

Shenzhen HTT Technology Co., Ltd.

Report No.: HTT202209032F01

TEST Report

Applicant: Shenzhen JinJiaCheng Photography Equipment Co., Ltd.

RM1305 East Block, Tian'an High-Tech Plaza Phase II, **Address of Applicant:**

Tian'an Cyber Park, Futian District, Shenzhen, Guangdong,

China

Manufacturer: Shenzhen JinJiaCheng Photography Equipment Co., Ltd.

RM1305 East Block, Tian'an High-Tech Plaza Phase II, Address of Manufacturer:

Tian'an Cyber Park, Futian District, Shenzhen, Guangdong,

China

Equipment Under Test (EUT)

Product Name: Wireless Remote Control

SPC-R1 Model No.:

SPC-MS1R, SPC-UN1R Series model:

Trade Mark: N/A

2APWR-SPC-R1 FCC ID:

FCC CFR Title 47 Part 15 Subpart C Section 15.247 **Applicable standards:**

Date of sample receipt: Sep.02,2022

Date of Test: Sep.02,2022~Sep.08,2022

Date of report issued: Sep.08,2022

PASS * **Test Result:**

In the configuration tested, the EUT complied with the standards specified above.

1. Version

Version No.	Date	Description
00	Sep.08,2022	Original

Tested/ Prepared By	Ervin Xu	Date:	Sep.08,2022
	Project Engineer	_	
Check By:	Bruce 2hu	Date:	Sep.08,2022
	Reviewer		
Approved By :	Kerin Yang	Date:	Sep.08,2022
	Authorized Signature	_	

2. Contents

	Page
1. VERSION	2
2. CONTENTS	3
3. TEST SUMMARY	
4. GENERAL INFORMATION	
4.1. GENERAL DESCRIPTION OF EUT	
4.2. TEST MODE	
4.3. DESCRIPTION OF SUPPORT UNITS	
4.4. DEVIATION FROM STANDARDS	
4.5. ABNORMALITIES FROM STANDARD CONDITIONS	
4.7. TEST LOCATION	
4.8. ADDITIONAL INSTRUCTIONS	
5. TEST INSTRUMENTS LIST	
6. TEST RESULTS AND MEASUREMENT DATA	9
6.1. CONDUCTED EMISSIONS	9
6.2. CONDUCTED OUTPUT POWER	
6.3. CHANNEL BANDWIDTH	11
6.4. Power Spectral Density	13
6.5. BAND EDGES	
6.5.1. Conducted Emission Method	
6.5.2. Radiated Emission Method	_
6.6. SPURIOUS EMISSION	
6.6.1. Conducted Emission Method	
6.6.2. Radiated Emission Method	
7. TEST SETUP PHOTO	28
8. EUT CONSTRUCTIONAL DETAILS	28

3. Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	N/A
Conducted Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes		
Radiated Emission	30~1000MHz	3.45 dB	(1)		
Radiated Emission	1~6GHz	3.54 dB	(1)		
Radiated Emission	6~40GHz	5.38 dB	(1)		
Conducted Disturbance 0.15~30MHz 2.66 dB (1)					
Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.					

4. General Information

4.1. General Description of EUT

Product Name:	Wireless Remote Control
Model No.:	SPC-R1
Series model:	SPC-MS1R, SPC-UN1R
Test sample(s) ID:	HTT202209032-1(Engineer sample) HTT202209032-2(Normal sample)
Operation frequency	2402~2480 MHz
Number of Channels	40
Modulation Type	GFSK
Channel separation	2MHz
Antenna Type:	PCB Antenna
Antenna Gain:	1.36dBi
Power Supply:	DC 3.0V Form Battery

Channel	Frequency(MHz)	Channel	Frequency(MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

4.3. Description of Support Units

None.

4.4. Deviation from Standards

None.

4.5. Abnormalities from Standard Conditions

None.

4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

4.7. Test Location

All tests were performed at:

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Tel: 0755-23595200 Fax: 0755-23595201

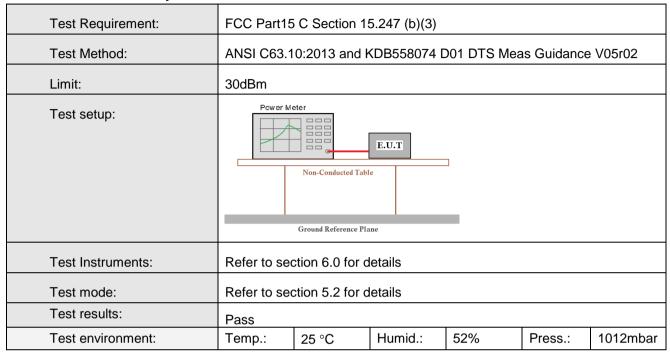
4.8. Additional Instructions

Test Software	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

5. Test Instruments list

Item	Test Equipment	Manufacturer	Model No.	Inventory	Cal.Date	Cal.Due date
		0, , 0, 5, 7		No.	(mm-dd-yy)	(mm-dd-yy)
1	3m Semi- Anechoic Chamber	Shenzhen C.R.T technology co., LTD	9*6*6	HTT-E028	Aug. 10 2020	Aug. 09 2024
2	Control Room	Shenzhen C.R.T technology co., LTD	4.8*3.5*3.0	HTT-E030	Aug. 10 2020	Aug. 09 2024
3	EMI Test Receiver	Rohde&Schwar	ESCI7	HTT-E022	May 23 2022	May 22 2023
4	Spectrum Analyzer	Rohde&Schwar	FSP	HTT-E037	May 23 2022	May 22 2023
5	Coaxial Cable	ZDecl	ZT26-NJ-NJ-0.6M	HTT-E018	May 23 2022	May 22 2023
6	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-2M	HTT-E019	May 23 2022	May 22 2023
7	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-0.6M	HTT-E020	May 23 2022	May 22 2023
8	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-8.5M	HTT-E021	May 23 2022	May 22 2023
9	Composite logarithmic antenna	Schwarzbeck	VULB 9168	HTT-E017	May 23 2022	May 22 2023
10	Horn Antenna	Schwarzbeck	BBHA9120D	HTT-E016	May 23 2022	May 22 2023
11	Loop Antenna	Zhinan	ZN30900C	HTT-E039	May 23 2022	May 22 2023
12	Horn Antenna	Beijing Hangwei Dayang	OBH100400	HTT-E040	May 23 2022	May 22 2023
13	low frequency Amplifier	Sonoma Instrument	310	HTT-E015	May 23 2022	May 22 2023
14	high-frequency Amplifier	HP	8449B	HTT-E014	May 23 2022	May 22 2023
15	Variable frequency power supply	Shenzhen Anbiao Instrument Co., Ltd	ANB-10VA	HTT-082	May 23 2022	May 22 2023
16	EMI Test Receiver	Rohde & Schwarz	ESCS30	HTT-E004	May 23 2022	May 22 2023
17	Artificial Mains	Rohde & Schwarz	ESH3-Z5	HTT-E006	May 23 2022	May 22 2023
18	Artificial Mains	Rohde & Schwarz	ENV-216	HTT-E038	May 23 2022	May 22 2023
19	Cable Line	Robinson	Z302S-NJ-BNCJ-1.5M	HTT-E001	May 23 2022	May 22 2023
20	Attenuator	Robinson	6810.17A	HTT-E007	May 23 2022	May 22 2023
21	Variable frequency power supply	Shenzhen Yanghong Electric Co., Ltd	YF-650 (5KVA)	HTT-E032	May 23 2022	May 22 2023
22	Control Room	Shenzhen C.R.T technology co., LTD	8*4*3.5	HTT-E029	May 23 2022	May 22 2023
23	DC power supply	Agilent	E3632A	HTT-E023	May 23 2022	May 22 2023
24	EMI Test Receiver	Agilent	N9020A	HTT-E024	May 23 2022	May 22 2023
25	Analog signal generator	Agilent	N5181A	HTT-E025	May 23 2022	May 22 2023
26	Vector signal generator	Agilent	N5182A	HTT-E026	May 23 2022	May 22 2023
27	Power sensor	Keysight	U2021XA	HTT-E027	May 23 2022	May 22 2023
28	Temperature and humidity meter	Shenzhen Anbiao Instrument Co., Ltd	TH10R	HTT-074	May 23 2022	May 22 2023
29	Radiated Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
30	Conducted Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
31	RF Test Software	panshanrf	TST	N/A	N/A	N/A

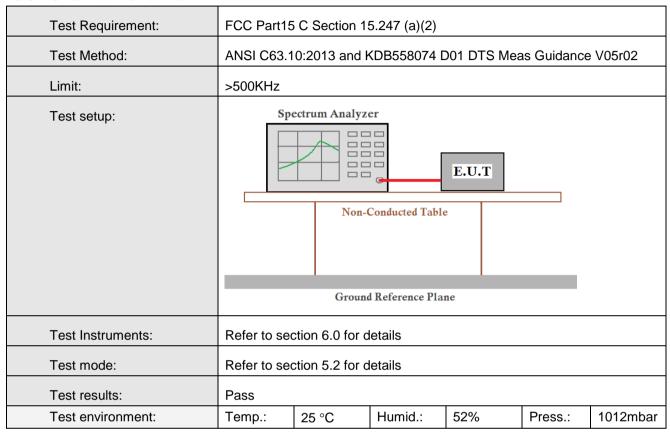
6. Test results and Measurement Data


6.1. Conducted Emissions

	<u> </u>			
Test Requirement:	FCC Part15 C Section 15.207	7		
Test Method:	ANSI C63.10:2013			
Test Frequency Range:	150KHz to 30MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9KHz, VBW=30KHz, S	Sweep time=auto		
Limit:	Fraguency ronge (MUz)	Limit	(dBuV)	
	Frequency range (MHz)	Quasi-peak		rage
	0.15-0.5	66 to 56*		o 46*
	0.5-5	56		16
	5-30 * Decreases with the logarithm	m of the frequency	5	50
Test setup:	Reference Plan			
Test procedure:	Remark E.U.T Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators line impedance stabilization 50ohm/50uH coupling imp 2. The peripheral devices are LISN that provides a 50oh termination. (Please refer	Filter — AC p EMI Receiver are connected to the n network (L.I.S.N.). The dance for the measure also connected to the m/50uH coupling important to the m/50uH coupl	main power This provides uring equipm e main powe edance with	ent. er through a 50ohm
	photographs). 3. Both sides of A.C. line are interference. In order to fin positions of equipment and according to ANSI C63.10	checked for maximum and the maximum emised all of the interface can call 2013 on conducted n	m conducted sion, the rela ables must b	I ative se changed
Test Instruments:	Refer to section 6.0 for detail	S		
Test mode:	Refer to section 5.2 for details			
Test environment:	Temp.: 25 °C Hu	mid.: 52%	Press.:	1012mbar
Test voltage:	AC 120V, 60Hz			
Test results:	N/A			

The EUT is powered by the Battery, So this test item is not applicable for the EUT.

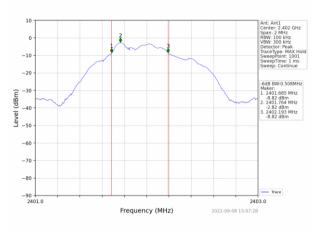
6.2. Conducted Output Power



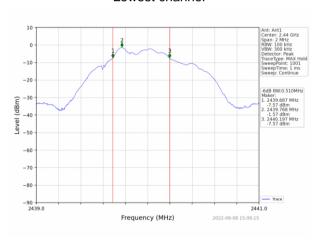
Measurement Data

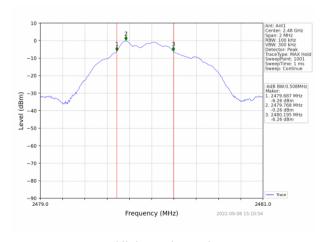
Test channel	Peak Output Power (dBm)	Limit(dBm)	Result
Lowest	-2.66		
Middle	-1.43	30.00	Pass
Highest	-0.15		

6.3. Channel Bandwidth

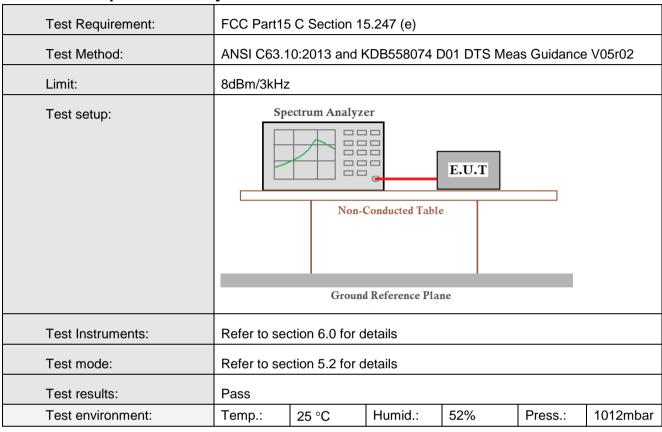


Measurement Data


Test channel	Channel Bandwidth (MHz)	Limit(KHz)	Result
Lowest	0.508		
Middle	0.510	>500	Pass
Highest	0.508		

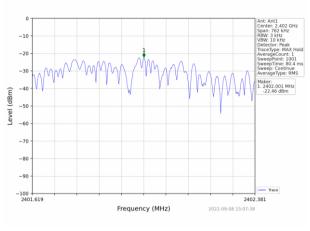

Test plot as follows:

Lowest channel

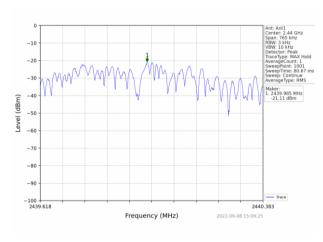

Middle channel

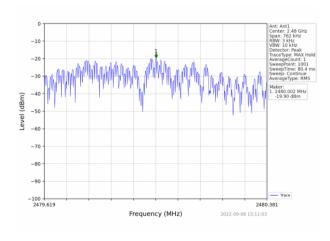
Highest channel

6.4. Power Spectral Density



Measurement Data

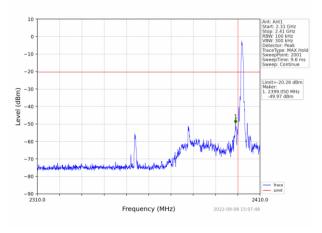

Test channel	Power Spectral Density (dBm/3kHz)	Limit(dBm/3kHz)	Result	
Lowest	-22.46			
Middle	-21.11	8.00	Pass	
Highest	-19.90			


Test plot as follows:

Lowest channel

Middle channel

Highest channel



6.5. Band edges

6.5.1 Conducted Emission Method

6.5.1 Conducted Emission Me	ou								
Test Requirement:	FCC Part15	C Section 15	5.247 (d)						
Test Method:	ANSI C63.1	0:2013 and k	(DB558074 [001 DTS Mea	as Guidance	e V05r02			
Limit:	spectrum in is produced the 100 kHz the desired								
Test setup:	Sp	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to see	ction 6.0 for d	etails						
Test mode:	Refer to see	ction 5.2 for d	etails						
Test results:	Pass								
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			

Test plot as follows:

Lowest channel

Highest channel

¹F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

6.5.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205									
Test Method:	ANSI C63.10):2013								
Test Frequency Range:	All of the res 2500MHz) da			ed, only	the wor	st band's (2	2310MHz to			
Test site:	Measuremen	nt Distance:	3m							
Receiver setup:	Frequency	/ Detec	ctor	RBW	VBW	/ \	/alue			
•	Above 1GH	Pea	ık	1MHz	3MH:	z F	Peak			
	Above 1GH	RM	S	1MHz	3MH	z Av	verage			
Limit:	Fred	quency	Lim	nit (dBuV/	m @3m	n) \	/alue			
	Abov	e 1GHz		54.0			erage			
Test setup:	Abov	CTOTIZ		74.0	0	F	Peak			
	Turn Table	<150cm>								
Test Procedure:										
	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test 									
Test Instruments:	Refer to section 6.0 for details									
Test mode:	Refer to section 5.2 for details									
Test results:	Pass									
Test environment:	Temp.:	25 °C	Humid.:	52%	, D	Press.:	1012mbar			

Measurement Data

Operation Mode: GFSK TX Low channel(2402MHz)

Horizontal (Worst case)

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
2390	58.47	26.20	5.72	33.30	57.09	74	-16.91	peak	
2390	46.08	26.20	5.72	33.30	44.70	54	-9.30	AVG	

Vertical:

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	μV/m) (dBμV/m)		Туре	
2390	60.11	26.20	5.72	33.30	58.73	74	-15.27	peak	
2390	45.88	26.20	5.72	33.30	44.50	54	-9.50	AVG	

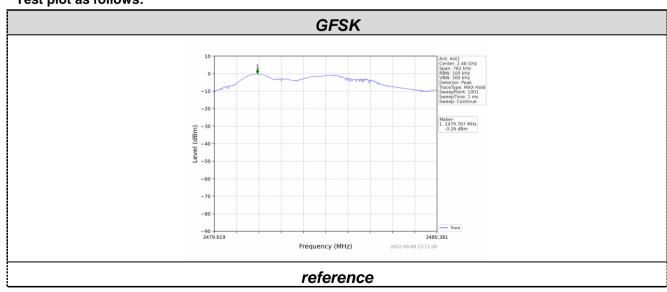
Operation Mode: GFSK TX High channel (2480MHz)

Horizontal (Worst case)

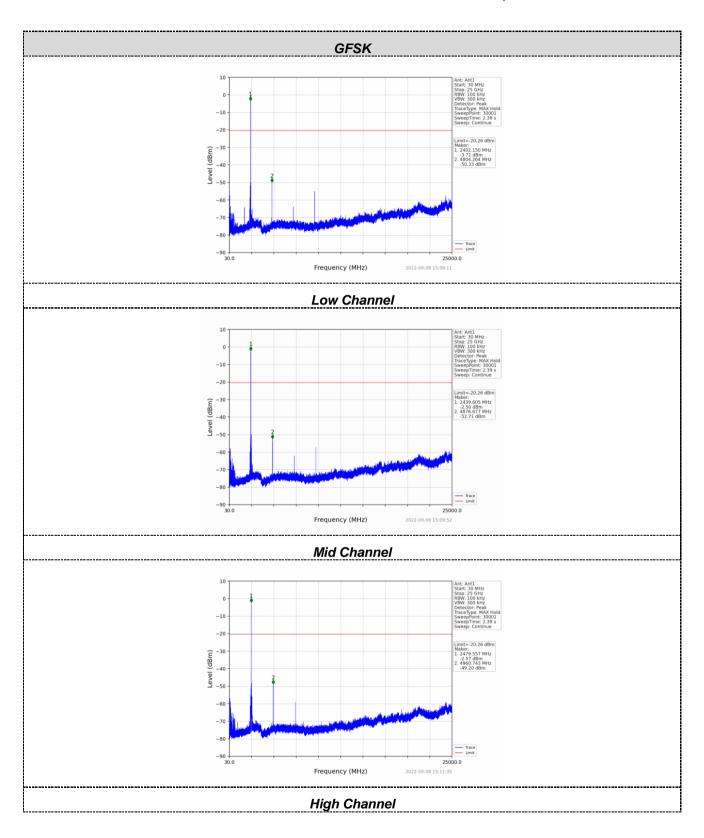
Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2483.5	55.21	28.60	6.97	32.70	58.08	74	-15.92	peak
2483.5	41.36	28.60	6.97	32.70	44.23	54	-9.77	AVG

Vertical:

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	57.42	28.60	6.97	32.70	60.29	74	-13.71	peak
2483.5	42.60	28.60	6.97	32.70	45.47	54	-8.53	AVG

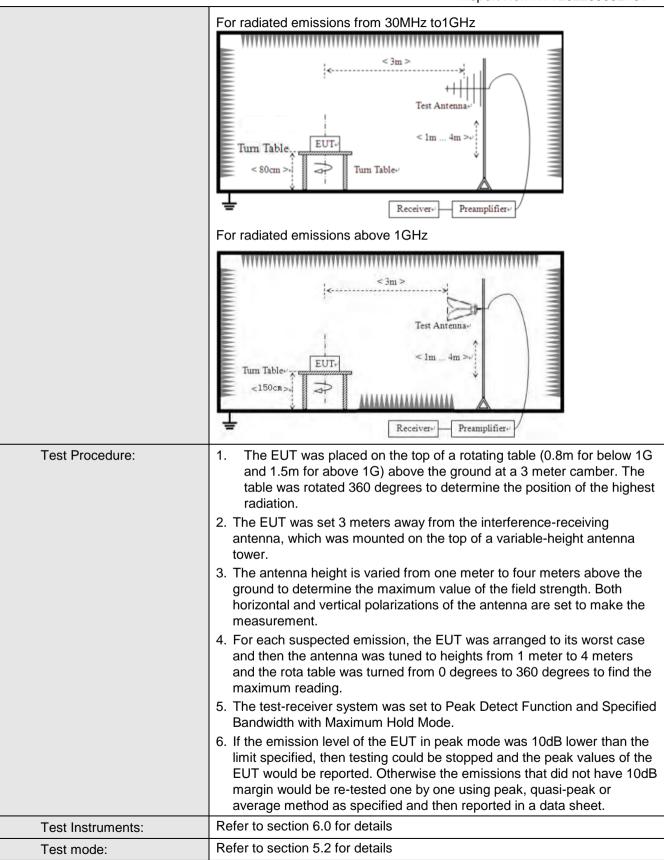


6.6. Spurious Emission


6.6.1 Conducted Emission Method

0.0.1 Conducted Linission We								
Test Requirement:	FCC Part15 C Sect	ion 15.247 (d)						
Test Method:	ANSI C63.10:2013	and KDB558074	D01 DTS Mea	as Guidance	e V05r02			
Limit:	In any 100 kHz ban spectrum intentiona is produced by the the 100 kHz bandw the desired power, measurement.	I radiator is opera ntentional radiato idth within the bar	iting, the radion r shall be at lead and that contain	o frequency east 20 dB t ns the highe	power that below that in est level of			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 6.0	for details						
Test mode:	Refer to section 5.2 for details							
Test results:	Pass							
Test environment:	Temp.: 25 °C	Humid.:	52%	Press.:	1012mbar			

Test plot as follows:



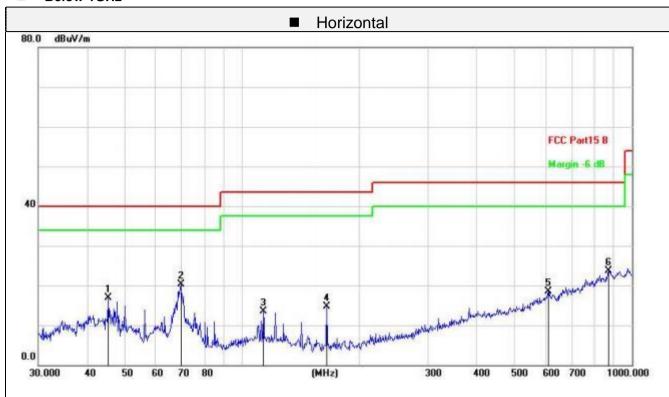
6.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section	on 15	5.209				
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	9kHz to 25GHz						
Test site:	Measurement Distar	ice: 3	3m				
Receiver setup:	Frequency		Detector	RB\	W VBW		Value
	9KHz-150KHz		Quasi-peak		Hz	600Hz	z Quasi-peak
	150KHz-30MHz Qua		ıasi-peak	9Kł	Ηz	30KH:	z Quasi-peak
	30MHz-1GHz Quasi-peak		120k	Ήz	300KH	Iz Quasi-peak	
	Above 1GHz		Peak	1MI	Ηz	3MHz	z Peak
	Peak		1MI	Ηz	10Hz	Average	
Limit:	Frequency Limit (uV/m) Value					Measurement Distance	
	0.009MHz-0.490MHz 2400/F(KHz) QP 300m						300m
	0.490MHz-1.705M	Hz	24000/F(KHz)		QP	30m
	1.705MHz-30MH	Z	30		QP		30m
	30MHz-88MHz	100			QP		
	88MHz-216MHz		150			QP	
	216MHz-960MH	Z	200		QP		3m
	960MHz-1GHz		500		QP		
	Above 1GHz		500		Average		
			5000)	Peak		
Test setup:	For radiated emissio	ns fr	om 9kHz to	30MH	z		
	Tum Table Im Receiver						

Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		
Test voltage:	AC 120V, 60Hz							
Test results:	Pass	Pass						

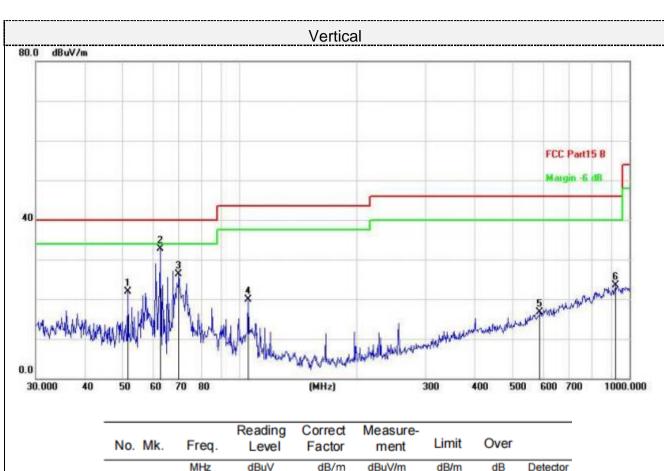
Measurement data:

Remark:


Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.



■ Below 1GHz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dB/m	dB	Detector
1		45.3755	34.34	-17.40	16.94	40.00	-23.06	QP
2	*	69.6005	40.13	-19.89	20.24	40.00	-19.76	QP
3		113.3163	33.87	-20.28	13.59	43.50	-29.91	QP
4		164.9075	33.29	-18.55	14.74	43.50	-28.76	QP
5		609.9217	28.48	-10.07	18.41	46.00	-27.59	QP
6		869.1302	29.18	-5.53	23.65	46.00	-22.35	QP

No.	Mk.	Freq.	Reading Level	Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dB/m	dB	Detector
1		51.6616	39.17	-17.35	21.82	40.00	-18.18	QP
2	*	62.6507	51.31	-18.61	32.70	40.00	-7.30	QP
3		69.8450	46.17	-19.94	26.23	40.00	-13.77	QP
4		105.2718	40.90	-20.90	20.00	43.50	-23.50	QP
5		588.9051	26.88	-10.19	16.69	46.00	-29.31	QP
6		922.5157	28.37	-4.86	23.51	46.00	-22.49	QP

Final Level =Receiver Read level + Correct Factor

Above 1-25GHz

CH Low (2402MHz)

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4804	51.48	31.40	8.18	32.10	58.96	74.00	-15.04	peak
4804	36.25	31.40	8.18	32.10	43.73	54.00	-10.27	AVG
7206	44.31	35.80	10.83	31.40	59.54	74.00	-14.46	peak
7206	28.37	35.80	10.83	31.40	43.60	54.00	-10.40	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical:

		Antenna		Preamp													
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin										
								Detector									
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type									
4804	51.97	31.40	8.18	32.10	59.45	74.00	-14.55	peak									
4804	36.14	31.40	8.18	32.10	43.62	54.00	-10.38	AVG									
7206	43.89	35.80	10.83	31.40	59.12	74.00	-14.88	peak									
. 200	10.00	00.00	10.00	01110	55.12			pount									
7206	28.14	35.80	10.83	31.40	43.37	54.00	-10.63	AVG									
Remark: Facto	or = Antenna Fac	tor + Cable Los	s – Pre-amplifie				Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.										

CH Middle (2440MHz)

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4880	51.41	31.40	9.17	32.10	59.88	74.00	-14.12	peak
4880	35.18	31.40	9.17	32.10	43.65	54.00	-10.35	AVG
7320	44.07	35.80	10.83	31.40	59.30	74.00	-14.70	peak
7320	28.15	35.80	10.83	31.40	43.38	54.00	-10.62	AVG
				-				

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical:

	Antenna		Preamp				
Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
							Detector
(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
50.24	31 40	9 17	32 10	58 71	74 00	-15 29	peak
00.21	01.10	0.17	02.10	00.7 1	7 1.00	10.20	pourt
34.19	31.40	9.17	32.10	42.66	54.00	-11.34	AVG
44.36	35.80	10.83	31.40	59.59	74.00	-14.41	peak
29.06	35.80	10.83	31.40	44.29	54.00	-9.71	AVG
	(dBµV) 50.24 34.19 44.36 29.06	Meter Reading Factor (dBμV) (dB/m) 50.24 31.40 34.19 31.40 44.36 35.80 29.06 35.80	Meter Reading Factor Cable Loss (dBμV) (dB/m) (dB) 50.24 31.40 9.17 34.19 31.40 9.17 44.36 35.80 10.83 29.06 35.80 10.83	Meter Reading Factor Cable Loss Factor (dBμV) (dB/m) (dB) (dB) 50.24 31.40 9.17 32.10 34.19 31.40 9.17 32.10 44.36 35.80 10.83 31.40 29.06 35.80 10.83 31.40	Meter Reading Factor Cable Loss Factor Emission Level (dBμV) (dB/m) (dB) (dB) (dBμV/m) 50.24 31.40 9.17 32.10 58.71 34.19 31.40 9.17 32.10 42.66 44.36 35.80 10.83 31.40 59.59 29.06 35.80 10.83 31.40 44.29	Meter Reading Factor Cable Loss Factor Emission Level Limits (dBμV) (dB/m) (dB) (dB) (dBμV/m) (dBμV/m) 50.24 31.40 9.17 32.10 58.71 74.00 34.19 31.40 9.17 32.10 42.66 54.00 44.36 35.80 10.83 31.40 59.59 74.00 29.06 35.80 10.83 31.40 44.29 54.00	Meter Reading Factor Cable Loss Factor Emission Level Limits Margin (dBμV) (dB/m) (dB) (dB) (dBμV/m) (dBμV/m)

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

CH High (2480MHz)

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4960	50.21	31.40	9.17	32.10	58.68	74.00	-15.32	peak
4960	37.54	31.40	9.17	32.10	46.01	54.00	-7.99	AVG
7440	44.09	35.80	10.83	31.40	59.32	74.00	-14.68	peak
7440	29.14	35.80	10.83	31.40	44.37	54.00	-9.63	AVG

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4960	51.64	31.40	9.17	32.10	60.11	74.00	-13.89	peak
4960	36.22	31.40	9.17	32.10	44.69	54.00	-9.31	AVG
7440	43.28	35.80	10.83	31.40	58.51	74.00	-15.49	peak
7440	28.77	35.80	10.83	31.40	44.00	54.00	-10.00	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Remark:

- (1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

7. Test Setup Photo

Reference to the appendix I for details.

8. EUT Constructional Details

Reference to the appendix II for details.

-----End-----