Microweve Vision Group

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.118.19.22.BES.A

Scan Volume	Expanded Uncertainty
1 g	19 % (SAR)
10 g	19 % (SAR)

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

Page: 6/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v1 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

6.3 MECHANICAL DIMENSIONS

Frequency MHz	Lmm		lz Lmm hmm		dr	d mm	
	required	measured	required	measured	required	measured	
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.		
450	290.0 ±1 % .		166.7 ±1 %.		6.35 ±1 % .		
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 % .		
835	161.0 ±1 % .		89.8 ±1 %.		3.6 ±1 %.		
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.		
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.		
1500	86.2 ±1 %.		50.0 ± 1 %.		3.6 ±1 %.		
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.		
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.		
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.		
1900	68.0 ±1 %.	-	39.5 ±1 %.	-	3.6 ±1 %.	-	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.		
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.		
2100	61.0 ±1 % .		35.7 ±1 % .		3.6 ±1 %.		
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.		
2450	51.5 ±1 %.		30.4 ±1 %.		3.6 ±1 % .		
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.		
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.		
3300	-		-		-		
3500	37.0 ±1 %.		26.4 ±1 %.		3.6 ±1 %.		
3700	34.7 ±1 %.		26.4 ±1 %.		3.6 ±1 %.		
3900	-		-		-		
4200	-		-		-		
4600	-		-		-		
4900	-		-		-		

7 VALIDATION MEASUREMENT

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

Page: 7/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v1 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Ref: ACR.118.19.22.BES.A

7.1 <u>HEAD LIQUID MEASUREMENT</u>

Frequency MHz	Relative per	Relative permittivity (\mathbf{s}_{r}')		ity (σ) S/m
	required	measured	required	measured
300	45.3 ± 10 %		0.87 ± 10 %	
450	43.5 ± 10 %		0.87 ± 10 %	
750	41.9 ± 10 %		0.89 ± 10 %	
835	41.5 ± 10 %		0.90 ± 10 %	
900	41.5 ± 10 %		0.97 ± 10 %	
1450	40.5 ± 10 %		1.20 ± 10 %	
1500	40.4 ± 10 %		1.23 ± 10 %	
1640	40.2 ± 10 %		1.31 ± 10 %	
1750	40.1 ± 10 %		1.37 ± 10 %	
1800	40.0 ± 10 %		1.40 ± 10 %	
1900	40.0 ± 10 %	37.9	1.40 ± 10 %	1.43
1950	40.0 ± 10 %		1.40 ± 10 %	
2000	40.0 ±10 %		1.40 ±10 %	
2100	39.8 ± 10 %		1.49 ± 10 %	
2300	39.5 ± 10 %		1.67 ± 10 %	
2450	39.2 ± 10 %		1.80 ± 10 %	
2600	39.0 ± 10 %		1.96 ± 10 %	
3000	38.5 ± 10 %		2.40 ± 10 %	
3300	38.2 ± 10 %		2.71 ± 10 %	
3500	37.9 ± 10 %		2.91 ± 10 %	
3700	37.7 ± 10 %		3.12 ± 10 %	
3900	37.5 ± 10 %		3.32 ± 10 %	
4200	37.1 ± 10 %		3.63 ± 10 %	
4600	36.7 ± 10 %		4.04 ± 10 %	
4900	36.3 ±10 %		4.35 ±10 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Page: 8/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v1 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.118.19.22.BES.A

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPGO333
Liquid	Head Liquid Values: eps': 37.9 sigma: 1.43
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	1900 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency MHz	1 g SAR	1 g SAR (W/kg/W)		(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	
1900	39.7	41.26 (4.13)	20.5	20.86 (2.09)
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4		24	
2600	55.3		24.6	
3000	63.8		25.7	
3300	-		-	
3500	67.1		25	
3700	67.4		24.2	
3900	-		-	
4200	-		-	
4600	-		-	
4900	-		-	

Page: 9/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v1 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Page: 10/13

Template_ACR.DDD.N.YY.MYGBJSSUE_SAR Reference Dipole vJ This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Ref: ACR.118.19.22.BES.A

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative per	Relative permittivity (\mathbf{s}_{r} ')		ity (σ) S/m
	required	measured	required	measured
150	61.9 ± 10 %		0.80 ± 10 %	
300	58.2 ± 10 %		0.92 ± 10 %	
450	56.7 ± 10 %		0.94 ± 10 %	
750	55.5 ±10 %		0.96 ± 10 %	
835	55.2 ± 10 %		0.97 ± 10 %	
900	55.0 ± 10 %		1.05 ± 10 %	
915	55.0 ± 10 %		1.06 ± 10 %	
1450	54.0 ± 10 %		1.30 ± 10 %	
1610	53.8 ± 10 %		1.40 ± 10 %	
1800	53.3 ± 10 %		1.52 ± 10 %	
1900	53.3 ± 10 %	55.0	1.52 ± 10 %	1.57
2000	53.3 ± 10 %		1.52 ± 10 %	
2100	53.2 ± 10 %		1.62 ± 10 %	
2300	52.9 ± 10 %		1.81 ± 10 %	
2450	52.7 ± 10 %		1.95 ± 10 %	
2600	52.5 ± 10 %		2.16 ± 10 %	
3000	52.0 ± 10 %		2.73 ± 10 %	
3300	51.6 ± 10 %		3.08 ± 10 %	
3500	51.3 ± 10 %		3.31 ± 10 %	
3700	51.0 ± 10 %		3.55 ± 10 %	
3900	50.8 ± 10 %		3.78 ± 10 %	
4200	50.4 ± 10 %		4.13 ± 10 %	
4600	49.8 ±10 %		4.60 ±10 %	
4900	49.4 ± 10 %		4.95 ± 10 %	
5200	49.0 ±10 %		5.30 ±10 %	
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %		5.53 ±10 %	
5500	48.6 ±10 %		5.65 ±10 %	
5600	48.5 ±10 %		5.77 ±10 %	
5800	48.2 ±10 %		6.00 ±10 %	

Page: 11/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v1 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Ref: ACR.118.19.22.BES.A

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPGO333
Liquid	Body Liquid Values: eps': 55.0 sigma: 1.57
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	1900 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
1900	39.55 (3.96)	20.51 (2.05)

Page: 12/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vJ This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

8 LIST OF EQUIPMENT

Equipment Summary Sheet					
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
SAM Phantom	MVG	SN 13/09 SAM68	Validated. No cal required.	Validated. No cal required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.	
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2024	
Network Analyzer	Agilent 8753ES	MY40003210	10/2019	10/2022	
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	05/2019	05/2022	
Network Analyzer – Calibration kit	HP 85033D	3423A08186	06/2021	06/2027	
Calipers	Mitutoyo	SN 0009732	10/2019	10/2022	
Reference Probe	MVG	SN 41/18 EPGO333	10/2021	10/2022	
Multimeter	Keithley 2000	1160271	02/2020	02/2023	
Signal Generator	Rohde & Schwarz SMB	106589	03/2022	03/2025	
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	NI-USB 5680	170100013	06/2021	06/2024	
Power Meter	Rohde & Schwarz NRVD	832839-056	11/2019	11/2022	
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2021	06/2024	

Page: 13/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v1 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Page: 1/13

Ref: ACR.118.22.22.BES.A

	Name	Function	Date	Signature
Prepared by :	Jérôme Luc	Technical Manager	4/28/2022	Jes
Checked by :	Jérôme Luc	Technical Manager	4/28/2022	JS
Approved by :	Yann Toutain	Laboratory Director	4/28/2022	Yann TOUTAIN

2022.04.28 17:03:42 +02'00'

·	Customer Name
Distribution :	ATTESTATION OF GLOBAL COMPLIANCE CO. LTD.

Issue	Name	Date	Modifications
А	Jérôme Luc	4/28/2022	Initial release

Page: 2/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v1 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Microweve Vision Group

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.118.22.22.BES.A

TABLE OF CONTENTS

1	Intro	Introduction4		
2	Dev	ice Under Test		
3	Proc	luct Description		
	3.1	General Information	4	
4	Mea	surement Method		
	4.1	Return Loss Requirements	5	
	4.2	Mechanical Requirements	5	
5	Mea	surement Uncertainty		
	5.1	Return Loss	5	
	5.2	Dimension Measurement	5	
	5.3	Validation Measurement	5	
6	Cali	bration Measurement Results6		
	6.1	Return Loss and Impedance In Head Liquid	6	
	6.2	Return Loss and Impedance In Body Liquid	6	
	6.3	Mechanical Dimensions	7	
7	Vali	dation measurement		
	7.1	Head Liquid Measurement	8	
	7.2	SAR Measurement Result With Head Liquid	8	
	7.3	Body Liquid Measurement	11	
	7.4	SAR Measurement Result With Body Liquid		
8	List	of Equipment		

Page: 3/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vJ This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

SAR REFERENCE DIPOLE CALIBRATION REPORT

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test			
Device Type	COMOSAR 2450 MHz REFERENCE DIPOLE		
Manufacturer	MVG		
Model	SID2450		
Serial Number	SN 29/15 DIP2G450-393		
Product Condition (new / used) Used			

3 PRODUCT DESCRIPTION

3.1 <u>GENERAL INFORMATION</u>

MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – MVG COMOSAR Validation Dipole

Page: 4/13

Template <u>ACR.DDD.N.YY.MVGB.ISSUE</u> <u>SAR Reference Dipole vJ</u> This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Microwere Vision Group

SAR REFERENCE DIPOLE CALIBRATION REPORT

4 MEASUREMENT METHOD

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 <u>RETURN LOSS REQUIREMENTS</u>

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

4.2 MECHANICAL REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.08 LIN

5.2 <u>DIMENSION MEASUREMENT</u>

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
0 - 300	0.20 mm
300 - 450	0.44 mm

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements.

Page: 5/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vJ This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Microweve Vision Group

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.118.22.22.BES.A

Scan Volume	Expanded Uncertainty
1 g	19 % (SAR)
10 g	19 % (SAR)

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

Page: 6/13

Template <u>ACR.DDD.N.YY.MVGBJSSUE_SAR Reference Dipole vJ</u> This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

6.3 MECHANICAL DIMENSIONS

Frequency MHz	1Hz Lmm		Lmm hmm		d mm	
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 % .	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 % .	
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.	
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	86.2 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 % .	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 % .		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.	-	30.4 ±1 % .	-	3.6 ±1 % .	-
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3300	-		-		-	
3500	37.0 ±1 %.		26.4 ±1 % .		3.6 ±1 %.	
3700	34.7 ±1 % .		26.4 ±1 %.		3.6 ±1 %.	
3900	-		-		-	
4200	-		-		-	
4600	-		-		-	
4900	-		-		-	

7 VALIDATION MEASUREMENT

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

Page: 7/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v1 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Ref: ACR.118.22.22.BES.A

7.1 <u>HEAD LIQUID MEASUREMENT</u>

Frequency MHz	Relative permittivity (\mathbf{s}_{r}')) Conductivity (σ) S/m	
	required	measured	required	measured
300	45.3 ±10 %		0.87 ± 10 %	
450	43.5 ± 10 %		0.87 ± 10 %	
750	41.9 ± 10 %		0.89 ± 10 %	
835	41.5 ±10 %		0.90 ± 10 %	
900	41.5 ±10 %		0.97 ± 10 %	
1450	40.5 ±10 %		1.20 ± 10 %	
1500	40.4 ± 10 %		1.23 ± 10 %	
1640	40.2 ±10 %		1.31 ± 10 %	
1750	40.1 ± 10 %		1.37 ± 10 %	
1800	40.0 ± 10 %		1.40 ± 10 %	
1900	40.0 ± 10 %		1.40 ± 10 %	
1950	40.0 ± 10 %		1.40 ± 10 %	
2000	40.0 ±10 %		1.40 ±10 %	
2100	39.8 ± 10 %		1.49 ± 10 %	
2300	39.5 ± 10 %		1.67 ± 10 %	
2450	39.2 ± 10 %	36.4	1.80 ± 10 %	1.98
2600	39.0 ± 10 %		1.96 ± 10 %	
3000	38.5 ± 10 %		2.40 ± 10 %	
3300	38.2 ± 10 %		2.71 ± 10 %	
3500	37.9 ± 10 %		2.91 ± 10 %	
3700	37.7 ± 10 %		3.12 ± 10 %	
3900	37.5 ± 10 %		3.32 ± 10 %	
4200	37.1 ± 10 %		3.63 ± 10 %	
4600	36.7 ± 10 %		4.04 ± 10 %	
4900	36.3 ±10 %		4.35 ±10 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Page: 8/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v1 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.118.22.22.BES.A

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPGO333
Liquid	Head Liquid Values: eps': 36.4 sigma : 1.98
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR	(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4	54.32 (5.43)	24	24.25 (2.42)
2600	55.3		24.6	
3000	63.8		25.7	
3300	-		-	
3500	67.1		25	
3700	67.4		24.2	
3900	-		-	
4200	-		-	
4600	-		-	
4900	-		-	

Page: 9/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vJ This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Page: 10/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v1 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Ref: ACR.118.22.22.BES.A

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (\mathbf{s}_{r} ')		Conductiv	ity (σ) S/m
	required	measured	required	measured
150	61.9 ± 10 %		0.80 ± 10 %	
300	58.2 ± 10 %		0.92 ± 10 %	
450	56.7 ± 10 %		0.94 ± 10 %	
750	55.5 ±10 %		0.96 ± 10 %	
835	55.2 ± 10 %		0.97 ± 10 %	
900	55.0 ± 10 %		1.05 ± 10 %	
915	55.0 ± 10 %		1.06 ± 10 %	
1450	54.0 ± 10 %		1.30 ± 10 %	
1610	53.8 ± 10 %		1.40 ± 10 %	
1800	53.3 ± 10 %		1.52 ± 10 %	
1900	53.3 ± 10 %		1.52 ± 10 %	
2000	53.3 ± 10 %		1.52 ± 10 %	
2100	53.2 ±10 %		1.62 ± 10 %	
2300	52.9 ± 10 %		1.81 ± 10 %	
2450	52.7 ± 10 %	53.4	1.95 ± 10 %	2.14
2600	52.5 ± 10 %		2.16 ± 10 %	
3000	52.0 ± 10 %		2.73 ±10 %	
3300	51.6 ± 10 %		3.08 ± 10 %	
3500	51.3 ± 10 %		3.31 ± 10 %	
3700	51.0 ± 10 %		3.55 ± 10 %	
3900	50.8 ± 10 %		3.78 ±1 0 %	
4200	50.4 ± 10 %		4.13 ± 10 %	
4600	49.8 ±10 %		4.60 ± 10 %	
4900	49.4 ± 10 %		4.95 ± 10 %	
5200	49.0 ±10 %		5.30 ±10 %	
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %		5.53 ±10 %	
5500	48.6 ±10 %		5.65 ±10 %	
5600	48.5 ±10 %		5.77 ±10 %	
5800	48.2 ±10 %		6.00 ±10 %	

Page: 11/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v1 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Ref: ACR.118.22.22.BES.A

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPGO333
Liquid	Body Liquid Values: eps': 53.4 sigma: 2.14
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
2450	53.59 (5.36)	23.63 (2.36)

Page: 12/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vJ This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

8 LIST OF EQUIPMENT

Equipment Summary Sheet						
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date		
SAM Phantom	MVG	SN 13/09 SAM68	Validated. No cal required.	Validated. No cal required.		
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.		
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2024		
Network Analyzer	Agilent 8753ES	MY40003210	10/2019	10/2022		
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	05/2019 05/2022			
Network Analyzer – Calibration kit	HP 85033D	3423A08186	06/2021	06/2027		
Calipers	Mitutoyo	SN 0009732	10/2019	10/2022		
Reference Probe	MVG	SN 41/18 EPGO333	10/2021	10/2022		
Multimeter	Keithley 2000	1160271	02/2020	02/2023		
Signal Generator	Rohde & Schwarz SMB	106589	03/2022	03/2025		
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Power Meter	NI-USB 5680	170100013	170100013 06/2021 06			
Power Meter	Rohde & Schwarz NRVD	arz 832839-056 11/2019		11/2022		
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2021	06/2024		

Page: 13/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v1 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Page: 1/13

Ref: ACR.118.23.22.BES.A

	Name	Function	Date	Signature
Prepared by :	Jérôme Luc	Technical Manager	4/28/2022	Jes
Checked by :	Jérôme Luc	Technical Manager	4/28/2022	JS
Approved by :	Yann Toutain	Laboratory Director	4/28/2022	Gann TOUTAAN
				2022.04.28

17:04:14 +02'00'

~ <u></u>	Customer Name
Distribution :	ATTESTATION OF GLOBAL COMPLIANCE CO. LTD.

Issue	Name	Date	Modifications
А	Jérôme Luc	4/28/2022	Initial release

Page: 2/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v1 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Microweve Vision Group

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.118.23.22.BES.A

TABLE OF CONTENTS

1	Intro	oduction	
2	Dev	ice Under Test	
3	Proc	luct Description	
	3.1	General Information	4
4	Mea	surement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Mea	surement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cali	bration Measurement Results6	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	7
7	Vali	dation measurement	
	7.1	Head Liquid Measurement	8
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	11
	7.4	SAR Measurement Result With Body Liquid	
8	List	of Equipment	

Page: 3/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vJ This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Microware Vielon Group

SAR REFERENCE DIPOLE CALIBRATION REPORT

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR 2600 MHz REFERENCE DIPOLE	
Manufacturer	MVG	
Model	SID2600	
Serial Number	SN 22/16 DIP2G600-407	
Product Condition (new / used)	Used	

3 PRODUCT DESCRIPTION

3.1 <u>GENERAL INFORMATION</u>

MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – MVG COMOSAR Validation Dipole

Page: 4/13

Template <u>ACR.DDD.N.YY.MVGB.ISSUE</u> <u>SAR Reference Dipole vJ</u> This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Microwere Vision Group

SAR REFERENCE DIPOLE CALIBRATION REPORT

4 MEASUREMENT METHOD

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 <u>RETURN LOSS REQUIREMENTS</u>

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

4.2 MECHANICAL REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss		
400-6000MHz	0.08 LIN		

5.2 <u>DIMENSION MEASUREMENT</u>

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
0 - 300	0.20 mm
300 - 450	0.44 mm

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements.

Page: 5/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vJ This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Microweve Vision Group

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.118.23.22.BES.A

Scan Volume	Expanded Uncertainty
1 g	19 % (SAR)
10 g	19 % (SAR)

6 CALIBRATION MEASUREMENT RESULTS

6.1 <u>RETURN LOSS AND IMPEDANCE IN HEAD LIQUID</u>

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

Page: 6/13

Template <u>ACR.DDD.N.YY.MVGBJSSUE_SAR Reference Dipole vJ</u> This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

6.3 MECHANICAL DIMENSIONS

Frequency MHz	Lmm		hm	hmm		d mm	
	required	measured	required	measured	required	measured	
300	420.0 ±1 % .		250.0 ±1 %.		6.35 ±1 %.		
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.		
750	176.0 ± 1 %.		100.0 ±1 %.		6.35 ±1 % .		
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.		
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.		
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.		
1500	86.2 ±1 %.		50.0 ± 1 %.		3.6 ±1 %.		
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 % .		
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.		
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 % .		
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.		
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 % .		
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.		
2100	61.0 ±1 % .		35.7 ±1 % .		3.6 ±1 % .		
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.		
2450	51.5 ±1 %.		30.4 ±1 % .		3.6 ±1 % .		
2600	48.5 ±1 %.	-	28.8 ±1 %.	-	3.6 ±1 % .	-	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.		
3300	-		-		-		
3500	37.0 ±1 %.		26.4 ±1 % .		3.6 ±1 %.		
3700	34.7 ±1 % .		26.4 ±1 %.		3.6 ±1 %.		
3900	-		-		-		
4200	-		-		-		
4600	-		-		-		
4900	-		-		-		

7 VALIDATION MEASUREMENT

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

Page: 7/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v1 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Ref: ACR.118.23.22.BES.A

7.1 <u>HEAD LIQUID MEASUREMENT</u>

Frequency MHz	Relative per	Relative permittivity (\mathbf{s}_{r}')		ity (σ) S/m
	required	measured	required	measured
300	45.3 ±10 %		0.87 ± 10 %	
450	43.5 ±10 %		0.87 ± 10 %	
750	41.9 ±10 %		0.89 ± 10 %	
835	41.5 ±10 %		0.90 ± 10 %	
900	41.5 ±10 %		0.97 ± 10 %	
1450	40.5 ±10 %		1.20 ± 10 %	
1500	40.4 ± 10 %		1.23 ± 10 %	
1640	40.2 ±10 %		1.31 ± 10 %	
1750	40.1 ± 10 %		1.37 ± 10 %	
1800	40.0 ± 10 %		1.40 ± 10 %	
1900	40.0 ± 10 %		1.40 ± 10 %	
1950	40.0 ± 10 %		1.40 ± 10 %	
2000	40.0 ±10 %		1.40 ±10 %	
2100	39.8 ± 10 %		1.49 ± 10 %	
2300	39.5 ±10 %		1.67 ± 10 %	
2450	39.2 ± 10 %		1.80 ± 10 %	
2600	39.0 ± 10 %	35.7	1.96 ± 10 %	2.12
3000	38.5 ± 10 %		2.40 ± 10 %	
3300	38.2 ± 10 %		2.71 ± 10 %	
3500	37.9 ± 10 %		2.91 ± 10 %	
3700	37.7 ± 10 %		3.12 ± 10 %	
3900	37.5 ± 10 %		3.32 ± 10 %	
4200	37.1 ± 10 %		3.63 ± 10 %	
4600	36.7 ± 10 %		4.04 ± 10 %	
4900	36.3 ±10 %		4.35 ±10 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Page: 8/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v1 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.118.23.22.BES.A

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPGO333
Liquid	Head Liquid Values: eps': 35.7 sigma : 2.12
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm
Frequency	2600 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR (W/kg/W)	
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4		24	
2600	55.3	54.94 (5.49)	24.6	23.77 (2.38)
3000	63.8		25.7	
3300	-		-	
3500	67.1		25	
3700	67.4		24.2	
3900	-		-	
4200	-		-	
4600	-	1	-	
4900	-		-	

Page: 9/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v1 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

SAR REFERENCE DIPOLE CALIBRATION REPORT
Rf. M.102.2 M.20.3

V
Image: Comparison of the state of the state

Page: 10/13

Template_ACR.DDD.N.YY.MYGBJSSUE_SAR Reference Dipole vJ This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Ref: ACR.118.23.22.BES.A

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (\mathbf{s}_{r}')		Conductivity (σ) S/m	
	required	measured	required	measured
150	61.9 ± 10 %		0.80 ± 10 %	
300	58.2 ± 10 %		0.92 ± 10 %	
450	56.7 ± 10 %		0.94 ± 10 %	
750	55.5 ±10 %		0.96 ± 10 %	
835	55.2 ± 10 %		0.97 ± 10 %	
900	55.0 ± 10 %		1.05 ± 10 %	
915	55.0 ± 10 %		1.06 ± 10 %	
1450	54.0 ± 10 %		1.30 ± 10 %	
1610	53.8 ± 10 %		1.40 ± 10 %	
1800	53.3 ± 10 %		1.52 ± 10 %	
1900	53.3 ± 10 %		1.52 ± 10 %	
2000	53.3 ± 10 %		1.52 ± 10 %	
2100	53.2 ± 10 %		1.62 ± 10 %	
2300	52.9 ± 10 %		1.81 ± 10 %	
2450	52.7 ± 10 %		1.95 ± 10 %	
2600	52.5 ± 10 %	52.7	2.16 ± 10 %	2.36
3000	52.0 ± 10 %		2.73 ± 10 %	
3300	51.6 ± 10 %		3.08 ± 10 %	
3500	51.3 ± 10 %		3.31 ± 10 %	
3700	51.0 ± 10 %		3.55 ± 10 %	
3900	50.8 ± 10 %		3.78 ± 10 %	
4200	50.4 ± 10 %		4.13 ± 10 %	
4600	49.8 ± 10 %		4.60 ± 10 %	
4900	49.4 ± 10 %		4.95 ± 10 %	
5200	49.0 ±10 %		5.30 ±10 %	
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %		5.53 ±10 %	
5500	48.6 ±10 %		5.65 ±10 %	
5600	48.5 ±10 %		5.77 ±10 %	
5800	48.2 ±10 %		6.00 ±10 %	

Page: 11/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v1 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Ref: ACR.118.23.22.BES.A

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPGO333
Liquid	Body Liquid Values: eps': 52.7 sigma: 2.36
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm
Frequency	2600 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)	
	measured	measured	
2600	55.82 (5.58)	23.94 (2.39)	

Page: 12/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vJ This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

8 LIST OF EQUIPMENT

Equipment Summary Sheet					
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
SAM Phantom	MVG	SN 13/09 SAM68	Validated. No cal required.	Validated. No cal required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.	
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2024	
Network Analyzer	Agilent 8753ES	MY40003210	10/2019	10/2022	
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	05/2019	05/2022	
Network Analyzer – Calibration kit	HP 85033D	3423A08186	06/2021	06/2027	
Calipers	Mitutoyo	SN 0009732	10/2019	10/2022	
Reference Probe	MVG	SN 41/18 EPGO333	10/2021	10/2022	
Multimeter	Keithley 2000	1160271	02/2020	02/2023	
Signal Generator	Rohde & Schwarz SMB	106589	03/2022	03/2025	
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	NI-USB 5680	170100013	06/2021	06/2024	
Power Meter	Rohde & Schwarz NRVD	832839-056	11/2019	11/2022	
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2021	06/2024	

Page: 13/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v1 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.