Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Compiled by

(position+printed name+signature) .: File administrators Zoey Cao

Supervised by

(position+printed name+signature) .: Project Engineer Amy Wen

Approved by

(position+printed name+signature) .: RF Manager Eric Wang

Date of issue Mar. 01, 2024

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name...... Shenzhen Hanrongda Electronic Co., Ltd.

No.21, LiYuanxia, Xin Li Road, Ping Hu Town, Long Gang District,

Shenzhen, China

Test specification:

Standard FCC Part 15.247

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description Portable Multi-Band Radio. Music Player. Recorder

Trade Mark: N/A

Manufacturer Shenzhen Hanrongda Electronic Co., Ltd.

Model/Type reference HRD-757

Listed Models ZWS-757

Modulation GFSK, Π/4DQPSK, 8DPSK

Frequency From 2402MHz to 2480MHz

Rating DC 3.7V From battery and DC 5.0V From external circuit

Result PASS

Page 2 of 45 Report No.: CTA24022700302

TEST REPORT

Portable Multi-Band Radio. Music Player. Recorder Equipment under Test

Model /Type HRD-757

Listed Models ZWS-757

Shenzhen Hanrongda Electronic Co., Ltd. **Applicant**

Address No.21, LiYuanxia, Xin Li Road, Ping Hu Town, Long Gang District,

Shenzhen, China

Manufacturer Shenzhen Hanrongda Electronic Co., Ltd.

Address No.21, LiYuanxia, Xin Li Road, Ping Hu Town, Long Gang District,

Shenzhen, China

Test Result:	TESTING	PASS
	CIAI	-ING

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Page 3 of 45 Report No.: CTA24022700302

Contents

		Contents
	1	TEST STANDARDS 4
	Contract Con	TEGT GTARDARDO
	<u>2</u>	<u>SUMMARY5</u>
		General Remarks 5 Product Description 5 Equipment Under Test 5
	2.1	General Remarks 5
	2.2	Product Description 5
	2.3	Equipment Under Test 5
	2.4	Equipment Under Test Short description of the Equipment under Test (EUT) 5
	2.5	EUT operation mode
	2.6	Block Diagram of Test Setup 6
	2.7	Related Submittal(s) / Grant (s) 6
TATE	2.8	Modifications 6
CV	2.0	Modifications
į		1 TES
	<u>3</u>	TEST ENVIRONMENT 7
		Address of the test laboratory Test Facility 7
	3.1	Address of the test laboratory 7
	3.2	Test Facility 7
	3.3	Environmental conditions 7
	3.4	Summary of measurement results 8
	3.5	Address of the test laboratory Test Facility Environmental conditions 7 Summary of measurement results Statement of the measurement uncertainty Equipments Used during the Test
	3.6	Equipments Used during the Test 9
	<u>4</u>	TEST CONDITIONS AND RESULTS 11
	<u> </u>	- C
	STORES C	CTINO
	4.1	AC Power Conducted Emission 11
	4.2	AC Power Conducted Emission 11 Radiated Emission 14 Maximum Peak Output Power 20 20dB Bandwidth 21 Frequency Separation 25 Number of hopping frequency 27 Time of Occupancy (Dwell Time) 29
	4.3	Maximum Peak Output Power 20
	4.4	20dB Bandwidth 21
	4.5	Frequency Separation 25
	4.6	Number of hopping frequency 27
	4.7	······· ··· · · · · · · · · · · · · ·
	4.8	Out-of-band Emissions 33
	4.9	Pseudorandom Frequency Hopping Sequence 42
CTATE	4.10	Antenna Requirement 43
TATE		
CAL	5	TEST SETUP PHOTOS OF THE EUT 44
	<u>5</u>	TEST SETUP PHOTOS OF THE EUT 44
	<u>6</u>	PHOTOS OF THE EUT
		STIN
		ETA CTA TESTING
10		

Page 4 of 45 Report No.: CTA24022700302

TEST STANDARDS 1

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices

Page 5 of 45 Report No.: CTA24022700302

SUMMARY

2.1 General Remarks

2.1 General Remarks		TESTING
Date of receipt of test sample		Feb. 21, 2024
	34	
Testing commenced on	O STATE OF	Feb. 21, 2024
Testing concluded on	:	Mar. 01, 2024

2.2 Product Description

Testing commenced on		Feb. 21, 2024	CTA	
Testing concluded on	:	Mar. 01, 2024	- CT	
2.2 Product Descript	tion			
Product Name:	Portable N	Multi-Band Radio. Mus	sic Player. Recorder	
Model/Type reference:	HRD-757			
Power supply:	DC 3.7V F	From battery and DC 5	5.0V From external circuit	
Adapter information (Auxiliary test supplied by test Lab):		P-TA20CBC 100-240V 50/60Hz C 5V 2A	TATESTING	
Hardware version:	V1.0		CKCTA	
Software version:	V1.0			
Testing sample ID:		27003-1# (Engineer sa 27003-2# (Normal san		
Bluetooth :				
Supported Type:	Bluetooth	BR/EDR		
Modulation:	GFSK, π/-	4DQPSK, 8DPSK	CTING	
Operation frequency:	2402MHz	~2480MHz	TATES	
Channel number:	79		(EN)	
Channel separation:	1MHz		CCT	
Antenna type:	PCB ante	nna		
Antenna gain:	1.42 dBi	1G		

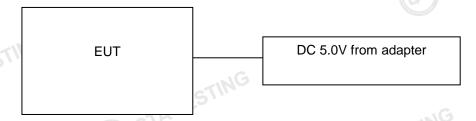
Equipment Under Test

2.3 Equipment Under Test				
Power supply system utilised	ł			
Power supply voltage	: C	230V / 50 Hz	0	120V / 60Hz
	С	12V DC	0	24V DC
	•	Other (specified in blank	below	

DC 3.7V From battery and DC 5.0V From external circuit

Short description of the Equipment under Test (EUT)

This is a Portable Multi-Band Radio. Music Player. Recorder. For more details, refer to the user's manual of the EUT.


Page 6 of 45 Report No.: CTA24022700302

2.5 EUT operation mode

The Applicant provides communication tools software (Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 79 channels provided to the EUT and Channel 00/39/78 were selected to test.

provided to the EUT and Channel 00/39/78 were selection	ected to test.	
	TESTING	
Operation Frequency:		
Channel	Frequency (MHz)	
00	2402	
01	2403	
TING		N. C.
38	2440	
39	2441	
40	2442	
	ESTING	
77	2479	(
78	2480	

Block Diagram of Test Setup

Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8 **Modifications**

No modifications were implemented to meet testing criteria.

Page 7 of 45 Report No.: CTA24022700302

TEST ENVIRONMENT

Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory
Accreditation to perform electromagnetic emission measurement

CAB identifier: CN0127 ISED#: 27890

Shenzhen CTA Testing Technology Co., Ltd. has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

CTA TESTING During the measurement the environmental conditions were within the listed ranges:

Radiated Emission:

adiatod Elilloololl.	
Temperature:	24 ° C
Humidity:	45 %
Atmospheric pressure:	950-1050mbar

AC Power Conducted Emission:

Temperature:	25 ° C	
7F.51"		
Humidity:	46 %	ING
		ESTIN
Atmospheric pressure:	950-1050mbar	CATE
	Salta III	11.
Conducted testing:	CALL.	
Temperature:	25 ° C	

Conducted testina:

Temperature:	25 ° C
Humidity:	44 %
Atmospheric pressure:	950-1050mbar
- CTATES !!	TIN
	TESI

Page 8 of 45 Report No.: CTA24022700302

Summary of measurement results

	Test Specification clause Test case		Test Mode	Test Channel		orded eport	Test result
	§15.247(a)(1)	Carrier Frequency separation	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK Π/4DQPSK 8DPSK		Compliant
	§15.247(a)(1)	Number of Hopping channels	GFSK П/4DQPSK 8DPSK	⊠ Full	GFSK	⊠ Full	Compliant
	§15.247(a)(1)	Time of Occupancy (dwell time)	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK П/4DQPSK 8DPSK		Compliant
CTATE	§15.247(a)(1)	Spectrumbandwidth of aFHSS system20dB bandwidth	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	Compliant
	§15.247(b)(1)	Maximum output peak power	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Middle✓ Highest	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Middle✓ Highest	Compliant
	§15.247(d)	Band edgecompliance conducted	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Highest	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Highest	Compliant
G	§15.205	Band edgecompliance radiated	GFSK П/4DQPSK 8DPSK		GFSK Π/4DQPSK 8DPSK		Compliant
	§15.247(d)	TX spuriousemissions conducted	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Middle✓ Highest	GFSK Π/4DQPSK 8DPSK	✓ Lowest✓ Middle✓ Highest	Compliant
	§15.247(d)	TX spuriousemissions radiated	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Middle✓ Highest	GFSK	✓ Lowest✓ Middle✓ Highest	Compliant
	§15.209(a)	TX spurious Emissions radiated Below 1GHz	GFSK П/4DQPSK 8DPSK		GFSK	⊠ Middle	Compliant
	§15.107(a) §15.207	Conducted Emissions 9KHz-30 MHz	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK	⊠ Middle	Compliant

Remark:

- The measurement uncertainty is not included in the test result.
- We tested all test mode and recorded worst case in report

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	9KHz~30MHz	3.02 dB	(1)
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
Output Peak power	30MHz~18GHz	0.55 dB	(1)
Power spectral density	/	0.57 dB	(1)

Page 9 of 45 Report No.: CTA24022700302

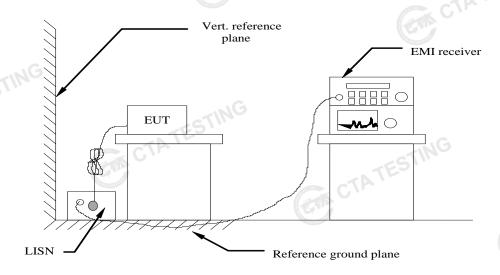
Spectrum bandwidth	/	1.1%	(1)
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)

⁽¹⁾This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6 Equipments Used during the Test

-	erage factor of k=2. Used during the	a Tast				1A
					CIA	
Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date	
LISN	R&S	ENV216	CTA-308	2023/08/02	2024/08/01	
LISN	R&S	ENV216	CTA-314	2023/08/02	2024/08/01	
EMI Test Receiver	R&S	ESPI	CTA-307	2023/08/02	2024/08/01	
EMI Test Receiver	R&S	ESCI	CTA-306	2023/08/02	2024/08/01	
Spectrum Analyzer	Agilent	N9020A	CTA-301	2023/08/02	2024/08/01	
Spectrum Analyzer	R&S	FSP	CTA-337	2023/08/02	2024/08/01	
Vector Signal generator	Agilent	N5182A	CTA-305	2023/08/02	2024/08/01	
Analog Signal Generator	R&S	SML03	CTA-304	2023/08/02	2024/08/01	
WIDEBAND RADIO COMMUNICATION TESTER	CMW500	R&S	CTA-302	2023/08/02	2024/08/01	
Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2023/08/02	2024/08/01	
Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2024/10/16	
Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2024/10/12	
Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2024/10/16	
Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/07	2024/08/06	
Amplifier	Schwarzbeck	BBV 9745	CTA-312	2023/08/02	2024/08/01	
Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2023/08/02	2024/08/01	
Directional coupler	NARDA	4226-10	CTA-303	2023/08/02	2024/08/01	
High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2023/08/02	2024/08/01	
High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2023/08/02	2024/08/01	
Automated filter bank	Tonscend	JS0806-F	CTA-404	2023/08/02	2024/08/01	
Power Sensor	Agilent	U2021XA	CTA-405	2023/08/02	2024/08/01	
Amplifier	Schwarzbeck	BBV9719	CTA-406	2023/08/02	2024/08/01	
	1	1	I.			

Report No.: CTA24022700302 Page 10 of 45


	Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date
	EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A
	EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A
	RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A
	RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A
	TING					ATTA-
CTATE	511	CTATESTING				
,		CTA				

Report No.: CTA24022700302 Page 11 of 45

TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

TEST CONFIGURATION

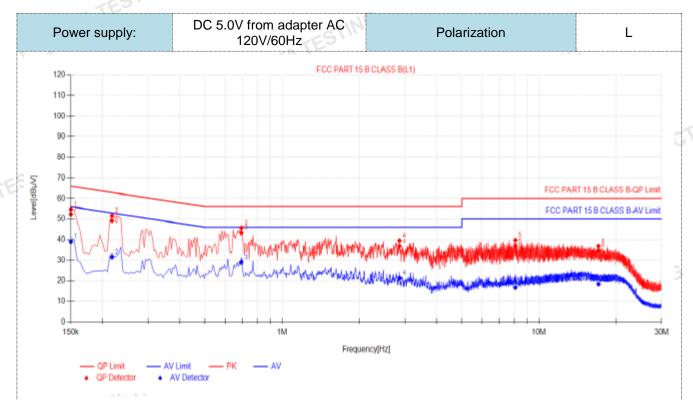
TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Fraguency range (MHz)	Limit (dBuV)						
Frequency range (MHz)	Quasi-peak	Average					
0.15-0.5	66 to 56*	56 to 46*					
0.5-5	56	46					
5-30	60	50					
* Decreases with the logarithm of the frequency.							

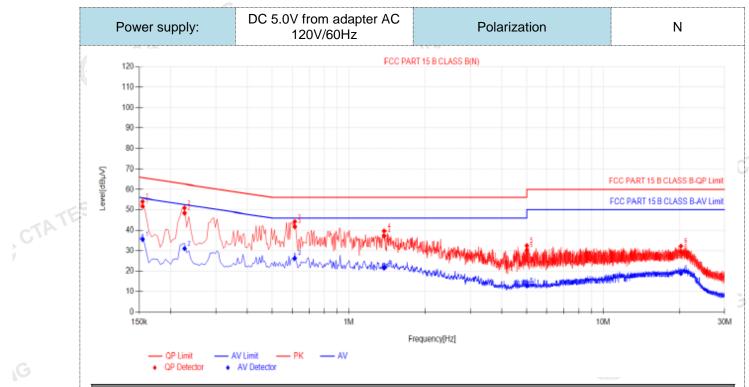

TEST RESULTS

1. All modes of GFSK, Π/4 DQPSK and 8DPSK were test at Low, Middle, and High channel; only the worst result of GFSK Middle Channel was reported as below:

Report No.: CTA24022700302

CTA TESTING

2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:



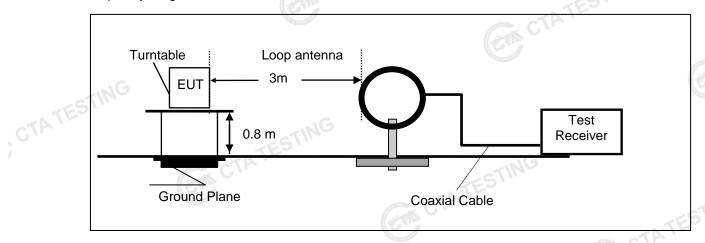
Final Data List											
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	ΑV Reading [dBμV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict
1	0.15	9.87	42.42	52.29	66.00	13.71	29.09	38.96	56.00	17.04	PASS
2	0.2175	10.04	39.12	49.16	62.91	13.75	21.44	31.48	52.91	21.43	PASS
3	0.6945	9.92	33.34	43.26	56.00	12.74	19.15	29.07	46.00	16.93	PASS
4	2.859	10.04	26.78	36.82	56.00	19.18	11.32	21.36	46.00	24.64	PASS
5	8.079	10.28	26.54	36.82	60.00	23.18	6.42	16.70	50.00	33.30	PASS
6	17.0475	10.35	24.40	34.75	60.00	25.25	8.06	18.41	50.00	31.59	PASS

Note:1).QP Value ($dB\mu V$)= QP Reading ($dB\mu V$)+ Factor (dB)

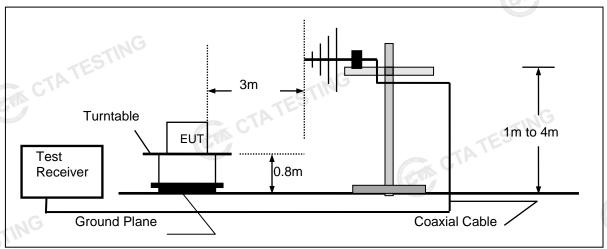
- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- CTA TESTING 4). AVMargin(dB) = AV Limit (dB μ V) - AV Value (dB μ V)

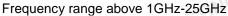
Page 13 of 45 Report No.: CTA24022700302

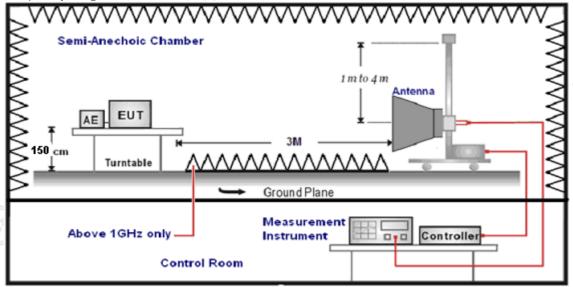
Final	Freq.	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict	
1	0.1545	10.00	41.68	51.68	65.75	14.07	25.57	35.57	55.75	20.18	PASS	
2	0.2265	9.99	38.44	48.43	62.58	14.15	21.02	31.01	52.58	21.57	PASS	
3	0.6135	10.14	31.62	41.76	56.00	14.24	16.23	26.37	46.00	19.63	PASS	
4	1.3785	10.15	27.06	37.21	56.00	18.79	11.47	21.62	46.00	24.38	PASS	
5	5.0055	10.08	20.08	30.16	60.00	29.84	2.76	12.84	50.00	37.16	PASS	
6	20.2245	10.59	18.89	29.48	60.00	30.52	8.27	18.86	50.00	31.14	PASS	
Note:1).QP Value (dBµV)= QP Reading (dBµV)+ Factor (dB) 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)												


- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). $QPMargin(dB) = QP Limit (dB\mu V) QP Value (dB\mu V)$
 - 4). $AVMargin(dB) = AV Limit (dB\mu V) AV Value (dB\mu V)$

Page 14 of 45 Report No.: CTA24022700302


4.2 **Radiated Emission**


TEST CONFIGURATION


Frequency range 9 KHz - 30MHz

Frequency range 30MHz - 1000MHz

Page 15 of 45 Report No.: CTA24022700302

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed.
- Radiated emission test frequency band from 9KHz to 25GHz. 5.
- The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance	A.C.
9KHz-30MHz	Active Loop Antenna	3	Z2 wast
30MHz-1GHz	Ultra-Broadband Antenna	3	
1GHz-18GHz	Double Ridged Horn Antenna	3	
18GHz-25GHz	Horn Anternna	1	

Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector		
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP		
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP		
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP		
	Peak Value: RBW=1MHz/VBW=3MHz,			
104- 1004-	Sweep time=Auto	Peak		
1GHz-40GHz	Average Value: RBW=1MHz/VBW=10Hz,			
	Sweep time=Auto			

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

sample calculation is as follows:	STING				
FS = RA + AF + CL - AG	CTATES				
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)				
RA = Reading Amplitude	AG = Amplifier Gain				
AF = Antenna Factor	(84)				

Transd=AF +CL-AG

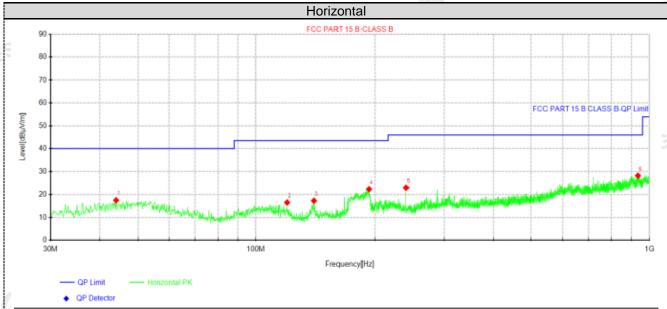
RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)						
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)				
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)				
1.705-30	3	20log(30)+ 40log(30/3)	30				
30-88	3	40.0	100				
88-216	3	43.5	150				
216-960	3	46.0	200				
Above 960	3	54.0	500				

Page 16 of 45 Report No.: CTA24022700302

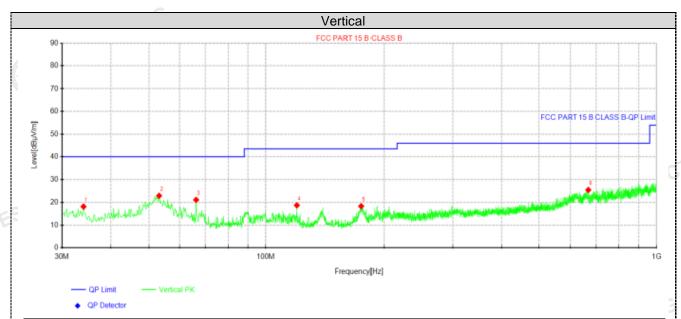

TEST RESULTS

Remark:

CTATE

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X
- We measured Radiated Emission at GFSK,π/4 DQPSK and 8DPSK mode from 9 KHz to 25GHz and recorded worst case at GFSK DH5 mode.
- For below 1GHz testing recorded worst at GFSK DH5 middle channel. 3.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz



Su	Suspected Data List													
NIC		Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolority				
NO	J.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity				
1		44.065	29.22	17.39	-11.83	40.00	22.61	100	314	Horizontal				
2	2	119.967	30.67	16.41	-14.26	43.50	27.09	100	187	Horizontal				
3	3	140.58	33.29	17.17	-16.12	43.50	26.33	100	0	Horizontal				
4	ļ	192.96	36.10	22.28	-13.82	43.50	21.22	100	210	Horizontal				
5	5	240.005	35.80	22.92	-12.88	46.00	23.08	100	164	Horizontal				
6	3	934.161	30.27	28.26	-2.01	46.00	17.74	100	153	Horizontal				

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Report No.: CTA24022700302 Page 17 of 45

Suspe	ected Data	List								
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polarity	
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Folanty	
1	34.0012	32.19	18.07	-14.12	40.00	21.93	100	172	Vertical	
2	53.1588	34.64	22.89	-11.75	40.00	17.11	100	34	Vertical	
3	66.2538	35.52	21.08	-14.44	40.00	18.92	100	172	Vertical	
4	119.967	32.89	18.63	-14.26	43.50	24.87	100	357	Vertical	
5	175.378	33.56	18.25	-15.31	43.50	25.25	100	255	Vertical	
6	668.017	30.73	25.46	-5.27	46.00	20.54	100	357	Vertical	

CTATE

Note:1).Level $(dB\mu V/m)$ = Reading $(dB\mu V)$ + Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

For 1GHz to 25GHz

Note: GFSK , $\pi/4$ DQPSK and 8DPSK all have been tested, only worse case GFSK is reported.

GFSK (above 1GHz)

Freque	Frequency(MHz):			02	Pola	arity:	HORIZONTAL			
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4804.00	61.46	PK	74	12.54	65.73	32.33	5.12	41.72	-4.27	
4804.00	44.89	AV	54	9.11	49.16	32.33	5.12	41.72	-4.27	
7206.00	52.84	PK	74	21.16	53.36	36.6	6.49	43.61	-0.52	
7206.00	41.99	AV	54	12.01	42.51	36.6	6.49	43.61	-0.52	

	- 11.71									
	Freque	Frequency(MHz):		24	02	Pola	arity:		VERTICAL	
	Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
Ī	4804.00	59.94	PK	74	14.06	64.21	32.33	5.12	41.72	-4.27
	4804.00	42.72	AV	54	11.28	46.99	32.33	5.12	41.72	-4.27
	7206.00	50.95	PK	74	23.05	51.47	36.6	6.49	43.61	-0.52
Ī	7206.00	40.14	AV	54	13.86	40.66	36.6	6.49	43.61	-0.52

Frequency(MHz):			24	41	Pola	arity:	Н	HORIZONTAL		
Frequency (MHz)	Emis Lev (dBu)	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4882.00	60.55	PK	74	13.45	64.43	32.6	5.34	41.82	-3.88	
4882.00	44.23	AV	54	9.77	48.11	32.6	5.34	41.82	-3.88	
7323.00	53.90	PK	74	20.10	54.01	36.8	6.81	43.72	-0.11	
7323.00	43.18	AV	54	10.82	43.29	36.8	6.81	343.72	-0.11	
				GTIN						

Freque	Frequency(MHz):			41	Pola	arity:		VERTICAL					
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)				
4882.00	58.62	PK	74	15.38	62.50	32.6	5.34	41.82	-3.88				
4882.00	42.02	AV	54	11.98	45.90	32.6	5.34	41.82	-3.88				
7323.00	52.21	PK	74	21.79	52.32	36.8	6.81	43.72	-0.11				
7323.00	40.60	AV	54	13.40	40.71	36.8	6.81	43.72	-0.11				

Frequency(MHz):			24	80	Pola	rity:	ŀ	HORIZONTAL		
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4960.00	60.03	PK	74	13.97	63.11	32.73	5.66	41.47	-3.08	
4960.00	44.82	AV	54	9.18	47.90	32.73	5.66	41.47	-3.08	
7440.00	54.48	PK	74	19.52	54.03	37.04	7.25	43.84	0.45	
7440.00	43.37	PK	54	10.63	42.92	37.04	7.25	43.84	0.45	

		1G							
Freque	Frequency(MHz):		24	80	Pola	arity:		VERTICAL	•
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	58.05	PK	74	15.95	61.13	32.73	5.66	41.47	-3.08
4960.00	42.17	AV	54	11.83	45.25	32.73	5.66	41.47	-3.08
7440.00	52.06	PK	74	21.94	51.61	37.04	7.25	43.84	0.45
7440.00	41.33	PK	54	12.67	40.88	37.04	7.25	43.84	0.45

Page 19 of 45 Report No.: CTA24022700302

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

Note: GFSK, π/4 DQPSK and 8DPSK all have been tested, only worse case GFSK is reported.

GFSK

Freque	Frequency(MHz):		24	02	Pola	rity:	Н	ORIZONTA	۱L
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	61.43	PK	74	12.57	71.85	27.42	4.31	42.15	-10.42
2390.00	43.29	AV	54	10.71	53.71	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	1	24	02	Pola	rity:		VERTICAL	
Frequency (MHz)		sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	59.78	PK	74	14.22	70.20	27.42	4.31	42.15	-10.42
2390.00	41.35	AV	54	12.65	51.77	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	1	24	80	Pola	rity:	Н	ORIZONTA	۱L
Frequency (MHz)	Emis Le (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	60.57	PK	74	13.43	70.68	27.7	4.47	42.28	-10.11
2483.50	43.55	AV	54	10.45	53.66	27.7	4.47	42.28	-10.11
Freque	ncy(MHz)	1	24	80	Pola	rity:		VERTICAL	
Frequency (MHz)	Emis Le [,] (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	58.65	PK	74	15.35	68.76	27.7	4.47	42.28	-10.11
2 100.00	00.00	1 1 1	, , ,	. 0.00	00.70	AD 63/1/2	••••		

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- CTA TESTING 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Page 20 of 45 Report No.: CTA24022700302

Maximum Peak Output Power

Limit

The Maximum Peak Output Power Measurement is 125mW (20.97).

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to CTATE the powersensor.

Test Configuration

Test Results

Туре	Channel	Output power (dBm)	Limit (dBm)	Result	
	00	2.74	-5	TES.	
GFSK	39	2.23	20.97	Pass	
	78	2.16			
-18	3 00	1.11			
π/4DQPSK	39	0.56	20.97	Pass	
CTA	78	0.49			
	00	1.10	TING		
8DPSK	39	0.54	20.97	Pass	
	78	0.47	C		
Note: 1.The test res	ults including the	cable lose.			

Page 21 of 45 Report No.: CTA24022700302

20dB Bandwidth

Limit

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwidth.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

Test Configuration

Test Results

<u>Test Results</u>			CTAT
Modulation	Channel	20dB bandwidth (MHz)	Resul
ING	CH00	0.957	
GFSK	CH39	0.945	7
CTA	CH78	0.957	7
Car	CH00	1.281	NG.
π/4DQPSK	CH39	1.314	Pass
	CH78	1.302	
	CH00	1.305	
8DPSK	CH39	1.281	
ING	CH78	1.308	

Test plot as follows:

Report No.: CTA24022700302

Report No.: CTA24022700302

Page 24 of 45 Report No.: CTA24022700302

Page 25 of 45 Report No.: CTA24022700302

Frequency Separation

LIMIT

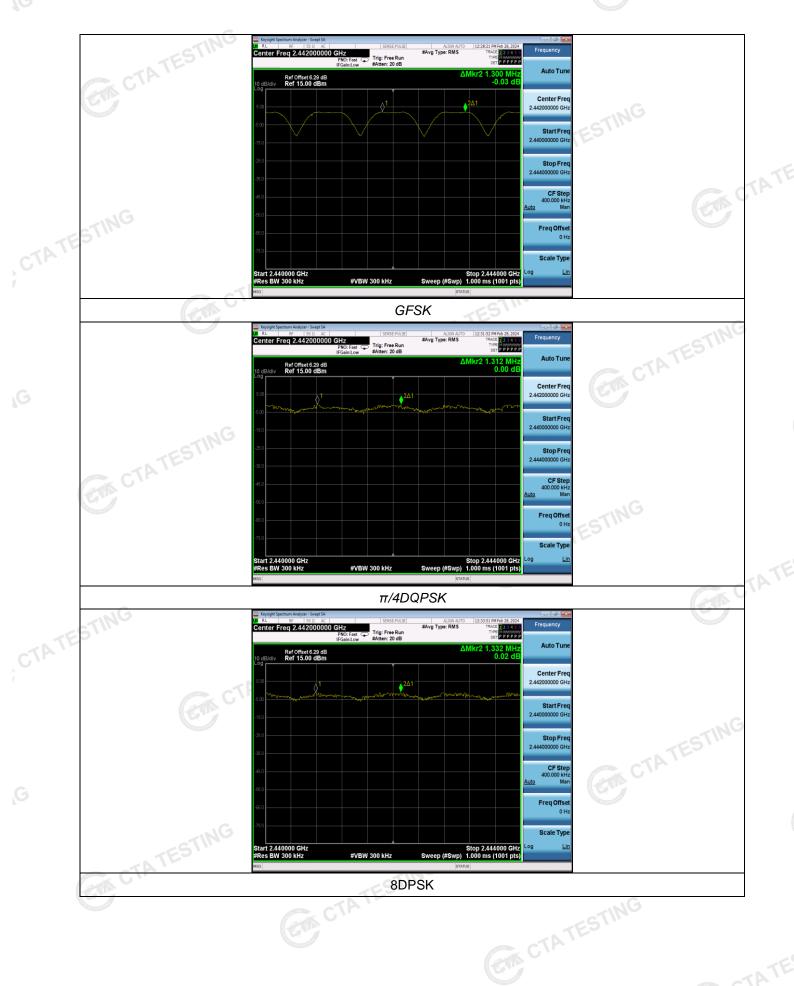
According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW.

TEST CONFIGURATION

TEST RESULTS


TEST RESULTS		CTATES CTATES		TESTING	
Modulation	Channel	Channel Separation (MHz)	Limit(MHz)	Result	
GFSK	CH38	1.300	25KHz or 2/3*20dB	Pass	
Gran	CH39	1.300	bandwidth	Pass	
π/4DQPSK	CH38	1 212	25KHz or 2/3*20dB	Pass	
II/4DQPSK	CH39	1.312	bandwidth	Pass	
8DPSK	CH38	1 222	25KHz or 2/3*20dB	Door	
ODPSK	CH39	1.332	bandwidth	Pass	

Note:

We have tested all mode at high, middle and low channel, and recorded worst case at middle

Test plot as follows: CTATESTING

Page 26 of 45 Report No.: CTA24022700302

Page 27 of 45 Report No.: CTA24022700302

Number of hopping frequency

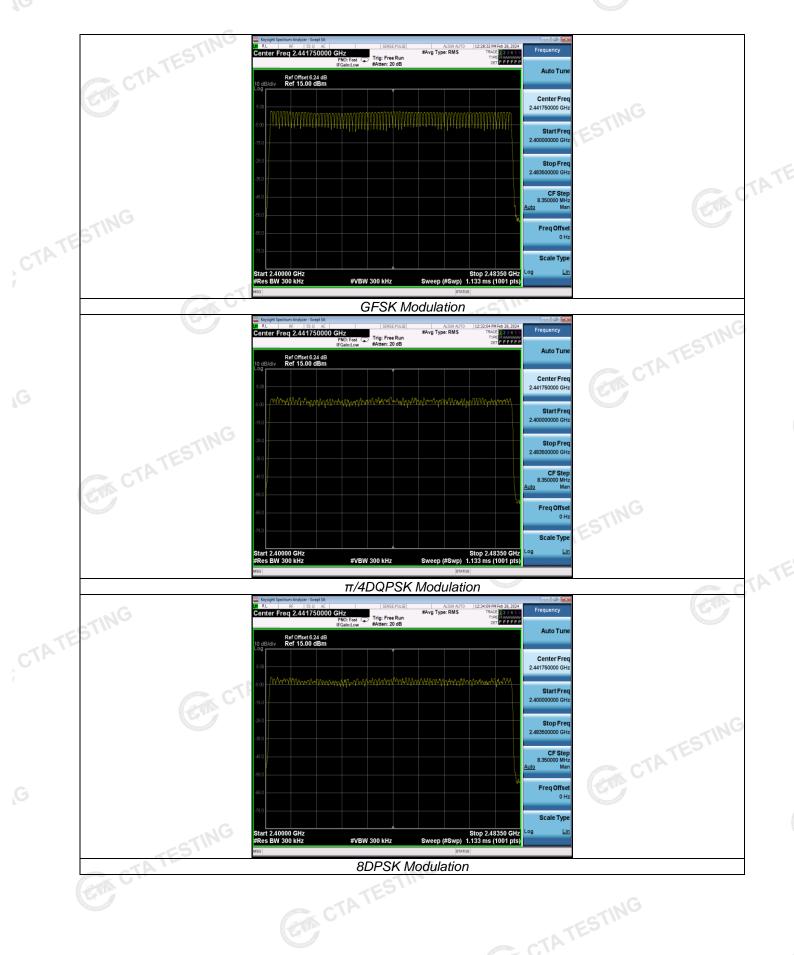
Limit

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

Test Procedure

CTATE The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 2400MHz to 2483.5MHz with 100 KHz RBW and 300 KHz VBW.

Test Configuration



Test Results

Test Results		(Es	STING
Modulation	Number of Hopping Channel	Limit	Result
GFSK	79		No.
π/4DQPSK	79	≥15	Pass
8DPSK	79		

Test plot as follows:

Report No.: CTA24022700302 Page 28 of 45

Page 29 of 45 Report No.: CTA24022700302

Time of Occupancy (Dwell Time)

Limit

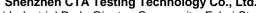
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with 1MHz RBW and 1MHz VBW, Span 0Hz.

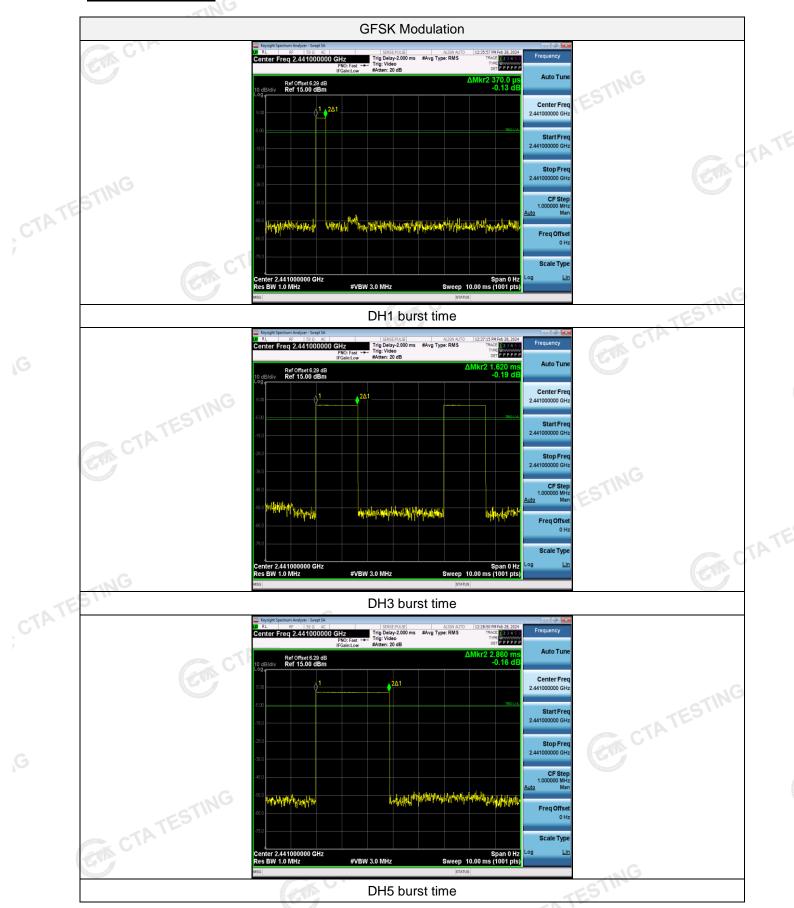
Test Configuration

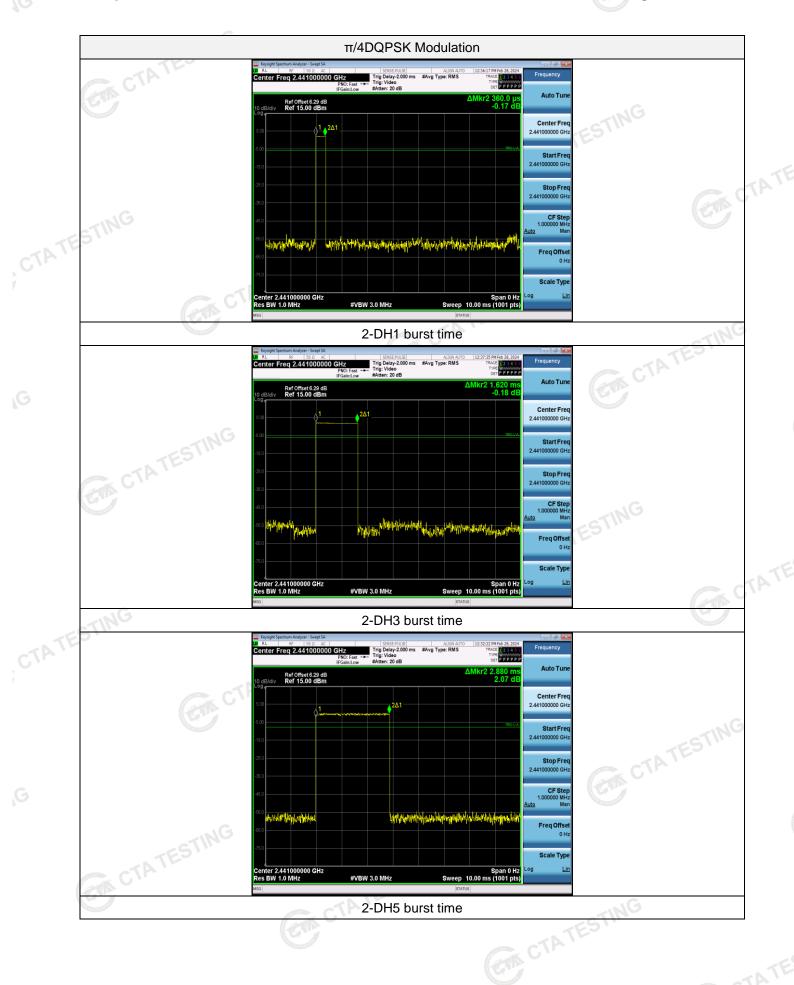
Test Results

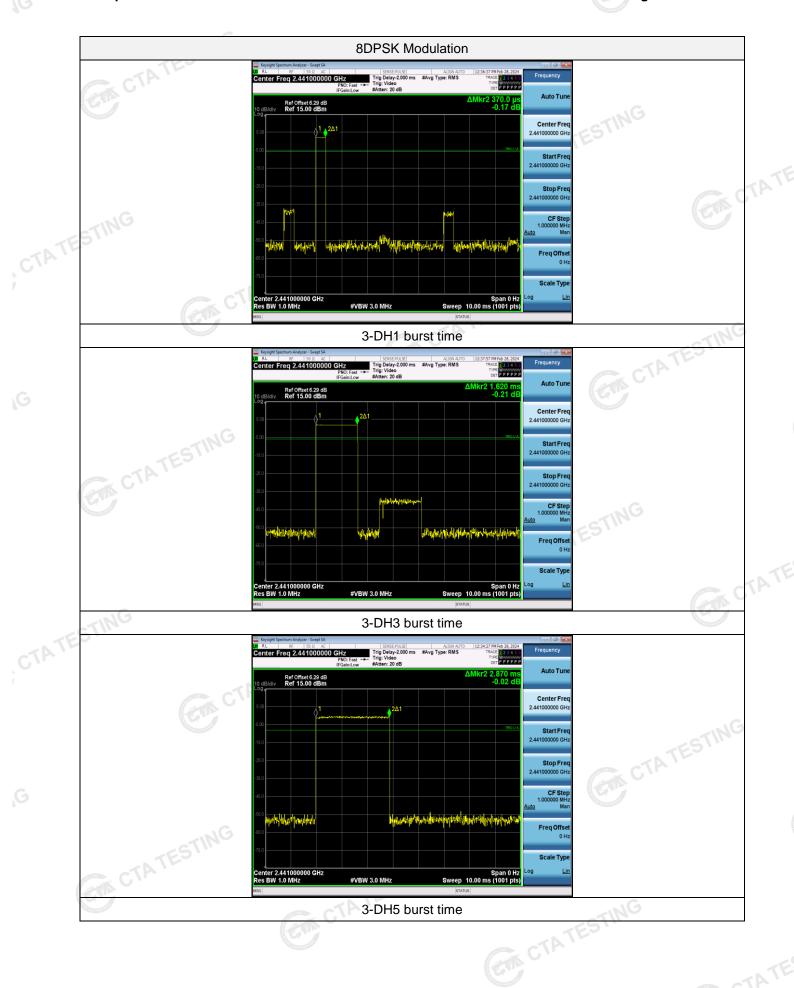

Test Results			CTATES		TESTING
Modulation	Packet	Burst time (ms)	Dwell time (s)	Limit (s)	Result
	DH1	0.37	0.118	7,511	
GFSK	DH3	1.62	0.259	0.40	Pass
TES	DH5	2.86	0.305		
CIL	2-DH1	0.36	0.115		
π/4DQPSK	2-DH3	1.62	0.259	0.40	Pass
	2-DH5	2.88	0.307	TESTIN	
	3-DH1	0.37	0.118	CTA	
8DPSK	3-DH3	1.62	0.259	0.40	Pass
	3-DH5	2.87	0.306		C

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) x (1600 ÷ 2 ÷ 79) x31.6 Second for DH1, 2-DH1, 3-DH1


Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3, 3-DH3


Dwell time=Pulse time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second for DH5, 2-DH5, 3-DH5

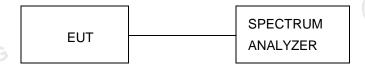


Page 30 of 45 Report No.: CTA24022700302

Test plot as follows:

Report No.: CTA24022700302 Page 33 of 45

Out-of-band Emissions 4.8

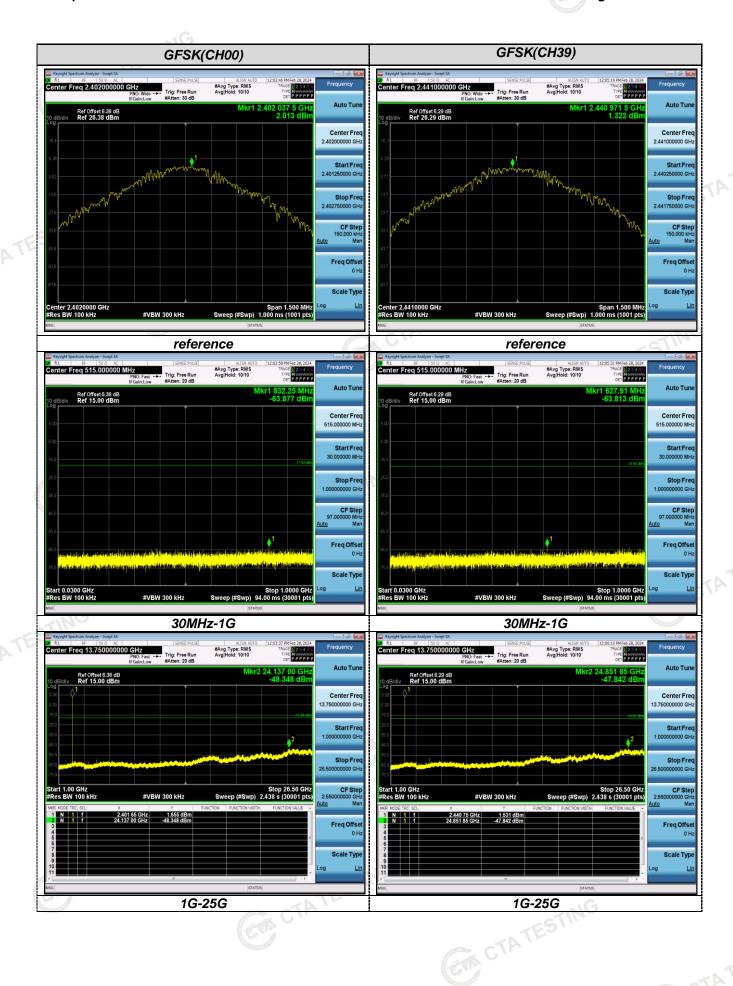

Limit (

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are CTA TESTING made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration



Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.

We measured all conditions (DH1, DH3, DH5) and recorded worst case at DH5

Test plot as follows:

