

FCC REPORT

Testing Group Co., Ltd.

Applicant: Xiamen Paperang Technology Co.,Ltd.

Address of Applicant: Room 3124, Xuanye Building, Pioneer Park, Xiamen Torch

High-tech Zone, Fujian, China

Equipment Under Test (EUT)

Jian Yan

Product Name: Thermal Printer

Model No.: C1S2, PAPERANG C1, C1C2, C1B2

Trade mark: PAPERANG

FCC ID: 2APWO-C1S2

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 23 Feb., 2022

Date of Test: 24 Feb., 2022~ 14 Mar., 2022

Date of report issued: 15 Mar., 2022

Test Result: PASS *

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYTproduct certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Modified Information

Version No.	Description
00 15 Mar., 2022	Original

Tested by: Date: 15 Mar., 2022

Raymon Zheng/ Project Engineer

Reviewed by: Date: 15 Mar., 2022

Louis Ye/Manager

2 Contents

	Page
1 MODIFIED INFORMATION	2
2 CONTENTS	3
3 TEST SUMMARY	4
4 GENERAL INFORMATION	5
4.1 CLIENT INFORMATION	
4.2 GENERAL DESCRIPTION OF E.U.T	
4.3 TEST ENVIRONMENT AND TEST MODE	
4.4 DESCRIPTION OF SUPPORT UNITS	
4.5 MEASUREMENT UNCERTAINTY	
4.7 LABORATORY FACILITY	
4.8 LABORATORY LOCATION	
4.9 TEST INSTRUMENTS LIST	
5 TEST RESULTS AND MEASUREMENT DATA	8
5.1 Antenna requirement:	8
5.2 CONDUCTED EMISSION	
5.3 CONDUCTED OUTPUT POWER	13
5.4 OCCUPY BANDWIDTH	15
5.5 POWER SPECTRAL DENSITY	17
5.6 BAND EDGE	
5.6.1 Conducted Emission Method	
5.6.2 Radiated Emission Method	
5.7 Spurious Emission	
5.7.1 Conducted Emission Method	
5.7.2 Radiated Emission Method	

3 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203&15.247 (b)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205&15.209	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 1dB (provided by the customer).

Test Method: ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02

4 General Information

4.1 Client Information

Applicant:	XiamenPaperangTechnologyCo.,Ltd.
Address:	Room 3124,Xuanye Building,Pioneer Park,Xiamen Torch High-tech Zone,Fujian,China
Manufacturer:	XiamenPaperangTechnologyCo.,Ltd.
Address:	Room 3124,Xuanye Building,Pioneer Park,Xiamen Torch High-tech Zone,Fujian,China

Report No: JYTA-R01-2200016

4.2 General Description of E.U.T.

Product Name:	Thermal Printer
Model No.:	C1S2, PAPERANG C1, C1C2, C1B2
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	PCB Antenna
Antenna gain:	0dBi
Power supply:	Battery
AC adapter:	N/A
Differences of series model:	Only the model name and appearance color are different between each model, others are the same, the difference does not affect the safety and electromagnetic compatibility performance of the product., so full tests were performed on the model C1S2.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 19& 39 were selected as Lowest, Middle and Highest channel.

Report No: JYTA-R01-2200016

4.3 Test environment and test mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

The sample was placed 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

4.4 Description of Support Units

The EUT has been tested as an independent unit.

4.5 Measurement Uncertainty

<u>. </u>	
Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±2.8 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±2.5 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.1 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.2 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±4.8 dB (k=2)

4.6 Additions to, deviations, or exclusions from the method

Nο

4.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Designation No.: CN1279

Jianyan Testing Group Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 892155.

●ISED - CAB identifier.: CN0102

Jianyan Testing Group Co., Ltd. has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements with ISED#:26114.

A2LA - Registration No.: 5568.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/5568-01.pdf

4.8 Laboratory Location

JianYan Testing Group Co., Ltd.

Address: No.760, Fengling Road, Tong'an District, Xiamen, Fujian, China

Tel: +86-592-2273071, Fax:+86-592-2273700

Email: info-JYTee@lets.com, Website: http://www.lets.com/

JianYan Testing Group Co., Ltd. No.760, Fengling Road, Tong'an District, Xiamen, Fujian, China Telephone: +86 (0) 5922273071 Fax: +86 (0) 5922273700

4.9 Test Instruments list

Radiated Disturbances:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	BOST	CHC-966	966-1#	2019-12-27	2022-12-26
EMI Test Receiver	Rohde & Schwarz	ESR 3	102329	2021-07-29	2022-07-28
SpectrumAnalyzer	Rohde & Schwarz	FSV40-N	102175	2021-04-12	2022-04-11
BiConiLog Antenna	SCHWARZBECK	VULB 9163	1105	2021-12-05	2022-12-04
Horn Antenna	SCHWARZBECK	BBHA 9120 D	911	2021-03-17	2022-03-16
Pre-amplifier	SCHWARZBECK	BBV9743	00009	2021-07-29	2022-07-28
Pre-amplifier	SCHWARZBECK	BBV9718C	00014	2021-04-01	2022-03-31
EMI Test Software	Farad	EZ-EMC	Version: V.EMCE-3A1		

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESR 3	102330	2021-07-29	2022-07-28
LISN	Rohde & Schwarz	ENV 216	102240	2021-07-29	2022-07-28
LISN	AFJ/Italy	LS16C\10	16012020470	2021-06-22	2022-06-21
EMI Test Software Farad EZ-EMC Version: V.EMCE-3A1				41	

Conducted method:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
Signal Generator	Agilent	N5181	MY49060122	2021-04-12	2022-04-11
Specture Analyzer	R&S	FSV40-N	102175	2021-04-12	2022-04-11
Wideband Radio Communication Tester	R&S	CMW500	145852	2021-04-12	2022-04-11
Signal Generator	Agilent	N5182A	MY51004823	2021-04-12	2022-04-11
Power Sensor	Keysight	U2021XA	MY54320004	2021-04-01	2022-03-31
Test Software	MWRFTEST	MTS 8310		Version: 2.0.0.0	

Report No: JYTA-R01-2200016

5 Test results and Measurement Data

5.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203 /247(b)

15.203 requirement:

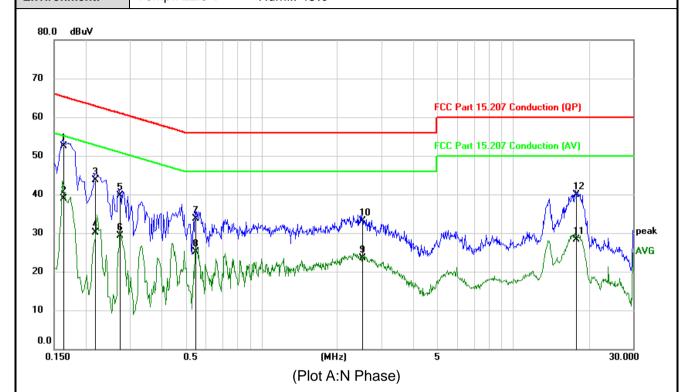
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The Bluetooth antenna is an Internal antenna which permanently attached, and the best case gain of the antenna is 0 dBi.


5.2 Conducted Emission

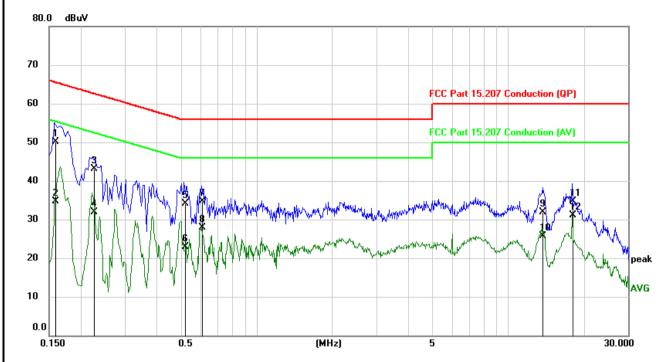
Test Requirement:	FCC Part15 C Section 15.207			
Test Frequency Range:	150 kHz to 30MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9kHz, VBW=30kHz			
Limit:	Limit (dBuV)			
	Frequency range (MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
Test procedure:	 * Decreases with the logarithm of the frequency. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed 			
Test setup:		80cm AUX LISN Horiz Refe	EUT and at least 80 cm	
Test Instruments:	Refer to section 4.9 for details			
Test mode:	Charging + BLE Link.			
Test results:	Pass			

Measurement Data:

Product model:	PAPERANG-P3	Test result:	pass
Test by:	Raymon Zheng	Test mode:	Mode 1
Test voltage:	120Vac, 60 Hz	Phase:	Line (N)
Environment:	Temp.: 22.3℃ Humi.: 46%		

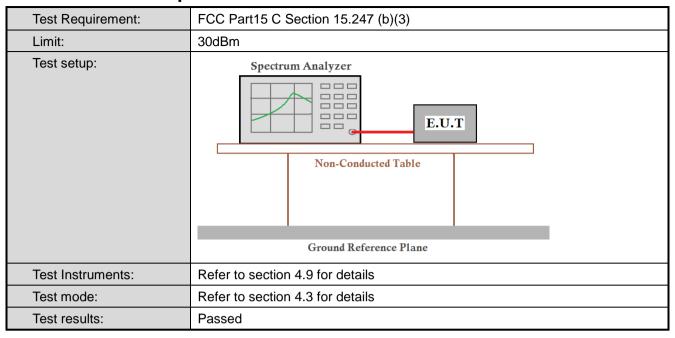
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1626	42.79	9.64	52.43	65.33	-12.90	QP
2	0.1626	29.32	9.64	38.96	55.33	-16.37	AVG
3	0.2180	34.10	9.70	43.80	62.89	-19.09	QP
4	0.2180	20.50	9.70	30.20	52.89	-22.69	AVG
5	0.2740	29.94	9.72	39.66	61.00	-21.34	QP
6	0.2740	19.68	9.72	29.40	51.00	-21.60	AVG
7	0.5460	24.03	9.77	33.80	56.00	-22.20	QP
8	0.5460	15.43	9.77	25.20	46.00	-20.80	AVG
9	2.5059	13.74	9.86	23.60	56.00	-32.40	QP
10	2.5059	23.24	9.86	33.10	46.00	-12.90	AVG
11	17.8019	18.50	9.90	28.40	60.00	-31.60	QP
12 *	17.8019	30.00	9.90	39.90	50.00	-10.10	AVG

Notes:


- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product model:	PAPERANG-P3	Test result:	pass
Test by:	Raymon Zheng	Test mode:	Mode 1
Test voltage:	120Vac, 60 Hz	Phase:	Line (L)
Environment:	Temp.: 22.3℃ Humi.: 46%		

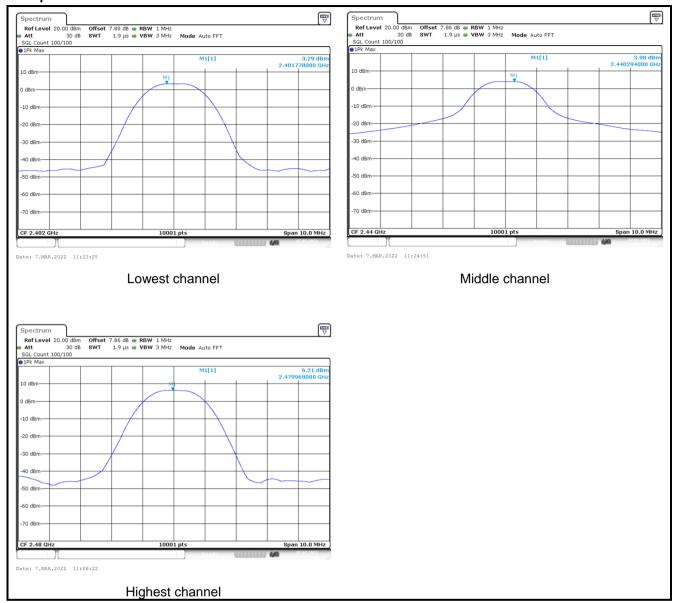
(Plot B:L Phase)


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	*	0.1587	40.29	9.79	50.08	65.53	-15.45	QP
2		0.1587	25.01	9.79	34.80	55.53	-20.73	AVG
3		0.2265	33.42	9.75	43.17	62.58	-19.41	QP
4		0.2265	22.07	9.75	31.82	52.58	-20.76	AVG
5		0.5184	24.16	9.94	34.10	56.00	-21.90	QP
6		0.5184	12.95	9.94	22.89	46.00	-23.11	AVG
7		0.6060	24.80	9.87	34.67	56.00	-21.33	QP
8		0.6060	17.97	9.87	27.84	46.00	-18.16	AVG
9		13.7510	21.83	10.05	31.88	60.00	-28.12	QP
10		13.7510	15.63	10.05	25.68	50.00	-24.32	AVG
11		17.9994	24.55	10.06	34.61	60.00	-25.39	QP
12		17.9994	21.08	10.06	31.14	50.00	-18.86	AVG

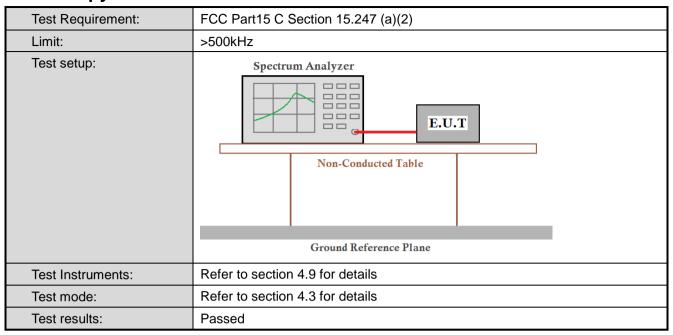
Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

5.3 Conducted Output Power

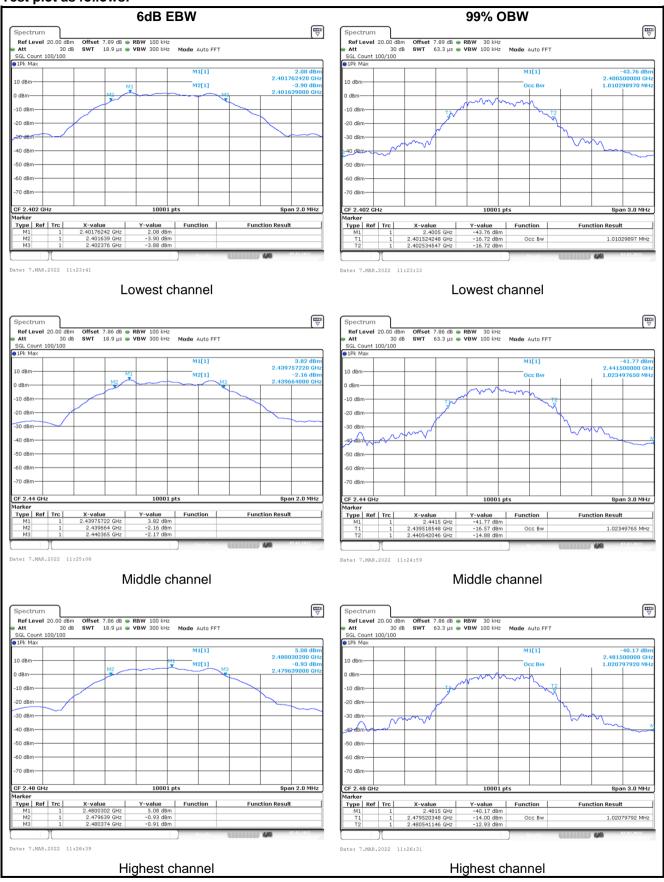

Measurement Data:

=			
Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	3.291		
Middle	3.978	30.00	Pass
Highest	6.214		



Test plot as follows:

5.4 Occupy Bandwidth



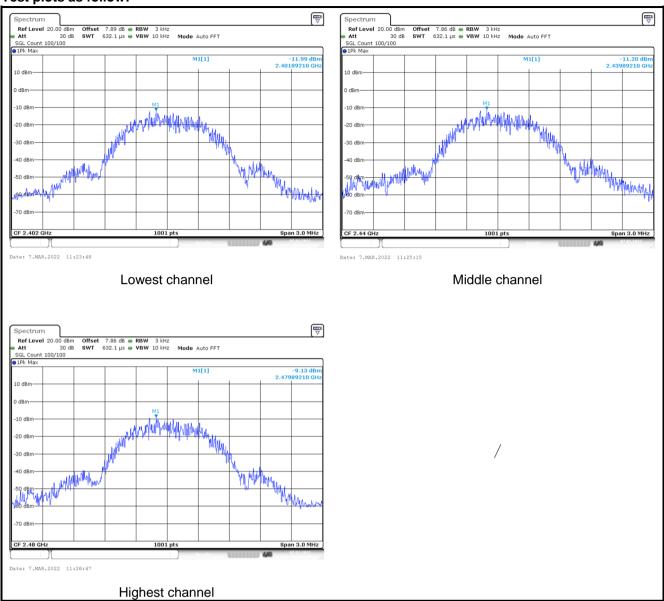
Measurement Data:

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result
Lowest	0.738		
Middle	0.702	>500	Pass
Highest	0.735		
Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result
Lowest	1.010		
Middle	1.023	N/A	N/A
Highest	1.021		

Test plot as follows:

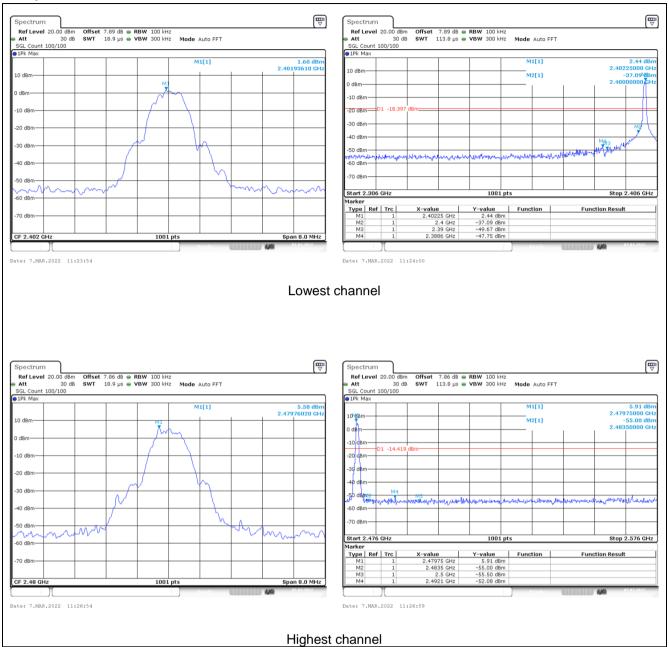
5.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)		
Limit:	8dBm/3kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 4.9 for details		
Test mode:	Refer to section 4.3 for details		
Test results:	Pass		


Measurement Data:

Test CH	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
Lowest	-11.994		
Middle	-11.204	8.00	Pass
Highest	-9.126		

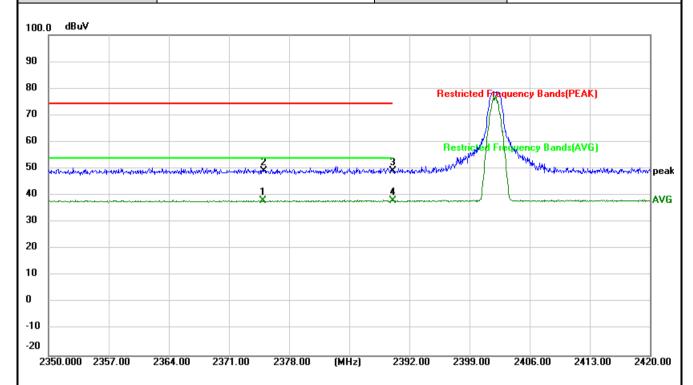
Test plots as follow:


5.6 Band Edge

5.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spreadspectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 4.9 for details				
Test mode:	Refer to section 4.3 for details				
Test results:	Pass				

Test plots as follow:

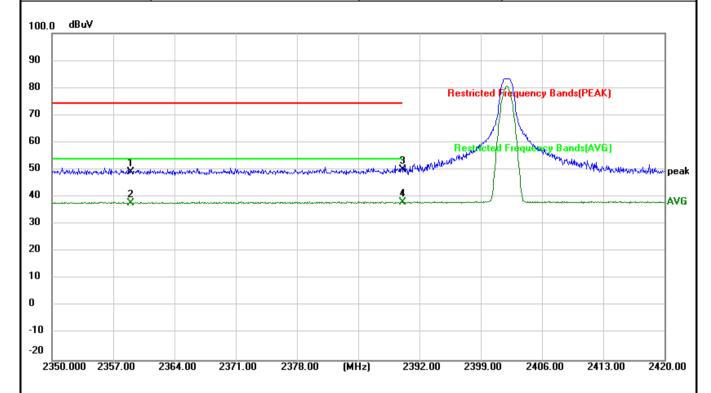

5.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C	Section 15.2	05 and 15.209			
Test Frequency Range:	2380 MHz to 2	2410 MHz and	d 2465MHz to 25	20 MF		
TestDistance:	3m					
Receiver setup:	Frequency	Detector	RBW	V	BW	Remark
Receiver Setup.		Peak	1MHz		ИНz	Peak Value
	Above 1GHz	RMS	1MHz		ИHz	Average Value
Limit:	Frequer	ncy L	imit (dBuV/m @:	3m)		Remark
	Above 10	GHz —	54.00 74.00			verage Value Peak Value
Test Procedure:	the groun todetermi 2. The EUT antenna, tower. 3. The anter the groun Both hori: make the 4. For each case and meters ar to find the 5. The test-race Specified 6. If the emithe limits of the EU have 10d	JT was placed on the top of a rotating table 1.5 meters above bundat a 3 meter camber. The table was rotated 360 degrees rmine the position of the highest radiation. JT was set 3 meters away from the interference-receiving has, whichwas mounted on the top of a variable-height antenna and tenna height is varied from one meter to four meters above bund to determine the maximum value of the field strength. Corizontal and vertical polarizations of the antenna are set to the measurement. The suspected emission, the EUT was arranged to its worst and then the antenna was tuned to heights from 1 meter to 4 and the rotatablewas turned from 0 degrees to 360 degrees the maximum reading. St-receiver system was set to Peak Detect Function and dedBandwidth with Maximum Hold Mode. Semission level of the EUT in peak mode was 10dB lower than itspecified, then testing could be stopped and the peak values EUT wouldbe reported. Otherwise the emissions that did not 0dB margin would bere-tested one by one using peak, quasion average method as specified andthen reported in a data				
Test setup:	AE (T	umtable) Grou Test Receive	Horn Anlenna 3m Areference Plane Areptiter Con	Antenna To	wer	
Test Instruments:	Refer to section 4.9 for details					
Test mode:	Refer to section	on 4.3 for deta	nils			
Test results:	Passed					

Report No: JYTA-R01-2200016

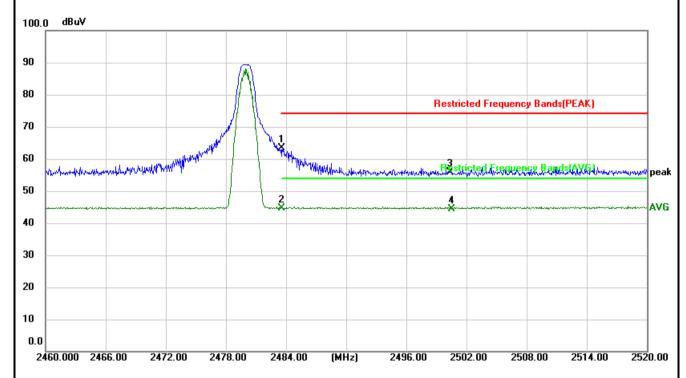
Product Name:	Thermal Printer	Product Model:	C1S2
Test By:	Raymon Zheng	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	DC5V	Environment:	Temp:23.6°C Huni: 48%

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		2374.990	44.65	-6.67	37.98	54.00	16.02	AVG
2		2375.060	55.90	-6.68	49.22	74.00	24.78	peak
3		2390.000	55.92	-6.67	49.25	74.00	24.75	peak
4	*	2390.000	44.84	-6.67	38.17	54.00	15.83	AVG


Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

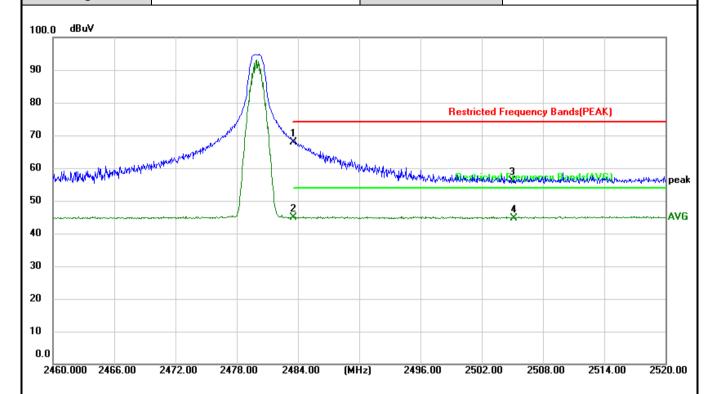
Product Name:	Thermal Printer	Product Model:	C1S2
Test By:	Raymon Zheng	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	DC5V	Environment:	Temp: 23.6°C Huni: 48%


No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		2359.030	55.69	-6.68	49.01	74.00	24.99	peak
2		2359.030	44.49	-6.68	37.81	54.00	16.19	AVG
3		2390.000	56.71	-6.67	50.04	74.00	23.96	peak
4	*	2390.000	44.69	-6.67	38.02	54.00	15.98	AVG

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Thermal Printer	Product Model:	C1S2
Test By:	Raymon Zheng	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	DC5V	Environment:	Temp: 23.6°C Huni: 48%


No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		2483.500	63.67	-0.36	63.31	74.00	10.69	peak
2	*	2483.500	45.02	-0.36	44.66	54.00	9.34	AVG
3		2500.380	56.14	-0.37	55.77	74.00	18.23	peak
4		2500.500	44.86	-0.37	44.49	54.00	9.51	AVG

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor.

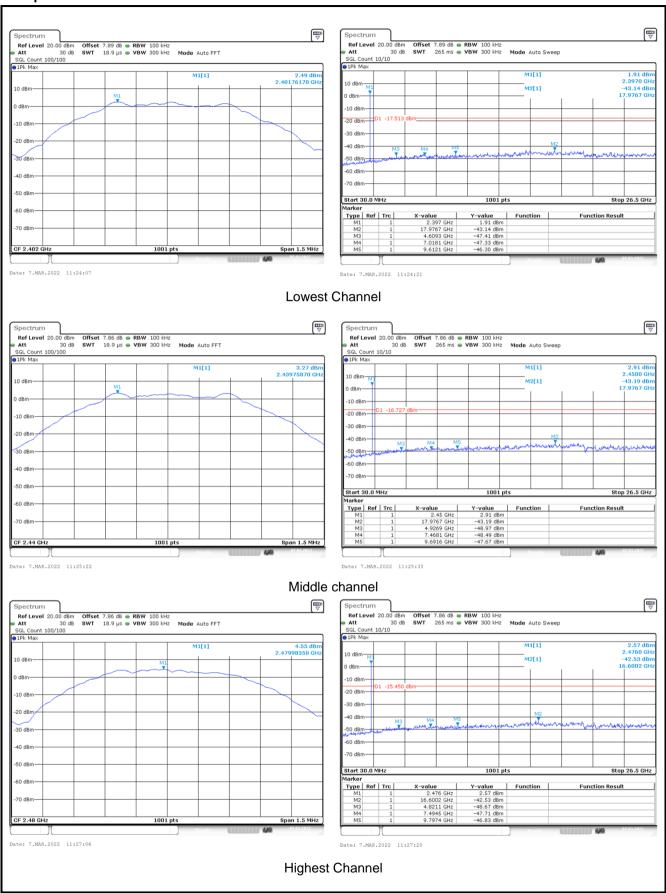
^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Thermal Printer	Product Model:	C1S2
Test By:	Raymon Zheng	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	DC5V	Environment:	Temp: 23.6℃ Huni: 48%

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	*	2483.500	68.30	-0.36	67.94	74.00	6.06	peak
2		2483.500	45.25	-0.36	44.89	54.00	9.11	AVG
3		2505.000	56.44	-0.36	56.08	74.00	17.92	peak
4		2505.180	45.09	-0.35	44.74	54.00	9.26	AVG

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

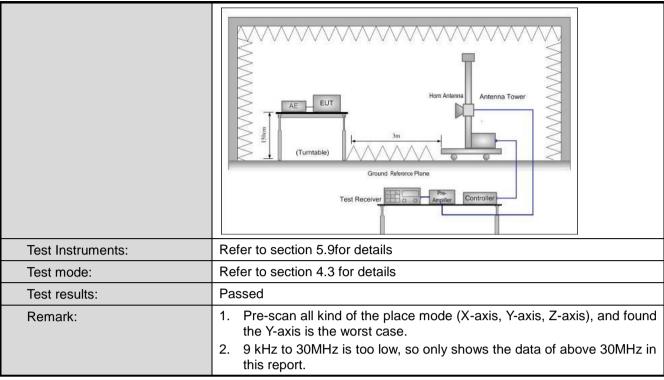
^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.


5.7 Spurious Emission

5.7.1 Conducted Emission Method

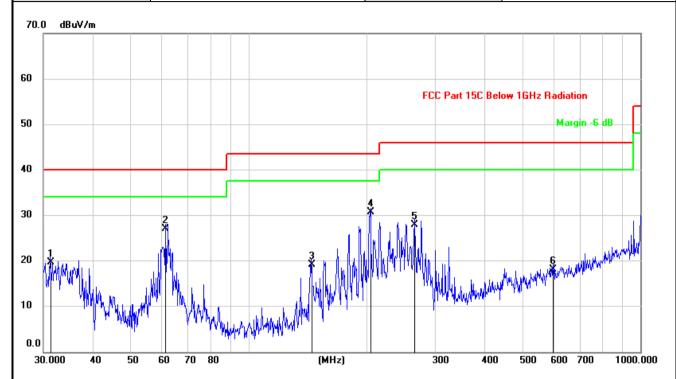
Test Requirement:	FCC Part15 C Section 15.247 (d)							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spreadspectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 4.9 for details							
Test mode:	Refer to section 4.3 for details							
Test results:	Passed							

Test plot as follows:



5.7.2 Radiated Emission Method

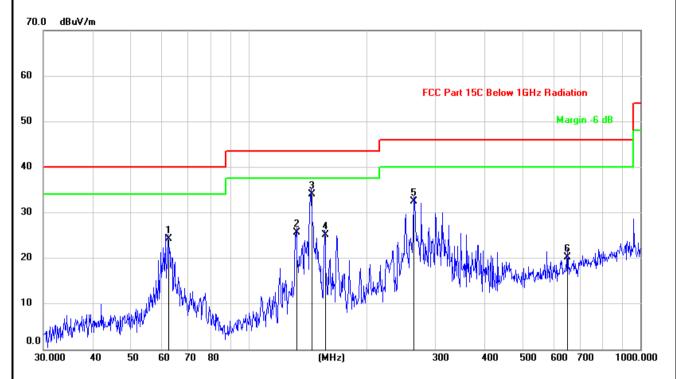
Test Requirement:	FCC Part15 C S	FCC Part15 C Section 15.205 and15.209						
Test Frequency Range:	9kHz to 25GHz							
TestDistance:	3m							
Receiver setup:	Frequency	Detector	RBW	VB	sW	Remark		
·	30MHz-1GHz	Quasi-peak	120KHz	3001	KHz	Quasi-peak Value		
	Above 1GHz	Peak	1MHz	3M	Hz	Peak Value		
	Above 10112	RMS	1MHz	3M	Hz	Average Value		
Limit:	Frequency	/ Li	mit (dBuV/m @	3m)		Remark		
	30MHz-88M	Hz	40.0			Quasi-peak Value		
	88MHz-216N		43.5		1	Quasi-peak Value		
	216MHz-960I		46.0			Quasi-peak Value		
	960MHz-1G	Hz	54.0		C	Quasi-peak Value		
	Above 1GH	lz	54.0			Average Value		
			74.0		<u> </u>	Peak Value table 0.8m(below		
	highest rad 2. The EUT antenna, we tower. 3. The antennathe ground Both horizon make the name of the second to find the secon	liation. was set 3 m whichwas mountained and very measurement. It is suspected entered the rotatable maximum real eceiver system and width with sion level of the margin would	neters away inted on the to varied from one the maximitical polarizations the Ena was tuned to ding. Image: Image	from the op of a ne met um valutions of EUT was do not be stoppwise the one by	ne intervarial ter to the action of the acti	the position of the efference-receiving ble-height antenna four meters above the field strength. antenna are set to anged to its worst from 1 meter to 4 es to 360 degrees tect Function and as 10dB lower than and the peak values ssions that did not using peak, quasi-reported in a data		
Test setup:	EUT	4m 4m 0.8m 1m			Antenna Search Antenn Test seiver	1		



Measurement Data(worst case):

Below 1GHz:

Product Name:	Thermal Printer	Product Model:	C1S2
Test By:	Raymon Zheng	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	DC5V	Environment:	Temp: 23.6℃ Humi: 48%


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		31.1798	36.01	-16.41	19.60	40.00	-20.40	QP
2		61.5618	43.40	-16.34	27.06	40.00	-12.94	QP
3	•	144.8418	37.03	-17.81	19.22	43.50	-24.28	QP
4	* 2	204.9551	44.84	-14.16	30.68	43.50	-12.82	QP
5	2	265.6757	40.08	-12.19	27.89	46.00	-18.11	QP
6	į	599.3212	22.42	-4.22	18.20	46.00	-27.80	QP

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Thermal Printer	Product Model:	C1S2
Test By:	Raymon Zheng	Test mode:	BLETx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	DC5V	Environment:	Temp: 23.6℃ Humi: 48%

Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	62.4314	40.67	-16.46	24.21	40.00	-15.79	QP
	132.6850	43.46	-17.76	25.70	43.50	-17.80	QP
*	144.8418	51.93	-17.81	34.12	43.50	-9.38	QP
	156.4578	42.49	-17.39	25.10	43.50	-18.40	QP
	263.8190	44.65	-12.25	32.40	46.00	-13.60	QP
	651.9415	23.78	-3.62	20.16	46.00	-25.84	QP
		MHz 62.4314 132.6850 * 144.8418 156.4578 263.8190	Mk. Freq. Level MHz dBuV 62.4314 40.67 132.6850 43.46 * 144.8418 51.93 156.4578 42.49 263.8190 44.65	Mk. Freq. Level Factor MHz dBuV dB 62.4314 40.67 -16.46 132.6850 43.46 -17.76 * 144.8418 51.93 -17.81 156.4578 42.49 -17.39 263.8190 44.65 -12.25	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 62.4314 40.67 -16.46 24.21 132.6850 43.46 -17.76 25.70 * 144.8418 51.93 -17.81 34.12 156.4578 42.49 -17.39 25.10 263.8190 44.65 -12.25 32.40	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m 62.4314 40.67 -16.46 24.21 40.00 132.6850 43.46 -17.76 25.70 43.50 * 144.8418 51.93 -17.81 34.12 43.50 156.4578 42.49 -17.39 25.10 43.50 263.8190 44.65 -12.25 32.40 46.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB dBuV/m dB 62.4314 40.67 -16.46 24.21 40.00 -15.79 132.6850 43.46 -17.76 25.70 43.50 -17.80 * 144.8418 51.93 -17.81 34.12 43.50 -9.38 156.4578 42.49 -17.39 25.10 43.50 -18.40 263.8190 44.65 -12.25 32.40 46.00 -13.60

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz

Above 1GHz:		_				
			nannel: Lowest o			
			etector: PeakVal	ue		T
Frequency (MHz)	Read Level (dBuV)	Correct Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	47.00	7.54	54.54	74.00	-19.46	Vertical
4804.00	46.36	7.54	53.90	74.00	-20.10	Horizontal
Detector: AverageValue						
Frequency (MHz)	Read Level (dBuV)	Correct Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	29.74	7.54	37.28	54.00	-16.72	Vertical
4804.00	29.94	7.54	37.48	54.00	-16.52	Horizontal
		Test c	hannel: Middle c	hannel		
Detector: PeakValue						
Frequency (MHz)	Read Level (dBuV)	Correct Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	40.26	7.79	48.05	74.00	-25.95	Vertical
4882.00	42.88	7.79	50.67	74.00	-23.33	Horizontal
Detector: AverageValue						
Frequency (MHz)	Read Level (dBuV)	Correct Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	25.95	7.79	33.74	54.00	-20.26	Vertical
4884.00	26.48	7.79	34.27	54.00	-19.73	Horizontal
		Took oh	annalı I limbaatı	ah awa al		
Test channel: Highest channel						
Detector: PeakValue Correct Correct Detector: PeakValue						
Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	42.84	8.06	50.90	54.00	-23.10	Vertical
4960.00	46.87	8.06	54.93	54.00	-19.07	Horizontal
			ector: AverageV	alue		
Frequency (MHz)	Read Level (dBuV)	Correct Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	28.07	8.06	36.13	54.00	-17.87	Vertical
4960.00	29.61	8.06	37.67	54.00	-16.33	Horizontal

Remark:

-----End of report-----

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.