

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China TING

FCC P	ART 15 SUBPART C TEST	REPORT
	FCC PART 15.247	TING
Dement Defension No		TESI
Report Reference No		s C ¹ r
Compiled by		
	^{rre):} File administrators Zoey Cao	Toey Cow
Supervised by		States wind windless G
(position+printed name+signatu	^{Ire)…:} Project Engineer Amy Wen	(Shot A Ven =)
Approved by	51	dpproved
(position+printed name+signatu	Ire): RF Manager Eric Wang	C Evic Wang
Date of issue		TESTING
	Shenzhen CTA Testing Technolo	
Address	Room 106, Building 1, Yibaolai Ind	lustrial Park, Qiaotou Community, Izhen, China
Applicant's name	: ShenZhen Junsida Electronic Te	echnology Co.,Ltd
Address		ark, Hebei Industrial Zone, Hualian, China
Test specification	TATES !!	. G
Standard	: FCC Part 15.247	TESTINC
Shenzhen CTA Testing Techn	ology Co., Ltd. All rights reserved.	CTA
Shenzhen CTA Testing Techno material. Shenzhen CTA Testing	iced in whole or in part for non-commerc logy Co., Ltd. is acknowledged as copyr g Technology Co., Ltd. takes no respons om the reader's interpretation of the repro	ight owner and source of the sibility for and will not assume
Equipment description	: Wireless mouse	
Trade Mark	: FMOUSE 虎猫	NG .
Manufacturer	ShenZhen Junsida Electronic Tech	nnology Co.,Ltd
Model/Type reference	: M133	ESTINO
Listed Models	: M233, M333, M503, M303	CTATE C
Modulation	: GFSK	nnology Co.,Ltd
Frequency	From 2402MHz to 2480MHz	
Ratings	DC 3.7V From battery and DC 5.0	V From external circuit
Result	: PASS	
Ĵ	TATESI	- NG

Report No.: CTA23101600	301	Page 2 of 35
CTATESTING	TEST REPORT	
Equipment under Test	: Wireless mouse	CTATESTING
Model /Type	: M133	
Listed Models	: M233, M333, M503, M303	
Applicant	ShenZhen Junsida Electronic Tech	hnology Co.,Ltd
Address	: 3F Bldg 1, Zhenyingtai Industrial Parl Longhua Dist Shenzhen, 518109, Ch	
Manufacturer	ShenZhen Junsida Electronic Tech	hnology Co.,Ltd
Address	: 3F Bldg 1, Zhenyingtai Industrial Parl Longhua Dist Shenzhen, 518109, Ch	
Test Re	esult:	PASS
The test report merely	corresponds to the test sample.	CTATESTIC

It is not permitted to copy extracts of these test result without the written permission of the test laboratory. CTATESTING

Contents

and the second			4
	TEST STANDARDS		
	TAIL		
2	SUMMARY		5
<u>2</u>	<u> 30 WIWART</u>		<u></u>
2.1	General Remarks		F
			5
2.2	Product Description*		5 5 5 6
2.3	Equipment Under Test		5
2.4	Short description of the Equipment under Te	est (EUT)	5
2.5	EUT operation mode		6
2.6	Block Diagram of Test Setup		6
2.7	Related Submittal(s) / Grant (s)		6
2.8	Modifications		6
<u>3</u>	TEST ENVIRONMENT		<u>7</u>
		CTA	
		CTAT	S
3.1	Address of the test laboratory		7
3.2	Test Facility	C.T.A	7
3.3	Environmental conditions		7
3.4	Summary of measurement results		8
			-
3.5	Statement of the measurement uncertainty		8
3.6	Equipments Used during the Test		9
	TES	0	
<u>4</u>	TEST CONDITIONS AND RESULT	<u>S</u>	<u>10</u>
	TES	CTA TESTING	
4.1	AC Power Conducted Emission		10
4.2	Radiated Emissions and Band Edge	-ESI"	13
4.3	Maximum Peak Output Power	-1750	20
4.4	Power Spectral Density	GIN CIN	21
4.5	6dB Bandwidth		23
4.6	Out-of-band Emissions		25
4.7	Antenna Requirement		29
	3		
SI			
<u>5</u>	TEST SETUP PHOTOS OF THE E	UT	
_	TING		
<u>6</u>	PHOTOS OF THE EUT		31
	GVr.	TINU	
		CTATESTING	
		GV	
		C. C.	
		CTATES.	
	TAIL		
	G''		
	CTATESTING		
	GV		

1 <u>TEST STANDARDS</u>

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. <u>ANSI C63.10-2013</u>: American National Standard for Testing Unlicensed Wireless Devices <u>KDB558074 D01 V05r02</u>: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247

Systems (DTS) Operating Under §15.247

SUMMARY 2

2.1 **General Remarks**

CTATEO			
2.1 General Remarks			
Date of receipt of test sample		Oct. 16, 2023	
Testing commenced on		Oct. 16, 2023	
Testing concluded on	:	Oct. 23, 2023	La rente Sal

2.2 Product Description*

2.2 Product Descri	ption*	
Product Description:	Wireless mouse	
Model/Type reference:	M133	
Power supply:	DC 3.7V From battery and DC 5.0V From external circuit	
Adapter information	Model: EP-TA20CBC	
(Auxiliary test suppled by	Input: AC 100-240V 50/60Hz	
test Lab	Output: DC 5V 2A	
Hardware version:	V1.0	TEST
Software version:	V1.0	CTP '
Testing comple ID:	CTA231016003-1# (Engineer sample)	
Testing sample ID:	CTA231016003-2# (Normal sample)	
Bluetooth BLE		
Supported type:	Bluetooth low Energy	
Modulation:	GFSK	
Operation frequency:	2402MHz to 2480MHz	
Channel number:	40	
Channel separation:	2 MHz	
Antenna type:	PCB antenna	3
Antenna gain:	-1.52 dBi	

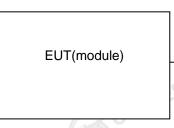
2.3 Equipment Under Test

Power supply system utilised

2.3 Equipment Under Test				CTA .	CTATE
Power supply system utilised	1				CAN C
Power supply voltage	:	Ο	230V / 50 Hz	🔿 120V / 60Hz	
	1	0	12 V DC	O 24 V DC	
STI	1		Other (specified in	blank below)	

DC 3.7V From battery and DC 5.0V From external circuit

2.4 Short description of the Equipment under Test (EUT)


This is a Wireless mouse. For more details, refer to the user's manual of the EUT.

2.5 EUT operation mode

The Applicant provides command "*#*#3646633#*#*" access (Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing. There are 40 channels provided to the EUT and Channel 00/19/39 were selected to test.

Channel	Frequency (MHz)
00	2402
01	2404
02	2406
-	:
19	2440
ESTIN	:
37	2476
38	2478
39	2480

2.6 Block Diagram of Test Setup

_	DC 5.0V from adapter	

2.7 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8 **Modifications**

No modifications were implemented to meet testing criteria. GA CTATESTING

TEST ENVIRONMENT 3

Address of the test laboratory 3.1

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

Environmental conditions 3.3

During the measurement the environmental conditions were within the listed ranges: Radiated Emission:

Temperature:	23 ° C
	TES
Humidity:	44 %
Atmospheric pressure:	950-1050mbar

AC Main Conducted testing.

te main eenaaetea teeting.	
Temperature:	24 ° C
G	
Humidity:	47 %
	. 6.
Atmospheric pressure:	950-1050mbar

CTATES

	Aunospheric pressure.	930-103011bai	
С	onducted testing:	TED	TING
	Temperature:	24 ° C	TESI
	Constant of the second s		(A)
	Humidity:	46 %	
	Atmospheric pressure:	950-1050mbar]

	Test Specification clause	Test case	Test Mode	Test Channel		ecorded Report	Test result
	§15.247(e)	Power spectral density	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	complies
	§15.247(a)(2)	Spectrum bandwidth – 6 dB bandwidth	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	BLE 1Mpbs	 ☑ Lowest ☑ Middle ☑ Highest 	complies
	§15.247(b)(3)	Maximum output Peak power	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	BLE 1Mpbs	 ☑ Lowest ☑ Middle ☑ Highest 	complies
CTATE	§15.247(d)	Band edge compliance conducted	BLE 1Mpbs	⊠ Lowest ⊠ Highest	BLE 1Mpbs	⊠ Lowest ⊠ Highest	complies
C ··	§15.205	Band edge compliance radiated	BLE 1Mpbs	⊠ Lowest ⊠ Highest	BLE 1Mpbs	⊠ Lowest ⊠ Highest	complies
	§15.247(d)	TX spurious emissions conducted	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	BLE 1Mpbs	 ☑ Lowest ☑ Middle ☑ Highest 	complies
	§15.247(d)	TX spurious emissions radiated	BLE 1Mpbs	Lowest	BLE 1Mpbs	 ☑ Lowest ☑ Middle ☑ Highest 	complies
	§15.209(a)	TX spurious Emissions radiated Below 1GHz	BLE 1Mpbs	-/-	BLE 1Mpbs	-/-	complies
	§15.107(a) §15.207	Conducted Emissions < 30 MHz	BLE 1Mpbs	ING -/-	BLE 1Mpbs	-/-	complies

3.4 Summary of measurement results

Remark:

1. The measurement uncertainty is not included in the test result.

2. We tested all test mode and recorded worst case in report

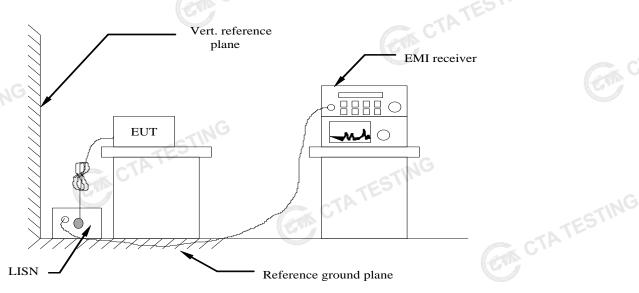
3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd. :

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	0.009~30MHz	3.40 dB	(1)
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB 🚺	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
Occupy Bandwidth	0.009-18G	1.23 dB	(1)
Output Power	0.009-18G	1.50 dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 9 of 35


3.6 Equipments Used during the Test

	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date	
	LISN	R&S	ENV216	CTA-308	2023/08/02	2024/08/01	
	LISN	R&S	ENV216	CTA-314	2023/08/02	2024/08/01	
	EMI Test Receiver	R&S	ESPI	CTA-307	2023/08/02	2024/08/01	
	EMI Test Receiver	R&S	ESCI	CTA-306	2023/08/02	2024/08/01	
	Spectrum Analyzer	Agilent	N9020A	CTA-301	2023/08/02	2024/08/01	
TATE	Spectrum Analyzer	R&S	FSP	CTA-337	2023/08/02	2024/08/01	
CTATE	Vector Signal generator	Agilent	N5182A	CTA-305	2023/08/02	2024/08/01	
	Analog Signal Generator	R&S	SML03	CTA-304	2023/08/02	2024/08/01	
	Universal Radio Communication	CMW500	R&S	CTA-302	2023/08/02	2024/08/01	
	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2023/08/02	2024/08/01	
	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2021/08/07	2024/08/06	
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2021/08/07	2024/08/06	
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2021/08/07	2024/08/06	
	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/07	2024/08/06	
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2023/08/02	2024/08/01	
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2023/08/02	2024/08/01	
	Directional coupler	NARDA	4226-10	CTA-303	2023/08/02	2024/08/01	
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2023/08/02	2024/08/01	
	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2023/08/02	2024/08/01	
	Automated filter bank	Tonscend	JS0806-F	CTA-404	2023/08/02	2024/08/01	
j'r	Power Sensor	Agilent	U2021XA	CTA-405	2023/08/02	2024/08/01	
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2023/08/02	2024/08/01	
	GM		GAN CTA	TESTIN	C- CT	ATESTING	

TEST CONDITIONS AND RESULTS 4

AC Power Conducted Emission 4.1

TEST CONFIGURATION

TEST PROCEDURE

1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.

2 Support equipment, if needed, was placed as per ANSI C63,10-2013

3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013

4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

5 All support equipments received AC power from a second LISN, if any.

6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.

7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

8 During the above scans, the emissions were maximized by cable manipulation.

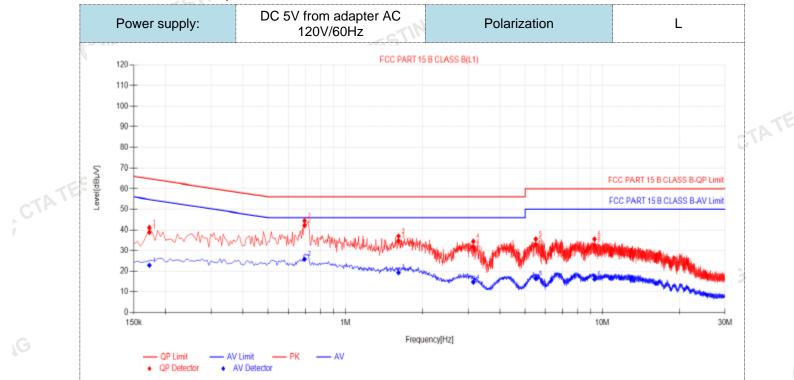
AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

Limit (d	dBuV)
Quasi-peak	Average
66 to 56*	56 to 46*
56	46
G 60	50
	Quasi-peak 66 to 56* 56

Decreases with the logarithm of the frequency

TEST RESULTS

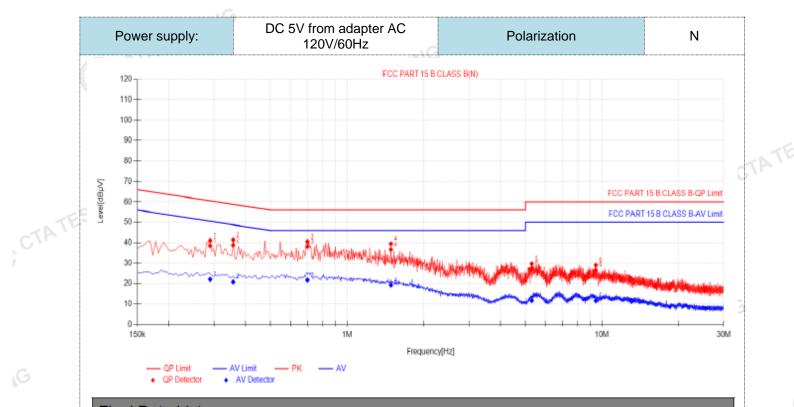

Remark:

1. BLE 1Mpbs was tested at Low, Middle, and High channel; only the worst result of BLE 1Mpbs High channel was reported as below:

Page 11 of 35

CTATESTING

2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:


Einal Data Lis

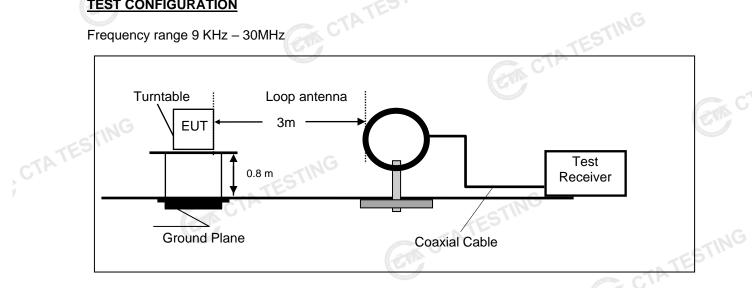
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict	
1	0.1725	9.97	28.85	38.82	64.84	26.02	12.82	22.79	54.84	32.05	PASS	
2	0.6945	9.92	32.21	42.13	56.00	13.87	15.95	25.87	46.00	20.13	PASS	
3	1.608	9.91	24.76	34.67	56.00	21.33	9.40	19.31	46.00	26.69	PASS	
4	3.147	10.00	21.82	31.82	56.00	24.18	4.74	14.74	46.00	31.26	PASS	5
5	5.505	10.07	22.94	33.01	60.00	26.99	6.25	16.32	50.00	33.68	PASS	- (4)-
6	9.312	10.26	22.53	32.79	60.00	27.21	5.80	16.06	50.00	33.94	PASS	
lote:1)	QP Value	(dBuV)	= OP Re	ading (dl	BuV)+ E₂	actor (dB)				A STATE OF STATE	

Note:1).QP Value $(dB\mu V)$ = QP Reading $(dB\mu V)$ + Factor (dB)

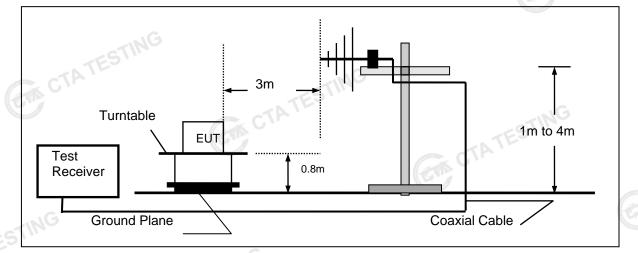
- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dBµV) QP Value (dBµV)
- CTATESTING 4). AVMargin(dB) = AV Limit (dB μ V) - AV Value (dB μ V)

Page 12 of 35

Final Data List

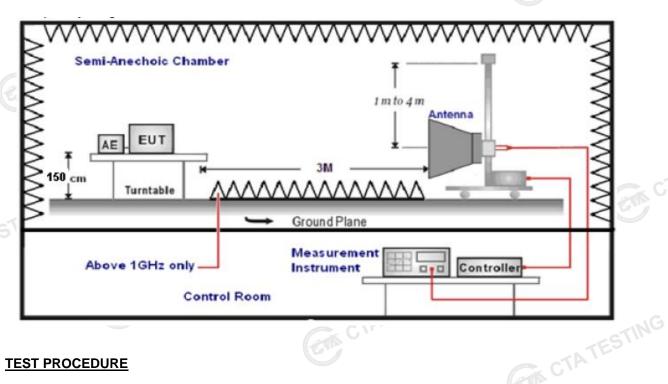

Freq. [MHz]	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBμV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict	
0.2895	9.89	28.61	38.50	60.54	22.04	12.23	22.12	50.54	28.42	PASS	
0.357	9.87	28.96	38.83	58.80	19.97	10.97	20.84	48.80	27.96	PASS	
0.699	10.06	28.03	38.09	56.00	17.91	11.73	21.79	46.00	24.21	PASS	
1.482	10.13	26.52	36.65	56.00	19.35	9.16	19.29	46.00	26.71	PASS	
5.298	10.13	17.39	27.52	60.00	32.48	1.60	11.73	50.00	38.27	PASS	
9.4515	10.40	16.22	26.62	60.00	33.38	1.23	11.63	50.00	38.37	PASS	-KD
).QP Value	e (dBµV):	= QP Rea	ading (dE	3μV)+ Fa	actor (dB)				GIA	
	[MHz] 0.2895 0.357 0.699 1.482 5.298 9.4515	[MHz] [dB] 0.2895 9.89 0.357 9.87 0.899 10.06 1.482 10.13 5.298 10.13 9.4515 10.40	Freq. [MHz] Factor [dB] Reading[dB] µV] 0.2895 9.89 28.61 0.357 9.87 28.96 0.699 10.06 28.03 1.482 10.13 26.52 5.298 10.13 17.39 9.4515 10.40 16.22	Freq. [MHz] Factor [dB] Reading[dB] μV] Value [dBμV] 0.2895 9.89 28.61 38.50 0.357 9.87 28.96 38.83 0.699 10.06 28.03 38.09 1.482 10.13 26.52 36.65 5.298 10.13 17.39 27.52 9.4515 10.40 16.22 26.62	Freq. [MHz] Factor [dB] Reading[dB µV] Value [dBµV] Limit [dBµV] 0.2895 9.89 28.61 38.50 60.54 0.357 9.87 28.96 38.83 58.80 0.699 10.06 28.03 38.09 56.00 1.482 10.13 26.52 38.65 56.00 5.298 10.13 17.39 27.52 60.00 9.4515 10.40 16.22 26.62 60.00	Freq. [MHz] Factor [dB] Reading[dB µV] Value [dBµV] Limit [dBµV] Margin [dB] 0.2895 9.89 28.61 38.60 60.54 22.04 0.357 9.87 28.96 38.83 58.80 19.97 0.699 10.06 28.03 38.09 56.00 17.91 1.482 10.13 26.52 36.65 56.00 19.35 5.298 10.13 17.39 27.52 60.00 32.48 9.4515 10.40 16.22 26.62 60.00 33.38	Freq. [MHz] Factor [dB] Reading[dB µV] Value [dBµV] Limit [dBµV] Margin [dB) Reading [dBµV] 0.2895 9.89 28.61 38.50 60.54 22.04 12.23 0.357 9.87 28.96 38.83 58.80 19.97 10.97 0.699 10.06 28.03 38.09 56.00 17.91 11.73 1.482 10.13 26.52 36.65 56.00 19.35 9.16 5.298 10.13 17.39 27.52 60.00 32.48 1.60	Freq. [MHz] Factor [dB] Reading[dB µV] Value [dBµV] Limit [dBµV] Margin [dB] Reading [dBµV] Value [dBµV] 0.2895 9.89 28.61 38.50 60.54 22.04 12.23 22.12 0.357 9.87 28.96 38.83 58.80 19.97 10.97 20.84 0.699 10.06 28.03 38.09 56.00 17.91 11.73 21.79 1.482 10.13 26.52 36.65 56.00 19.35 9.16 19.29 5.298 10.13 17.39 27.52 60.00 33.38 1.23 11.63 9.4515 10.40 16.22 26.62 60.00 33.38 1.23 11.63	Freq. [MHz] Factor [dB] Reading[dB µV] Value [dBµV] Limit [dBµV] Margin [dB] Reading [dBµV] Value [dBµV] Limit [dBµV] 0.2895 9.89 28.61 38.60 60.64 22.04 12.23 22.12 50.54 0.357 9.87 28.96 38.83 58.80 19.97 10.97 20.84 48.80 0.699 10.06 28.03 38.09 56.00 17.91 11.73 21.79 46.00 1.482 10.13 26.52 36.65 56.00 19.35 9.16 19.29 46.00 5.298 10.13 17.39 27.52 60.00 32.48 1.60 11.73 50.00 9.4515 10.40 16.22 26.62 60.00 33.38 1.23 11.63 50.00	Freq. [MHz] Factor [dB] Reading[dB} µV] Value [dBµV] Limit [dBµV] Margin [dB] Reading [dBµV] Value [dBµV] Limit [dBµV] Margin [dB] Margin [dBµV] Margin [dBµV] <td>Freq. [MHz] Factor [dB] Reading[dB} µV] Value [dBµV] Limit [dB] Margin [dB] Wargin [dB] Margin [dB] Wargin [dB] Margin [dB] Wargin [dB] Wargin [dB]</td>	Freq. [MHz] Factor [dB] Reading[dB} µV] Value [dBµV] Limit [dB] Margin [dB] Wargin [dB] Margin [dB] Wargin [dB] Margin [dB] Wargin [dB] Wargin [dB]

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- CONTESTING 4). AVMargin(dB) = AV Limit (dB μ V) - AV Value (dB μ V)



TEST CONFIGURATION

Frequency range 9 KHz – 30MHz



Frequency range 30MHz – 1000MHz

Frequency range above 1GHz-25GHz

Page 14 of 35

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed. 4.
- The EUT minimum operation frequency was 32.768KHz and maximum operation 5.
- frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz. 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance	
9KHz-30MHz	Active Loop Antenna	3	Constant Constant
30MHz-1GHz	Ultra-Broadband Antenna	3	
1GHz-18GHz	Double Ridged Horn Antenna	3	Contraction of the local division of the loc
18GHz-25GHz	Horn Anternna	1	
O attitude to atting a state of the state	a second falls of a contrability of a factory		

Setting test receiver/spectrum as following table states: 7.

Test Frequency range	Test Receiver/Spectrum Setting	Detector		
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP		
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP		
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP		
	Peak Value: RBW=1MHz/VBW=3MHz,	TING		
1GHz-40GHz	Sweep time=Auto	Peak		
10112-400112	Average Value: RBW=1MHz/VBW=10Hz,	reak		
	Sweep time=Auto	-		

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

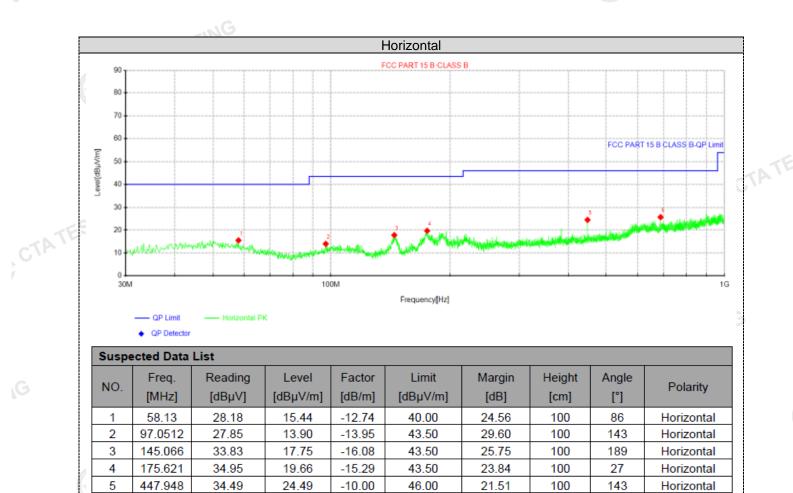
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)	
RA = Reading Amplitude	AG = Amplifier Gain	
AF = Antenna Factor		TE
		TAL
Shenzhen CTA Test	ing Technology Co., I td.	

Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.


Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)		
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)		
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)		
1.705-30	3	20log(30)+ 40log(30/3)	30		
30-88	3	40.05	100		
88-216	3	43.5	150		
216-960	3	46.0	200		
Above 960	3	54.0	500		

TEST RESULTS

Remark:

- 1. This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.
- 2. BLE 1Mpbs were tested at Low, Middle, and High channel and recorded worst mode at BLE 1Mpbs.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found 3. except system noise floor in 9 KHz to 30MHz and not recorded in this report. CTATESTING

For 30MHz-1GHz

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

25.71

30.95

687.538

6

TING

CTATES

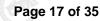
2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

46.00

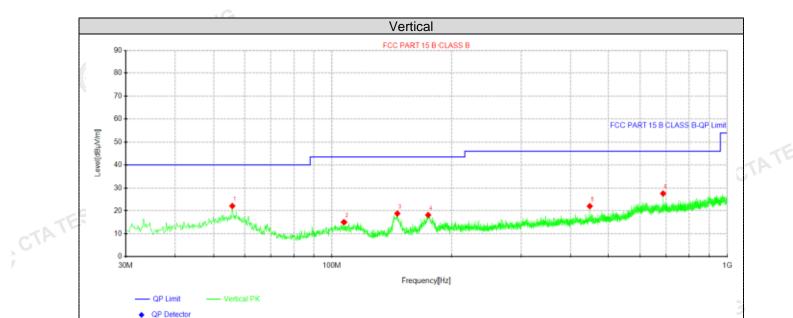
20.29

167

100


Horizontal

COM CTATE


-5.24

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

GTA TESTING

CTATE

	Suspected Data List											
	NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polarity		
	NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Folanty		
	1	55.8262	34.25	22.11	-12.14	40.00	17.89	100	237	Vertical		
	2	107.236	28.51	14.97	-13.54	43.50	28.53	100	319	Vertical		
	3	146.521	34.82	18.78	-16.04	43.50	24.72	100	78	Vertical		
	4	175.136	33.44	18.12	-15.32	43.50	25.38	100	273	Vertical		
	5	447.948	32.01	22.01	-10.00	46.00	23.99	100	88	Vertical		
	6	687.538	32.83	27.59	-5.24	46.00	18.41	100	3	Vertical		
	Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)											
Ν	ote:1)	.Level (dE	BµV/m)= Re	ading (dBµ	V)+ Fact	or (dB/m)		AT				

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m) CTATESTING

Page 18 of 35

For 1GHz to 25GHz

	0 200112			GFSK (abo	/e 1GHz)				
Freque	ncy(MHz)	:	24	02	Pola	arity:	HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB)			Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4804.00	61.50	PK	74	12.50	65.77	32.33	5.12	41.72	-4.27
4804.00	45.46	AV	54	8.54	49.73	32.33	5.12	41.72	-4.27
7206.00	53.80	PK	74	20.20	54.32	36.6	6.49	43.61	-0.52
7206.00	42.25	AV	54	11.75	42.77	36.6	6.49	43.61	-0.52

	Freque	ncy(MHz)	:	2402		Polarity:		VERTICAL		
CTA	Frequency (MHz)	Emis Lev (dBu)	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
1	4804.00	58.62	PK	74	15.38	62.89	32.33	5.12	41.72	-4.27
	4804.00	42.44	AV	54	11.56	46.71	32.33	5.12	41.72	-4.27
	7206.00	51.21	PK	74	22.79	51.73	36.6	6.49	43.61	-0.52
	7206.00	39.99	AV	54	14.01	40.51	36.6	6.49	43.61	-0.52
-						1			TE	

Frequency(MHz):		2440		Pola	arity:		HORIZONTAL		
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	61.21	PK	74	12.79	65.09	32.6	5.34	41.82	-3.88
4880.00	44.86	AV	54	9.14	48.74	32.6	5.34	41.82	-3.88
7320.00	53.31	PK	74	20.69	53.42	36.8	6.81	43.72	-0.11
7320.00	41.97	AV	54	12.03	42.08	36.8	6.81	43.72	-0.11
Contraction of the second					•	•	AI	G	•

1020.00	41.57	/ \ \	04	12.00	42.00	00.0	0.01	40.72	0.11
The summer of the second se				(P)			-11	G	
Frequency(MHz):			2440 P		Pola	Polarity:		VERTICAL	
Frequency (MHz)	-	sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	58.22	PK	74	15.78	62.10	32.6	5.34	41.82	-3.88
4880.00	42.58	AV	54	11.42	46.46	32.6	5.34	41.82	-3.88
7320.00	50.73	PK	74	23.27	50.84	36.8	6.81	43.72	-0.11
7320.00	39.29	AV	54	14.71	39.40	36.8	6.81	43.72	-0.11
			STIN			•		•	

Frequency(MHz):			2480		Polarity:		HORIZONTAL		
Frequency (MHz)	Le	sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	61.34	PK	74	12.66	64.42	32.73	5.66	41.47	-3.08
4960.00	44.56	AV	54	9.44	47.64	32.73	5.66	41.47	-3.08
7440.00	54.35	PK	74	19.65	53.90	37.04	7.25	43.84	0.45
7440.00	43.15	PK	54	10.85	42.70	37.04	7.25	43.84	0.45

Frequency(MHz):			2480		Polarity:		VERTICAL		
Frequency (MHz)	-	sion vel V/m)	Limit (dBuV/m)	Margin (dB)	G Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	59.61	PK	74	14.39	62.69	32.73	5.66	41.47	-3.08
4960.00	42.93	AV	54	11.07	46.01	32.73	5.66	41.47	-3.08
7440.00	51.53	PK	74	22.47	51.08	37.04	7.25	43.84	0.45
7440.00	40.28	PK	54	13.72	39.83	37.04	7.25	43.84	0.45
REMARKS	5:		· · · · · · · · · · · · · · · · · · ·			Contraction of the second			CTA
			Shenzhen	CTA Testing	Technology	Co., Ltd.			

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

			GFS	ĸ		-c11			
uency(MHz)	:	24	02	Pola	arity:	н	HORIZONTAL		
Le	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
61.37	PK	74	12.63	71.79	27.42	4.31	42.15	-10.42	
43.81	AV	54	10.19	54.23	27.42	4.31	42.15	-10.42	
uency(MHz)	:	24	02	Pola	arity:		VERTICAL		
Lev	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
59.67	PK	74	14.33	70.09	27.42	4.31	42.15	-10.42	
41.21	AV	54	12.79	51.63	27.42	4.31	42.15	-10.42	
Frequency(MHz):			2480		P olarity:		HORIZONTAL		
Le	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
60.88	PK	74	13.12	70.99	27.7	4.47	42.28	-10.11	
44.12	AV	54	9.88	54.23	27.7	4.47	42.28	-10.11	
uency(MHz)):	24	80	Polarity:			VERTICAL		
Le	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
59.04	PK	74	14.96	69.15	27.7	4.47	42.28	-10.11	
41.55	AV	54	12.45	51.66	27.7	4.47	42.28	-10.11	
	Emis Le (dBu 61.37 43.81 uency(MHz) 59.67 41.21 uency(MHz) Emis Le (dBu 60.88 44.12 uency(MHz) Emis Le (dBu 60.88	Emission Level (dBuV/m) 61.37 PK 43.81 AV uency(MHz): Emission Level (dBuV/m) 59.67 PK 41.21 AV uency(MHz): Emission Level (dBuV/m) 60.88 PK 44.12 AV uency(MHz): Emission Level (dBuV/m) 60.88 PK 44.12 AV uency(MHz): Emission Level (dBuV/m) 59.04 PK	Emission Level (dBuV/m) Limit (dBuV/m) 61.37 PK 74 43.81 AV 54 uency(MHz): 24 Emission Level (dBuV/m) Limit (dBuV/m) 59.67 PK 74 41.21 AV 54 uency(MHz): 24 Emission Level (dBuV/m) Limit (dBuV/m) 60.88 PK 74 44.12 AV 54 uency(MHz): 24 Emission Level (dBuV/m) Limit (dBuV/m) 60.88 PK 74 44.12 AV 54 uency(MHz): 24 Emission Level (dBuV/m) Limit (dBuV/m) 59.04 PK 74	Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) 61.37 PK 74 12.63 43.81 AV 54 10.19 uency(MHz): 2402 Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) 59.67 PK 74 14.33 41.21 AV 54 12.79 uency(MHz): 2480 12.79 14.33 41.21 AV 54 12.79 uency(MHz): 2480 13.12 44.12 Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) 13.12 44.12 AV 54 9.88 13.12 Uency(MHz): 2480 13.12 14.12 Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) 14.96	Emission Limit Margin Raw $(dBuV/m)$ $(dBuV/m)$ (dB) $(dBuV)$ $(dBuV)$ 61.37 PK 74 12.63 71.79 43.81 AV 54 10.19 54.23 uency(MHz): 2402 Pola Emission Limit Margin Raw $(dBuV/m)$ S4 12.79 51.63 uency(MHz): 2480 Pola Emission Limit Margin Raw $(dBuV/m)$ CBuV/m) Margin Raw $(dBuV/m)$ CBuV S4 13.12 70.99 44.12 AV 54 9.88 54.23 uency(MHz): 2480 Pola S4.23 uency(MHz):	Emission Level (dBuV/m)Limit (dBuV/m)Margin (dB)Raw Value (dBuV)Antenna Factor (dB/m)61.37PK7412.6371.7927.4243.81AV5410.1954.2327.42uency(MHz):2402Polarity:Emission Level (dBuV/m)Limit (dBuV/m)Margin (dB)Raw Value (dBuV) (dBuV)Antenna Factor (dBuV)59.67PK7414.3370.0927.4241.21AV5412.7951.6327.42uency(MHz):2480P olarity:12.7951.6327.42uency(MHz):2480P olarity:14.1270.9927.744.12AV549.8854.2327.7uency(MHz):2480Polarity:13.1270.9927.7uency(MHz):2480Polarity:13.1270.9927.744.12AV549.8854.2327.7uency(MHz):2480Polarity:13.1270.9927.7uency(MHz):2480Polarity:13.1270.9927.7uency(MHz):2480Polarity:13.1270.9927.7uency(MHz):2480Polarity:13.1270.9927.7uency(MHz):2480Polarity:14.9669.1527.7uency(MHz):2480Polarity:14.9614.9614.96uency(MHz):248024.2327.714.9614.96<	Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) Raw Value (dBuV) Antenna Factor (dBuV) Cable Factor (dB) 61.37 PK 74 12.63 71.79 27.42 4.31 43.81 AV 54 10.19 54.23 27.42 4.31 uency(MHz): 2402 Polarity: 4.31 Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) Raw Value (dBuV) Antenna Factor (dBuV) Cable Factor (dB) 59.67 PK 74 14.33 70.09 27.42 4.31 uency(MHz): 2480 P olarity: H H Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) Raw Value (dB) Antenna Factor (dBwV) Cable Factor (dB/m) H Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) Raw Value (dB/W) Antenna Factor (dB/M) Cable Factor (dB/M) 60.88 PK 74 13.12 70.99 27.7 4.47 44.12 AV 54 9.88 54.23 27.7 4.47	Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) Raw Value (dBV/ (dBV/m) Antenna Factor (dB/m) Cable Factor (dB/m) Pre- amplifier (dB) 61.37 PK 74 12.63 71.79 27.42 4.31 42.15 43.81 AV 54 10.19 54.23 27.42 4.31 42.15 uency(MHz): 2402 Polarity: VERTICAL Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) Raw Value (dBUV) Antenna Factor (dB/m) Cable Factor (dB/m) Pre- amplifier (dB) 59.67 PK 74 14.33 70.09 27.42 4.31 42.15 41.21 AV 54 12.79 51.63 27.42 4.31 42.15 uency(MHz): 2480 P olarity: HORIZONTA Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) Raw Value (dBuV) Antenna Factor (dB/m) Cable Factor (dB) Pre- amplifier (dB) 60.88 PK 74 13.12 70.99 27.7 4.47 42.28	

4. The other emission levels were very low against the limit. CTATES

4.3 **Maximum Peak Output Power**

Limit

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

Test Configuration

Test Results

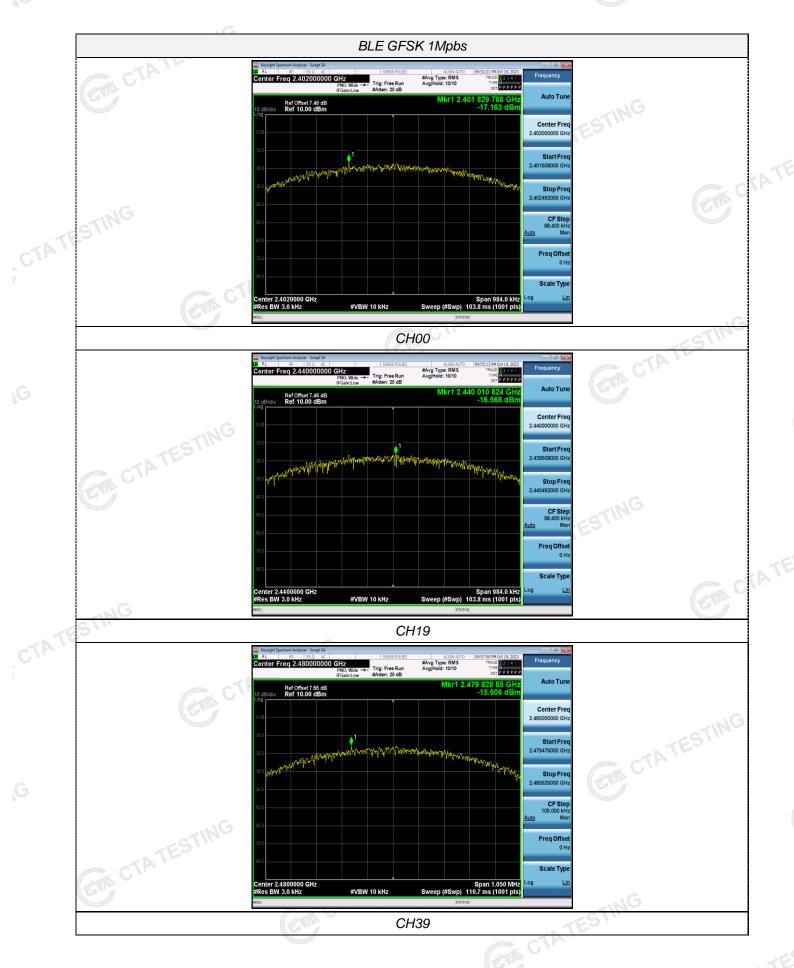
est Results				ATESTI
Туре	Channel	Output power (dBm)	Limit (dBm)	Result
	00	-0.83		
GFSK 1Mbps	19	-0.52	30.00	Pass
CTA	39	-0.96		
Note: 1.The test res	sults including the c	able lose.	CTATESTING	

4.4 **Power Spectral Density**

Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure


- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW \geq 3 kHz.
- 3. Set the VBW \geq 3× RBW.
- CTATESTING 4. Set the span to 1.5 times the DTS channel bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.

Test Configuration

CTATESTING EUT SPECTRUM ANALYZER

Test Results

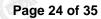
Туре	Channel	Power Spectral Density (dBm/3KHz)	Limit (dBm/3KHz)	Result
	00	-17.16		
GFSK 1Mbps	19	-16.57	8.00	Pass
-	39	-15.91	1 G	

4.5 6dB Bandwidth


Limit

ESTING For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

Test Procedure

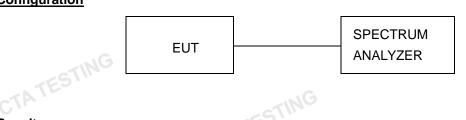

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

Test Configuration

Test Results

Test Results		ANALYZ		CTATESTING
Туре	Channel	6dB Bandwidth (MHz)	Limit (KHz)	Result
CTINO	00	0.656		
GFSK 1Mbps	19	0.656	≥500	Pass
CIL	39	0.700		
Test plot as follows:	GA C	TA TES	CTA TESTIN	G

4.6 **Out-of-band Emissions**

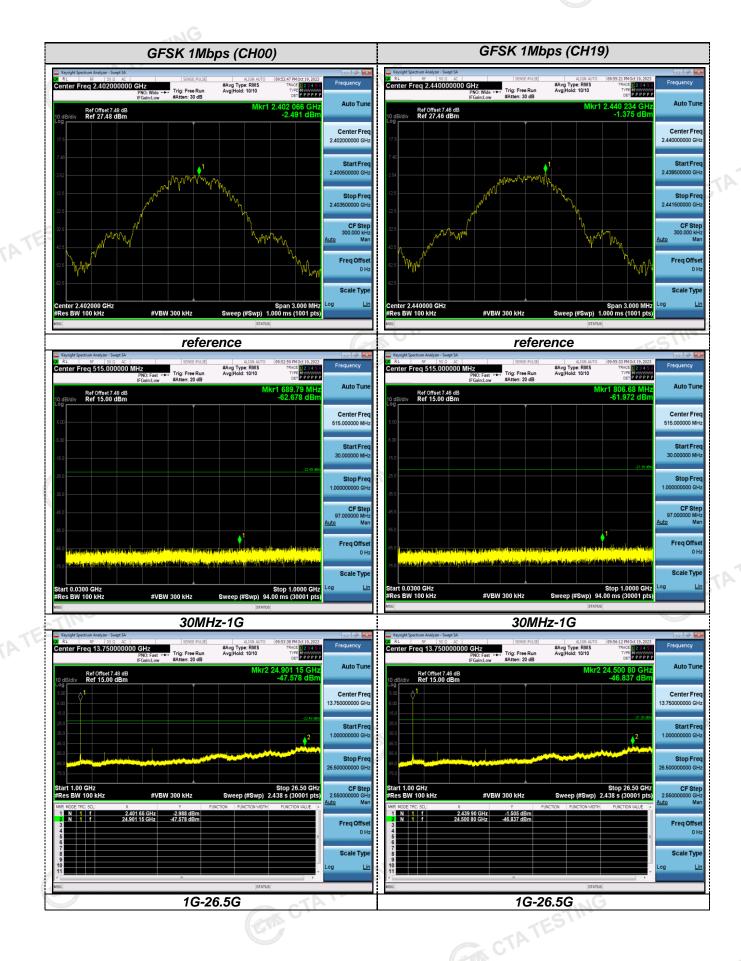

Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector , and max hold. Measurements utilizing these setting are GM CTATESTING made of the in-band reference level, bandedge and out-of-band emissions.

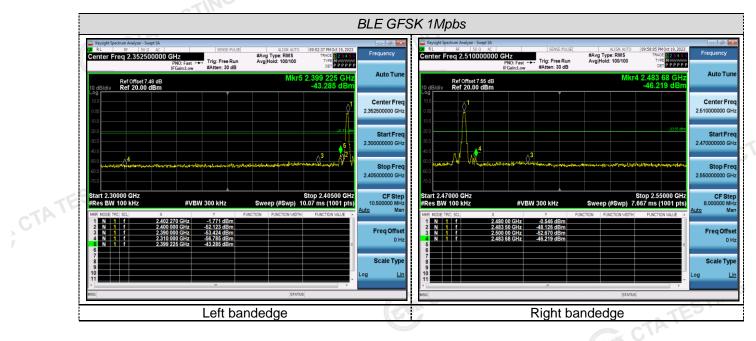
Test Configuration




Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage **GIA CTATE** measurement data.

Test plot as follows:


Page 26 of 35

Page 28 of 35

Band-edge Measurements for RF Conducted Emissions:

4.7 Antenna Requirement

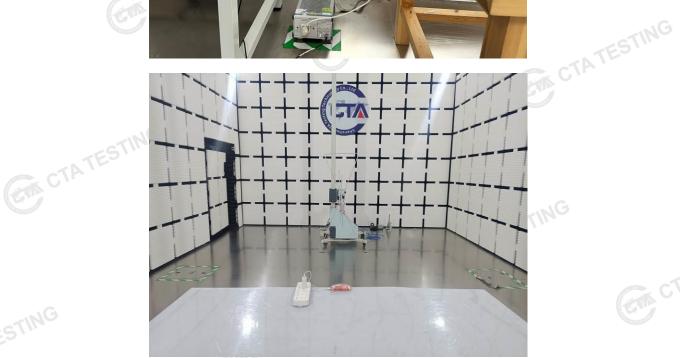
Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.


Antenna Connected Construction

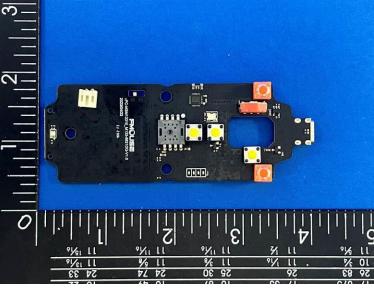
The gain of antenna was -1.52 dBi.

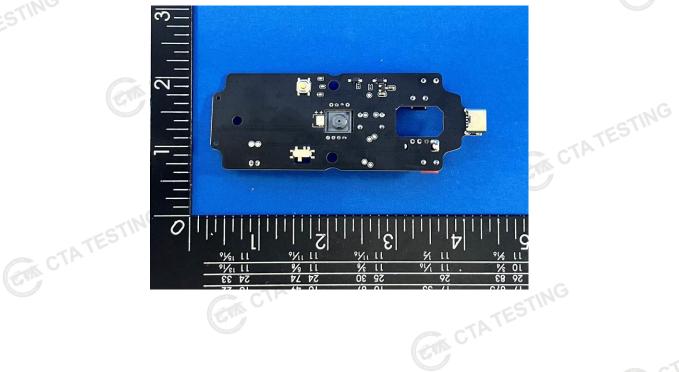
Remark: The antenna gain is provided by the customer , if the data provided by the customer is not accurate, Shenzhen CTA Testing Technology Co., Ltd. does not assume any responsibility.

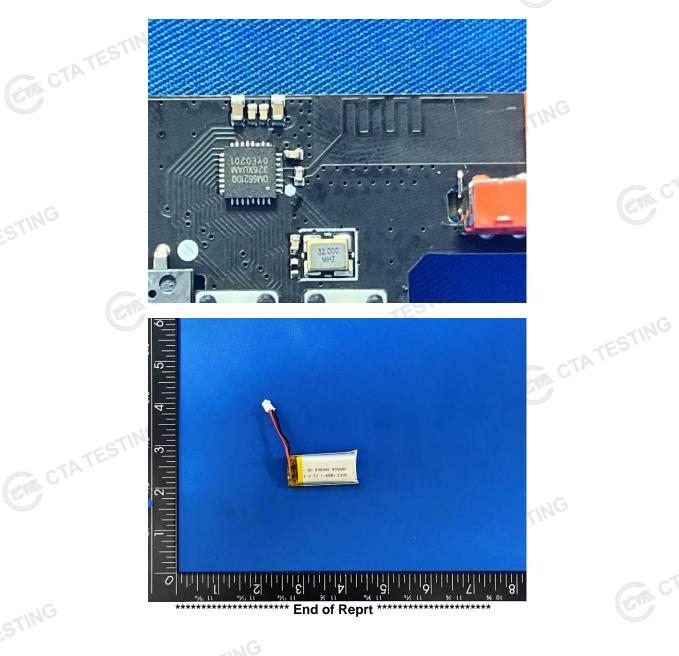
5 Test Setup Photos of the EUT

6 Photos of the EUT

Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn




CTA TESTIN


Page 34 of 35

ring

