

Page 1 of 20

FCC RADIO TEST REPORT

FCC ID: 2APUP-SCCW01

Product :ROKK wireless chargerTrade Name :ScanstrutModel Name :SC-CW-01Serial Model :SC-CW-02, SC-CW-03, SC-CW-04,
SC-CW-05Report No. :UNIA2018050219-1FR-01

Prepared for

Scanstrut Ltd.

5 Darts Business Park, Clyst St. George, Exeter, United Kingdom

Prepared by

Shenzhen United Testing Technology Co., Ltd.

2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

TEST RESULT CERTIFICATION

Applicant's name	Scanstrut Ltd.
Address	5 Darts Business Park, Clyst St. George, Exeter, United Kingdom
Manufacture's Name:	Huizhou Hengrun Industry Co.,Ltd.
Address	Room 408, Customs Clearance Center, Lixin Road, Zhongkai Hi-Tech. zone, Huizhou, Guangdong, P.R.China
Product description	
Product name:	ROKK wireless charger
Model name:	SC-CW-01

 Serial Model
 SC-CW-02, SC-CW-03, SC-CW-04, SC-CW-05

 Standards
 FCC Rules and Regulations Part 15 Subpart C (Section 15.209)

Test procedure: ANSI C63.10-2013

This device described above has been tested by Shenzhen United Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of UNI, this document may be altered or revised by Shenzhen United Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

Sher

Date of Test
Date (s) of performance of tests
Date of Issue
Test Result:

May 08, 2018 ~ May 18, 2018 May 18, 2018 Pass

Prepared by:

Kahn Yang Kahn vang/Editor

Reviewer:

Approved & Authorized Signer:

Liuze/Manager

Sherwin Cian/Supervisor

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Table of Contents	Page
1. TEST SUMMARY	4
1.1 TEST PROCEDURES AND RESULTS	4
1.2 TEST FACILITY	4
1.3 MEASUREMENT UNCERTAINTY	4
2. GENERAL INFORMATION	5
2.1 General Description of EUT	5
2.2. Carrier Frequency of Channels	6
2.3 Operation of EUT during testing	6
2.4 Description of Test Setup	6
2.5 Measurement Instruments List	7
3. CONDUCTED EMISSION TEST	8
3.1 Block Diagram of Test Setup	8
3.2 Conducted Power Line Emission Limit	8
3.3 Test Procedure	8
3.4 Test Result	8
4. Occupied Bandwidth	11
4.1 Block Diagram of Test Setup	11
4.2 Rules and specifications	11
4.3 Test Procedure	11
4.4 Test Result	12
5. RADIA TED EMISSIONS	13
5.1 Block Diagram of Test Setup	13
5.2 Rules and specifications	14
5.3 Test Procedure	15
5.4 Test Result	15
6 ANTENNA REQUIREMENT	18
7. PHOTOGRAPH OF TEST	19
7.1 Radiated Emission	19
7.2 Conducted Emission	20

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Report No.: UNIA2018050219-1FR-01

1.1 TEST PROCEDURES AND RESULTS

DESCRIPTION OF TEST

CONDUCTED EMISSIONS TEST OCCUPIED BANDWIDTH RADIA TED EMISSIONS ANTENNA REQUIREMENT RESULT COMPLIANT COMPLIANT COMPLIANT COMPLIANT

1.2 TEST FACILITY

Test Firm

Shenzhen United Testing Technology Co., Ltd.

Address

: 2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China

The testing quality ability of our laboratory meet with "Quality Law of People's Republic of China" Clause 19.The testing quality system of our laboratory meets with ISO/IEC-17025 requirements, which is approved by CNAS. This approval result is accepted by MRA of APLAC.

Our test facility is recognized, certified, or accredited by the following organizations:

CNAS-LAB Code: L6494

The EMC Laboratory has been assessed and in compliance with CNAS-CL01 accreditation criteria for testing Laboratories (identical to ISO/IEC 17025:2017 General Requirements) for the Competence of testing Laboratories.

Designation Number: CN1227

Test Firm Registration Number: 674885

The EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications commission. The acceptance letter from the FCC is maintained in our files.

1.3 MEASUREMENT UNCERTAINTY

Measurement Uncertainty

Conducted Emission Expanded Uncertainty	=	2.23dB, k=2
Radiated emission expanded uncertainty(9kHz-30MHz)	÷.	3.08dB, k=2
Radiated emission expanded uncertainty(30MHz-1000MHz)	=	4.42dB, k=2
Radiated emission expanded uncertainty(Above 1GHz)	=	4.06dB, k=2

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

2. GENERAL INFORMATION

2.1 General Description of EUT

ROKK wireless charger					
SC-CW-01					
SC-CW-02, SC-CW-03, SC-CW-04, SC-CW-05					
N/A					
All model's the function, software and electric circuit are					
the same, only with a product color and model named					
different. Test sample model: SC-CW-01.					
2APUP-SCCW01					
Coil Antenna					
0.2dBi					
125KHz					
1CH					
ASK					
N/A					
DC 12V from adapter with AC 120V/60Hz					
M/N: EQ-24BCN					
Input: AC 100-240V, 50/60Hz, 0.8A					
Output: DC 12V, 2.0A					

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

2.2. Carrier Frequency of Channels

Operation Frequency each of channel							
Channel	Frequency						
01	125KHz	Ń					

- 2.3 Operation of EUT during testing Operating Mode The mode is used: Transmitting mode
- 2.4 Description of Test Setup

Operation of EUT during testing

 AC 120V/60Hz
 Adapter
 EUT

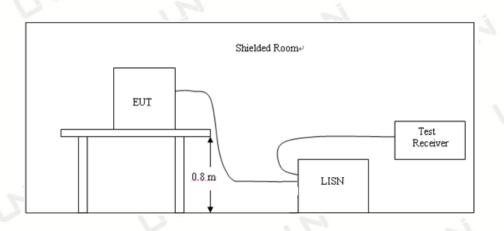
 Mobile
 Mobile

Setup: Transmission mode

Table for auxiliary euqipment

Equipment Description	uipment Description Manufacturer		Calibration Due Date		
Adapter	Adapter Kunxing		N/A		
USB Cable	Binshi	M1	N/A		
Mobile phone	Haixin	M30T	N/A		

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited


2.5 Measurement Instruments List

ltem	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1	Horn Antenna	Sunol	DRH-118	A101415	2018.9.29
2	BicoNILog Antenna	Sunol	JB1 Antenna	A090215	2018.9.29
3	PREAMP	HP	8449B	3008A00160	2018.9.9
4	PREAMP	HP	8447D	2944A07999	2018.9.9
5	EMI TEST RECEIVER	Rohde&Schwarz	ESR3	101891	2018.9.9
6	VECTOR Signal Generator	Rohde&Schwarz	SMU200A	101521	2018.9.28
7	Signal Generator	Agilent	E4421B	MY4335105	2018.9.28
8	MXA Signal Analyzer	Agilent	N9020A	MY50510140	2018.9.28
9	MXA Signal Analyzer	Agilent	N9020A	MY51110104	2018.9.9
10	ANT Tower&Turn table Controller	Champro	EM 1000	60764	2018.9.28
11	Anechoic Chamber	Taihe Maorui	9m*6m*6m	966A0001	2018.9.9
12	Shielding Room	Taihe Maorui	6.4m*4m*3m	643A0001	2018.9.9
13	RF Power sensor	DARE	RPR3006W	15100041SNO88	2019.3.14
14	RF Power sensor	DARE	RPR3006W	15100041SNO89	2019.3.14
15	RF power divider	Anritsu	K241B	992289	2018.9.28
16	Wideband radio communication tester	Rohde&Schwarz	CMW500	154987	2018.9.28
17	Biconical antenna	Schwarzbeck	VHA 9103	91032360	2018.9.8
18	Biconical antenna	Schwarzbeck	VHA 9103	91032361	2018.9.8
19	Broadband Hybrid Antennas	Schwarzbeck	VULB9163	VULB9163#958	2018.9.8
20	Morn Antenna	Schwarzbeck	BBHA9120D	9120D-1680	2019.1.12
21	Active Receive Loop Antenna	Schwarzbeck	FMZB 1919B	00023	2018.11.02
22	Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170651	2019.03.14
23	Microwave Broadband Preamplifier	Schwarzbeck	BBV 9721	100472	2018.10.24
24	Active Loop Antenna	Com-Power	AL-130R	10160009	2019.05.10

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

3. CONDUCTED EMISSION TEST

3.1 Block Diagram of Test Setup

3.2 Conducted Power Line Emission Limit

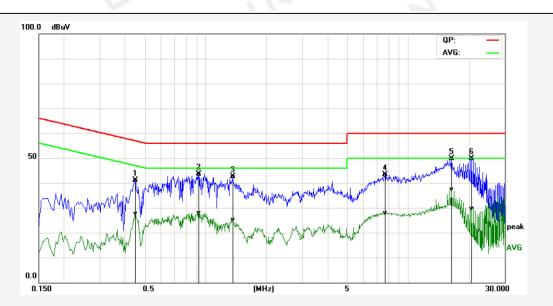
For unintentional device, according to § 15.107 Line Conducted Emission Limits is as following

	Maximum RF Line Voltage(dBµV)							
Frequency	CLA	SS A	CLASS B					
(MHz)	Q.P.	Ave.	Q.P.	Ave.				
0.15~0.50	79	66	66~56*	56~46*				
0.50~5.00	73	60	56	46				
5.00~30.0	73	60	60	50				

* Decreasing linearly with the logarithm of the frequency

For intentional device, according to §15.107Line Conducted Emission Limit is same as above table.

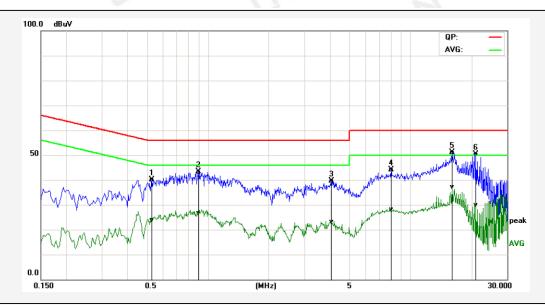
3.3 Test Procedure


- 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2, Support equipment, if needed, was placed as per ANSI C63.10.
- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4, If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes

3.4 Test Result PASS

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Test Specification: Line

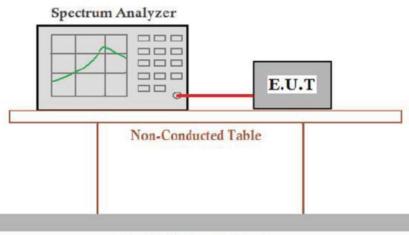


No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1P	0.4500	31.16	17.70	10.03	41.19	27.73	56.88	46.88	-15.69	-19.15	Pass
2P	0.9260	33.59	17.67	10.10	43.69	27.77	56.00	46.00	-12.31	-18.23	Pass
3P	1.3660	32.54	15.06	10.17	42.71	25.23	56.00	46.00	-13.29	-20.77	Pass
4P	7.7100	33.38	17.78	10.10	43.48	27.88	60.00	50.00	-16.52	-22.12	Pass
5*	16.4820	39.60	27.12	10.31	49.91	37.43	60.00	50.00	-10.09	-12.57	Pass
6P	20.6980	39.30	19.17	10.58	49.88	29.75	60.00	50.00	-10.12	-20.25	Pass

Remark: Factor = Insertion Loss + Cable Loss, Result=Reading + Factor, Margin=Result - Limit.

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Test Specification: Neutral


No	. Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1P	0.5299	30.08	13.72	10.05	40.13	23.77	56.00	46.00	-15.87	-22.23	Pass
2P	0.9020	33.15	16.58	10.10	43.25	26.68	56.00	46.00	-12.75	-19.32	Pass
3P	4.0860	29.38	12.89	10.13	39.51	23.02	56.00	46.00	-16.49	-22.98	Pass
4P	8.0580	34.05	17.99	10.06	44.11	28.05	60.00	50.00	-15.89	-21.95	Pass
5*	16.1020	40.79	26.80	10.34	51.13	37.14	60.00	50.00	-8.87	-12.86	Pass
6P	21.0900	39.96	19.46	10.48	50.44	29.94	60.00	50.00	-9.56	-20.06	Pass

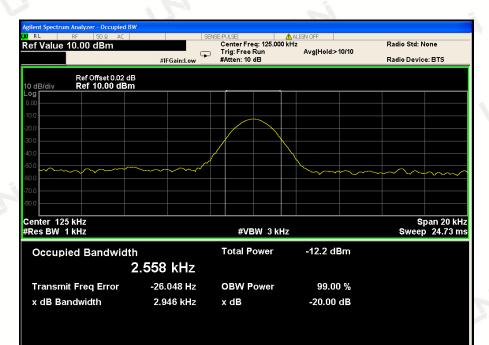
Remark: Factor = Insertion Loss + Cable Loss, Result=Reading + Factor, Margin=Result - Limit.

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

4.1 Block Diagram of Test Setup

Ground Reference Plane

4.2 Rules and specifications CFR 47 Part 15.215(c) ANSI C63.10-2013

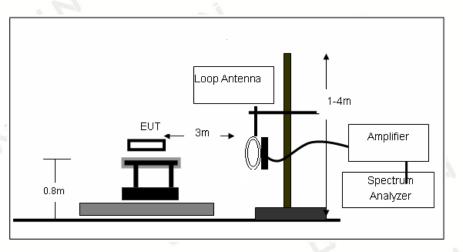

4.3 Test Procedure

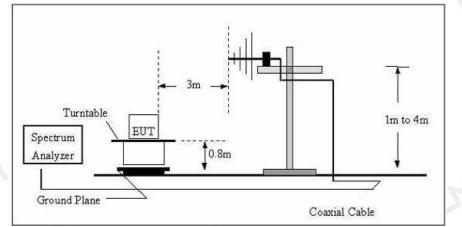
Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of this part, must be designed to ensure that 20dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equip compliance with the 20dB attenuation specification may base on measurement at the intentional radiator's antenna output terminal unless the intentional radiator uses a permanently attached antenna, in which case compliance shall be deomonstrated by measuring the radiated emissions.

PASS

Mode	Frequency(KHz)	20dB Bandwidth (KHz)	Limit (kHz)	Conclusion
ТХ	125	2.946	/	PASS

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited


2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China 深圳市宝安区西乡街道铁岗社区宝田一路365号嘉皇源科技园附楼2楼 邮编:518102 Tel:+86-755-86180996 Fax:+86-755-86180156


AC coupled: Accy unspec'd < 10MHz

Report No.: UNIA2018050219-1FR-01

5. RADIA TED EMISSIONS

5.1 Block Diagram of Test Setup

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

5.2 Rules and specifications

CFR 47 Part 15, section 15.205

Only spurious emissions are permitted in any of the frequency bands listed the tables in these sections.

MHz	MHz	MHz	GHz	
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	
\1\ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46	
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4	
6.31175-6.31225	123-138	2200-2300	14.47-14.5	
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4	
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
12.29-12.293.	167.72-173.2	3332-3339	31.2-31.8	
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
12.57675-12.57725	322-335.4	3600-4400	(\2\)	
13.36-13.41				

CFR 47 Part 15, section 15.209

The emissions from an intentional radiator shall not exceed the limits in the tables in these sections using an average detector

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88–216	150**	3
216-960	200**	3
Above 960	500	3

Limit calculation and transfer to 3m distance as showed in the following table:

Frequency (MHz)	Limit (dBuV/m)	Distance (m)
		(III) 2
0.009-0.490	20log(2400/F(KHz))+40log(300/3)	3
0.490-1.705	20log(24000/F(KHz))+40log(300/3)	3
1.705-30.0	69.5	3
30-88	40.0	3
88-216	43.5	3
216-960	46.0	3
Above 960	54.0	3

CFR 47 Part 15, section 15.35

When average radiated emission measurements are specified, the limit on the peak level of the radio Frequency emission is 20dB above the maximum permitted average emission limit.

Transmitter Spurious Emissions 9KHz-30MHz						
	9-150KHz	150-490KHz	490KHz-30MHz			
Resolution Bandwidth	200Hz	9KHz	9KHz			
Video Bandwidth	2KHz	100KHz	100KHz			
Detector	Peak	Peak	Peak			
Trace Mode	Max Hold	Max Hold	Max Hold			
Sweep Time	Auto	Auto	Auto			

5.3 Test Procedure

Measurement distance is 3m.

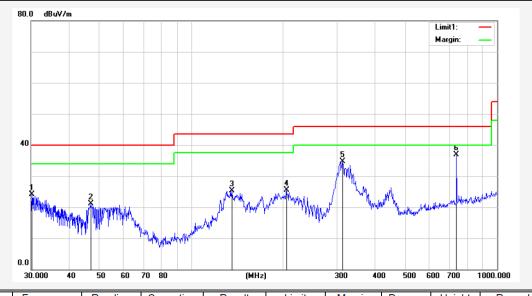
For the measurement range up to 30MHz in the following plots the field strength result from 3m Distance measurement are extrapolated to 300m and 30m distance respectively, by 40dB/decade, According to part 15.31 (f)(2), per antenna factor scaling.

Measurements below 1000MHz are performed with a peak detector and compared to average limits, Measurements with an average detector are not required.

Note: For battery operated equipment, the equipment tests shall be performed using a new battery.

5.4 Test Result

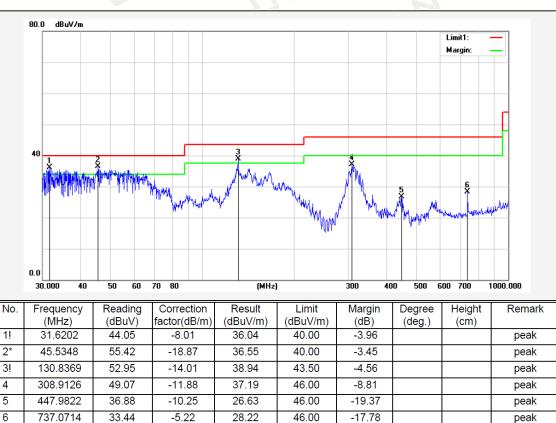
PASS


For 9KHz-30MHz

Freq. (MHz)	Detector Mode (PK/QP)	Reading (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limits 3m (dBuV/m)	Margin (dBuV/m)
0.206	Peak	24.82	25.02	49.84	126.77	76.93
0.386	Peak	43.26	25.02	68.28	125.67	57.39
0.508	Peak	24.03	25.28	49.31	113.71	64.40
0.624	Peak	27.61	25.28	52.89	113.62	60.73
N/A	1					

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Antenna polarity: H


No.	Frequency	Reading	Correction	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV)	factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(deg.)	(cm)	
1	30.2111	30.82	-6.72	24.10	40.00	-15.90			peak
2	46.9948	40.91	-19.76	21.15	40.00	-18.85			peak
3	135.9822	39.52	-14.20	25.32	43.50	-18.18			peak
4	204.9551	40.52	- 1 5.01	25.51	43.50	-17.99			peak
5	312.1794	46.68	-11.90	34.78	46.00	-11.22			peak
6*	737.0714	42.08	-5.22	36.86	46.00	-9.14			peak

Remark: Absolute Level= Reading Level+ Factor, Margin= Absolute Level – Limit Factor=Ant. Factor + Cable Loss – Pre-amplifi

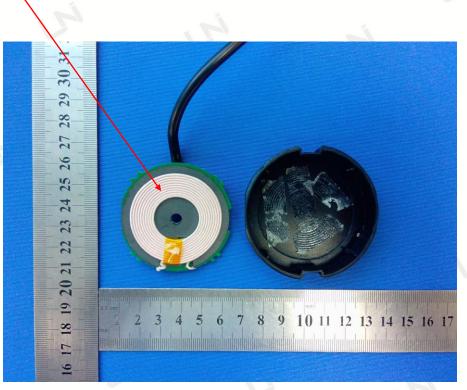
深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Remark: Absolute Level= Reading Level+ Factor, Margin= Absolute Level – Limit Factor=Ant. Factor + Cable Loss – Pre-amplifier

Remark:

- (1) Measuring frequencies from 9 KHz to the 1 GHz, Radiated emission test from 9KHz to 30MHz was verified, and no any emission was found except system noise floor.
- (2) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (3) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.

6 ANTENNA REQUIREMENT


Standard Applicable:

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna Connected Construction

The antenna used in this product is a Coil Antenna, The directional gains of antenna used for transmitting is 0.2dBi.

ANTENNA

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Report No.: UNIA2018050219-1FR-01

7. PHOTOGRAPH OF TEST

7.1 Radiated Emission

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 20 of 20

Report No.: UNIA2018050219-1FR-01

End of Report

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited