	>=0.836	PASS
	Hop_2480	1.003	>=0.836	PASS
8DPSK	Hop_2402	1.003	>=0.844	PASS
	Hop_2441	1.003	>=0.844	PASS
	Hop_2480	1.003	>=0.844	PASS

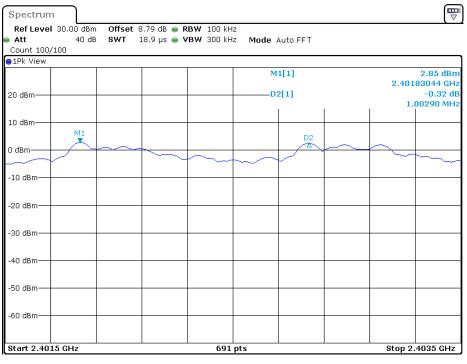

Please refer to the following plots.

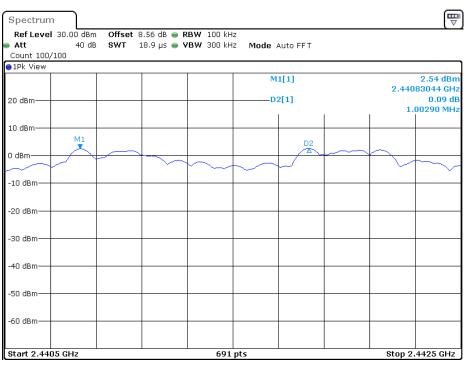


BDR (GFSK): Low Channel

Date: 21.SEP.2019 15:27:47

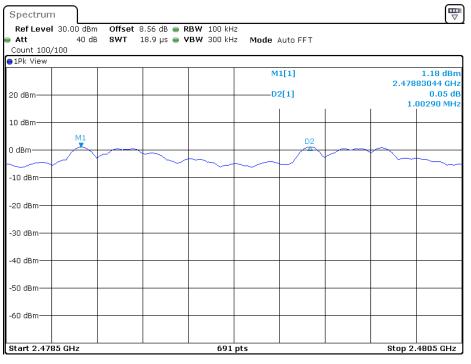
BDR (GFSK): Middle Channel

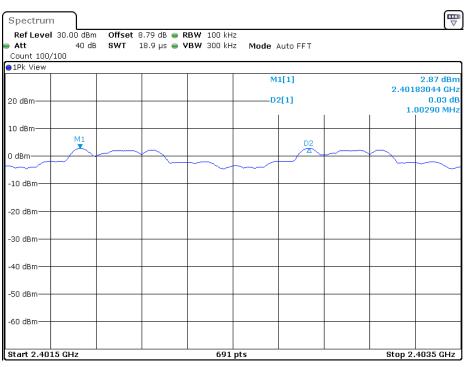



BDR (GFSK): High Channel

Date: 21.SEP.2019 17:16:21

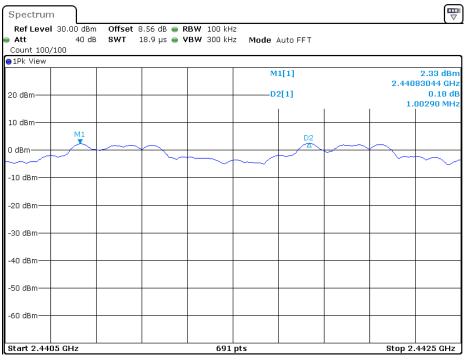
EDR (π /4-DQPSK): Low Channel

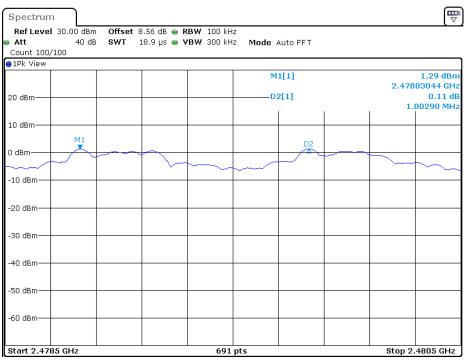

Date: 21.SEP.2019 16:40:34


EDR (π /4-DQPSK): Middle Channel

Date: 21.SEP.2019 16:40:59

EDR (π /4-DQPSK): High Channel


Date: 21.SEP.2019 16:41:32


EDR (8DPSK): Low Channel

Date: 21.SEP.2019 16:46:34

EDR (8DPSK): Middle Channel

Date: 21.SEP.2019 16:43:39

EDR (8DPSK): High Channel

Date: 21.SEP.2019 16:44:17

FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH

Applicable Standard

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

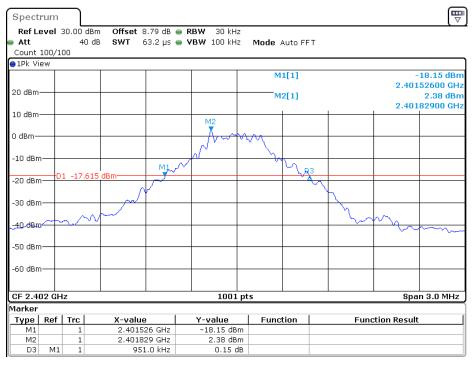
Test Data

Environmental Conditions

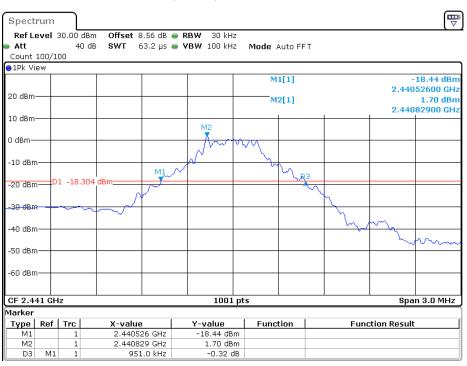
Temperature:	25 °C	
Relative Humidity:	56 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Kerion Luo on 2019-09-21.

EUT operation mode: Transmitting

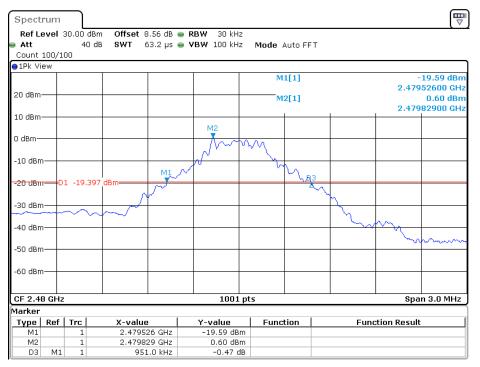

Test Result: Compliance. Please refer to following table and plots.

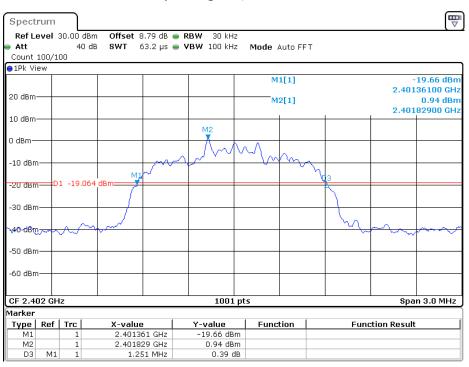
Bay Area Compliance Laboratories Corp. (Shenzhen)


Report No.: RSZ190917001-00B

TestMode	Channel[MHz]	20db EBW[MHz]	Limit[MHz]	Verdict
GFSK	2402	0.951		PASS
	2441	0.951		PASS
	2480	0.951		PASS
π/4- DQPSK	2402	1.251		PASS
	2441	1.254		PASS
	2480	1.254		PASS
8DPSK	2402	1.266		PASS
	2441	1.266		PASS
	2480	1.266		PASS

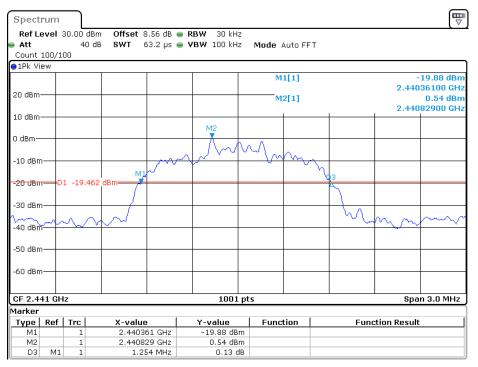
BDR (GFSK): Low Channel

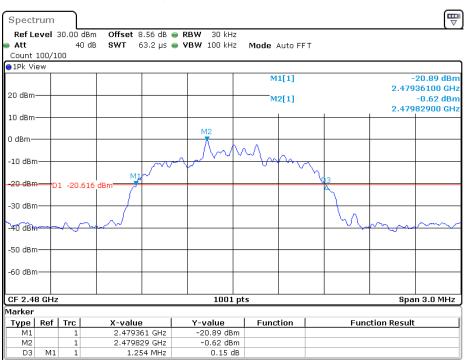

Date: 21.SEP.2019 15:00:47


BDR (GFSK): Middle Channel

Date: 21.SEP.2019 15:04:36

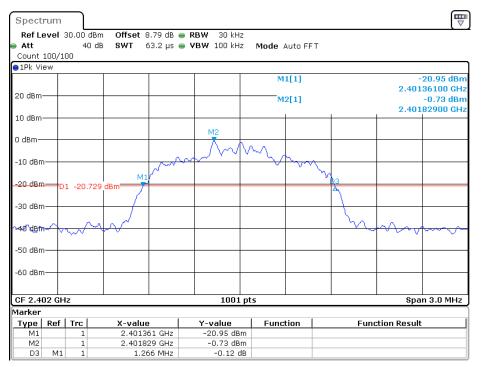
BDR (GFSK): High Channel

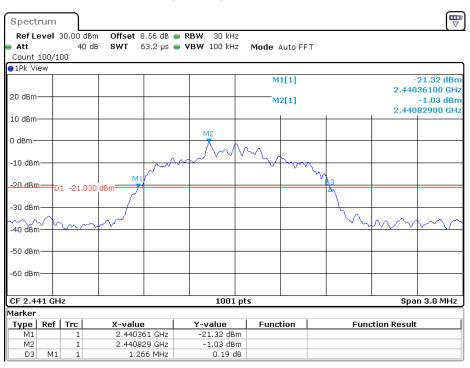

Date: 21.SEP.2019 15:06:01


EDR (π /4-DQPSK): Low Channel

Date: 21.SEP.2019 16:19:32

EDR (π/4-DQPSK): Middle Channel


Date: 21.SEP.2019 15:11:06


EDR (π /4-DQPSK): High Channel

Date: 21.SEP.2019 15:13:27

EDR (8DPSK): Low Channel


Date: 21.SEP.2019 15:18:25

EDR (8DPSK): Middle Channel

Date: 21.SEP.2019 15:21:13

EDR (8DPSK): High Channel

Date: 21.SEP.2019 15:23:11

FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

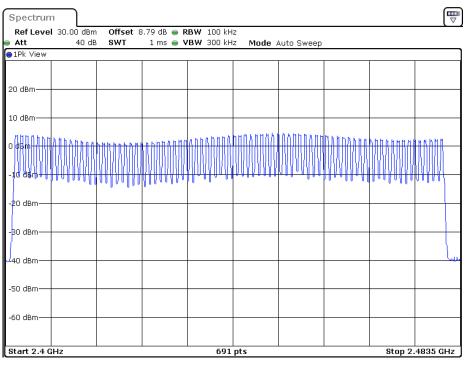
Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the max-hold function record the quantity of the channel.

Test Data

Environmental Conditions


Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	101.0 kPa

The testing was performed by Kerion Luo on 2019-09-21.

EUT operation mode: Transmitting

Test Result: Compliance. Please refer to following table and plots.

Mode	Frequency Range (MHz)	Number of Hopping Channel (CH)	Limit (CH)
BDR (GFSK)	2400-2483.5	79	≥15
EDR (π/4-DQPSK)	2400-2483.5	79	≥15
EDR (8DPSK)	2400-2483.5	79	≥15

BDR (GFSK): Number of Hopping Channels

Date: 21.SEP.2019 15:36:35

EDR (*π*/4-DQPSK): Number of Hopping Channels

Ref Level	30.00 dBm	Offset	3.79 dB 👄 F	BW 100 kH	z				
Att	40 dB	SWT	1 ms 😑	'BW 300 kH	z Mode /	Auto Sweep			
●1Pk View									
20 dBm									
10 dBm									
o @#### #.h.h	1 h h m h + +			*****	hhanhhah	<u>AAAAAAAAA</u>	AttAntik	THARADA	***
1000000	ANNIN M	MMMM	WWWW	MAAAAAA	andaama	avadnaah	a a a a a a a a a a a a a a a a a a a	NNNNIE	NAMAN'
-10 dBm		• • •							
-20 dBm									
-30 dBm									
/									l M
40 dBm									
-50 dBm									
-60 dBm									
Start 2.4 G	Hz			691	pts			Stop 2	 .4835 GH

Date: 21.SEP.2019 15:48:04

	30.00 dBm		8.79 dB 👄 R							
Att	40 dB	SWT	1 ms 😑 🎙	'BW 300 kH	z Mode /	Auto Sweep				
)1Pk View			1							
20 dBm										
.o ubiii										
LO dBm										
				****	n ዘለ አ እ እ ለ ለ	ስለተለፈለሉ	Линканки			
MMMM	WAMAA	MANANAN	MMMM	MARAN	44844444	UNNAAAAA	AVVAAAAA	WIAMIU	IMAU	_
		UNRANAD.	880800000							
10 dBm										-
20 dBm										
30 dBm										1
P									U U	1
40 dBm —										4
50 dBm										
									l l	
60 dBm										
									ĺ	

EDR (8DPSK): Number of Hopping Channels

Date: 21.SEP.2019 15:58:22

FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

- 1. The EUT was worked in channel hopping.
- 2. Set the RBW to: 1MHz.
- 3. Set the VBW \geq 3×RBW.
- 4. Set the span to 0Hz.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Recorded the time of single pulses

Test Data

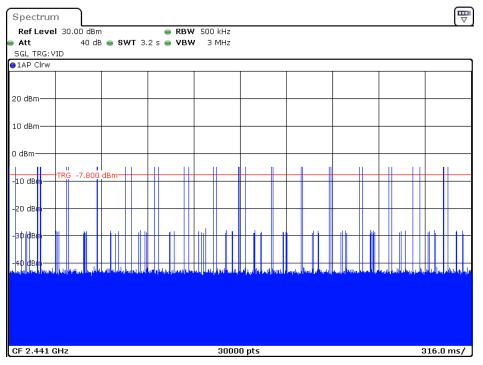
Environmental Conditions

Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	101.0 kPa

The testing was performed by Kerion Luo on 2019-09-21.

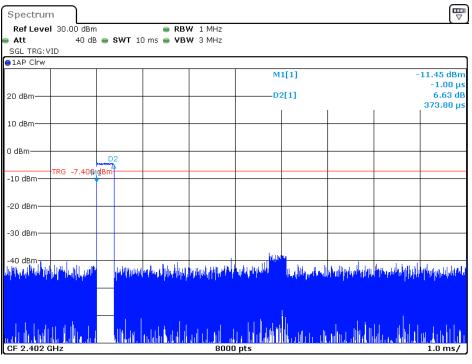
EUT operation mode: Transmitting

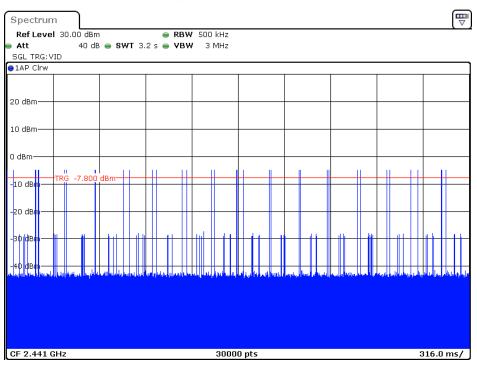

Bay Area Compliance Laboratories Corp. (Shenzhen)


TestM	Iode	Channel	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
		Hop_2402	0.37	320	0.12	<=0.4	PASS
	DH1	Hop_2441	0.38	320	0.12	<=0.4	PASS
		Hop_2480	0.37	320	0.12	<=0.4	PASS
		Hop_2402	1.62	200	0.325	<=0.4	PASS
GFSK	DH3	Hop_2441	1.62	120	0.195	<=0.4	PASS
		Hop_2480	1.62	180	0.292	<=0.4	PASS
		Hop_2402	2.86	80	0.229	<=0.4	PASS
	DH5	Hop_2441	2.86	70	0.2	<=0.4	PASS
		Hop_2480	2.86	110	0.315	<=0.4	PASS
		Hop_2402	0.38	320	0.122	<=0.4	PASS
	2DH1	Hop_2441	0.38	320	0.122	<=0.4	PASS
		Hop_2480	0.38	320	0.122	<=0.4	PASS
		Hop_2402	1.63	180	0.293	<=0.4	PASS
π /4-DQPSK	2DH3	Hop_2441	1.63	190	0.309	<=0.4	PASS
		Hop_2480	1.63	210	0.342	<=0.4	PASS
		Hop_2402	2.87	110	0.315	<=0.4	PASS
	2DH5	Hop_2441	2.87	100	0.287	<=0.4	PASS
		Hop_2480	2.87	120	0.344	<=0.4	PASS
		Hop_2402	0.38	330	0.126	<=0.4	PASS
	3DH1	Hop_2441	0.38	320	0.122	<=0.4	PASS
		Hop_2480	0.38	330	0.126	<=0.4	PASS
		Hop_2402	1.63	150	0.244	<=0.4	PASS
8DPSK	3DH3	Hop_2441	1.63	130	0.211	<=0.4	PASS
		Hop_2480	1.63	190	0.309	<=0.4	PASS
		Hop_2402	2.87	90	0.258	<=0.4	PASS
	3DH5	Hop_2441	2.87	130	0.373	<=0.4	PASS
		Hop_2480	2.87	110	0.316	<=0.4	PASS

Test Result: Compliance. Please refer to following table and plots

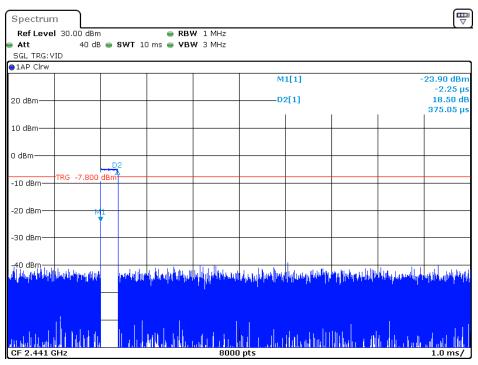
Note: TotalHops=Hops in 3.16s *10 Result=Burst Width*TotalHops

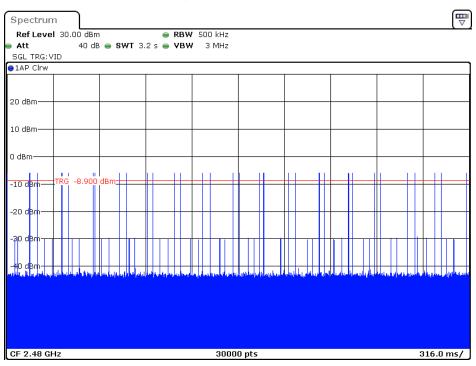

BDR (GFSK):



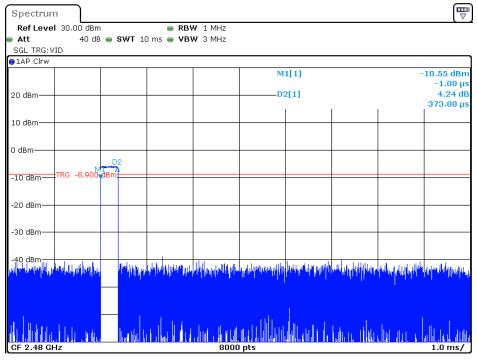
Date: 21.SEP.2019 15:37:45

Pulse time, Low Channel, DH1

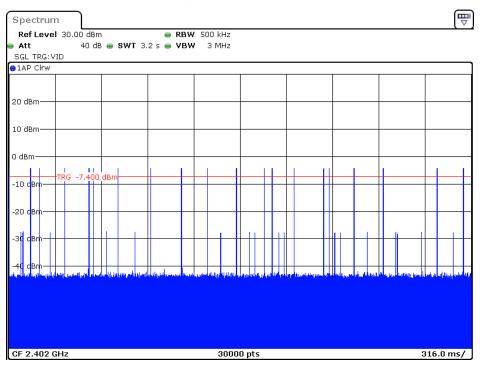

Date: 21.SEP.2019 15:37:03


Maximum Hops in 3.16s, Middle Channel, DH1

Date: 21.SEP.2019 15:37:45

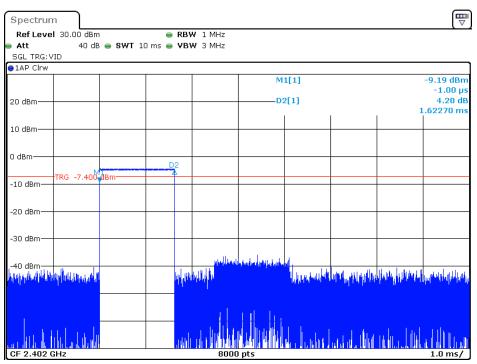


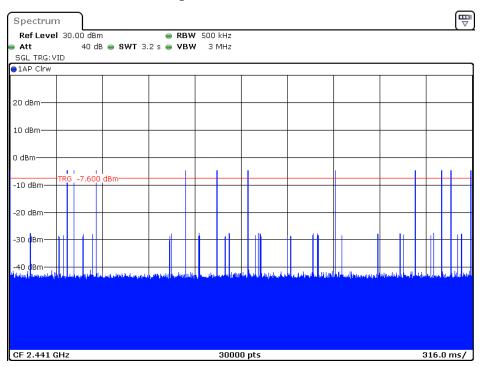
Date: 21.SEP.2019 15:37:36


Maximum Hops in 3.16s, High Channel, DH1

Date: 21.SEP.2019 15:38:18

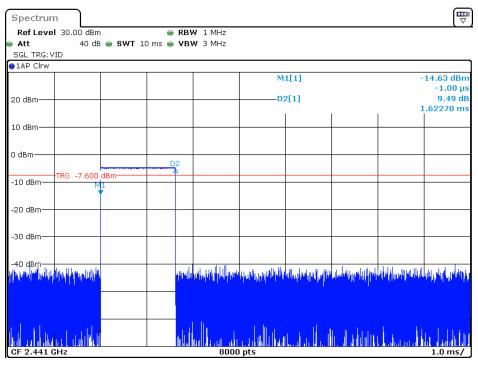
Pulse time, High Channel, DH1

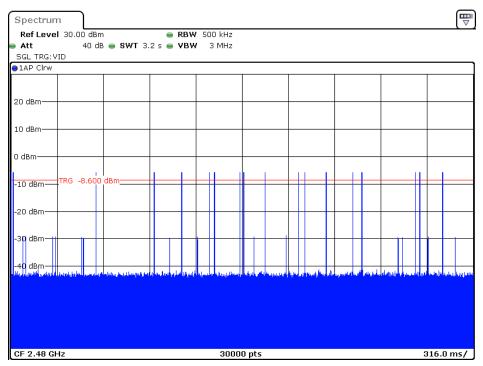

Date: 21.SEP.2019 15:38:09


Maximum Hops in 3.16s, Low Channel, DH3

Date: 21.SEP.2019 15:40:14

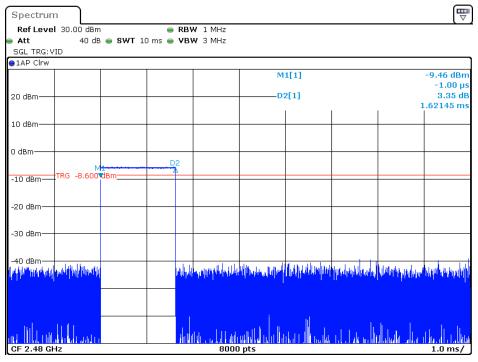
Pulse time,Low Channel, DH3


Date: 21.SEP.2019 15:40:05

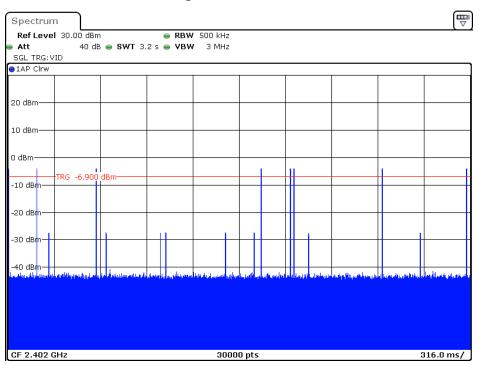

Maximum Hops in 3.16s, Middle Channel, DH3

Date: 21.SEP.2019 15:41:00

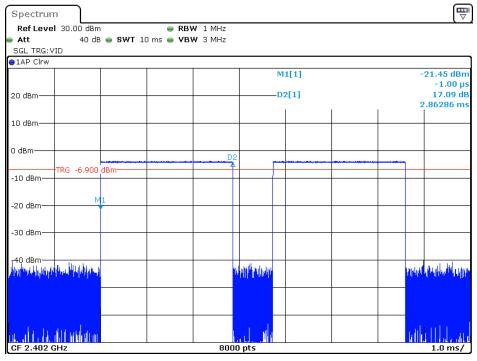
Pulse time, Middle Channel, DH3



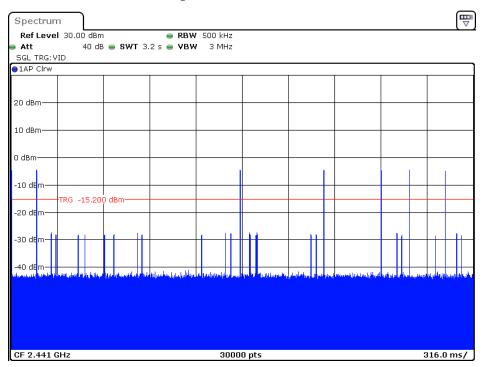
Date: 21.SEP.2019 15:40:52


Maximum Hops in 3.16s, High Channel, DH3

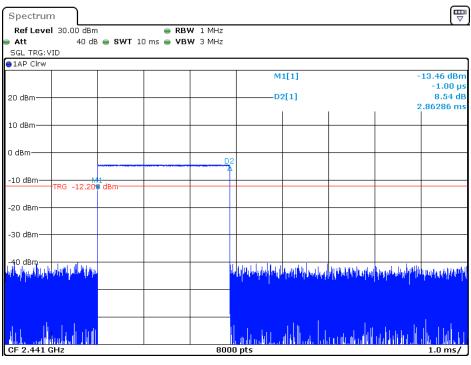
Date: 21.SEP.2019 15:41:33


Pulse time, High Channel, DH3

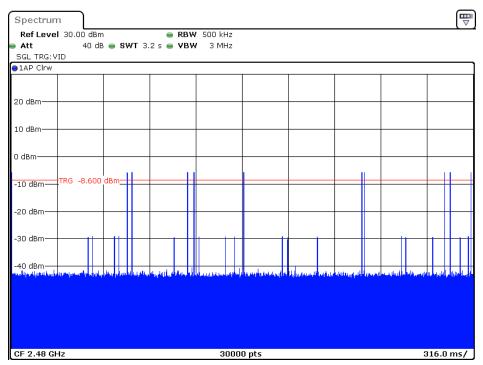
Date: 21.SEP.2019 15:41:24


Maximum Hops in 3.16s, Low Channel, DH5

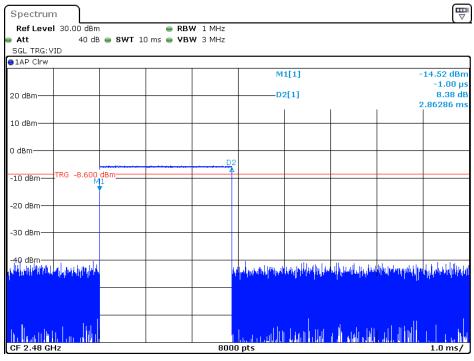
Date: 21.SEP.2019 16:56:11


Pulse time, Low Channel, DH5

Date: 21.SEP.2019 16:56:02

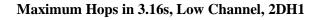

Maximum Hops in 3.16s, Middle Channel, DH5

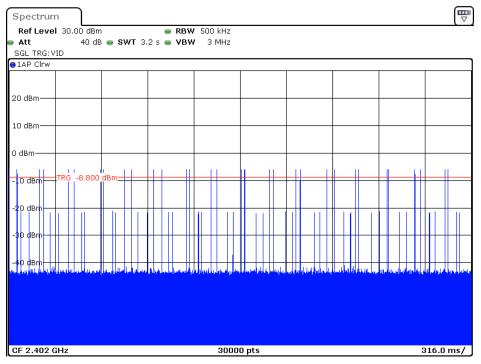
Date: 21.SEP.2019 16:56:40


Pulse time, Middle Channel, DH5

Date: 21.SEP.2019 16:56:32

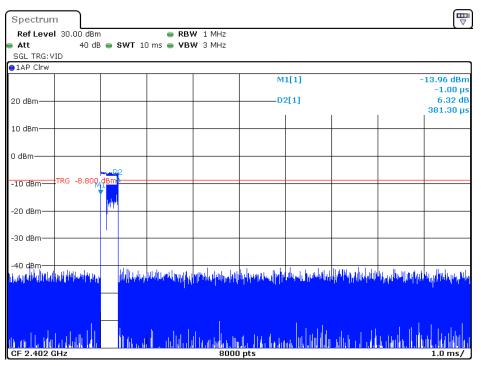
Maximum Hops in 3.16s, High Channel, DH5

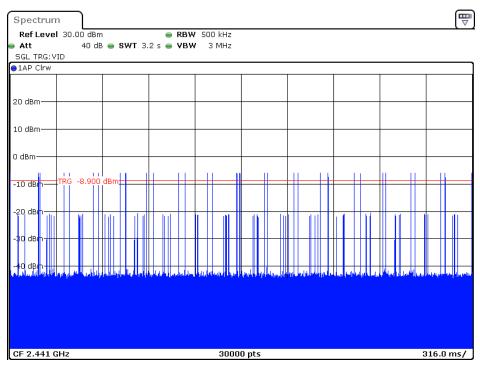

Date: 21.SEP.2019 15:43:44



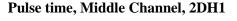
Pulse time, High Channel, DH5

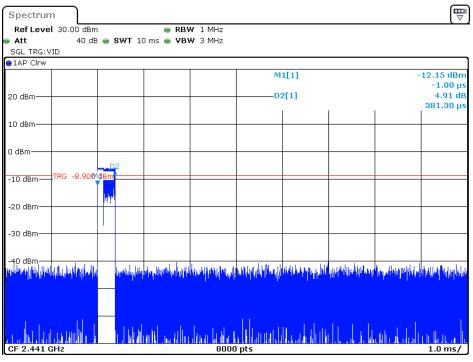
Date: 21.SEP.2019 15:43:35

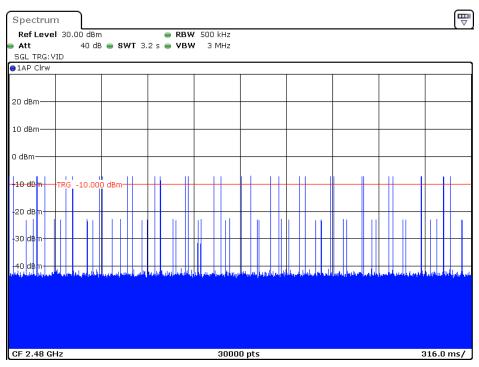

EDR (π /4-DQPSK):



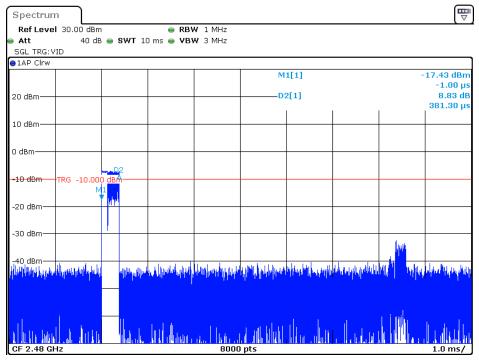
Date: 21.SEP.2019 15:48:42



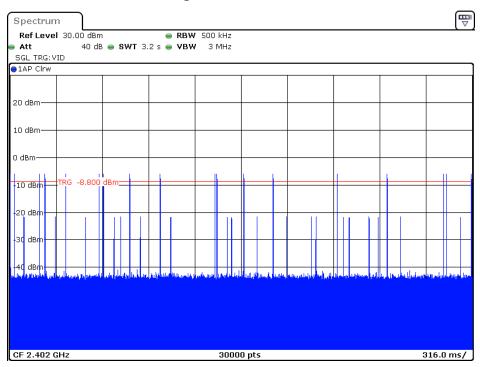

Date: 21.SEP.2019 15:48:33


Maximum Hops in 3.16s, Middle Channel, 2DH1

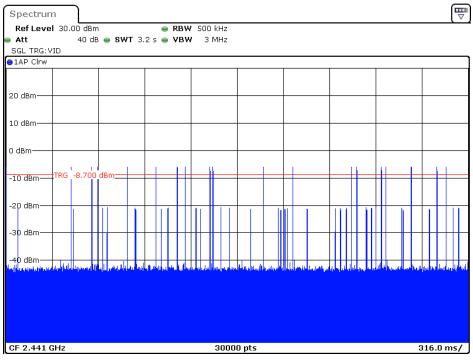
Date: 21.SEP.2019 15:49:19



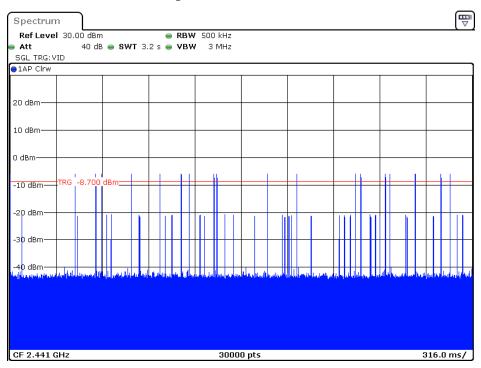
Date: 21.SEP.2019 15:49:10


Maximum Hops in 3.16s, High Channel, 2DH1

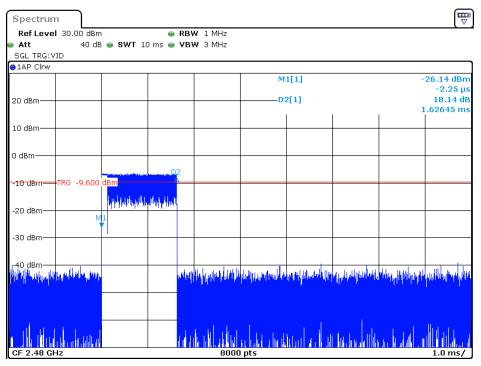
Date: 21.SEP.2019 15:49:51


Pulse time, High Channel, 2DH1

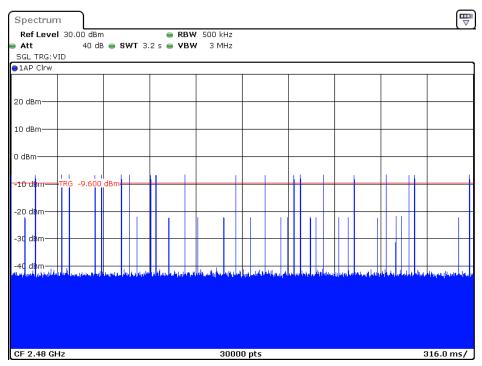
Date: 21.SEP.2019 15:49:42


Maximum Hops in 3.16s, Low Channel, 2DH3

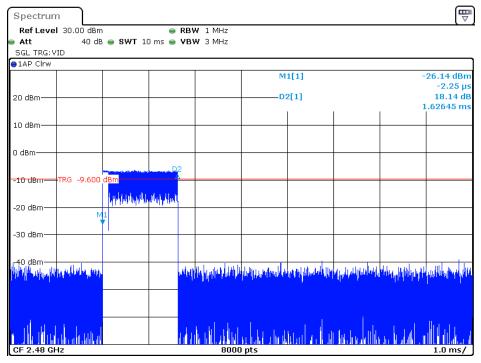
Date: 21.SEP.2019 15:50:45


Pulse time, Low Channel, 2DH3

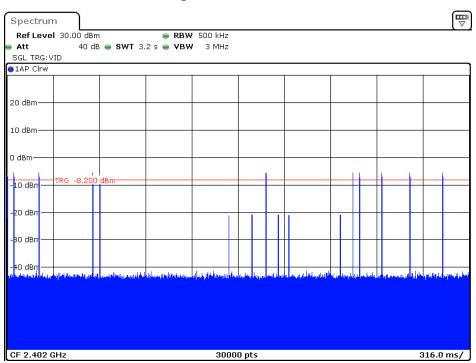
Date: 21.SEP.2019 17:05:49


Maximum Hops in 3.16s, Middle Channel, 2DH3

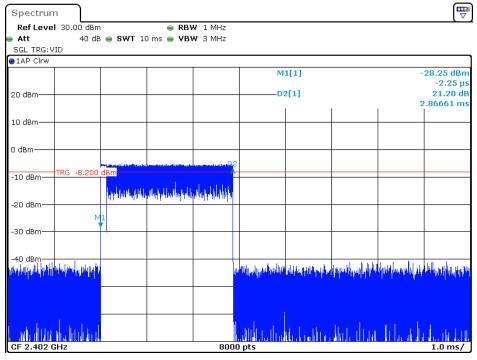
Date: 21.SEP.2019 17:05:49


Pulse time, Middle Channel, 2DH3

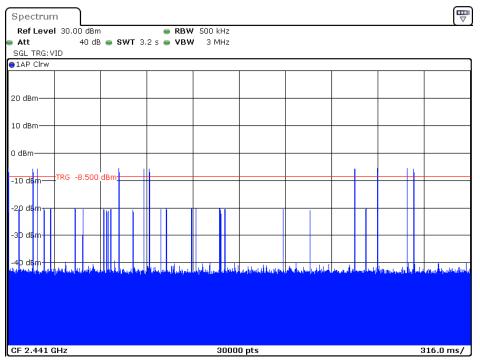
Date: 21.SEP.2019 17:00:42


Maximum Hops in 3.16s, High Channel, 2DH3

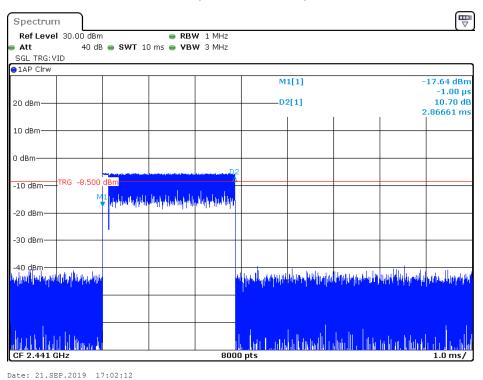
Date: 21.SEP.2019 17:00:50


Pulse time, High Channel, 2DH3

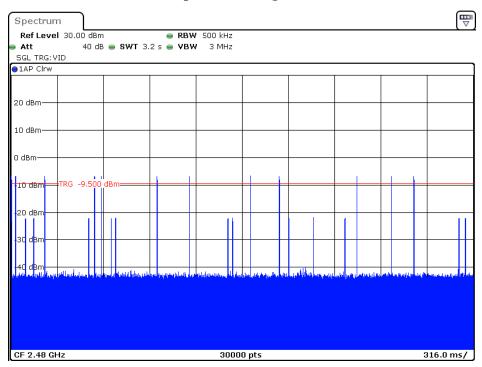
Date: 21.SEP.2019 17:00:42


Maximum Hops in 3.16s, Low Channel, 2DH5

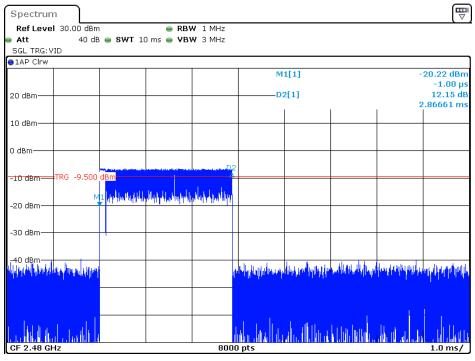
Date: 21.SEP.2019 17:01:48


Pulse time, Low Channel, 2DH5

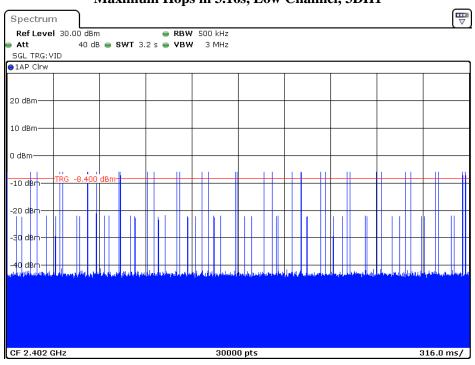
Date: 21.SEP.2019 17:01:39


Maximum Hops in 3.16s, Middle Channel, 2DH5

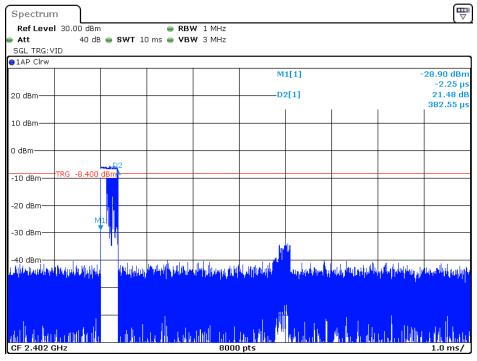
Pulse time, Middle Channel, 2DH5


Date. 21.3EF.2019 17.0

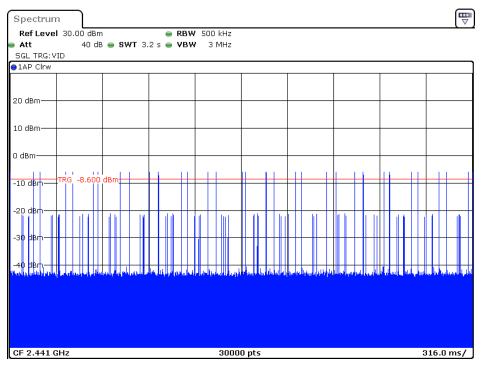
Date: 21.SEP.2019 17:02:21


Maximum Hops in 3.16s, High Channel, 2DH5

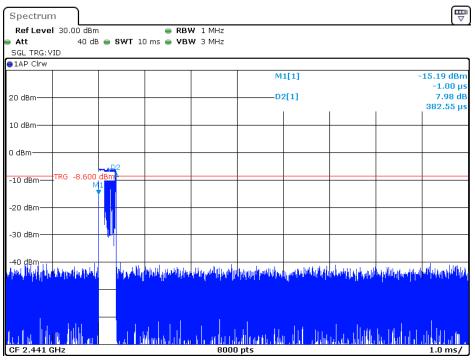
Date: 21.SEP.2019 17:02:53


Pulse time, High Channel, 2DH5

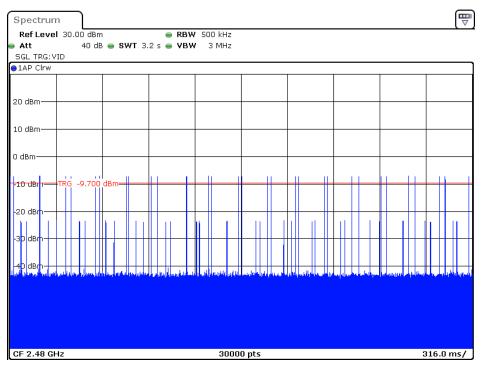
Date: 21.SEP.2019 17:02:44


EDR (8DPSK): Maximum Hops in 3.16s, Low Channel, 3DH1

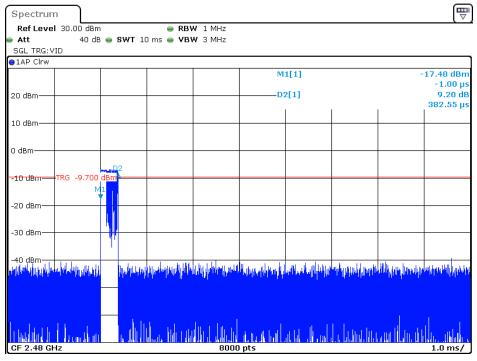
Date: 21.SEP.2019 15:58:57


Pulse time, Low Channel, 3DH1

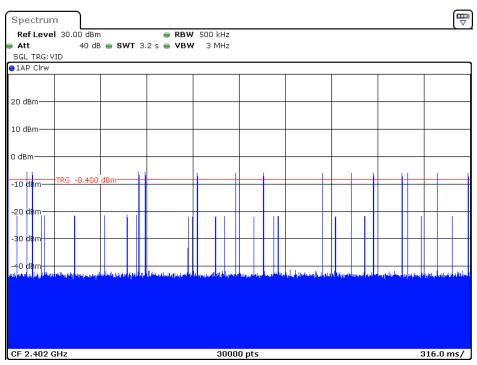
Date: 21.SEP.2019 15:58:48


Maximum Hops in 3.16s, Middle Channel, 3DH1

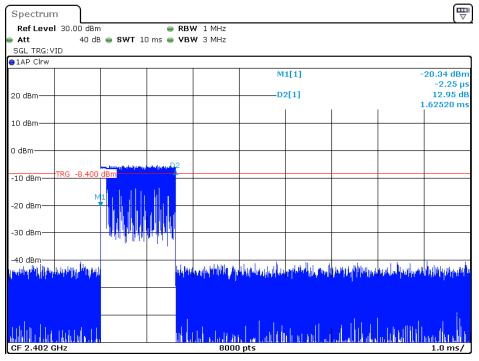
Date: 21.SEP.2019 15:59:33


Pulse time, Middle Channel, 3DH1

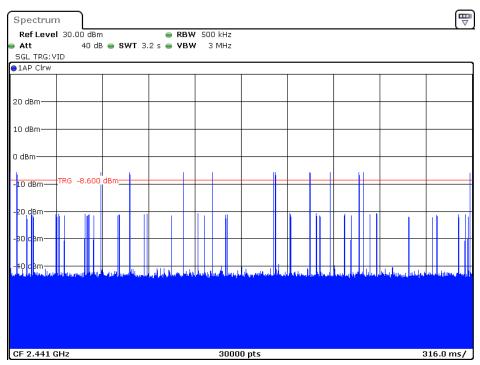
Date: 21.SEP.2019 15:59:24


Maximum Hops in 3.16s, High Channel, 3DH1

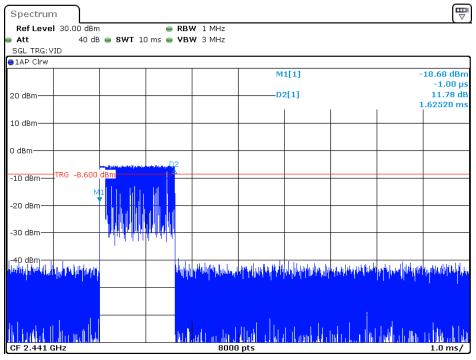
Date: 21.SEP.2019 16:00:05


Pulse time, High Channel, 3DH1

Date: 21.SEP.2019 15:59:56


Maximum Hops in 3.16s, Low Channel, 3DH3

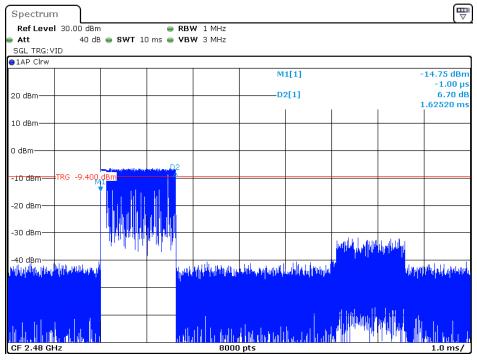
Date: 21.SEP.2019 16:01:01


Pulse time, Low Channel, 3DH3

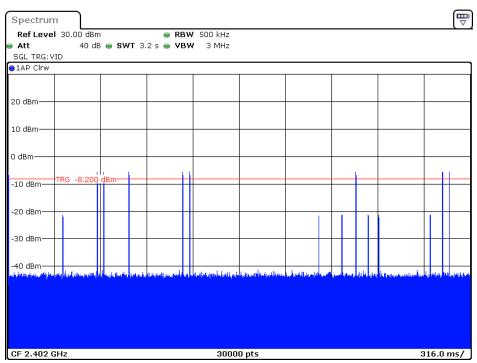
Date: 21.SEP.2019 16:00:53

Maximum Hops in 3.16s, Middle Channel, 3DH3

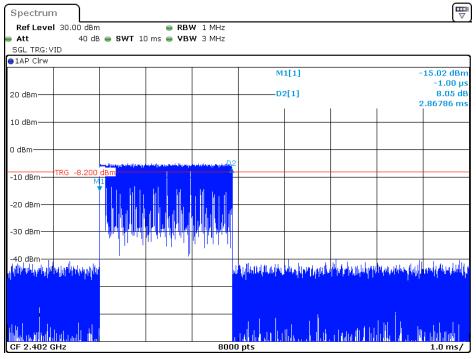
Date: 21.SEP.2019 16:01:33


Pulse time, Middle Channel, 3DH3

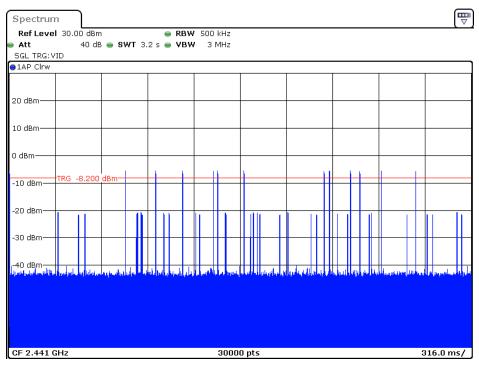
Date: 21.SEP.2019 16:01:24


Maximum Hops in 3.16s, High Channel, 3DH3

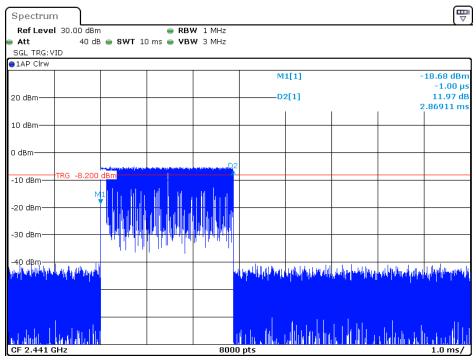
Date: 21.SEP.2019 16:02:07


Pulse time, High Channel, 3DH3

Date: 21.SEP.2019 16:01:58


Maximum Hops in 3.16s, Low Channel, 3DH5

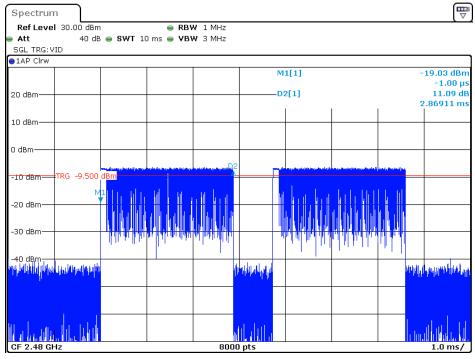
Date: 21.SEP.2019 16:02:54


Pulse time, Low Channel, 3DH5

Date: 21.SEP.2019 16:02:45

Maximum Hops in 3.16s, Middle Channel, 3DH5

Date: 21.SEP.2019 17:03:40


Pulse time, Middle Channel, 3DH5

Date: 21.SEP.2019 17:03:31

Maximum Hops in 3.16s, High Channel, 3DH5

Date: 21.SEP.2019 16:03:58

Pulse time, High Channel, 3DH5

Date: 21.SEP.2019 16:03:49

FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to \$15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. And for all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

Test Procedure

- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	101.0 kPa

The testing was performed by Kerion Luo on 2019-09-21.

EUT operation mode: Transmitting

Test Result: Compliance. Please refer to following table.

TestMode	Channel[MHz]	Result[dBm]	Limit[dBm]	Verdict
	2402	4.91	<=20.97	PASS
GFSK	2441	4.19	<=20.97	PASS
	2480	2.93	<=20.97	PASS
	2402	3.83	<=20.97	PASS
π /4-DQPSK	2441	3.40	<=20.97	PASS
	2480	2.32	<=20.97	PASS
	2402	4.02	<=20.97	PASS
8DPSK	2441	3.54	<=20.97	PASS
	2480	2.51	<=20.97	PASS

FCC §15.247(d) - BAND EDGES TESTING

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

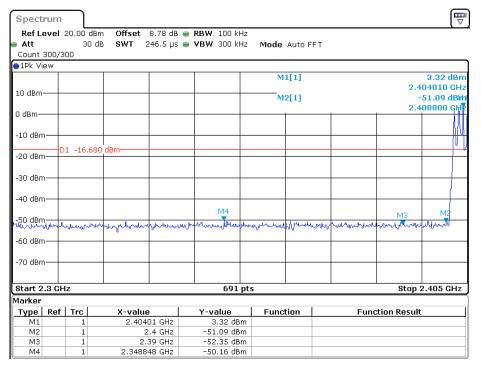
Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

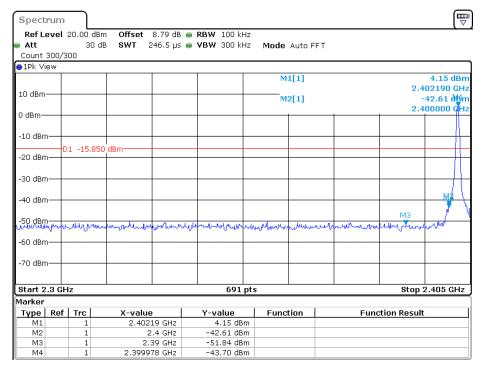
Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	101.0 kPa


The testing was performed by Kerion Luo on 2019-09-21.

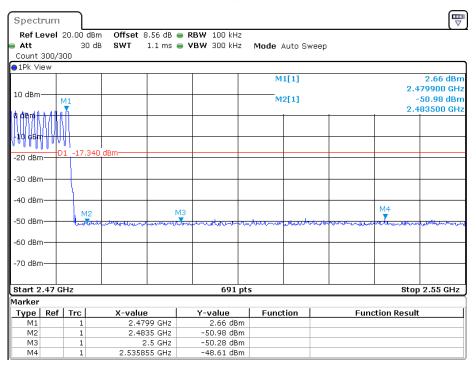
EUT operation mode: Transmitting


Test Result: Compliance. Please refer to following plots.

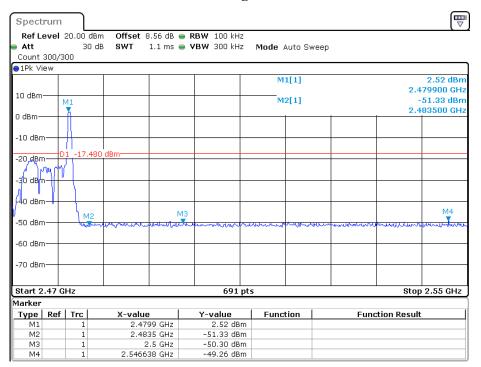
BDR (GFSK): Band Edge-Left Side

Hopping

Date: 21.SEP.2019 15:25:59



Single


Date: 21.SEP.2019 15:01:23

BDR (GFSK): Band Edge-Right Side

Hopping

Date: 21.SEP.2019 15:44:26

Single

Date: 21.SEP.2019 15:06:36

EDR (π/4-DQPSK): Band Edge-Left Side

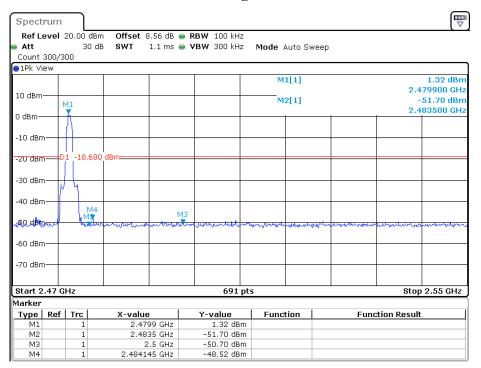
Hopping

Spectrum							
Ref Level Att Count 300/3	30		3 • RBW 100 kHz 5 • VBW 300 kHz	Mode Auto F	FT		
o 1Pk View	.00						
				M1[1]			0.84 dBm
10 -10						2.4	04010 GHz
10 dBm				M2[1]			52.83 dBm
0 dBm						2.4	00000 GH¥
							14.
-10 dBm							All MIN
-10 dbiii							~ 0
-20 dBm-0	1 -19.:	160 dBm					
20 0.0							
-30 dBm							
00 00							
-40 dBm							
			M4				, <mark>,</mark>
-50 dBm		Vinnell aller month	•			M3	M2
rehended	mon	value alle for all	mahrhadelin	man	. May alunder her	general general	war
-60 dBm							
-70 dBm							
Start 2.3 GF	17		691 pts	I	I	Ston 5	2.405 GHz
Marker				•		otop /	
	Trc	X-value	Y-value	Function	Fun	ction Result	1
M1	1	2.40401 GHz	0.84 dBm				
M2	1	2.4 GHz	-52.83 dBm				
M3	1	2.39 GHz	-52.55 dBm				
M4	1	2.349761 GHz	-50.11 dBm				

Date: 21.SEP.2019 15:45:00

Spectr	um									
Ref Le Att Count 3		30			RBW 100 kHz VBW 300 kHz	Mode A	uto FFT			
🔵 1Pk Vie	W									
						M1[1]			2.73 dBm
10 dBm-										01880 GHz
10 000						M2[1]			49.66 dBm
0 dBm								1	2.4	00000 q Hz
										I 1
-10 dBm-	_									
			220 40							
-20 dBm-		1 -17.3	270 dBm							
-30 dBm-	-									
										յիկ
-40 dBm-	-									
			M4						MЗ	MP
-50 dBm-	nter	uthr	manuterration	month	maharman	m More walker	marken	Muguerour	newspitchen	million
			· · · · ·			· · ·				
-60 dBm-										
70 10										
-70 dBm-										
Start 2.	3 GH	z			691 pt:	5			Stop 2	2.405 GHz
Marker										
Туре	Ref	Trc	X-value		Y-value	Functio	on 📃	Fun	ction Result	
M1		1	2.40188		2.73 dBm					
M2		1		GHz	-49.66 dBm					
M3		1		GHz	-52.27 dBm					
M4		1	2.324804	GHZ	-49.23 dBm					

Single


Date: 21.SEP.2019 16:19:49

EDR (π/4-DQPSK): Band Edge-Right Side

Hopping

Spectr	um									
Ref Le Att Count 3		30			RBW 100 kHz VBW 300 kHz	Mode /	Auto Sw	/еер		
●1Pk Vie	W									
						М	1[1]		2.	0.33 dBm 480010 GHz
10 dBm-	Ŋ	11				М	2[1]			-51.35 dBm 483500 GHz
₩₩₩ -10 dBm-	Mh	1								
-20 dBm-	D:	1 -19.	570 dBm							
-30 dBm-		1								
-40 dBm-		м	2	м				M4		
-50 dBm-		640	tround	al and a start of the	www.www.www.www.	والمستسرية لمعارية المحتوية	harber	Mundahala	- March Contraction	t Minstaller
-60 dBm-										
-70 dBm-										
Start 2.	47 GI	Ηz			691 p	ts			Sto	p 2.55 GHz
Marker										
Туре	Ref	Trc	X-value		Y-value	Func	tion	Fu	nction Resu	lt
M1		1	2.48001		0.33 dBm					
M2		1	2.4835		-51.35 dBm					
M3		1		GHz	-51.03 dBm					
M4		1	2.527971	. GHz	-48.91 dBm	I				

Date: 21.SEP.2019 15:54:27

Single

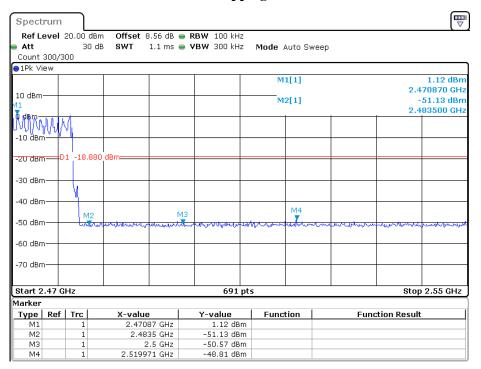
Date: 21.SEP.2019 15:14:03

EDR (8DPSK): Band Edge-Left Side

Hopping

Spectrum								
Ref Level Att Count 300/	30		● RBW 100 kHz ● VBW 300 kHz	Mode Auto F	FT			
●1Pk View		1						
				M1[1]		2.4	1.64 dBm 02040 GHz	
10 dBm				M2[1]		-53.26 dBm 2.400000 0Hz		
o 10								
0 dBm								
-10 dBm							<u> </u>	
-20 dBm—	D1 -18.	360 dBm						
-30 dBm								
-40 dBm								
10 dbiii						M4		
50 dBm	الديدية.	un margane			~	M4 M3	M2	
	menoti da.	man and and and	an to many the second	Concernence of the concernence o	a malan markan	to a surface the	V 1/2 1/2	
-60 dBm								
-70 dBm								
-70 ubm								
Start 2.3 G	LI-7		691 pts	<u> </u>		Stop 4	2.405 GHz	
Marker	112		091 h(3	•		atop /	2.700 GHZ	
Type Ref	Trc	X-value	Y-value Function Fu		Fund	iction Result		
M1	1	2.40204 GHz	1.64 dBm					
M2	1	2.4 GHz	-53.26 dBm					
M3	1	2.39 GHz	-53.02 dBm					
M4	1	2.387196 GHz	-50.25 dBm					

Date: 21.SEP.2019 15:54:59


Spect	rum								
Ref Lo Att Count				B 👄 RBW 100 kHz s 👄 VBW 300 kHz	Mode Auto F	FT			
∋1Pk Vi	ew								
					M1[1]			2.68 dBm	
10 dBm						2.401880 GHz			
10 dbiii				M2[1]		-51.49 dA			
0 dBm—							2.4	00000 G Hz	
-10 dBr	ו								
	n	1 -17	.320 dBm						
-20 dBr	ידי	1 1/1	1.520 Ubin						
								- 11	
-30 dBr	ד י								
-40 dBm								Ľ٦	
-40 aBn	'							M	
-50 dBr	-						МЗ	N≇	
white	in	normally	winderward	but the way	www.www.	mannahar	Mulmer Money	www.uu.	
-60 dBrr	∩——								
-70 dBrr	η								
Start 2	.3 GF	Iz		691 pt:	5	I	Ston 2	.405 GHz	
larker					_				
Type	Ref	Trc	X-value	Y-value	Function F		Function Result		
M1		1	2.40188 GHz	2.68 dBm					
M2		1	2.4 GHz	-51.49 dBm					
MЗ		1	2.39 GHz	-52.74 dBm					
M4		1	2.399978 GHz	-49.54 dBm					

Single

Date: 21.SEP.2019 15:19:01

EDR (8DPSK): Band Edge-Right Side

Hopping

Date: 21.SEP.2019 16:04:29

Spect	rum									
Ref L Att Count			dBm Offso)dB SWT		 RBW 100 kHz VBW 300 kHz 	Mode Auto	Sweep			
∋1Pk Vi	ew									
						M1[1]				1.28 dBn
10 dBm										9900 GH:
M		11				M2[1]		-51.64 dBm 2.483500 GHz		
0 dBm–		<u>k</u>							2.40	3300 GHZ
		$\Lambda =$								
-10 dBn	י <u>–</u> ו									
		1 10	/ 720 dBm====							
-20 dBn	שדיי	1 -10.	/20 ubiii===							
-30 dBn										
-30 abn	h	И								
-40 dBn	- L									
io abii	·				43					M
-50 dBp	1	<u> </u>	2 Blainteacht		The second second	ماليه المعرفين	Mary and all the Para	to All of the start of	August Male and	New Joy at a
		· · ·								
-60 dBn	n									
-70 dBn	י ר									
Start 2	.47 G	Hz	1		691 p	ts	1		Stop 2	2.55 GHz
/larker										
Туре	Ref	Trc	X-va	alue	Y-value	Function		Function Result		
M1		1		.4799 GHz	1.28 dBm					
M2		1	2	.4835 GHz	-51.64 dBm					
M3		1		2.5 GHz	-50.60 dBm					
M4		1	2.	54942 GHz	-49.16 dBm					

Single

Date: 21.SEP.2019 15:23:47

***** END OF REPORT *****