

ONE WORLD OUR APPROVAL

Limited test report

457414-9TRFWL

Date of issue: August 18, 2022

Applicant:

Product:

BT Module

Model:	FCC / IC ID's:
PRBTRP	2APWUPRBTRP / 23953-PRBTRP

Specifications:

FCC 47 CFR Part 15, Subpart C – §15.247 Operation within the bands 902 – 928 MHz, 2400 – 2483.5 MHz, 5727 – 5850 MHz

Industry Canada RSS-247, Issue 2

Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices

Lab and test locations

Company name	Nemko USA Inc.
Address	2210 Faraday Ave, Suite 150
City	Carlsbad
State	California
Postal code	92008
Country	USA
Telephone	+1 760 444 3500
Website	www.nemko.com
FCC Site Number	Test Firm Registration Number: 392943 Designation Number: US5058
ISED Test Site	2040B-3
Tested by	James Cunningham, EMC/MIL/WL Supervisor
Reviewed by	Juan M Gonzalez, EMC & Wireless Divisions Manager
Review date	August 18, 2022
Reviewer signature	Atta

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contain in this report are within Nemko USA's ISO/IEC 17025 accreditation.

This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

Copyright notification

Nemko USA Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko USA Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. © Nemko USA Inc.

Table of Contents

Table of C	ontents	. 3
Section 1	Report summary	. 4
1.1	Applicant	.4
1.2	Manufacturer	.4
1.3	Test specifications	.4
1.4	Test methods	.4
1.5	Exclusions	.4
1.6	Statement of compliance	.4
1.7	Test report revision history	.4
Section 2	Summary of test results	. 5
2.1	FCC Part 15 Subpart C, general requirements	.5
2.2	FCC Part 15.247	.5
2.3	IC RSS-247, Issue 2	.5
2.4	IC RSS-GEN, Issue 5	.5
Section 3	Equipment under test (EUT) details	. 6
3.1	Sample information	.6
3.2	EUT information	.6
3.3	Technical information	.6
3.4	EUT exercise and monitoring details	.7
3.5	EUT setup diagram	.7
Section 4	Engineering considerations	. 8
4.1	Modifications incorporated in the EUT	.8
4.2	Technical judgment	.8
4.3	Deviations from laboratory tests procedures	.8
Section 5	Test conditions	. 9
5.1	Atmospheric conditions	.9
5.2	Power supply range	.9
Section 6	Measurement uncertainty	10
6.1	Uncertainty of measurement	10
Section 7	Test Equipment	11
Section 8	Testing data	12
8.1	FCC 15.247(b) and RSS-247 5.4 (d) Transmitter output power and e.i.r.p. requirements	12

Section 1 Report summary

1.1 Applicant

Company name	Privoro, LLC
Address	3100 W. Ray Road, Suite 201
City	Chandler
Province/State	AZ
Postal/Zip code	85226
Country	USA

1.2 Manufacturer

Company name	Privoro, LLC
Address	3100 W. Ray Road, Suite 201
City	Chandler
Province/State	AZ
Postal/Zip code	85226
Country	USA

1.3 Test specifications

FCC 47 CFR Part 15, Subpart C – §15.247	Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz
IC RSS-247 Issue 2	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices

1.4 Test methods

ANSI C63.10-2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
558074 D01 DTS Measurement Guidance	Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating
v03r02 (June 5, 2014)	Under §15.247

1.5 Exclusions

Testing limited to transmitter output power and EIRP only as a part of CHID and C2PC to allow reduced power from original certification. Module Original FCC / IC ID's: FCC ID: 2AA9B05 and IC ID: 12208A-05 New FCC/ IC ID's: 2APWUPRBTRP / 23953-PRBTRP

1.6 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was performed against all relevant requirements of the test standard except as noted in section 1.5 above. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.7 Test report revision history

Table 1.7-1: Test report revision history

Revision #	Details of changes made to test report
457414-9TRFWL	Original report issued
Notes:	None

Section 2 Summary of test results

2.1 FCC Part 15 Subpart C, general requirements

Part	Test description	Verdict
§15.207(a)	Conducted limits	Not tested
§15.31(e)	Variation of power source	Not tested
§15.203	Antenna requirement	Not tested

Notes: None

2.2 FCC Part 15.247

Part	Test description	Verdict
§15.247(a)(1)(i)	Frequency hopping systems operating in the 902–928 MHz band	Not applicable
§15.247(a)(1)(ii)	Frequency hopping systems operating in the 5725–5850 MHz band	Not applicable
§15.247(a)(1)(iii)	Frequency hopping systems operating in the 2400–2483.5 MHz band	Not applicable
§15.247(a)(2)	Minimum 6 dB bandwidth for systems using digital modulation techniques	Not tested
§15.247(b)(1)	Maximum peak output power of frequency hopping systems operating in the 2400– 2483.5 MHz band and 5725–5850 MHz band	Not applicable
§15.247(b)(2)	Maximum peak output power of Frequency hopping systems operating in the 902–928 MHz band	Not applicable
§15.247(b)(3)	Maximum peak output power of systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands	Pass
§15.247(b)(4)	Transmitting antennas of directional gain greater than 6 dBi	Not applicable
§15.247(c)(1)	Fixed point-to-point operation with directional antenna gains greater than 6 dBi	Not applicable
§15.247(c)(2)	Transmitters operating in the 2400–2483.5 MHz band that emit multiple directional beams	Not applicable
§15.247(d)	Spurious emissions	Not tested
§15.247(e)	Power spectral density for digitally modulated devices	Not tested
§15.247(f)	Time of occupancy for hybrid systems	Not applicable

2.3 IC RSS-247, Issue 2

Part	Test description	Verdict
5.1 (a)	Bandwidth of a frequency hopping channel	Not applicable
5.1 (b)	Minimum channel spacing for frequency hopping systems	Not applicable
5.1 (c)	Frequency hopping systems operating in the 902–928 MHz band	Not applicable
5.1 (d)	Frequency hopping systems operating in the 2400–2483.5 MHz band	Not applicable
5.1 (e)	Frequency hopping systems operating in the 5725–5850 MHz band	Not applicable
5.2 (a)	Minimum 6 dB bandwidth	Not tested
5.2 (b)	Maximum power spectral density	Not tested
5.3 (a)	Digital modulation turned off	Not applicable
5.3 (b)	Frequency hopping turned off	Not applicable
5.4 (a)	Frequency hopping systems operating in the 902–928 MHz band	Not applicable
5.4 (b)	Frequency hopping systems operating in the 2400–2483.5 MHz band	Not applicable
5.4 (c)	Frequency hopping systems operating in the 5725–5850 MHz	Not applicable
5.4 (d)	Systems employing digital modulation techniques	Pass
5.4 (e)	Point-to-point systems in 2400–2483.5 MHz and 5725–5850 MHz band	Not applicable
5.4 (f)	Transmitters which operate in the 2400–2483.5 MHz band with multiple directional	Not applicable
	beams	
5.5	Out-of-band emissions	Not tested

2.4 IC RSS-GEN, Issue 5

Part	Test description	Verdict
7.3	Receiver radiated emission limits	Not applicable
7.4	Receiver conducted emission limits	Not applicable
8.8	Power Line Conducted Emissions Limits for License-Exempt Radio Apparatus	Not tested

Section 3 Equipment under test (EUT) details

3.1 Sample information

Receipt date	June 28, 2022
Nemko sample ID number	NEx: 457414

3.2 EUT information

Product name	BT Module
Model	PRBTRP
Serial number	N/A
Model	PRBTRP

3.3 Technical information

Used IC test site(s) reg. number	2040A
RSS number and issue	RSS-247 issue 2 (February 2017)
Frequency band	2400 – 2483.5 MHz
Minimum frequency (MHz)	2402
Maximum frequency (MHz)	2480
Type of modulation	GFSK
Power requirements	5 V _{DC} , 0.5 A
Antenna information	Integrated, -1 dBi nominal gain

3.4 EUT exercise and monitoring details

	Table 3.4-1:	EUT sub assemblies		
Description	Brand name	Model/Part number	Serial number	Rev.
Development board	Ublox	BDM-350	320-00056	N/A
	Table 3.4-2:	EUT interface ports		
Description				Qty.
USB				1
	Table 3.4-3:	Support equipment		
Description	Brand name	Model/Part number	Serial number	Rev.
Laptop PC	Dell	Latitude 7400		
	Table 3.4 -4: Ir	ter-connection cables		
Cable description	From	То		Length (m)
USB	Develop	ment board Lapton P	C	1

3.5 EUT setup diagram

Figure 3.5-1: Setup diagram

Section 4 Engineering considerations

4.1 Modifications incorporated in the EUT

There were no modifications performed to the EUT during this assessment.

4.2 Technical judgment

None

4.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 5 Test conditions

5.1 Atmospheric conditions

Temperature	15-30 °C		
Relative humidity	20-75 %		
Air pressure	86–106 kPa		
When it is impracticable to carry out tasts under those conditions, a note to this offect stating the ambient temperature and relative humidity during the			

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

5.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

Section 6 Measurement uncertainty

6.1 Uncertainty of measurement

Nemko USA Inc. has calculated measurement uncertainty and is documented in EMC/MUC/001 "Uncertainty in EMC measurements." Measurement uncertainty was calculated using the methods described in CISPR 16-4-2 Specification for radio disturbance and immunity measuring apparatus and methods – Part 4-2: Uncertainties, statistics, and limit modelling – Measurement instrumentation uncertainty. The expression of Uncertainty in EMC testing. Measurement uncertainty calculations assume a coverage factor of K=2 with 95% certainty.

Table 6.1-1: Measurement uncertainty calculations

Measurement		U _{cispr} dB	U _{lab} dB
Conducted disturbance at AC mains and other port power using a V-AMN	9 kHz to 150 kHz	3.8	2.9
	150 kHz to 30 MHz	3.4	2.3
Conducted disturbance at telecommunication port using AAN	150 kHz to 30 MHz	5.0	4.3
Conducted disturbance at telecommunication port using CVP	150 kHz to 30 MHz	3.9	2.9
Conducted disturbance at telecommunication port using CP	150 kHz to 30 MHz	2.9	1.4
Conducted disturbance at telecommunication port using CP and CVP	150 kHz to 30 MHz	4.0	3.1
Radiated disturbance (electric field strength in a SAC)	30 MHz to 1 GHz	6.3	5.5
Radiated disturbance (electric field strength in a FAR)	1 GHz to 6 GHz	5.2	4.7
Radiated disturbance (electric field strength in a FAR)	6 GHz to 18 GHz	5.5	5.0

Notes: Compliance assessment:

- compliance is deemed to occur is no measured disturbance level exceeds the disturbance limit;
- non-compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit

If U_{lab} is greater than U_{cispr} then:

- compliance is deemed to occur is no measured disturbance level, increased by (U_{lab} U_{clspr}), exceeds the disturbance limit;
- non-compliance is deemed to occur if any measured disturbance level, increased by (U_{lab} U_{clspr}), exceeds the disturbance limit

V-AMN: V type artificial mains network

AAN: Asymmetric artificial network

CP: Current probe

- CVP: Capacitive voltage probe
- SAC: Semi-anechoic chamber
- FAR: Fully anechoic room

If U_{lab} is less than or equal to U_{cispr} then:

Section 7 Test Equipment

Equipment		Manufacturer Model no.		Asset no.	Cal cycle	Next cal.
Power	sensor	ETS Lindgren	7002-006	E1062	1 year	1-Nov-2022
Notes:	NCR - no calibration required VOU - verify on use					
			Table 6.1-2: Test Softwa	re		
Manufa	acturer of Software	Details				
EMPow	ver ETSI Burst Measurement	V1.0.4.2				

Table 6.1-1: Test Equipment List

System Notes: None

Section 8 Testing data

8.1 FCC 15.247(b) and RSS-247 5.4 (d) Transmitter output power and e.i.r.p. requirements

8.1.1 Definition and limits

Title 47 \rightarrow Chapter I \rightarrow Subchapter A \rightarrow Part 15 \rightarrow Subpart C \rightarrow §15.247(b)(2) / (3)

- (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following:
 - (3) For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 W (30 dBm). As an alternative to a peak power measurement, compliance with the one-Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
 - (4) The conducted output power limit specified in paragraph (b) of this Section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this Section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this Section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RSS-247 \rightarrow §5.4(d)

(d) For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1 W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).

As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power. The maximum conducted output power is the total transmit power delivered to all antennas and antenna elements, averaged across all symbols in the signalling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or transmitting at a reduced power level. If multiple modes of operation are implemented, the maximum conducted output power is the highest total transmit power occurring in any mode.

8.1.2 Test summary

Verdict	Pass		
Test date	August 18, 2022	Temperature	21 °C
Test engineer	James Cunningham, EMC/MIL/WL Supervisor	Air pressure	1008 mbar
Test location	Wireless bench (Conducted)	Relative humidity	44 %

8.1.3 Notes

Testing was performed with the BLE transmitter operating on a fixed channel at full power. Low, middle, and high channels were tested.

EIRP = Conducted Power + Declared Antenna Gain

8.1.4 Setup details

EUT setup configuration	Tabletop
Test facility	Nemko San Diego
Measurement method	ANSI C63.10 §11.9.1.3 PKPM1 (Peak Power Meter) method

8.1.5 Test data

Table 8.1-1: Output power					
Test Frequency (MHz)	Maximum Peak Conducted Output Power (dBm)	Conducted Limit (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP Limit (dBm)
2402	-21.661	30.0	-1	-22.661	36.0
2440	-19.170	30.0	-1	-20.170	36.0
2480	-15.419	30.0	-1	-16.419	36.0

Figure 8.1-2: Output power, 2440 MHz

Figure 8.1-3: Output power, 2480 MHz