

243 Jubug-Ri,Yangji-Myeon, Yongin-Si, Gyeonggi-Do, Korea 17159 Tel: +82-31-323-6008 Fax: +82-31-323-6010 http://www.ltalab.com

> Dates of Tests: February 26 ~ March 19, 2018 Test Report S/N: LR500111803D Test Site : LTA CO., LTD.

CERTIFICATION OF COMPLIANCE

: : : : :

::

FCC ID. IC ID. APPLICANT 2APDI-BCM-L102-A 8738A-BCML120A BNCOM CO.LTD

Equipment Class
Manufacturing Description
Manufacturer
Model name
Test Device Serial No.:
FCC Rule Part(s)
IC Rule Parts(s)
Frequency Range
Max. Output Power
Data of issue

This test report is issued under the authority of:

The test was supervised by:

Yong-Cheol, Wang / Manager

Jae-hum Yeon, Test Engineer

This test result only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the test laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

NVLAP LAB Code.: 200723-0

TABLE OF CONTENTS

1. GENERAL INFORMATION	3
2. INFORMATION ABOUT TEST ITEM	4
3. TEST REPORT	5
3.1 SUMMARY OF TESTS	5
3.2 TECHNICAL CHARACTERISTICS TEST	6
3.2.1 6 dB BANDWIDTH	6
3.2.2 PEAK OUTPUT POWER	9
3.2.3 POWER SPECTRAL DENSITY	12
3.2.4 BAND EDGE	15
3.2.5 CONDUCTED SPURIOUS EMISSIONS	18
3.2.6 RADIATED SPURIOUS EMISSIONS	21
3.2.7 AC Conducted Emissions	33
3.4 MEASUREMENT UNCERTAINTY	36

APPENDIX

APPENDIX	TEST EQUIPMENT USED FOR TESTS		37
----------	-------------------------------	--	----

1. General information

<u>1-1 Test Performed</u>

Company name	: LTA Co., Ltd.
Address	: 243, Jubug-ri, Yangji-Myeon, Youngin-Si, Kyunggi-Do, Korea. 17159
Web site	: <u>http://www.ltalab.com</u>
E-mail	: <u>chahn@ltalab.com</u>
Telephone	: +82-31-323-6008
Facsimile	+82-31-323-6010

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

1-2 Accredited agencies

LTA Co., Ltd. is approved to perform EMC testing by the following agencies:

Agency	Country	Accreditation No.	Validity	Reference
NVLAP	U.S.A	200723-0	2020-03-15	ECT accredited Lab.
RRA	KOREA	KR0049	-	EMC accredited Lab.
FCC	U.S.A	649054	2019-04-13	FCC CAB
	C-4948	2020-09-10		
VCCI	VCCI JAPAN	T-2416	2020-09-10	VCCI as sistantion
VCCI		R-4483(10m)	2020-10-15	VCCI registration
	G-847	2018-12-13		
IC	CANADA	5799A-1	2019-11-07	IC filing
KOLAS	KOREA	NO.551	2021-08-20	KOLAS accredited Lab.

2. Information about test item

2-1 Client & Manufacturer

Company name	:	BNCOM CO.LTD
Address	:	102-903, SK Ventium, Gosan-ro, Gunpo-si, Gyeonggi-do, Korea
Tel / Fax	:	TEL No: +82-31-427-8904 / FAX No: +82-31-427-8907

<u>2-2 Equipment Under Test (EUT)</u>

Trade name	:	BNCOM CO.LTD
Model name	:	BCM-L102-A
Serial number	:	Identical prototype
Date of receipt	:	February 26, 2017
EUT condition	:	Pre-production, not damaged
Antenna type	:	Chip Antenna (Max Gain : 3.14 dBi)
Frequency Range	:	2402 ~ 2480 MHz
RF output power	:	Max -1.32 dBm - Conducted
Number of channels	:	40
Type of Modulation	:	GFSK
Power Source	:	3.0 Vdc

2-3 Tested frequency

	LOW	MID	HIGH
Frequency (MHz)	2402	2440	2480

2-4 Ancillary Equipment

Equipment	Model No.	Serial No.	Manufacturer
Notebook	CR720	MS-1736	MSI

3. Test Report

3.1 Summary of tests

FCC Part Section(s)	Parameter	Limit	Test Condition	Status (note 1)
15.247(a)	6 dB Bandwidth	> 500 kHz		С
15.247(b)	Transmitter Peak Output Power	< 1 Watt	Conducted	С
15.247(d)	Transmitter Power Spectral Density	< 8 dBm @ 3 kHz	Conducted -	С
15.247(d)	Band Edge > 20 dBc			С
15.209	Field Strength of Harmonics	Emission	Radiated	С
15.207	AC Conducted Emissions	Emissions	Conducted	С
15.203	Antenna requirement -		-	С
<u>Note 1</u> : C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable				
Note 2: The data in this test report are traceable to the national or international standards.				

Note 1: Antenna Requirement

The BNCOM CO.LTD FCC ID: 2APDI-BCM-L102-A unit complies with the requirement of §15.203. The antenna type is Chip Antenna.

Note 2: The sample was tested according to the following specification: *FCC Parts 15.247; ANSI C-63.4-2014 *RSS-247 and Issue NO.2 Date:2017

3.2 Technical Characteristics Test

3.2.1 6 dB Bandwidth

Procedure:

The bandwidth at 6 dB below the highest in-band spectral density was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate frequencies.

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 6 dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 6 dB bandwidth of the emission.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

RBW = 100 kHz	Span = 10 MHz
VBW = 100 kHz (VBW \geq RBW)	Sweep = auto
Trace = max hold	Detector function = peak

Measurement Data : Complies

Frequency	Test Results						
(MHz)	Measured Bandwidth (MHz)	Result					
2402	0.709	Complies					
2440	0.709	Complies					
2480	0.709	Complies					

- See next pages for actual measured spectrum plots.

Minimum Standard:

6 dB Bandwidth > 500 kHz

Measurement Setup

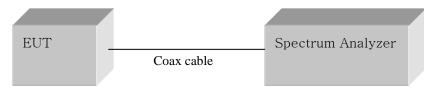
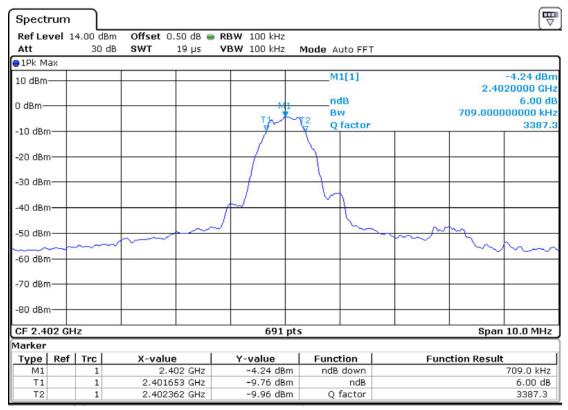



Figure 1: Measurement setup for the carrier frequency separation

Low Channel

Middle Channel

Specti	um												
Ref Le	vel 1	4.00 dBm	Offset 0.	50 dB 🧉	RB	W 100 kHz							
Att		30 dB	SWT	19 µs	VΒ	W 100 kHz	Mo	de Al	uto FFT				
●1Pk Ma	эx												
10 dBm-								M	1[1]				-3.11 dBm
10 000												2.44	00000 GHz
0 dBm—						M	1	nc					6.00 dB
						Th	12	B				709.0000	000000 kHz
-10 dBm	<u> </u>				\rightarrow	7	¥	Q	factor				3440.9
-20 dBm						1	1						
-20 uBm							1	3					
-30 dBm													
-30 ubii								5	6				
-40 dBm					1	\sim		- 01					
- to abili					1				ha		D.C		
-50 dBm				~	<u> </u>				10.000	~	10	m	
~~	~											have	hann
-60 dBm													
-70 dBm													
-80 dBm			+		\rightarrow								
05.0.4													
CF 2.44	+ GHZ					691	pts					span	10.0 MHz
Marker		1									_		
Type M1	Ref		X-value	9 44 GHz		Y-value -3.11 dB		Funct	tion down		Fund	ction Result	709.0 kHz
T1		1	2.4396			-3.11 dB -9.22 dB		nuB	ndB				6.00 dB
T2		1	2.4403			-9.35 dB		0 1	factor				3440.9
12			2.1103			5.55 UD		~					5110.5

High Channel

Spectru	m								
Ref Leve	14.00 c	lBm Offset	0.50 dB 😑	RBW 100 kHz					`,
Att	30	db SWT	19 µs	VBW 100 kHz	Mode A	uto FFT	г		
⊖1Pk Max									
10 dBm—	_				M	1[1]			-2.53 dBm
				100				2.48	00000 GHz
0 dBm				M		B		700 0000	6.00 dB
				TIM	T2 B	w factor		709.0000	00000 kHz 3497.3
-10 dBm—				<u> </u>	y y	Tactor			3497.3
-20 dBm—						<u> </u>			
					1				
-30 dBm—					1				
10 dB				/	m	0			
-40 dBm—		nom					-		
-50 dBm—	100	h						-	
-30 000	1							Y	
-60 dBm—									
00 000									
-70 dBm—	_								
-80 dBm—									
05.0.40.4									10.01
CF 2.48 (iHZ			691	pts			span	10.0 MHz
Marker	6 L				1 =				
Type R M1	ef Trc	X-val	ue 2.48 GHz	<u>Y-value</u> -2.53 dB	Func	tion down	Fun	nction Result	709.0 kHz
T1	1		2.48 GH2 9609 GHz	-2.53 UB		ndB			6.00 dB
T2	1		0009 GH2	-9.15 dB		factor			3497.3
		21100		5120 00			1		2.5110

3.2.2 Peak Output Power Measurement

Procedure:

The maximum peak output power was measured with the spectrum analyzer connected to the antenna output of the EUT. The spectrum analyzer's internal channel power integration function is used to integrate the power over a bandwidth greater than or equal to the 99 % bandwidth. The EUT was operating in transmit mode at the appropriate center frequency.

The spectrum analyzer is set to:Center frequency = the highest, middle and the lowest channelsRBW = 1 MHzSpan = auto $VBW = 1 MHz (VBW \ge RBW)$ Sweep = autoDetector function = peak

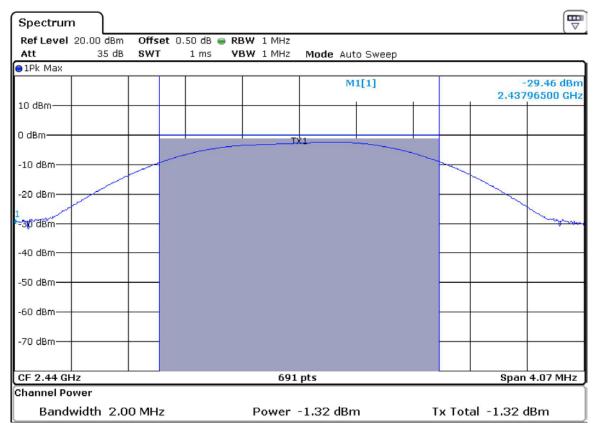
Measurement Data : Complies

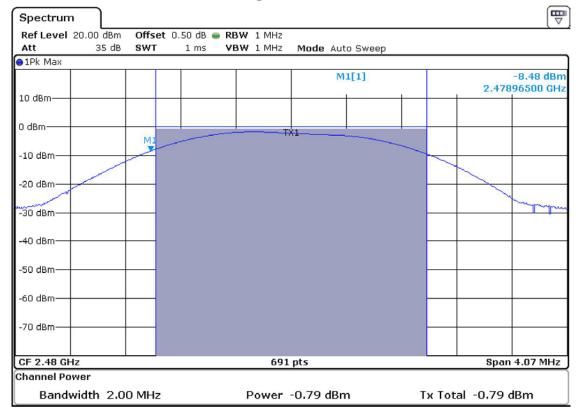
Frequency	Test Results						
(MHz)	dBm	mW	Result				
2402	-2.66	0.542	Complies				
2440	-1.32	0.738	Complies				
2480	-0.79	0.834	Complies				

- See next pages for actual measured spectrum plots.

Minimum Standard:

Peak output power	< 1 W
-------------------	-------


Measurement Setup


Same as the Chapter 3.2.1 (Figure 1)

Low Channel

Middle Channel

High Channel

3.2.3 Power Spectral Density

Procedure:

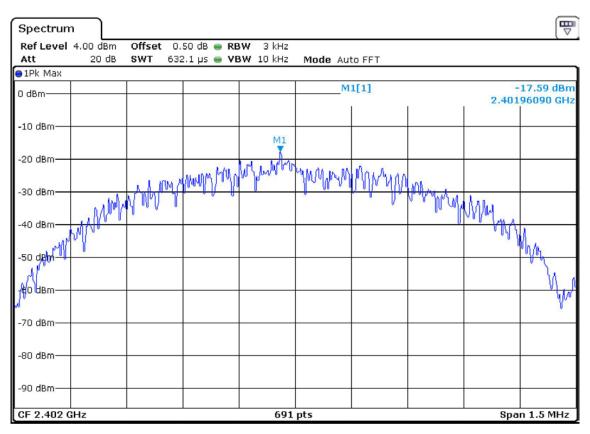
The peak power density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

The spectrum analyzer is set to:	
RBW = 3 kHz	Span = 1.5 MHz (1.5 times the DTS bandwidth)
$VBW = 10 \text{ kHz} (\geq 3 \text{ x RBW})$	Sweep = auto
Detector function = peak	Trace = max hold

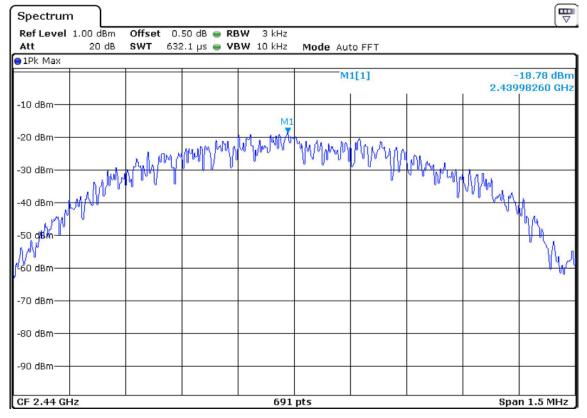
Measurement Data : Complies

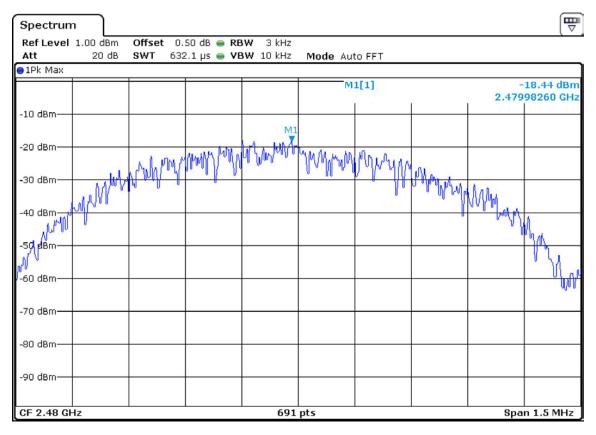
Frequency	Test Res	sults
(MHz)	dBm/ 3 kHz BW	Result
2402	-17.59	Complies
2440	-18.78	Complies
2480	-18.44	Complies

- See next pages for actual measured spectrum plots.


Minimum Standard:

Power Spectral Density	< 8 dBm @ 3 kHz BW
------------------------	--------------------


Measurement Setup


Same as the Chapter 3.2.1 (Figure 1)

Power Density Measurement Low Channel

Middle Channel

High Channel

3.2.4 Band Edge

Procedure:

The bandwidth at 20 dB down from the highest inband spectral density is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate frequencies.

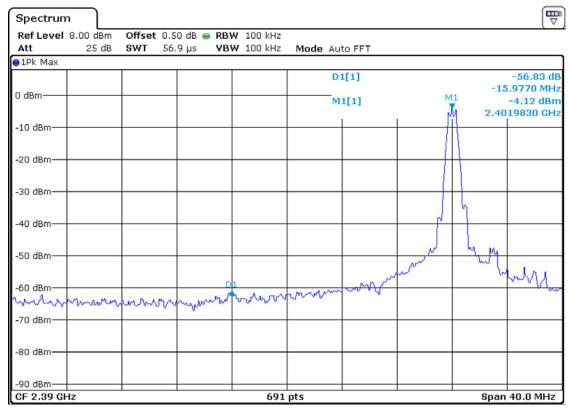
After the trace being stable, Use the marker-to-peak function to measure 20 dB down both sides of the intentional emission or 30 dB down for average power, DTS only.

The spectrum analyzer is set to:

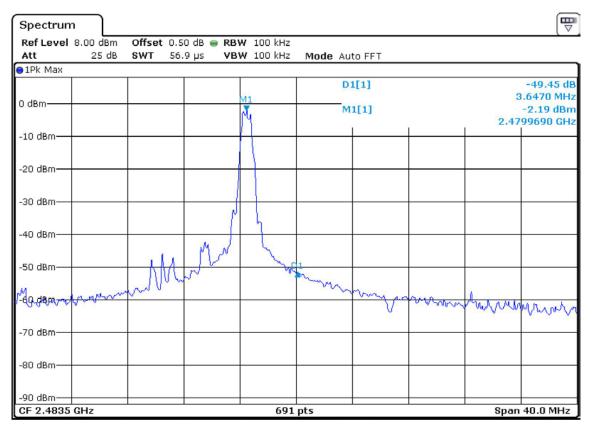
Center frequency = the highest, middle and the lowest channels

RBW = 100 kHz	VBW = 100 kHz
Span = 40 MHz, 100 MHz	Detector function = peak
Trace = max hold	Sweep = auto

Radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a)

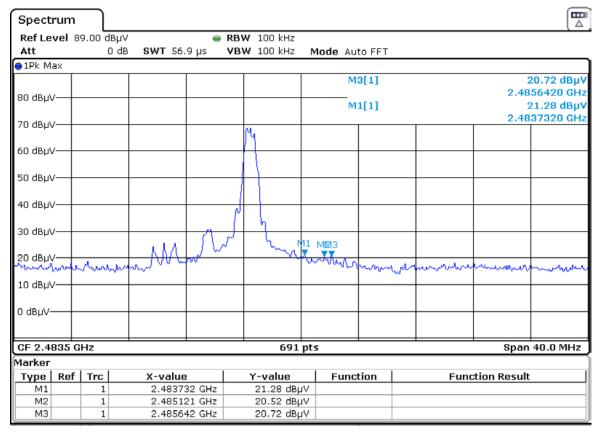

The spectrum analyzer is set to:Center frequency = the highest, the lowest channelsPEAK:RBW = VBW = 1 MHz, Sweep=AutoAverage:RBW = 1 MHz, VBW=10 Hz, Sweep=AutoMeasurement Distance:3 mPolarization:Horizontal / Vertical

Measurement Data: Complies


- All conducted emission in any 100 kHz bandwidth outside of the spread spectrum band was at least 20 dB lower than the highest inband spectral density. Therefore the applying equipment meets the require ment.
- See next pages for actual measured spectrum plots.

Minimum Standard:

Lower edge


Upper edge

<u>Radiated</u>	emissions	Lower	edge

Spect	rum													
Ref Le	vel 7	7.00 d	lBμV			RBW	100 kHz							
Att		() dB	SWT	56.9 µs	VBW	100 kHz	Mod	le Au	to FFT				
😑 1Pk Ma	ах													
									M	1[1]				ι7.57 dΒμV
70 dBµV			\rightarrow											86690 GHz
co do d	.								M	2[1]				17.62 dBµV 90593 GHz
60 dBµV										I		i r	2.37	90593 GHZ
50 dΒµV														
50 ивру	<u> </u>												}	
40 dΒµV														
10 0000														Λ.
30 dBµV	/													AA
												h 1	1 7 11.11	$\Lambda J V V''$
20 dBµV	-		_	M2	_		M3M1						- hull	<i>v</i> w
hunsil	ww	marc	w		mar	man	manne	mule	shehm	m	s-m	mon	020	
10 dBµV			-+		_									
0 dBµV-			-+											
-10 dBµ'	v+													
-20 dBµ'														
CF 2.39							601	nte						40.0 MHz
Marker	9 GHZ	<u>.</u>					691	prs					span	40.0 MHZ
	Ref	Trc		X-va	luo	1	Y-value	1	Func	tion	1	Eupe	tion Result	1
Type M1	Rei	1			110e 38669 GHz		17.57 dBµ		Punc	lion		Func	LION RESUL	
M2		1			90593 GHz		17.62 dBµ							
MЗ		1			87627 GHz		18.18 dBµ							

Radiated emissions Upper edge

Frequency		ding V/m]	Pol.	Correction Factor		Limits [dBuV/m]		Result [dBuV/m]		Margin [dB]	
[MHz]	AV /	/ Peak	P01.	Antenna	Amp. Gain + Cable Loss	AV / Peak		AV / Peak		AV / Peak	
2373.2	14.26	17.57	Н	28.08	8.77	54	74	33.57	36.88	20.43	37.12
2375.6	14.4	17.62	н	28.09	8.78	54	74	33.71	36.93	20.29	37.07
2348.1	14.78	18.18	н	28.08	8.77	54	74	34.09	37.49	19.91	36.51

Radiated Band-edges in the restricted band 2310-2390 MHz measurement

Radiated Band-edges in the restricted band 2483.5-2500 MHz measurement

Frequency	Rea	ding		(Correction	Limits		Result		Margin	
	[dBu	dBuV/m] Pol.			Factor	[dBu	V/m]	[dBu	V/m]	[d	B]
[MHz]		/ Peak	1 01.	Antenna	Amp. Gain	AV / Peak		AV / Peak		AV / Peak	
נוארזצן	AV /	геак		Antenna	+ Cable Loss						
2483.7	17.94	21.28	Н	27.88	8.57	54	74	37.25	40.59	16.75	33.41
2485.1	17.45	20.52	н	27.88	8.57	54	74	36.76	39.83	17.24	34.17
2485.6	17.62	20.72	н	27.88	8.57	54	74	36.93	40.03	17.07	33.97

Note : This EUT was tested in 3 orthogonal positions and the worst-case data was presented

3.2.5 Conducted Spurious Emissions

Procedure:

The test follows KDB558074. The conducted spurious emissions were measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels..

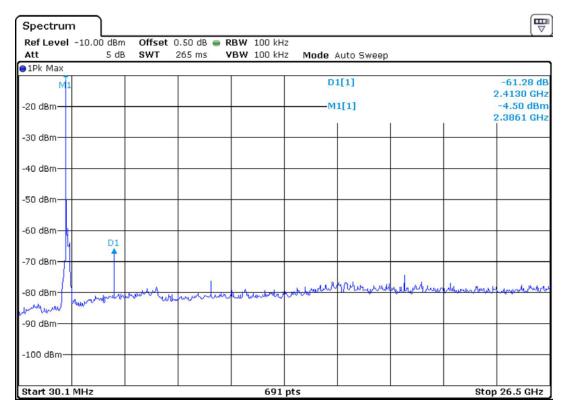
After the trace being stable, set the marker on the peak of any spurious emission recorded.

The spectrum analyzer is set to:

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions

RBW = 100 kHzSweep = autoVBW = 100 kHzDetector function = peak

7Trace = max hold


Measurement Data: Complies

- All conducted emission in any 100 kHz bandwidth outside of the spread spectrum band was at least 20 dB lower than the highest inband spectral density. Therefore the applying equipment meets the require ment.
- See next pages for actual measured spectrum plots.

Minimum Standard:	> 20 dBc
-------------------	----------

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

<u>Unwanted Emission – Low Channel</u> Frequency Range = 30 MHz ~ 26.5 GHz

<u>Unwanted Emission – Middle Channel</u> Frequency Range = 30 MHz ~ 26.5 GHz

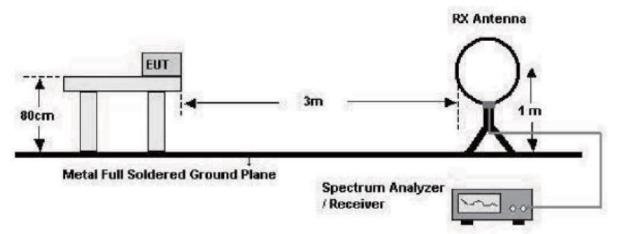
Spectrum				
Ref Level -10.00 d				
	dB SWT 265 ms	VBW 100 kHz Mode	Auto Sweep	
●1Pk Max				
M1		M	11[1]	-3.06 dBm 2.4241 GHz
-20 dBm		n	1[1]	-62.88 dB
-20 ubm				2.4520 GHz
-30 dBm				
-40 dBm				
-50 dBm				
-60 dBm				
	01			
-70 dBm	A			
-80 dBm	a mail in	And the second second	hannand ulara	deter the laws the star and the sense the
-80 dBm	to ante the warder	manning		
And prome				
-90 dBm				+ +
-100 dBm				
Start 30.1 MHz		691 pts		Stop 26.5 GHz
Start 30.1 MHZ		oarhes		500p 20.5 GHz

Spectrum	r								
Ref Level	-12.00 dBm	Offset ().50 dB 👄 R	BW 100 kH	Z				
Att	5 dB	SWT :	265 ms 🛛 🛛 🛛	' BW 100 kH	z Mode /	Auto Sweep			
😑 1Pk Max					_				
MI					D	1[1]			-64.08 dB
-20 dBm					<u> </u>			1	2.4900 GHz
					M	1[1]			-4.00 dBm 2.4620 GHz
-30 dBm								1	
-30 0811									
-40 dBm									
-50 dBm									
-60 dBm									
	D1								
-70 dBm	D1								
-70 0011									
		مستهدهان							
-80 dBm+-	Work and the state of the state								
10 C CO.C.S		nh	um nomente	Myrom	Mundan	~ which which	wardelythered	www	remether
-90 dBm		- 100 C		•	•				
-100 dBm—									
-110 dBm—									
	Start 30.0 MHz 691 pts Stop 26.5								

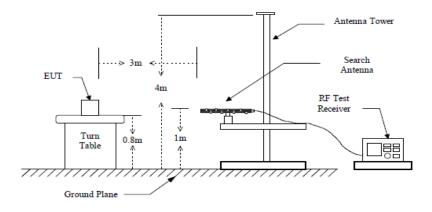
<u>Unwanted Emission – High Channel</u> <u>Frequency Range = 30 MHz ~ 26.5 GHz</u>

3.2.6 Radiated Spurious Emissions

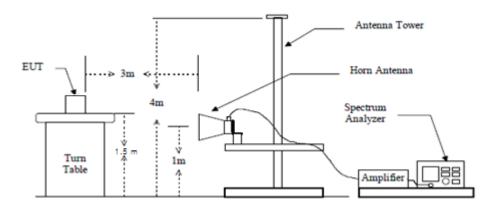
Procedure:


Radiated emissions from 30 MHz to 25 GHz were measured according to the methods defines in ANSI C63.10-2013.

The EUT is a placed on as turn table. For emissions testing at or below 1 GHz, the table height shall be 0.8 m above the reference ground plane. For emission measurements above 1 GHz, the table height shall be 1.5 m. The turn table shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes and measurement procedures for electric field radiated emissions above 1 GHz the EUT measurement is to be made "while keeping the antenna in the 'cone of radiation' from that area and pointed at the area both in azimuth and elevation, with


polarization oriented for maximum response." is still within the 3dB illumination BW of the measurement antenna.

The spectrum analyzer is set to:	
Center frequency = the worst channel	
Frequency Range = 9 kHz ~ 10^{th} harmonic.	
RBW = 100 kHz (30 MHz ~ 1 GHz)	$VBW \geq RBW$
$= 1 \text{ MHz} (1 \text{ GHz} \sim 10^{\text{th}} \text{ harmonic})$	
Span = 100 MHz	Detector function = peak
Trace = max hold	Sweep = auto



below 1 GHz (30 MHz to 1 GHz)

above 1 GHz

Measurement Data: Complies

- See next pages for actual measured data.
- No other emissions were detected at a level greater than 20 dB below limit include from 9 kHz to 30MHz.

Frequency (MHz)	Limit (uV/m) @ 3 m
0.009 ~ 0.490	2400/F(kHz) (@ 300 m)
0.490 ~ 1.705	24000/F(kHz) (@ 30 m)
1.705 ~ 30	30(@ 30 m)
30 ~ 88	100 **
88 ~ 216	150 **
216 ~ 960	200 **
Above 960	500

Minimum Standard: FCC Part 15.209(a)

** Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

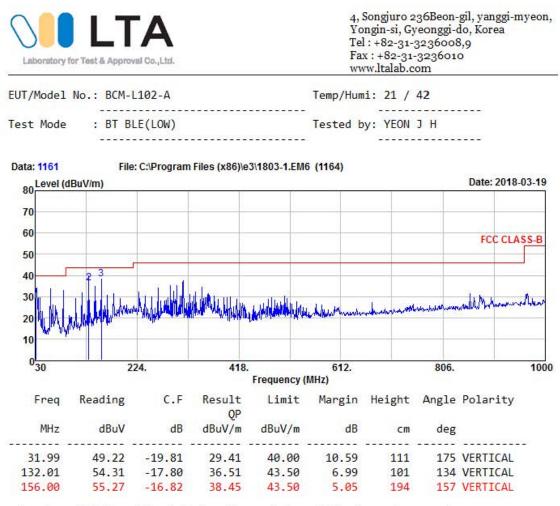
Frequency		ding V/m]	Pol.	(Correction Factor	Limits [dBuV/m]		Result [dBuV/m]		Margin [dB]		
[MHz]	AV /	' Peak		Antenna	Amp.Gain+Cable	AV/	AV/Peak		AV/Peak		AV / Peak	
2987.9	44.8	47.5	v	27.84	46.65	54	74	26.99	29.69	27.01	44.31	
-	-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	

Measurement Data : (Above 1 GHz)

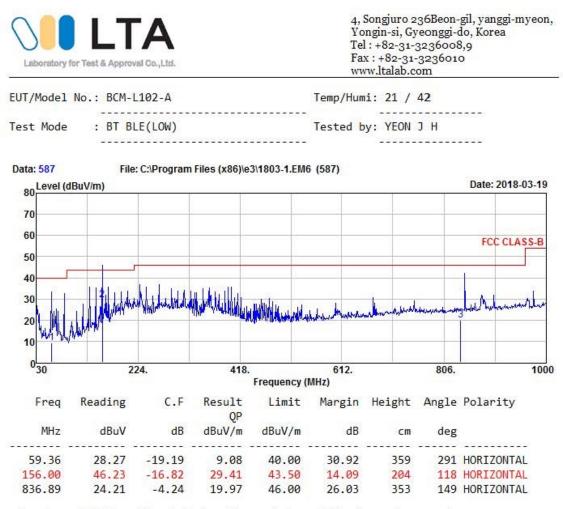
- No other emissions were detected at a level greater than 20 dB below limit.

Measurement Data: (Below 1 GHz)

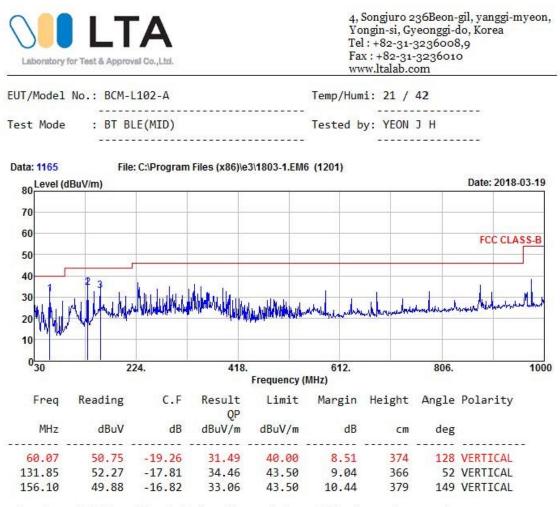
	Rea	ding		Correction		Lin	imits		Result		rgin
Frequency	[dBu	V/m]	Pol.	Factor		[dBu	V/m]	[dBuV/m]		[dB]	
[MHz]	AV /	/ Peak		Antenna	Amp.Gain+Cable	AV / Peak		AV /	/ Peak	AV / Peak	
131.85	57.23	60.45	н	14.42	32.23	54	74	39.42	42.64	14.58	31.36
-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-

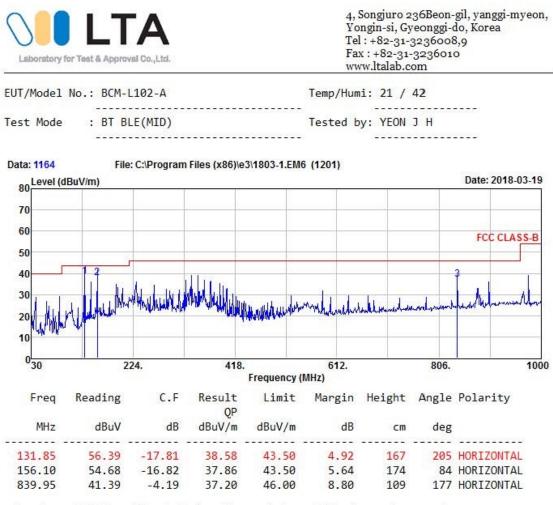

*No emissions were detected at a level greater than 20 dB below limit.

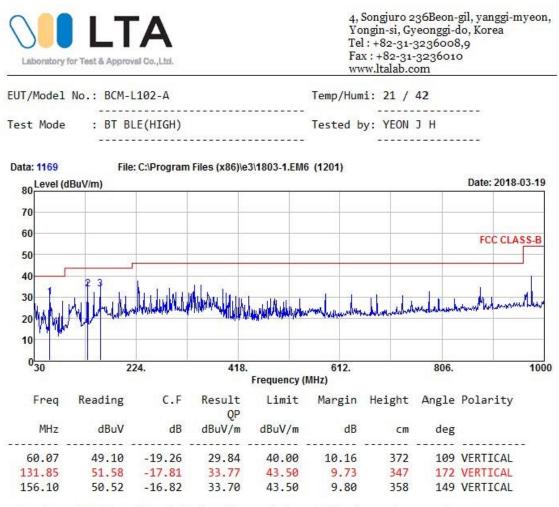
Measurement Data: (9 kHz - 30 MHz)

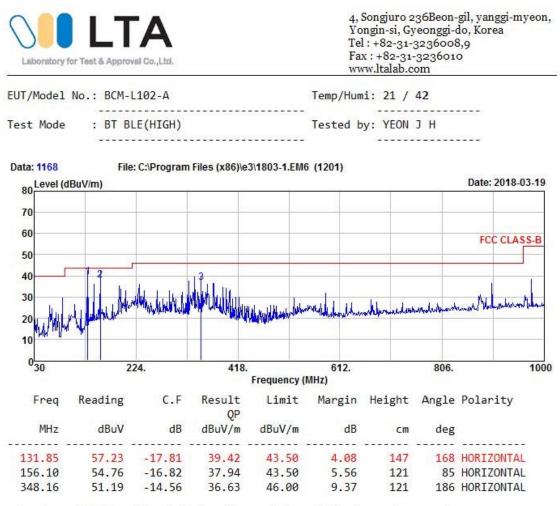

Frequency	Rea	ding		(Correction	Limits		Limits Result		Margin		
rrequency	-		Pol.		Factor	[dBuV/m] [dBuV/m]		V/m]	[dB]			
[MHz]	AV /	/ Peak		Antenna	Amp.Gain+Cable	AV /	/ Peak	AV /	/ Peak	[dB] AV / Peak 50.30 67.44		
0.611	21.51	24.37	Н	14.15	31.96	54	74	3.70	6.56	50.30	67.44	
-	-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	

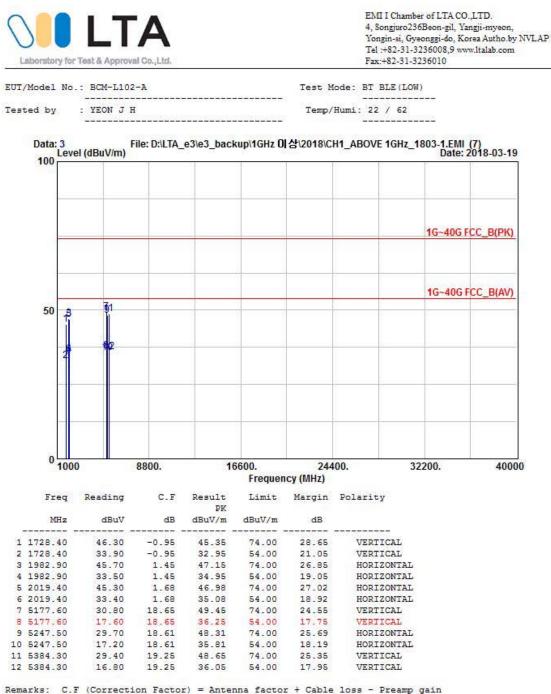
*No emissions were detected at a level greater than 20 dB below limit.


Radiated Emissions (Below 1 GHz) - Bluetooth(LOW) mode, Vertical

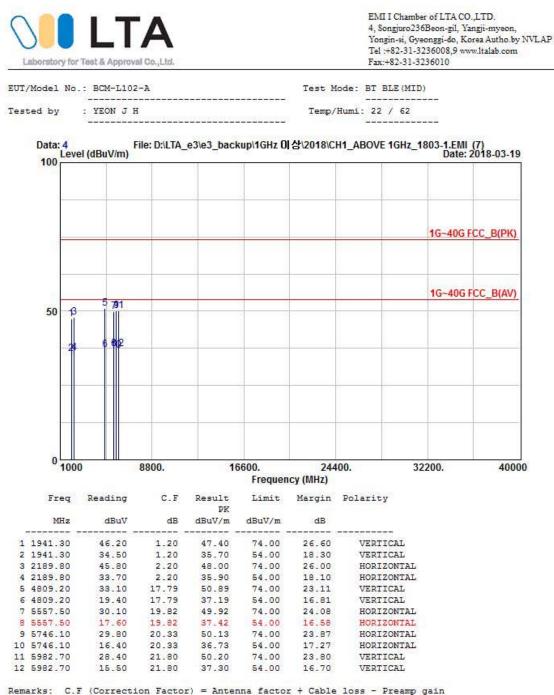

Bluetooth(LOW) mode, Horizontal


Bluetooth(MID) mode, Vertical

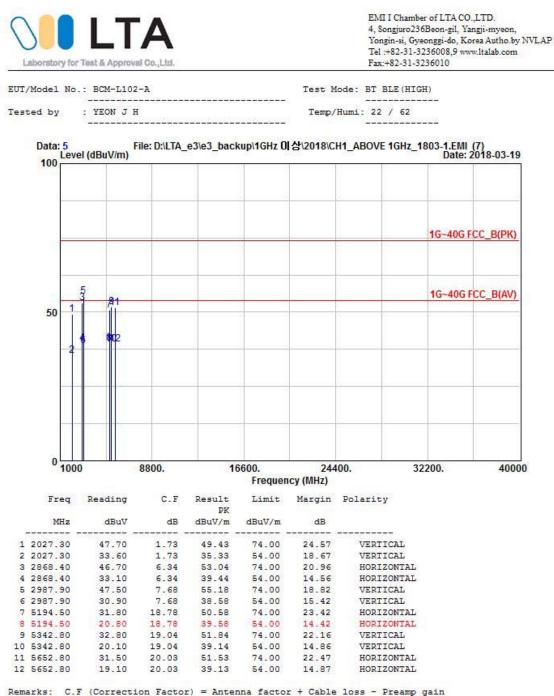

Bluetooth(MID) mode, Horizontal


Bluetooth(HIGH) mode, Vertical

Bluetooth(HIGH) mode, Horizontal



Radiated Emissions (Above 1 GHz) – Bluetooth(LOW) mode


Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp ga Blue : Vertical Black : Horizontal

Bluetooth(MID) mode

Blue : Vertical Black : Horizontal

Bluetooth(HIGH) mode

Blue : Vertical Black : Horizontal

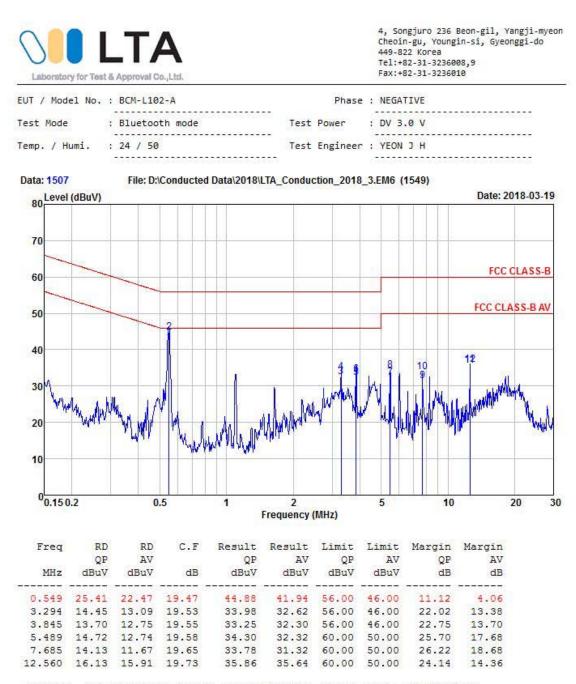
3.2.7 AC Conducted Emissions

Procedure:

The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. While the measurement, EUT had its hopping function disabled at the middle channels in line with Section 15.31(m). Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

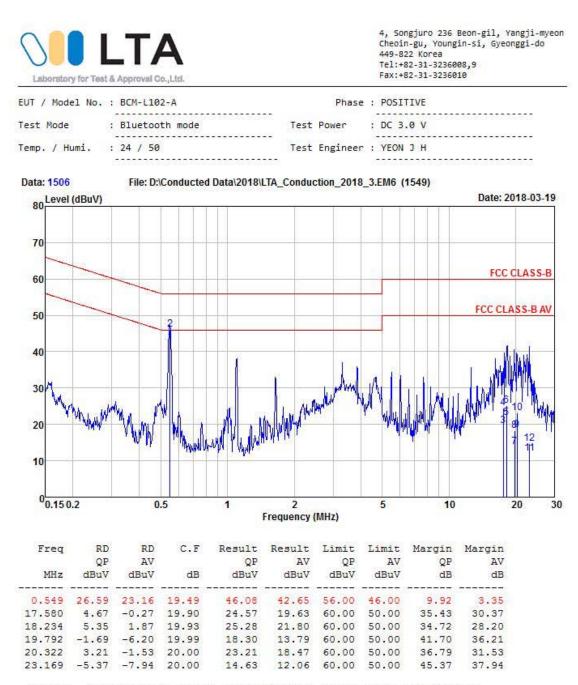
Measurement Data: Complies

- Refer to the next page.
- No other emissions were detected at a level greater than 20dB below limit
- It gave the worse case emissions


Minimum Standard: FCC Part 15.207(a) / EN 55022

Class B

Frequency Range	quasi-peak	Average		
0.15 ~ 0.5	66 to 56 *	56 to 46 *		
0.5 ~ 5	56	46		
5 ~ 30	60	50		


* Decreases with the logarithm of the frequency

<u>Conducted Emissions – 2.4 GHz Bluetooth Mode(MID) + Negative</u>

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss + Pulse Limiter

Conducted Emissions – 2.4 GHz Bluetooth Mode(MID) + Positive

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss + Pulse Limiter

3.4 Measurement Uncertainty

Parameter	Uncertainty			
Centre Frequency	$\pm 1 \times 10^{-5} \text{ MHz}$			
Occupied Channel Bandwidth	±5 %			
RF output power, conducted	±1.5 dB			
Power Spectral Density, conducted	$\pm 3 \text{ dB}$			
Unwanted Emissions, conducted	$\pm 3 \text{ dB}$			
All emissions, radiated	$\pm 6 \mathrm{dB}$			
Temperature	±1 °C			
Humidity	±5 %			
DC and low frequency voltages	±3 %			
Time	±5 %			
Duty Cycle	±5 %			

APPENDIX TEST EQUIPMENT USED FOR TESTS

	Use	Description	Model No.	Serial No.	Manufacturer	Interval	Last Cal. Date
1		Signal Analyzer (9 kHz ~ 30 GHz)	FSV30	100757	R&S	1 year	2017-09-07
2		Signal Generator (~3.2 GHz)	8648C	3623A02597	HP	1 year	2017-03-20
3		SYNTHESIZED CW GENERATOR	83711B	US34490456	HP	1 year	2017-03-20
4		Attenuator (3 dB)	8491A	37822	НР	1 year	2017-09-07
5		Attenuator (10 dB)	8491A	63196	HP	1 year	2017-09-07
6		EMI Test Receiver (~7 GHz)	ESCI7	100722	R&S	1 year	2017-09-07
7		RF Amplifier (~1.3 GHz)	8447D OPT 010	2944A07684	НР	1 year	2017-09-07
8		RF Amplifier (1~26.5 GHz)	8449B	3008A02126	HP	1 year	2017-03-21
9		Horn Antenna (1~18 GHz)	3115	00114105	ETS	2 year	2016-08-04
10		DRG Horn (Small)	3116B	81109	ETS-Lindgren	2 year	2016-05-03
11		DRG Horn (Small)	3116B	133350	ETS-Lindgren	2 year	2016-05-03
12		TRILOG Antenna	VULB 9160	9160-3237	SCHWARZBECK	2 year	2017-04-17
13		Temp.Humidity Data Logger	SK-L200TH II A	00801	SATO	1 year	2017-03-21
14		Splitter (SMA)	ZFSC-2-2500	SF617800326	Mini-Circuits	-	-
15		DC Power Supply	6674A	3637A01657	Agilent	-	-
16		Frequency Counter	5342A	2826A12411	НР	1 year	2017-03-21
17		Power Meter	EPM-441A	GB32481702	HP	1 year	2017-03-20
18		Power Sensor	8481A	3318A94972	НР	1 year	2017-12-26
19		Audio Analyzer	8903B	3729A18901	HP	1 year	2017-09-07
20		Modulation Analyzer	8901B	3749A05878	HP	1 year	2017-09-07
21		TEMP & HUMIDITY Chamber	YJ-500	LTAS06041	JinYoung Tech	1 year	2017-09-07
22		Stop Watch	HS-3	812Q08R	CASIO	2 year	2017-03-21
23		LISN	KNW-407	8-1430-1	Kyoritsu	1 year	2017-09-07
24		Two-Lime V-Network	ESH3-Z5	893045/017	R&S	1 year	2017-03-20
25		UNIVERSAL RADIO COMMUNICATION TESTER	CMU200	106243	R&S	1 year	2017-03-20
26		Highpass Filter	WHKX1.5/15G-10SS	74	Wainwright Instruments	1 year	2017-03-20
27		Highpass Filter	WHKX3.0/18G-10SS	118	Wainwright Instruments	1 year	2017-03-20
28		OSP120 BASE UNIT	OSP120	101230	R&S	1 year	2017-03-21
29		Signal Generator(100 kHz ~ 40 GHz)	SMB100A03	177621	R&S	1 year	2017-03-23
30		Signal Analyzer (10 Hz ~ 40 GHz)	FSV40	101367	R&S	1 year	2017-03-21