

TEST REPORT

APPLICANT	:	Panasonic India Private Limited
PRODUCT NAME	:	Smartphone
MODEL NAME	:	Panasonic ELUGA Ray 600
BRAND NAME	:	Panasonic
FCC ID	:	2APTIS60ER6
STANDARD(S)	:	47 CFR Part 22, Subpart H
TEST DATE	:	2018-09-06 to 2018-09-13
ISSUE DATE	:	2018-10-23

Tested by:

Gao Ming zhoy Gao Mingzhou (Test Engineer)

Approved by:

Peng Huarui (Supervisor)

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

DIRECTORY

1. T	Technical Information	4
1.1.	Applicant and Manufacturer Information	4
1.2.	Equipment Under Test (EUT) Description	4
1.3.	Test Standards and Results	5
1.4.	Environmental Conditions	5
2. 4	7 CFR Part 2, Part 22H Requirements	6
2.1.	Transmitter Conducted Output Power	6
2.2.	Occupied Bandwidth	9
2.3.	Frequency Stability1	6
2.4.	Peak to Average Radio1	8
2.5.	Conducted Spurious Emissions2	5
2.6.	Band Edge3	8
2.7.	Transmitter Radiated Power (EIRP/ERP)4	3
2.8.	Radiated Spurious Emissions4	7
Ann	ex A Test Uncertainty5	4
Ann	ex B Testing Laboratory Information5	6

	Change History					
Issue	Issue Date Reason for change					
1.0	2018-10-23	First edition				

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

1. Technical Information

Note: Provide by applicant.

1.1. Applicant and Manufacturer Information

Applicant:	Panasonic India Private Limited
Applicant Address:	12th Floor Ambience Tower, Ambience Island, NH-8,
	Gurgaon-122002, Haryana, India
Manufacturer:	Shenzhen Tinno Mobile Technology Corp.
Manufacturer Address:	4/F.,H-3 Building,OCT Eastern Industrial Park. NO.1 XiangShan
	East Road., Nan Shan District, Shenzhen, P.R. China.

1.2. Equipment Under Test (EUT) Description

Product Name:	Smartphone				
Serial No:	(N/A, marked #	(N/A, marked #1 by test site)			
Hardware Version:	V1.0				
Software Version:	EB-90S60ER6	v1015			
Modulation Type:	QPSK, 16QAM	1			
Operation Band:	Band 5				
	LTE Band 5	Tx: 824MHz -849M	Hz		
Frequency Range:	LIE DAIIU 5	Rx: 869MHz -894M	IHz		
	LTE Band 5	1.4MHz, 3 MHz, 5 I	MHz, 10MHz		
	1M08G7D (LTE Band 5, QPSK, BW 1.4MHz)				
	1M07W7D (LTE Band 5, 16QAM, BW 1.4MHz)				
	2M68G7D (LTE Band 5, QPSK, BW 3MHz)				
Emission Designator:	2M67W7D (LTE Band 5, 16QAM, BW 3MHz)				
Linission Designator.	4M51G7D (LTE Band 5, QPSK, BW 5MHz)				
	4M48W7D (LTE Band 5, 16QAM, BW 5MHz)				
	8M93G7D (LTE Band 5, QPSK, BW 10MHz)				
	8M93W7D (LTE Band 5, 16QAM, BW 10MHz)				
Antenna Type:	PIFA Antenna				
Antenna Gain:	-1.5 dBi				
	Normal(NV):		3.8V		
Operating voltage:	Lowest(LV):		3.45V		
	Highest(HV): 4.35V				

Note 1: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

1.3. Test Standards and Results

The objective of the report is to perform testing according to Part 2 and Part 22 for the EUT FCC ID Certification:

No	Identity	Document Title
1	47 CFR Part 2	Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
2	47 CFR Part 22	Public Mobile Services

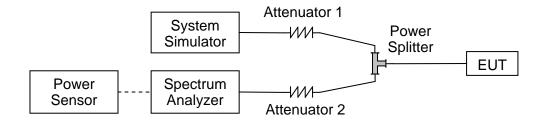
Test detailed items/section required by FCC rules and results are as below:

Section	Description	Test Date	Test Engineer	Result	
2.1046	Transmitter Conducted Output Power	Sep 07, 2018	Gao Mingzhou	PASS	
2.1049	Occupied Bandwidth	Sep 07, 2018	Gao Mingzhou	PASS	
22.355	Frequency Stability	Sep 07, 2018	Gao Mingzhou	PASS	
24.232(d)	Peak to Average Radio	Sep 07, 2018	Gao Mingzhou	PASS	
2.1051, 22.917(a)	Conducted Spurious Emissions	Sep 07, 2018	Gao Mingzhou	PASS	
2.1051, 22.917(a)	Band Edge	Sep 07, 2018	Gao Mingzhou	PASS	
22.913(a)(2)	Equivalent Isotropic Radiated Power	Sep 12, 2018	Peng Xuewei	PASS	
2.1051, 22.917(a)	Radiated Spurious Emissions	Sep 12, 2018	Peng Xuewei	PASS	
Note: The tests were performed according to the method of measurements prescribed in KDB971168 D01 v03 (Oct 27, 2017) and ANSI/TIA-603-E-2016.					

1.4. Environmental Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 - 35
Relative Humidity (%):	30 -60
Atmospheric Pressure (kPa):	86-106


2. 47 CFR Part 2, Part 22H Requirements

2.1. Transmitter Conducted Output Power

2.1.1. Requirement

According to FCC section 2.1046(a), for transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in FCC section 2.1033(c)(8).

2.1.2. Test Description

The EUT is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. The EUT is commanded by the SS to operate at the maximum output power. A call is established between the EUT and the SS.

2.1.3. Test procedure

KDB 971168 D01v03 Section 5.2 and ANSI/TIA-603-E-2016.

2.1.4. Result

514			55	Power	Power	Power
BW	Modulation RB Size	RB Size	RB	Low	Middle	High
[MHz]			Offset	Ch. / Freq.	Ch. / Freq.	Ch. / Freq.
Channel			20450	20525	20600	
	Frequenc	y (MHz)		829	836.5	844
10	QPSK	1	0	23.36	23.6	23.26
10	QPSK	1	25	23.25	23.21	23.28
10	QPSK	1	49	23.18	23.14	23.24
10	QPSK	25	0	22.26	22.42	22.4
10	QPSK	25	12	22.25	22.32	22.22
10	QPSK	25	25	22.39	22.24	22.34
10	QPSK	50	0	22.33	22.2	22.37
10	16QAM	1	0	22.41	22.61	22.18
10	16QAM	1	25	22.35	22.43	22.6
10	16QAM	1	49	22.32	22.51	22.28
10	16QAM	25	0	21.33	21.28	21.27
10	16QAM	25	12	21.31	21.38	21.34
10	16QAM	25	25	21.48	21.42	21.29
10	16QAM	50	0	21.36	21.29	21.37
	Chan	nel		20425	20525	20625
	Frequenc	y (MHz)		826.5	836.5	846.5
5	QPSK	1	0	23.01	23.1	23.11
5	QPSK	1	12	23.21	23.26	23.38
5	QPSK	1	24	23.19	23.06	23.21
5	QPSK	12	0	22.19	22.14	22.15
5	QPSK	12	7	22.25	22.23	22.28
5	QPSK	12	13	22.15	22.23	22.22
5	QPSK	25	0	22.27	22.13	22.19
5	16QAM	1	0	22.23	22.18	22.03
5	16QAM	1	12	22.61	22.48	22.3
5	16QAM	1	24	22.15	22.12	22.57
5	16QAM	12	0	21.17	21.27	21.19
5	16QAM	12	7	21.26	21.3	21.28
5	16QAM	12	13	21.23	21.16	21.26
5	16QAM	25	0	21.32	21.32	21.11

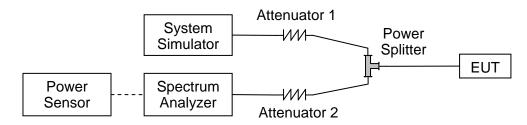
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

MOR

REPORT No.: SZ18090036W07

	Char	nel		20415	20525	20635
	Frequenc	y (MHz)		825.5	836.5	847.5
3	QPSK	1	0	23.19	23.2	23.18
3	QPSK	1	8	23.06	23.1	23.18
3	QPSK	1	14	23.11	23.14	23.14
3	QPSK	8	0	22.15	22.13	22.30
3	QPSK	8	4	22.32	22.19	22.17
3	QPSK	8	7	22.25	22.29	22.50
3	QPSK	15	0	22.25	22.27	22.19
3	16QAM	1	0	22.3	22.41	22.28
3	16QAM	1	8	22.39	22.45	22.20
3	16QAM	1	14	22.25	22.42	22.23
3	16QAM	8	0	21.23	21.24	21.16
3	16QAM	8	4	21.36	21.32	21.50
3	16QAM	8	7	21.17	21.24	21.29
3	16QAM	15	0	21.23	21.32	21.35
	Char	nel		20407	20525	20643
	Frequenc	y (MHz)		824.7	836.5	848.3
1.4	QPSK	1	0	23.07	23.15	23.04
1.4	QPSK	1	3	23.39	23.2	23.24
1.4	QPSK	1	5	23.19	23.18	23.06
1.4	QPSK	3	0	23.23	23.23	23.18
1.4	QPSK	3	1	23.32	23.26	23.18
1.4	QPSK	3	3	23.17	23.19	23.22
1.4	QPSK	6	0	22.32	22.38	22.32
1.4	16QAM	1	0	22.43	22.31	22.29
1.4	16QAM	1	3	22.52	22.47	22.27
1.4	16QAM	1	5	22.38	22.38	22.51
1.4	16QAM	3	0	22.18	22.19	22.17
1.4	16QAM	3	1	22.24	22.3	22.31
1.4	16QAM	3	3	22.16	22.24	22.19
1.4	16QAM	6	0	21.43	21.4	21.25

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



2.2. Occupied Bandwidth

2.2.1. Requirement

According to FCC section 2.1049, the occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission.Occupied bandwidth is also known as the 99% emission bandwidth.

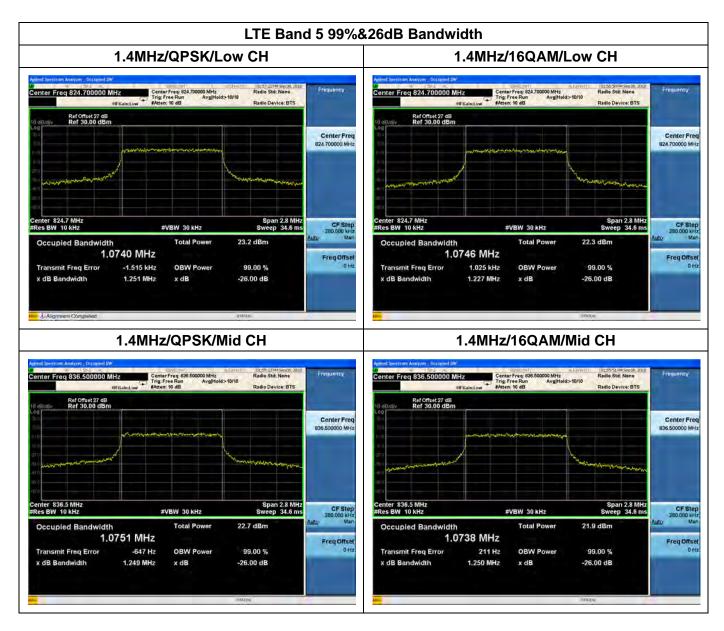
2.2.2. Test Description

The EUT is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. The EUT is commanded by the SS to operate at the maximum output power. A call is established between the EUT and the SS.

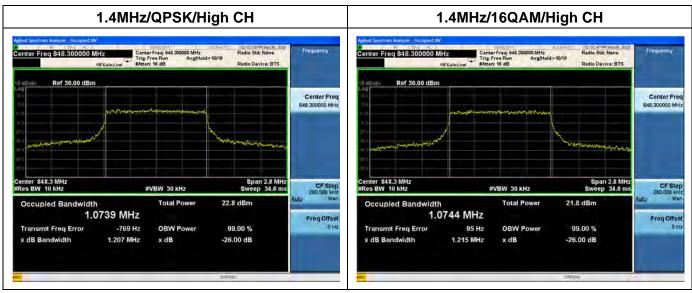
2.2.3. Test procedure

KDB 971168 D01v03 Section 4.1 and ANSI/TIA-603-E-2016.

2.2.4. Test Result

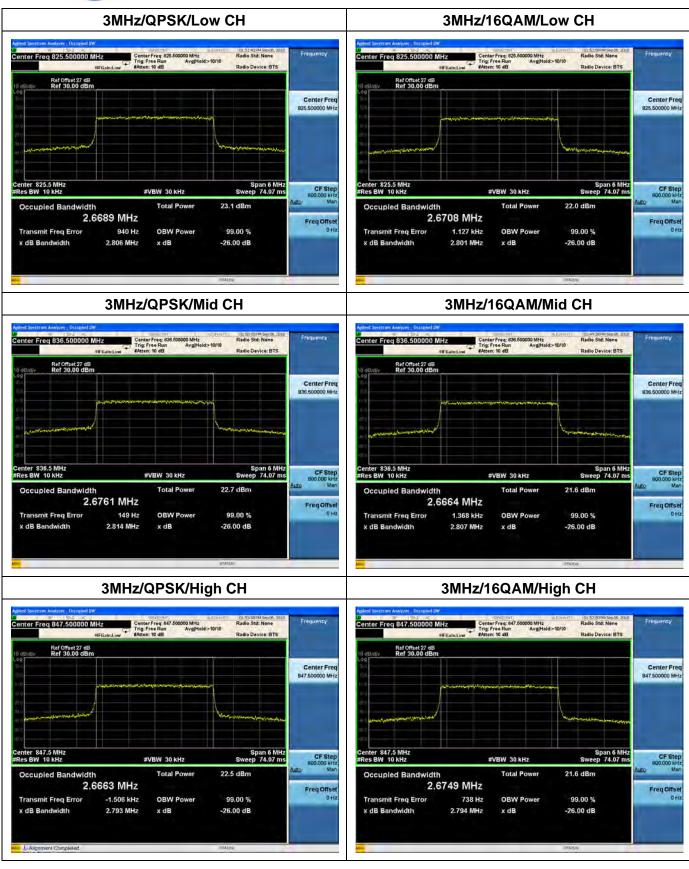


LTE Ban	d 5, BW: 1.4I	MHz				
	F actor 1	QPSK		16QAM		
Channel	Frequency	99% Bandwidth	26dB Bandwidth	99% Bandwidth	26dB Bandwidth	
	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)	
20407	824.7	1.0740	1.251	1.0746	1.227	
20525	836.5	1.0751	1.249	1.0738	1.250	
20643	848.3	1.0739	1.207	1.0744	1.215	
LTE Ban	d 5, BW: 3MI	Hz				
	Fraguanay	QP	SK	160	QAM	
Channel	Frequency	99% Bandwidth	26dB Bandwidth	99% Bandwidth	26dB Bandwidth	
	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)	
20415	825.5	2.6663	2.793	2.6708	2.801	
20525	836.5	2.6761	2.814	2.6664	2.807	
20635	847.5	2.6689	2.806	2.6749	2.794	
LTE Ban	d 5, BW: 5MI	Ηz				
	Frequency	QPSK		16QAM		
Channel	Frequency (MHz)	99% Bandwidth	26dB Bandwidth	99% Bandwidth	26dB Bandwidth	
		(MHz)	(MHz)	(MHz)	(MHz)	
20425	826.5	4.4962	4.801	4.4808	4.852	
20525	836.5	4.4952	4.812	4.4736	4.809	
20625	846.5	4.5115	4.959	4.4772	4.816	
LTE Ban	d 5, BW: 10N	IHz				
	F actor 1	QPSK		16QAM		
Channel	Frequency	99% Bandwidth	26dB Bandwidth	99% Bandwidth	26dB Bandwidth	
(MHz)		(MHz)	(MHz)	(MHz)	(MHz)	
20450	829.0	8.9259	9.321	8.9308	9.254	
20525	836.5	8.9160	9.323	8.9138	9.331	
20600	844.0	8.9299	9.333 8.9241		9.364	



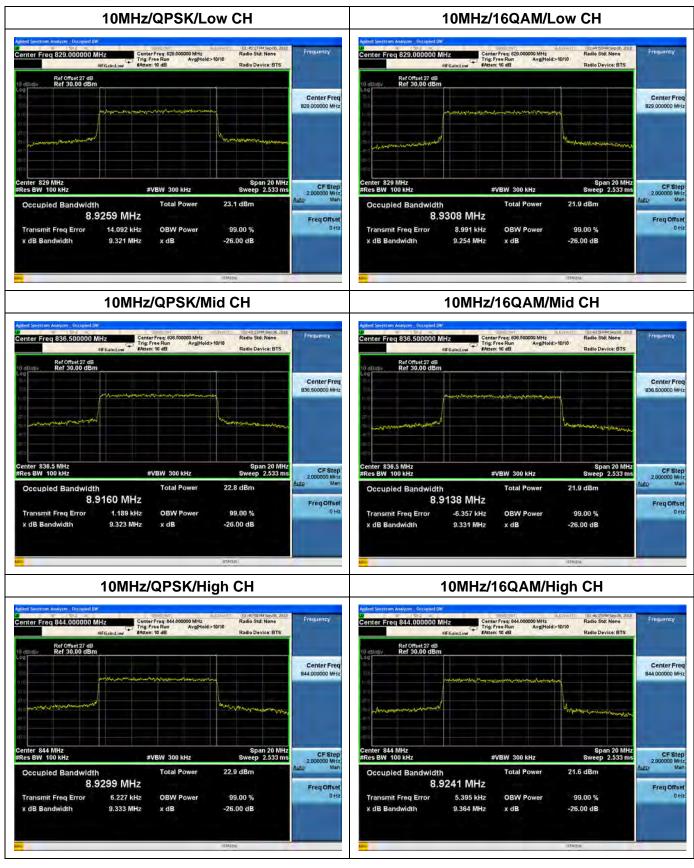
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 E-mail: service@morlab.cn Http://www.morlab.cn

Fax: 86-755-36698525



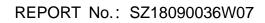
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

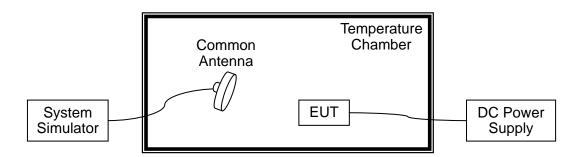


MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

Fax: 86-755-36698525

2.3. Frequency Stability


2.3.1. Requirement

According to FCC section 2.1055& 22.355, the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. According to FCC section 2.1055, the test conditions are:

(a) The temperature is varied from -30°C to +50°C at intervals of not more than 10°C.

(b) For hand carried battery powered equipment, the primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacture. The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided.

2.3.2. Test Description

The EUT which is powered by the DC Power Supply directly, is located in the Temperature Chamber. The EUT is commanded by the System Simulator (SS) to operate at the maximum output power. A call is established between the EUT and the SS via a Common Antenna.

2.3.3. Test procedure

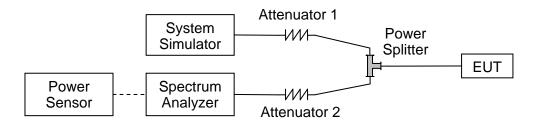
KDB 971168 D01v03 Section 9.0 and ANSI/TIA-603-E-2016.

2.3.4. Test Result

The nominal, highest and lowest extreme voltages are separately 3.8VDC, 4.35VDC and 3.45VDC, which are specified by the applicant.

The testing was performed using one RB and Bandwidth setting for each band.

LTE B	LTE Band 5 – QPSK - Channel 20525 – Frequency 836.5MHz							
	Limit: ±2.5ppm							
Voltage (%)	Voltage (%)Power (VDC)Temp (°C)Fre. Dev. (Hz)Deviation (ppm)							
100		+20(Ref)	11	0.013				
100		-30	12	0.014				
100		-20	-64	-0.077				
100		-10	-22	-0.026				
100	3.8V	0	-47	-0.056				
100		+10	-64	-0.077	PASS			
100		+20	34	0.041				
100		+30	39	0.047				
100		+40	27	0.032				
100		+50	48	0.057				
115	4.35V	+20	35	0.042				
85	3.45V	+20	-76	-0.091				


2.4. Peak to Average Radio

2.4.1. Requirement

According to FCC section 24.232(d), the peak to average ratio (PAR) of the transmission may not exceed 13dB.

2.4.2. Test Description

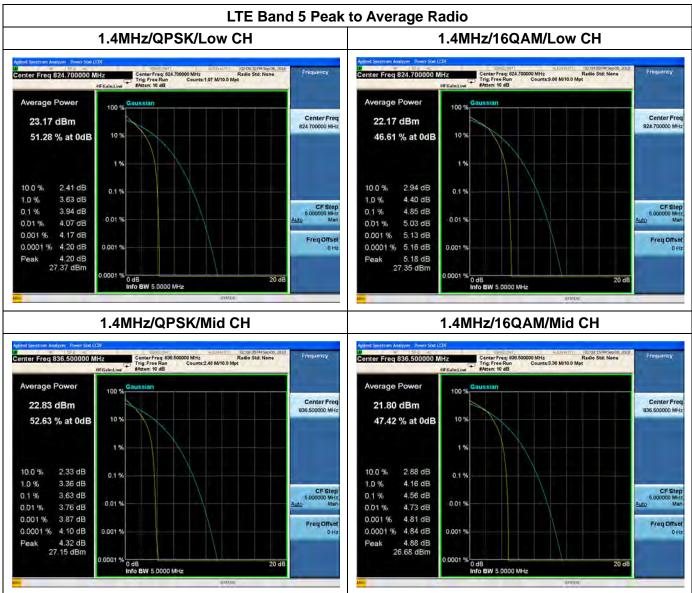
A. Test Set:

The EUT is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. The EUT is commanded by the SS to operate at the maximum output power. A call is established between the EUT and the SS.

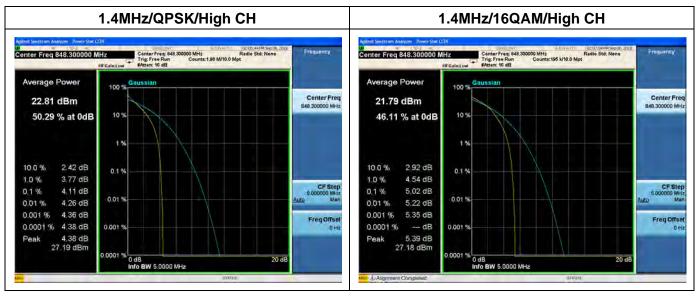
2.4.3. Test procedure

KDB 971168 D01v03 Section 5.7 and ANSI/TIA-603-E-2016.

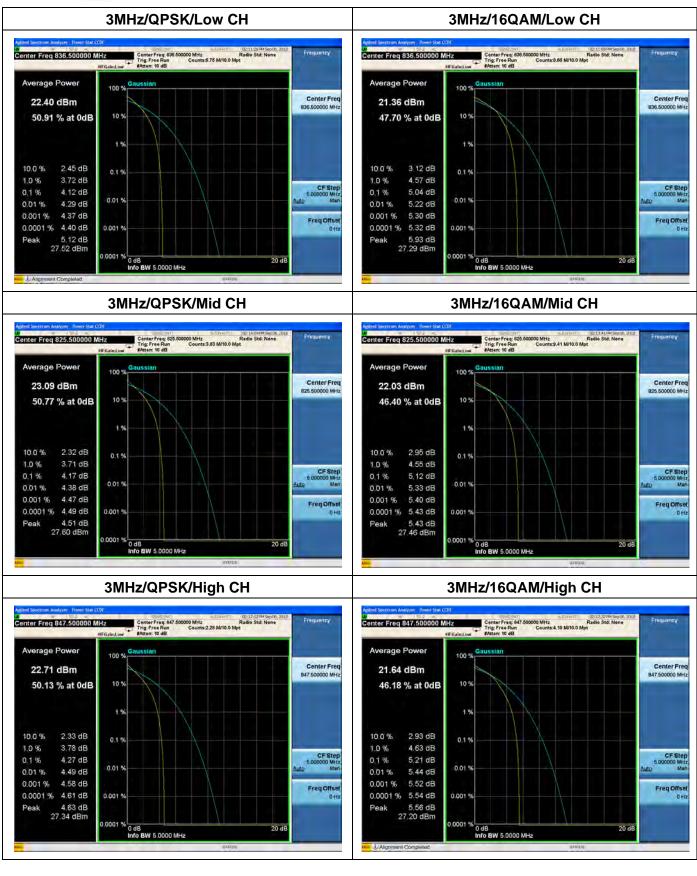
2.4.4. Test Result


Record the maximum PAPR level associated with a probability of 0.1%.

LTE Band	d 5, BW: 1.4MI	Ηz		
Channel	Frequency	Peak to Ave	Peak to Average Radio(dB)	
	(MHz)	QPSK	16QAM	
20407	824.7	3.94	4.85	
20525	836.5	3.63	4.56	
20643	848.3	4.11	5.02	
LTE Band	d 5, BW: 3MHz			
Channel	Frequency	Peak to Ave	Peak to Average Radio(dB)	
	(MHz)	QPSK	16QAM	
20415	825.5	4.17	5.12	
20525	836.5	4.12	5.04	
20635	847.5	4.27	5.21	
LTE Band	d 5, BW: 5MHz			
Channel	Frequency	Peak to Average Radio(dB)		
	(MHz)	QPSK	16QAM	
20425	826.5	4.72	5.48	
20525	836.5	4.40	5.19	
20625	846.5	5.13	5.51	
LTE Band	d 5, BW: 10M⊦	z		
Channel	Frequency	Peak to Average Radio(dB)		
	(MHz)	QPSK	16QAM	
20450	829.0	5.28	5.93	
20525	836.5	5.05	5.84	
20600	844.0	4.74	5.91	

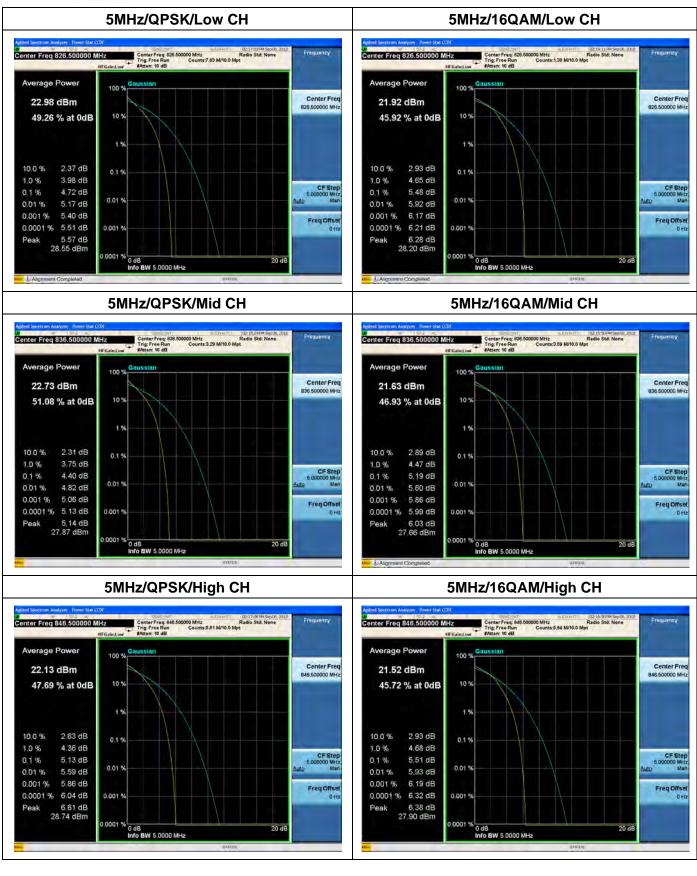


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 E-mail: service@morlab.cn Http://www.morlab.cn



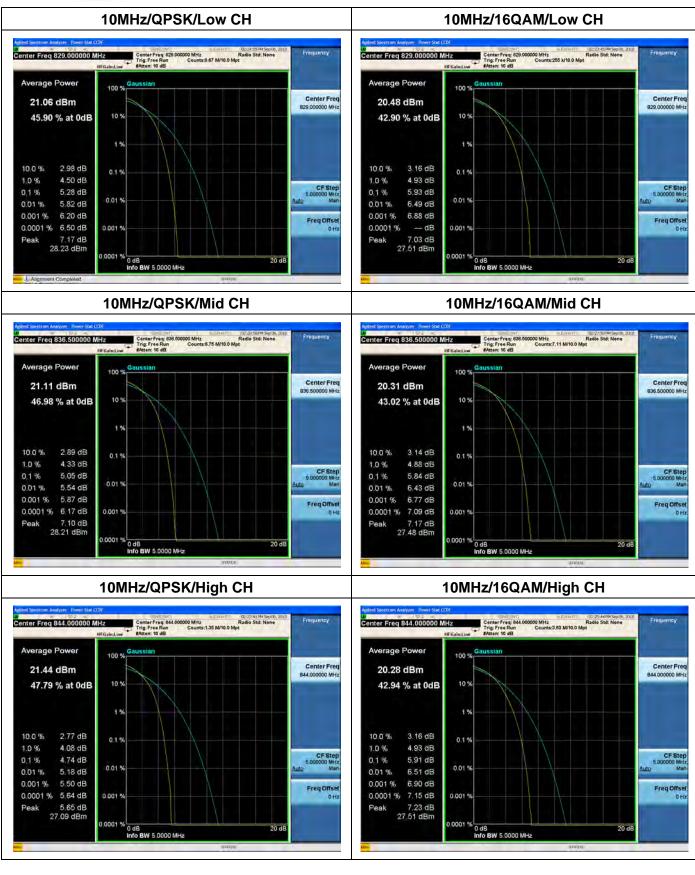
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn

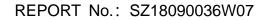


MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

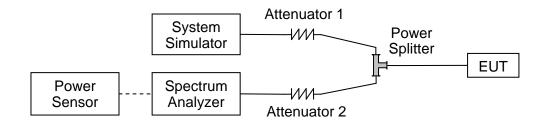


MORLAB


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



2.5. Conducted Spurious Emissions

2.5.1. Requirement

According to FCC section 2.1051, the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43+10*log(P)dB. This calculated to be -13dBm.

2.5.2. Test Description

The EUT is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. The EUT is commanded by the SS to operate at the maximum output power. A call is established between the EUT and the SS.

2.5.3. Test procedure

KDB 971168 D01v03 Section 6.0 and ANSI/TIA-603-E-2016.

2.5.4. Test Result

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

Fax: 86-755-36698525

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Tel:
 86-755-36698555
 Fax:
 86-755

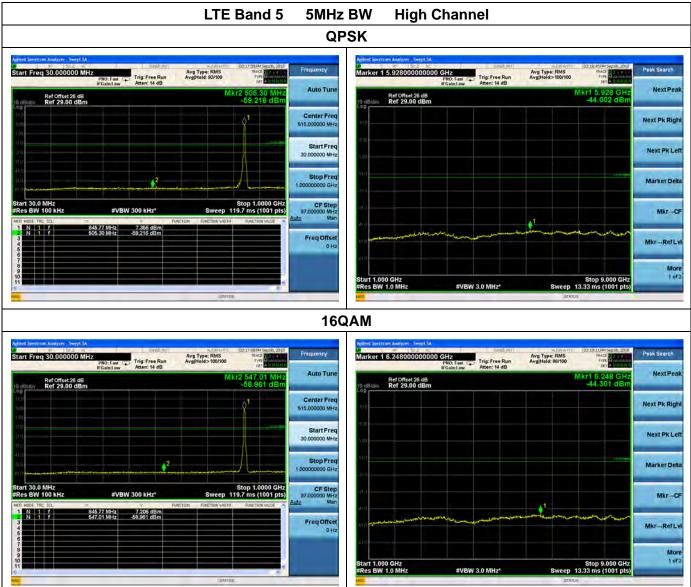
 Http://www.morlab.cn
 E-mail:
 service

Fax: 86-755-36698525 E-mail: service@morlab.cn

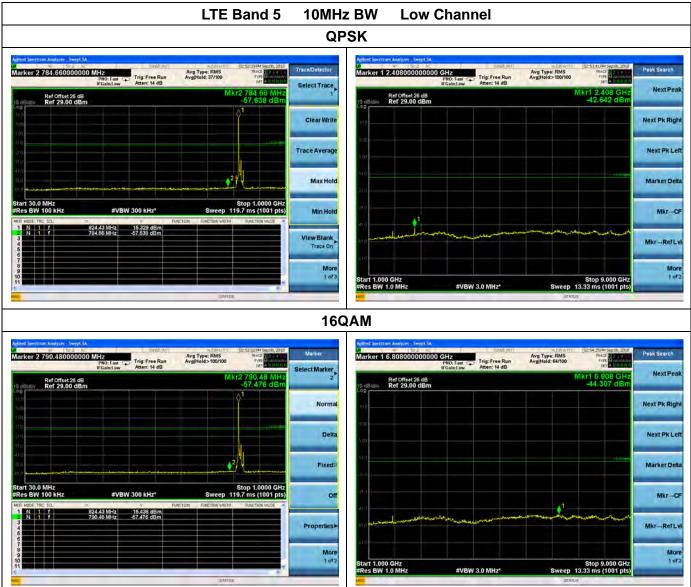
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

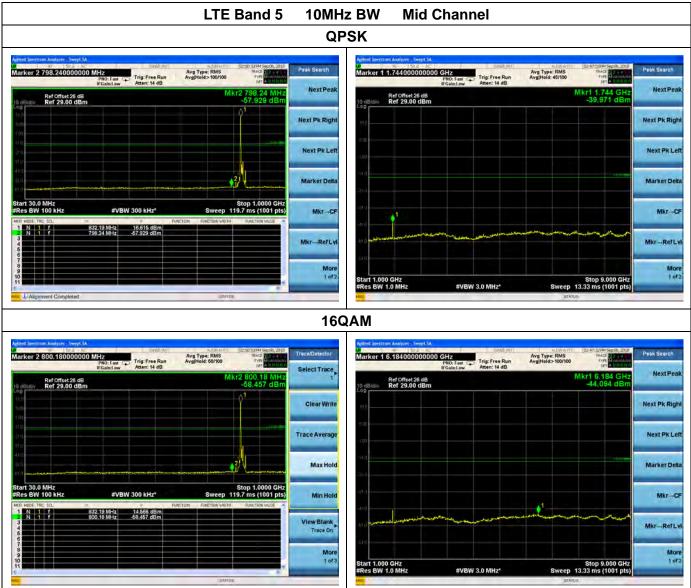
Fax: 86-755-36698525



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



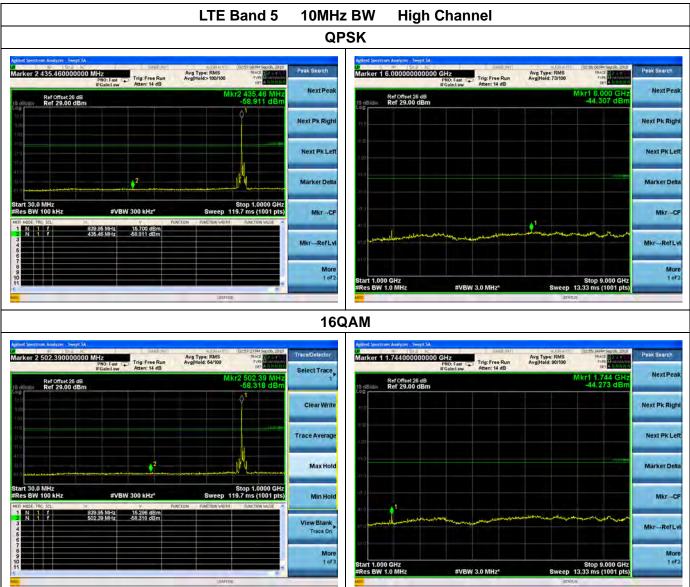
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



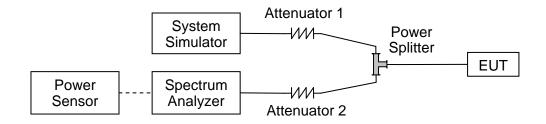
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Tel:
 86-755-36698555
 Fax:
 86-755

 Http://www.morlab.cn
 E-mail:
 service

Fax: 86-755-36698525 E-mail: service@morlab.cn



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

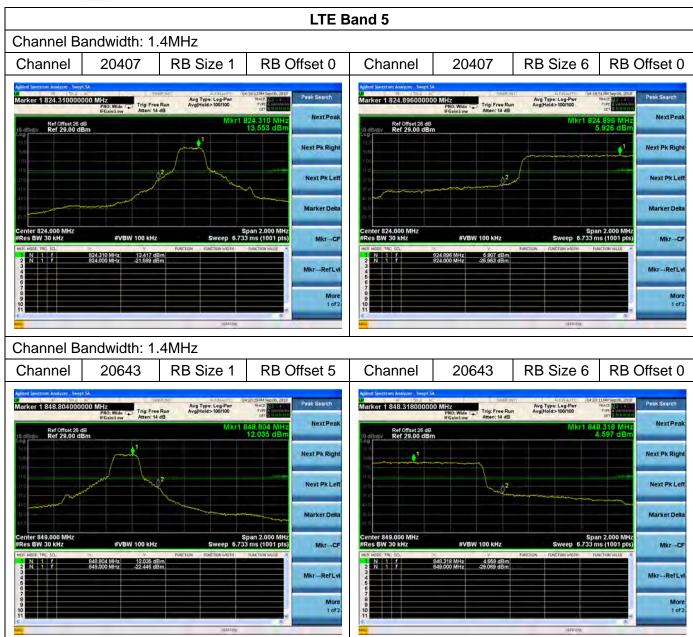
2.6.1. Requirement

According to FCC section 22.917(a), the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

2.6.2. Test Description

The EUT is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. The EUT is commanded by the SS to operate at the maximum output power. A call is established between the EUT and the SS.

2.6.3. Test procedure


KDB 971168 D01v03 Section 6.0 and ANSI/TIA-603-E-2016.

2.6.4. Test Result

The center frequency of spectrum is the band edge frequency and span is 2MHz, Record the max trace into the test report.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

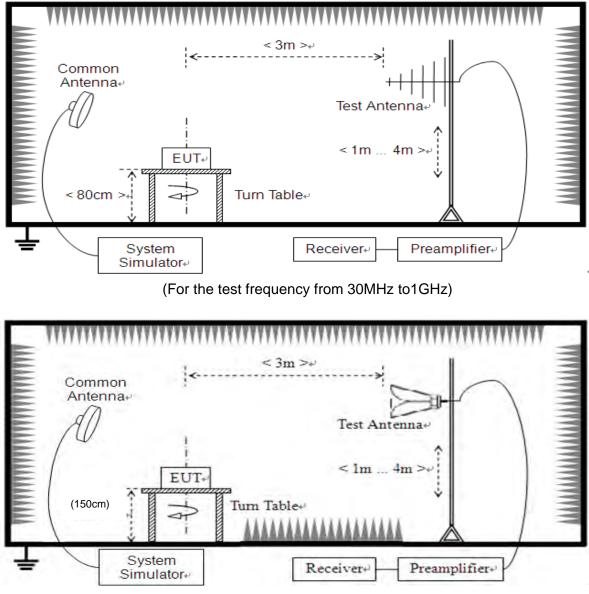
MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

Fax: 86-755-36698525



2.7. Transmitter Radiated Power (EIRP/ERP)

2.7.1. Requirement

According to FCC section22.913 (a.2) for LTE Band 5, the ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 watts.

2.7.2. Test Description

(For the test frequency above 1GHz)

The EUT is located in a 3m Full-Anechoic Chamber, the cable loss, air loss and so on of the site as factors are pre-calibrated using the "Substitution" method, and calculated to correct the reading.

A call is established between the EUT and the SS via a Common Antenna. The EUT is commanded by the SS to operate at the maximum and minimum output power, and only the test result of the maximum output power was recorded.

In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground and the Turn Table is actuated to turn from 0° to 360° to determine the maximum value of the radiated power. The emission levels at both horizontal and vertical polarizations should be tested. The Filters consists of Notch Filters and High Pass Filter.

2.7.3. Test procedure

KDB 971168 D01v03 Section 51&5.2 and ANSI/TIA-603-E-2016.

2.7.4. Test Result

The EUT was verified under all configurations (RB size and offset) and the worst case radiated power reported for each modulation/channel bandwidth.

The Turn Table is actuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. The lowest, middle and highest channels are tested.

The substitution corrections are obtained as described below:

 $A_{SUBST} = P_{SUBST_TX} - P_{SUBST_RX} - L_{SUBST_CABLES} + G_{SUBST_TX_ANT}$

 $A_{TOT} = L_{CABLES} + A_{SUBST}$

Where A_{SUBST} is the final substitution correction including receive antenna gain.

P_{SUBST_TX} is signal generator level,

P_{SUBST_RX} is receiver level,

L_{SUBST_CABLES} is cable losses including TX cable,

 $G_{\text{SUBST}_\text{TX}_\text{ANT}}$ is substitution antenna gain.

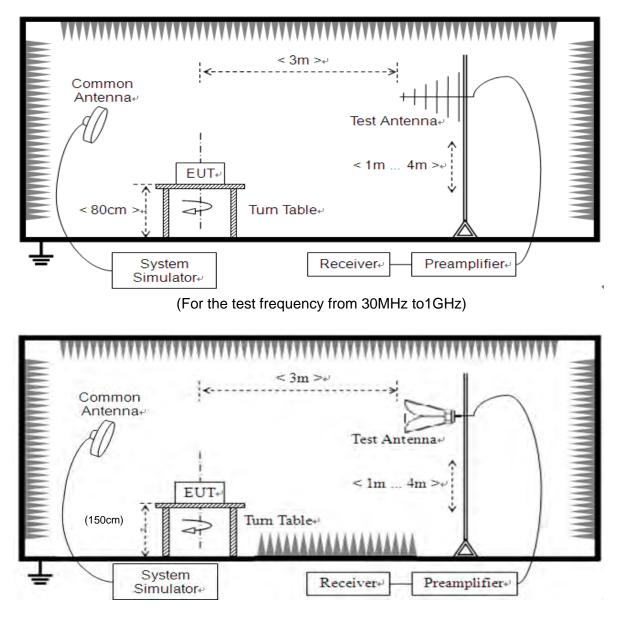
 A_{TOT} is total correction factor including cable loss and substitution correction

During the test, the data of A_{TOT} was added in the Test Spectrum Analyze, so Spectrum Analyze reading is the final values which contain the data of A_{TOT} .

Note: Both horizontal and vertical polarizations of the test antenna are evaluated respectively, only the worst data (horizontal) were recorded in this report.

Band	Dond Width	Charmel		Modulation	RB Cor	figuration	EIRP
Band	Band Width	Channel	Freq.(MHz)	Modulation	RB Size	RB Offset	(dBm)
			829 -	QPSK	1	0	23.56
		20450		QFSK	50	0	23.14
		20430	029	16-QAM	1	0	22.59
					50	0	22.21
				QPSK	1	0	23.67
LTE		20525	836.5	QF SK	50	0	22.74
	10MHz	20323	030.5	16-QAM	1	0	23.12
Band 5					50	0	21.64
				QPSK	1	0	23.51
		20600	844	QF SK	50	0	22.70
		20000 844	044	16-QAM	1	0	22.57
					50	0	21.54
Band	Band Width Char	Channel	Channel Freq.(MHz)	Modulation	RB Configuration		EIRP
Danu		Channel			RB Size	RB Offset	(dBm)
		20425	826.5	QPSK 16-QAM	1	0	23.69
					25	0	23.27
					1	0	22.97
					25	0	22.80
				QPSK	1	0	23.53
LTE		20525	836.5	QF SK	25	0	23.22
	5MHz	20323	030.5	16-QAM	1	0	22.71
Band 5					25	0	22.26
				QPSK 16-QAM	1	0	23.50
		20625	846.5		25	0	23.14
		20020	040.0		1	0	22.59
					25	0	22.24

	RB Configu					figuration	EIRP
Band	Band Width	Channel	Freq.(MHz)	Modulation	RB Size	RB Offset	(dBm)
					1	0	23.47
		20445	005 5	QPSK -	15	0	23.08
		20415	825.5	16-QAM	1	0	23.11
				16-QAM	15	0	22.51
				QPSK	1	0	23.43
LTE		20525	836.5	QFSK	15	0	23.23
	3MHz	20525	030.5		1	0	23.04
Band 5				16-QAM	15	0	22.28
			QPSK -	1	0	23.16	
		20635 8	847.5	QFSK	15	0	22.57
			047.5	16-QAM	1	0	22.40
					15	0	21.23
Dand	Band Width	Channel I	Freq.(MHz)	Modulation	RB Configuration		EIRP
Band					RB Size	RB Offset	(dBm)
		20407	824.7 -	QPSK 16-QAM	1	0	23.59
					6	0	22.66
					1	0	22.90
					6	0	22.02
				QPSK	1	0	22.88
LTE		20525	836.5	QF SK	6	0	22.81
	1.4MHz	20323	030.5	16-QAM	1	0	22.73
Band 5					6	0	22.29
				QPSK	1	0	23.48
		20643	848.3	QF3K	6	0	23.71
		20043	040.3	16-QAM	1	0	22.26
					6	0	21.40



2.8. Radiated Spurious Emissions

2.8.1. Requirement

According to FCC section 2.1051, the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43+10*log(P)dB. This calculated to be -13dBm.

2.8.2. Test Description

(For the test frequency above 1GHz)

The EUT is located in a 3m Full-Anechoic Chamber, the cable loss, air loss and so on of the site as factors are pre-calibrated using the "Substitution" method, and calculated to correct the reading.

A call is established between the EUT and the SS via a Common Antenna. The EUT is commanded by the SS to operate at the maximum and minimum output power, and only the test result of the maximum output power was recorded.

In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground and the Turn Table is actuated to turn from 0° to 360° to determine the maximum value of the radiated power. The emission levels at both horizontal and vertical polarizations should be tested. The Filters consists of Notch Filters and High Pass Filter.

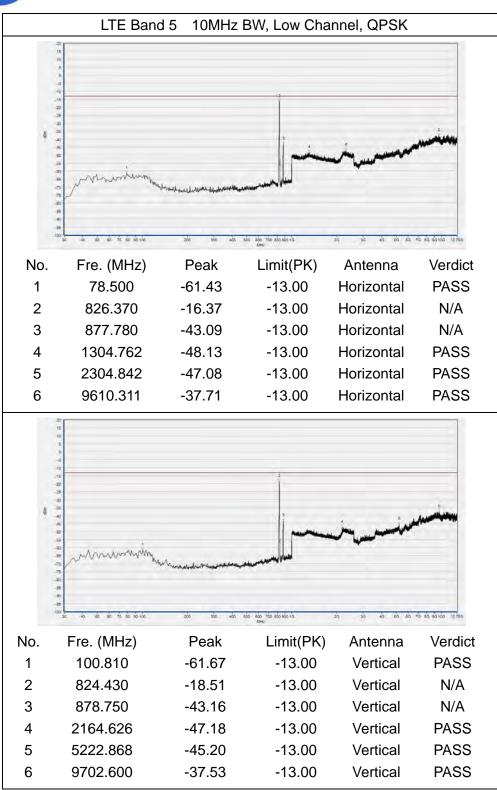
Note: when doing measurements above 1GHz, the EUT has been within the 3dB cone width of the horn antenna during horizontal antenna.

2.8.3. Test procedure

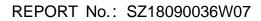
KDB 971168 D01v03 Section 5.8 and ANSI/TIA-603-E-2016.

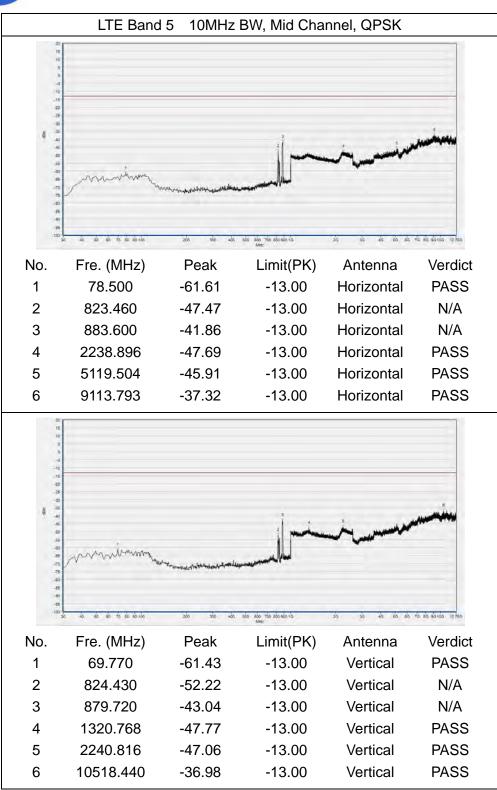
2.8.4. Test Result

The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. Test Antenna height is varied from 1m to 4m above the ground, and the Turn Table is actuated to turn from 0° to 360°, both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. Mid channels on all channel bandwidth verified. Only the worst RB size/offset presented.

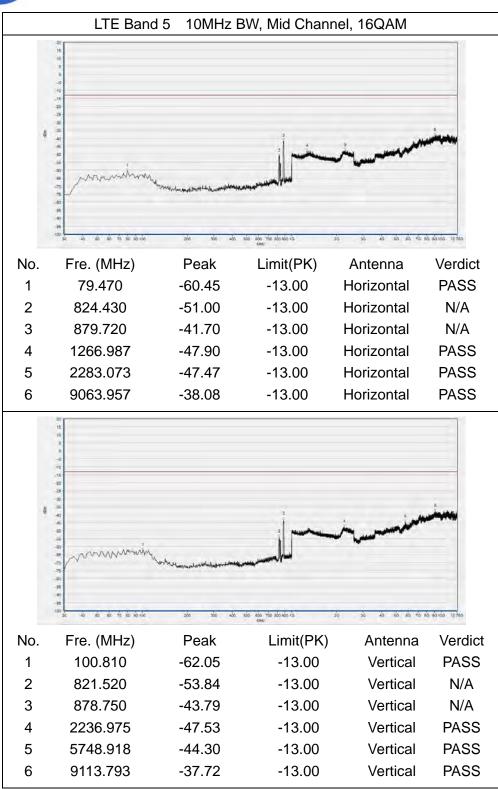

Note1: The power of the EUT transmitting frequency should be ignored.

Note2: All Spurious Emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

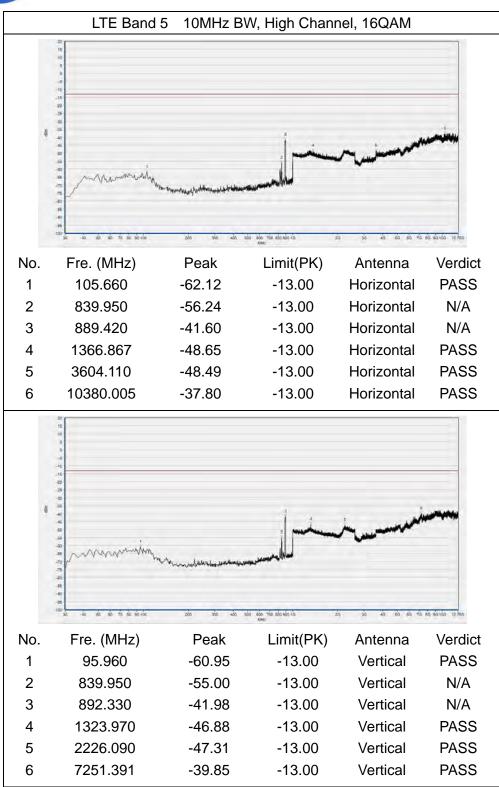

Note3: All bandwidth and test channel were considered and evaluated respectively by performing full test for each band, only the worst cases were recorded in this test report.



	LTE Band	5 10MHz B	W, Low Channe	I, 16QAM	
4		ninewayalayina kaladar kanada 260 36 ata		s s s s s s	
No.	Fre. (MHz)	Peak	Limit(PK)	Antenna	Verdict
1	106.630	-61.28	-13.00	Horizontal	PASS
2	824.430	-16.64	-13.00	Horizontal	N/A
3	877.780	-43.12	-13.00	Horizontal	N/A
4	1336.134	-48.41	-13.00	Horizontal	PASS
5	2301.641	-47.28	-13.00	Horizontal	PASS
6	7245.854	-39.81	-13.00	Horizontal	PASS
52		Marana da da		a a a a a a	*******
No.	Fre. (MHz)	Peak	Limit(PK)	Antenna	Verdict
1	96.930	-61.57	-13.00	Vertical	PASS
2	825.400	-19.88	-13.00	Vertical	N/A
3	876.810	-45.09	-13.00	Vertical	N/A
4	2329.172	-46.10	-13.00	Vertical	PASS
5	6551.837	-41.40	-13.00	Vertical	PASS



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Tel: 86-755-36698555
 Fax: 86-755-36698525


 Http://www.morlab.cn
 E-mail: service@morlab.cn

Annex A Test Uncertainty

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Tel: 86-755-36698555
 Fax: 86-755-36698525

 Http://www.morlab.cn
 E-mail: service@morlab.cn

Where relevant, the following measurement uncertainty levels have been estimated for test performed on the EUT as specified in CISPR 16-1-2:

Test items	Uncertainty
Output Power	±2.22 dB
Bandwidth	±5%
Conducted Spurious Emission	±2.77 dB
Band Edge	±2.77 dB
Equivalent Isotropic Radiated Power	±2.22 dB
Radiated Spurious Emissions	±6 dB

This uncertainty represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

Annex B Testing Laboratory Information

1. Identification of the Responsible Testing Laboratory

Company Name:	Shenzhen Morlab Communications Technology Co., Ltd.					
Department:	Morlab Laboratory					
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang					
	Road, Block 67, BaoAn District, ShenZhen, GuangDong					
	Province, P. R. China					
Responsible Test Lab	Mr. Su Feng					
Manager:	Mi. Su Feng					
Telephone:	+86 755 36698555					
Facsimile:	+86 755 36698525					

2. Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd.
	Morlab Laboratory
	FL.3, Building A, FeiYang Science Park, No.8 LongChang
Address:	Road, Block 67, BaoAn District, ShenZhen, GuangDong
	Province, P. R. China

3. Facilities and Accreditations

All measurement facilities used to collect the measurement data are located at FL.3, Building A, FeiYang Science Park, Block 67, BaoAn District, Shenzhen, 518101 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.10-2013 and CISPR Publication 22; the FCC designation number is CN1192, the test firm registration number is 226174.

4. Test Equipments Utilized

4.1 Conducted Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
Power Splitter	NW521	1506A	Weinschel	2018.04.17	2019.04.16
Attenuator 1	(N/A.)	10dB	Resnet	2018.04.17	2019.04.16
Attenuator 2	(N/A.)	3dB	Resnet	2018.04.17	2019.04.16
EXA Signal Analzyer	MY53470836	N9010A	Agilent	2017.12.03	2018.12.02
USB Power Sensor	MY54210011	U2021XA	Agilent	2018.04.17	2019.04.16
System Simulator	152038	CMW500	R&S	2018.05.08	2019.05.07
RF cable (30MHz-26GHz)	CB01	RF01	Morlab	N/A	N/A
Coaxial cable	CB02	RF02	Morlab	N/A	N/A
SMA connector	CN01	RF03	HUBER-SUHNER	N/A	N/A
Temperature Chamber	(N/A)	HUT705P	CHONGQING HANBA EXPERIMENTAL EQUIPMENT CO.,LTD	2018.04.17	2019.04.16

4.2Auxiliary Test Equipment

Equipment Name	Model No.	Brand Name	Manufacturer	Cal.Date	Cal. Due
Computer	T430i	Think Pad	Lenovo	N/A	N/A

4.3 Radiated Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
System Simulator	152038	CMW500	R&S	2018.08.04	2019.08.03
Receiver	MY54130016	N9038A	Agilent	2018.05.18	2019.05.17
Test Antenna - Bi-Log	9163-519	VULB 9163	Schwarzbeck	2018.03.03	2019.03.02
Test Antenna - Horn	9170C-531	BBHA9170	Schwarzbeck	2018.08.06	2019.08.05
Test Antenna - Horn	01774	BBHA 9120D	Schwarzbeck	2018.08.02	2019.08.01
Coaxial cable (N male) (9KHz-30MHz)	CB04	EMC04	Morlab	N/A	N/A
Coaxial cable (N male) (30MHz-26GHz)	CB02	EMC02	Morlab	N/A	N/A
Coaxial cable (N male) (30MHz-26GHz)	CB03	EMC03	Morlab	N/A	N/A
1-18GHz pre-Amplifier	MA02	TS-PR18	Rohde& Schwarz	2018.05.08	2019.05.07
18-26.5GHz pre-Amplifier	MA03	TS-PR18	Rohde& Schwarz	2018.05.08	2019.05.07
Anechoic Chamber	N/A	9m*6m*6m	CRT	2017.11.19	2020.11.18

_____ END OF REPORT _____

