

TEST REPORT

FCC CFR 47 PART 18

Test report On Behalf of JMTek Industries (Shenzhen) Co.,Ltd For Wireless Power Bank Model No.: PBWS10

FCC ID: 2APU5-PBWS10

Prepared for : JMTek Industries (Shenzhen) Co.,Ltd 14G, Innovation Tech Building, Quanzhi Science and Technology innovation Park, ShaJing Street, Baoan District, ShenZhen, China

Prepared By :Shenzhen HUAK Testing Technology Co., Ltd.1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai Street,
Bao'an District, Shenzhen City, China

 Date of Test:
 Jan. 06, 2020 ~ Jan. 13, 2020

 Date of Report:
 Jan. 13, 2020

 Report Number:
 HK2001080081-E

TEST RESULT CERTIFICATION

Applicant's name:	JMTek Industries (Shenzhen) Co.,Ltd
Address:	14G, Innovation Tech Building, Quanzhi Science and Technology innovation Park, ShaJing Street, Baoan District, ShenZhen, China
Manufacture's Name	JMTek Industries (Shenzhen) Co.,Ltd
Address:	14G, Innovation Tech Building, Quanzhi Science and Technology innovation Park, ShaJing Street, Baoan District, ShenZhen, China
Product description	

Trade Mark	:	N/A
Product name	:	Wireless Power Bank
Model and/or type reference	:	PBWS10

Standards FCC CFR 47 PART 18

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test	
Date (s) of performance of tests:	Jan. 06, 2020 ~ Jan. 13, 2020
Date of Issue	Jan. 13, 2020
Test Result	Pass

Prepared by:

Reviewed by:

Gan Qian Project Engineer Eden Hu

Project Supervisor

Approved by:

Jason Zhou

Technical Director

Table of Contents

Page

1.	SUM	IMARY	
1 1 1	L.1. L.2. L.3.	TEST PROCEDURES AND RESULTS Test Facility Statement of the measurement uncertainty	4 4 4
2.	GEN	ERAL INFORMATION	5
	2.1. 2.2. 2.3. 2.4. 2.5.	GENERAL DESCRIPTION OF EUT CARRIER FREQUENCY OF CHANNELS OPERATION OF EUT DURING TESTING DESCRIPTION OF TEST SETUP EQUIPMENTS USED DURING THE TEST	5 6 6 7
3.	CON	DUCTED EMISSIONS TEST	8
4.	RAD	IATED EMISSIONS	11
Z	l.1.	ANTENNA REQUIREMENT	15
5.	TEST	SETUP PHOTOS OF THE EUT	16
6.	PHO	TOS OF THE EUT	17

1. SUMMARY

1.1. TEST PROCEDURES AND RESULTS

DESCRIPTION OF TEST	FCC PART RULE	RESULT
CONDUCTED EMISSIONS TEST	18.305	COMPLIANT
RADIATED EMISSION TEST	18.307(b)	COMPLIANT
ANTENNA REQUIREMENT	15.203	COMPLIANT

1.2. Test Facility

Test Firm Shenzhen HUAK Testing Technology Co., Ltd.

Address 1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Heping Community, Fuhai Street, Bao'an District, Shenzhen, China

There is one 3m semi-anechoic chamber and two line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.4 and CISPR 32/EN 55032 requirements.

1.3. Statement of the measurement uncertainty

Measurement Uncertainty

Conducted Emission Expanded Uncertainty	= 2.23dB, k=2
Radiated emission expanded uncertainty(9kHz-30MHz)	= 3.08dB, k=2
Radiated emission expanded uncertainty(30MHz-1000MHz)	= 4.42dB, k=2
Radiated emission expanded uncertainty(Above 1GHz)	= 4.06dB, k=2

2. GENERAL INFORMATION

2.1. General Description of EUT

Product Name:	Wireless Power Bank
Model/Type reference:	PBWS10
Serial Model:	N/A
Trade Mark	N/A
FCC ID	2APU5-PBWS10
Hardware Version:	V14
Software Version:	1
Antenna type:	Coil Antenna
Antenna gain:	0 dBi
Operation frequency:	125kHz
Channel number:	1
Modulation:	ASK
Power Source:	5V-2A(10W)

Note: 1. For more details, refer to the user's manual of the EUT.

2.2. Carrier Frequency of Channels

Operation Frequency each of channel				
Channel	Frequency			
1	125KHz			

2.3. Operation of EUT during testing

Operating Mode The mode is used: Transmitting mode

2.4. Description of Test Setup

Operation of EUT during testing

Mobile phones information Model: S6 Input: 5VDC

Adapter information Model: SAW30-050-3500U Input: AC100-240V, 50/60Hz, 0.8A Output: DC5V, 3.5A

The sample was placed 0.8m height above the ground plane of

3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. The worst case is X position

2.5. Equipments Used during the Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	L.I.S.N. Artificial Mains Network	R&S	ENV216	HKE-002	Dec. 26, 2019	1 Year
2.	Receiver	R&S	ESCI 7	HKE-010	Dec. 26, 2019	1 Year
3.	RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 26, 2019	1 Year
4.	Spectrum analyzer	R&S	FSP40	HKE-025	Dec. 26, 2019	1 Year
5.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 26, 2019	1 Year
6.	Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Dec. 26, 2019	1 Year
7.	EMI Test Receiver	Rohde & Schwarz	ESCI 7	HKE-010	Dec. 26, 2019	1 Year
8.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	HKE-012	Dec. 26, 2019	1 Year
9.	Loop Antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Dec. 26, 2019	1 Year
10.	Horn Antenna	Schewarzbeck	9120D	HKE-013	Dec. 26, 2019	1 Year
11.	Pre-amplifier	EMCI	EMC051845 SE	HKE-015	Dec. 26, 2019	1 Year
12.	Pre-amplifier	Agilent	83051A	HKE-016	Dec. 26, 2019	1 Year
13.	EMI Test Software EZ-EMC	Tonscend	JS1120-B Version	HKE-083	Dec. 26, 2019	N/A
14.	Power Sensor	Agilent	E9300A	HKE-086	Dec. 26, 2019	1 Year
15.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 26, 2019	1 Year
16.	Signal generator	Agilent	N5182A	HKE-029	Dec. 26, 2019	1 Year
17.	Signal Generator	Agilent	83630A	HKE-028	Dec. 26, 2019	1 Year

The calibration interval was one year

3.1 Block Diagram of Test Setup

3.2 Conducted Power Line Emission Limit

According to FCC Part 18.307(b)

	Conducted limit (dBµV)		
Frequency of emission (MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

*Decreases with the logarithm of the frequency.

3.3 Test Procedure

- 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2, Support equipment, if needed, was placed as per ANSI C63.10.
- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4, If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes

PASS

Test Specification: Line

Sus	Suspected List							
NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре
1	0.2220	54.45	10.04	62.74	8.29	44.41	PK	L
2	0.2220	40.01	10.04	52.74	12.73	29.97	AV	L
3	0.4920	51.72	10.04	56.13	4.41	41.68	PK	L
4	0.5775	37.89	10.05	46.00	8.11	27.84	AV	L
5	1.7160	36.93	10.13	46.00	9.07	26.80	AV	L
6	1.7250	51.68	10.13	56.00	4.32	41.55	PK	L
7	2.4990	35.02	10.19	46.00	10.98	24.83	AV	L
8	2.6115	50.11	10.21	56.00	5.89	39.90	PK	L
9	5.9280	45.76	10.23	60.00	14.24	35.53	PK	L
10	6.1395	31.75	10.23	50.00	18.25	21.52	AV	L
11	9.8835	45.03	10.07	60.00	14.97	34.96	PK	L
12	11.8095	31.77	9.99	50.00	18.23	21.78	AV	L

Remark: Margin = Limit – Level Correction factor = Cable lose + LISN insertion loss Level=Test receiver reading + correction factor

Test Specification: Neutral

Remark: Margin = Limit – Level Correction factor = Cable lose + LISN insertion loss Level=Test receiver reading + correction factor

5

6

7

8

9

10

11

12

1.2525

1.3245

1.7340

1.8060

5.1315

5.4735

9.6360

11.9355

53.08

37 11

36.62

52.48

33.05

47.61

47.56

31.94

10.09

10.10

10.13

10.14

10.26

10.26

10.08

9.99

56.00

46 00

46.00

56.00

50.00

60.00

60.00

50.00

2.92

8.89

9.38

3.52

16.95

12.39

12.44

18.06

42.99

27.01

26.49

42.34

22.79

37.35

37.48

21.95

PK

Aν

AV

PK

AV

ΡK

PK

AV

Ν

N

Ν

Ν

Ν

Ν

Ν

Ν

Notes:

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

4. Radiated Emissions

4.1 Block Diagram of Test Setup

4.2 Rules and specifications

Except as provided elsewhere in this Subpart 18.305 (b), the field strength levels of emissions which lie outside the bands specified in §18.301, unless otherwise indicated, shall not exceed the following table:

Frequency	Distance	Field Strengths Limit	
MHz	Meters	dBµV/m	Remark
0.009~30MHz	3	103.5	Quasi-peak
30~88	3	40.0	Quasi-peak
88~216	3	43.5	Quasi-peak
216~960	3	46.0	Quasi-peak
960~1000	3	54.0	Quasi-peak

Remark:

(1) Emission level dBuV/m for $0.009 \sim 30$ MHz = $20\log (15) + 40\log (300/3)$ dBuV/m;

(2) Calculated according FCC 18.305.

(3) The smaller limit shall apply at the cross point between two frequency bands.

(4) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.

4.3 Test Procedure

Measurement distance 3m

For the measurement range up to 30MHz in the following plots the field strength result from 3m Distance measurement are extrapolated to 300m and 30m distance respectively, by 40dB/decade, Per antenna factor scaling.

Measurements below 1000MHz are performed with a peak detector and compared to average limits, Measurements with an average detector are not required.

Note:

For battery operated equipment, the equipment tests shall be performed using a new battery.

 Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Test the EUT in the lowest channel, the middle channel, the Highest channel

The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.Repeat above procedures until all frequencies measured was complete.

TEST RESULTS

PASS

For 9KHz-30MHz

Freq. (MHz)	Detector Mode (PK/QP/AV)	Detector Mode (PK/QP)	Reading (dBuV)	Factor (dB)	Level (dBuV/m)	Limits 3m (dBuV/m)	Margin (dBuV/m)
0.110	AV	PK	21.52	24.8	46.32	103.5	57.18
0.125	AV	PK	46.20	24.8	71.00	103.5	32.50
0.486	AV	PK	26.06	25.03	51.09	103.5	52.41
0.500	PK	PK	26.47	25.03	51.50	103.5	52.00

For30MHz-1GHz

Antenna polarity: H

Suspected List

Suspected List									
NO.	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Polarity
	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	
1	121.2713	-17.29	45.40	28.11	43.50	15.39	100	359	Horizontal
2	176.6166	-17.01	47.82	30.81	43.50	12.69	100	234	Horizontal
3	240.7007	-13.82	45.40	31.58	46.00	14.42	100	312	Horizontal
4	305.7558	-12.66	45.61	32.95	46.00	13.05	100	278	Horizontal
5	356.2462	-11.47	41.32	29.85	46.00	16.15	100	315	Horizontal
6	499.9500	-8.30	34.39	26.09	46.00	19.91	100	182	Horizontal

Remark: Margin = Limit – Level Correction Factor= Antenna Factor + Cable loss – Pre-amplifier Level=Test receiver reading + correction factor

Suspected	l List

Suspected List									
NO.	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Polarity
	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	
1	39.7097	-14.64	44.10	29.46	40.00	10.54	100	348	Vertical
2	67.8679	-17.13	42.23	25.10	40.00	14.90	100	60	Vertical
3	96.0260	-16.06	43.29	27.23	43.50	16.27	100	209	Vertical
4	175.6456	-17.05	51.44	34.39	43.50	9.11	100	218	Vertical
5	285.3654	-13.03	42.11	29.08	46.00	16.92	100	152	Vertical
6	592.1922	-6.63	34.91	28.28	46.00	17.72	100	307	Vertical

Remark: Margin = Limit – Level Correction Factor= Antenna Factor + Cable loss – Pre-amplifier Level=Test receiver reading + correction factor

4.1. ANTENNA REQUIREMENT

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247, if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is a Coil Antenna, The directional gains of antenna used for transmitting is 0dBi.

Conducted Emission

6. PHOTOS OF THE EUT

External photos

Internal photos

Page 20 of 20

END