

FCC Radio Test Report

FCC ID: 2APRZ-MAXWELL

Report No. : BTL-FCCP-2-2209T130

Equipment: Maxwell headset

Model Name : Maxwell Brand Name : Audeze LLC Applicant : Audeze LLC

Address : 3410 S Susan St, Santa Ana, CA 92704 USA

Radio Function : Bluetooth Low Energy

FCC Rule Part(s)
Measurement

: FCC CFR Title 47, Part 15, Subpart C (15.247)

: ANSI C63.10-2013

Procedure(s)

Date of Receipt : 2022/10/4

Date of Test : 2022/10/4~ 2022/11/9

Issued Date : 2022/11/30

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by :

Eric Lee, Engineer

Approved by :

Ilac-MRA

Testing Laboratory
0659

BTL Inc.

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

Project No.: 2209T130 Page 1 of 61 Report Version: R00

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the ISO/IEC 17025 requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Project No.: 2209T130 Page 2 of 61 Report Version: R00

CONTENTS REVISION HISTORY 5 SUMMARY OF TEST RESULTS 6 1.1 **TEST FACILITY** 7 MEASUREMENT UNCERTAINTY 1.2 7 1.3 **TEST ENVIRONMENT CONDITIONS** 8 1.4 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING 8 1.5 **DUTY CYCLE** 8 2 **GENERAL INFORMATION** 9 **DESCRIPTION OF EUT** 9 2.1 2.2 **TEST MODES** 11 2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 12 2.4 SUPPORT UNITS 13 3 AC POWER LINE CONDUCTED EMISSIONS TEST 14 3.1 LIMIT 14 **TEST PROCEDURE** 3.2 14 3.3 **DEVIATION FROM TEST STANDARD** 14 3.4 **TEST SETUP** 15 3.5 **TEST RESULT** 15 4 RADIATED EMISSIONS TEST 16 4.1 LIMIT 16 4.2 **TEST PROCEDURE** 17 4.3 **DEVIATION FROM TEST STANDARD** 17 4.4 **TEST SETUP** 17 **EUT OPERATING CONDITIONS** 4.5 18 TEST RESULT - BELOW 30 MHZ 18 4.6 4.7 TEST RESULT - 30 MHZ TO 1 GHZ 18 4.8 TEST RESULT – ABOVE 1 GHZ 18 5 **BANDWIDTH TEST** 19 APPLIED PROCEDURES / LIMIT 5.1 19 5.2 **TEST PROCEDURE** 19 5.3 **DEVIATION FROM STANDARD** 19 **TEST SETUP** 5.4 19 5.5 **EUT OPERATION CONDITIONS** 19 5.6 **TEST RESULTS** 19 6 **OUTPUT POWER TEST** 20 6.1 APPLIED PROCEDURES / LIMIT 20 **TEST PROCEDURE** 6.2 20 6.3 **DEVIATION FROM STANDARD** 20 6.4 **TEST SETUP** 20 **EUT OPERATION CONDITIONS** 6.5 20 **TEST RESULTS** 6.6 20 POWER SPECTRAL DENSITY TEST 7 21 APPLIED PROCEDURES / LIMIT 7.1 21 7.2 **TEST PROCEDURE** 21 **DEVIATION FROM STANDARD** 7.3 21 7.4 **TEST SETUP** 21 7.5 **EUT OPERATION CONDITIONS** 21

7.6	TEST	RESULTS	21
8	ANTEN	NA CONDUCTED SPURIOUS EMISSION	22
8.1	APPL	LIED PROCEDURES / LIMIT	22
8.2	TEST	PROCEDURE	22
8.3	DEVI	ATION FROM STANDARD	22
8.4	TEST	SETUP	22
8.5	EUT (OPERATION CONDITIONS	22
8.6	TEST	RESULTS	22
9	LIST OF	MEASURING EQUIPMENTS	23
10	EUT TE	ST PHOTO	25
11	EUT PH	OTOS	25
APPEND	υν Λ	AC POWER LINE CONDUCTED EMISSIONS	26
, _	., . , .		
APPEND	.,,,,	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	31
APPEND	IX C	RADIATED EMISSIONS - ABOVE 1 GHZ	34
APPEND	IX D	BANDWIDTH	51
APPEND	IX E	OUTPUT POWER	54
APPEND	IX F	POWER SPECTRAL DENSITY TEST	56
APPEND	IX G	ANTENNA CONDUCTED SPURIOUS EMISSION	59

Project No.: 2209T130 Page 4 of 61 Report Version: R00

REVISION HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-2-2209T130	R00	Original Report.	2022/11/30	Valid

Project No.: 2209T130 Page 5 of 61 Report Version: R00

SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

Standard(s) Section	Description	Test Result	Judgement	Remark
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass	
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX B APPENDIX C	Pass	
15.247(a)(2)	Bandwidth	APPENDIX D	Pass	
15.247(b)(3)	Output Power	APPENDIX E	Pass	
15.247(e)	Power Spectral Density	APPENDIX F	Pass	
15.247(d)	Antenna conducted Spurious Emission	APPENDIX G	Pass	
15.203	Antenna Requirement		Pass	

(1) "N/A" denotes test is not applicable in this Test Report.(2) The report format version is TP.1.1.1.

Project No.: 2209T130 Page 6 of 61 Report Version: R00

1.1 TEST FACILITY

The test facilities used to collect the test data in this repo
--

Test Firm Location: No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan.

TAF Accreditation Number is 0659; FCC Designation Number is TW0659.

The satellite facilities under the test firm used to collect the test data in this report are:

No. 68-2, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

 \square CB12 \square CB17 \square SR01 \square SR02 \boxtimes SR05

□ SR06 □ SR09

No. 72, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

 \boxtimes C06 \boxtimes CB21 \square CB22

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = \mathbf{2}$, providing a level of confidence of approximately 95 %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 \mathbf{U}_{cispr} requirement.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C06	CISPR	150 kHz ~ 30 MHz	3.44

B. Radiated emissions test:

Test Site	Measurement Frequency Range	U (dB)				
	0.03 GHz ~ 0.2 GHz	4.17				
	0.2 GHz ~ 1 GHz	4.72				
CB21	1 GHz ~ 6 GHz	5.21				
CBZT	6 GHz ~ 18 GHz	5.51				
	18 GHz ~ 26 GHz	3.69				
	26 GHz ~ 40 GHz	4.23				

C. Conducted test:

Test Item	U (dB)
Occupied Bandwidth	0.5334
Output power	0.3669
Power Spectral Density	0.6591
Conducted Spurious emissions	0.5416
Conducted Band edges	0.5348

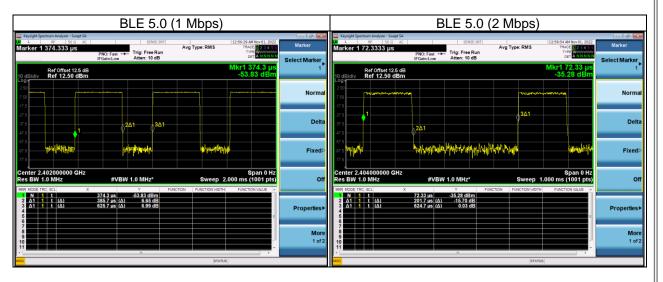
NOTE

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

Project No.: 2209T130 Page 7 of 61 Report Version: R00

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	21 °C, 58 %	AC 120V	Jay Tien
Radiated emissions below 1 GHz	23 °C, 59 %	DC 5V	Mark Wang
Radiated emissions above 1 GHz	23 °C, 59 %	DC 5V	Mark Wang
Bandwidth	22.9 °C, 51 %	DC 5V	Tim Lee
Output Power	22.9 °C, 51 %	DC 5V	Tim Lee
Power Spectral Density	22.9 °C, 51 %	DC 5V	Tim Lee
Antenna conducted Spurious Emission	22.9 °C, 51 %	DC 5V	Tim Lee


1.4 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

Test Software		AB1565/68 Lab	Test Tool-3.2.2	
Modulation Mode	2402 MHz	2440 MHz	2480 MHz	Data Rate
BLE 5.0	52	52	52	1 Mbps
Modulation Mode	2404 MHz	2440 MHz	2478 MHz	Data Rate
BLE 5.0	52	52	52	2 Mbps

1.5 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered.

Remark	Delta 1			Delta 2	On Time/Period	10 log(1/Duty Cycle)
Mode	ON	Numbers	On Time (B)	Period (ON+OFF)	Duty Cycle	Duty Factor
lviode	(ms)	(ON)	(ms)	(ms)	(%)	(dB)
BLE 5.0 (1 Mbps)	0.386	1	0.386	0.626	61.64%	2.10
BLE 5.0 (2 Mbps)	0.202	1	0.202	0.625	32.29%	4.91

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Causin as a sat	Marguell handout
Equipment	Maxwell headset
Model Name	Maxwell
Brand Name	Audeze LLC
Model Difference	N/A
Power Source	Battery supplied.
Power Rating	5V1.8A
Products Covered	2 * Maxwell Dongle: (1) Audeze LLC / Maxwell-X (2) Audeze LLC / Maxwell-P 1 * MIC 1 * USB Type C Cable 1 * 3.5mm Cable 1 * USB Type C to A Cable
Operation Band	2400 MHz ~ 2483.5 MHz
Operation Frequency	1 Mbps: 2402 MHz ~ 2480 MHz 2 Mbps: 2404 MHz ~ 2478 MHz
Modulation Technology	GFSK
Transfer Rate	1/2Mbps
Output Power Max.	1 Mbps: 4.80 dBm (0.0030 W) 2 Mbps: 4.35 dBm (0.0027 W)
Test Model	Maxwell
Sample Status	Engineering Sample
EUT Modification(s)	N/A

NOTE:

(1) The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

Project No.: 2209T130 Page 9 of 61 Report Version: R00

(2) Channel List: BLE 5.0 (1 Mbps)

Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	20	2442
01	2404	21	2444
02	2406	22	2446
03	2408	23	2448
04	2410	24	2450
05	2412	25	2452
06	2414	26	2454
07	2416	27	2456
08	2418	28	2458
09	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

BLE (2 Mbps)

Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2404	20	2442
02	2406	21	2444
03	2408	22	2446
04	2410	23	2448
05	2412	24	2450
06	2414	25	2452
07	2416	26	2454
08	2418	27	2456
09	2420	28	2458
10	2422	29	2460
11	2424	30	2462
12	2426	31	2464
13	2428	32	2466
14	2430	33	2468
15	2432	34	2470
16	2434	35	2472
17	2436	36	2474
18	2438	37	2476
19	2440	38	2478

(3) Table for Filed Antenna

Ant	Manufacturer	Model number	Type	Connector	Frequency (MHz)	Gain (dBi)
1	Ampacs Corporation	Maxwell_RX_Printed_ANT	PIFA	N/A	2400-2485	0.5

⁽⁴⁾ The above Antenna information are derived from the antenna data sheet provided by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

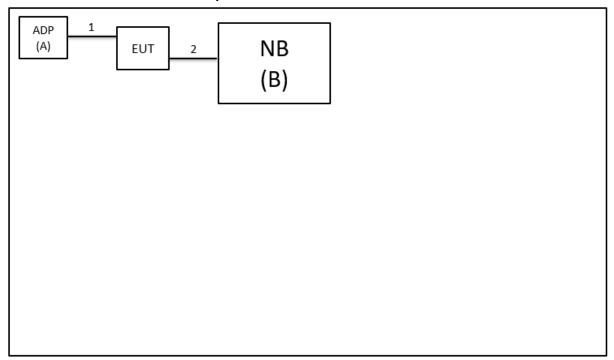
Project No.: 2209T130 Page 10 of 61 Report Version: R00

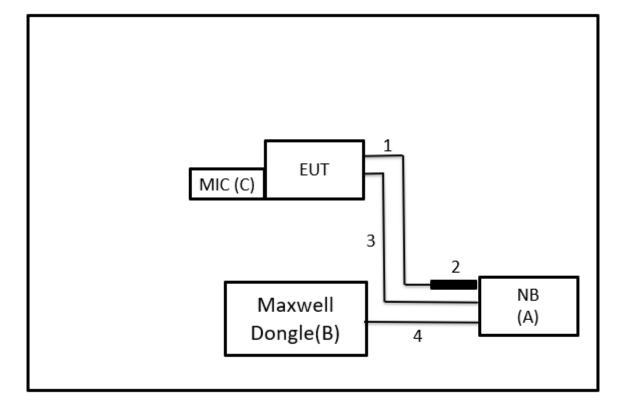
2.2 TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal/Idle	-	-
Transmitter Radiated Emissions (below 1GHz)	1 Mbps	39	-
	1 Mbps	00/39	Pandadaa
Transmitter Radiated Emissions	2 Mbps	01/38	Bandedge
(above 1GHz)	1 Mbps	00/19/39	Harmania
	2 Mbps	01/19/38	Harmonic
Don dwidth	1 Mbps	00/19/39	
Bandwidth	2 Mbps	01/19/38	-
Output Dower	1 Mbps	00/19/39	
Output Power	2 Mbps	01/19/38] -
Dower Spectral Density	1 Mbps	00/19/39	
Power Spectral Density	2 Mbps	01/19/38] -
Antonno conducted Spurious Emission	1 Mbps	00/19/39	
Antenna conducted Spurious Emission	2 Mbps	01/19/38	

NOTE:

- (1) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Horizontal) is recorded.
- (2) All X, Y and Z axes are evaluated, but only the worst case (X axis) is recorded.


Project No.: 2209T130 Page 11 of 61 Report Version: R00


2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

AC power line conducted emissions

Radiated Emissions

Project No.: 2209T130 Page 12 of 61 Report Version: R00

2.4 SUPPORT UNITS

AC power line conducted emissions

Item	Equipment	Brand	Model No.	Series No.	Remarks
Α	ADP	SAMSUNG	EP-TA800	R37M9EDVX51SE3	Furnished by test lab.
В	NB	HP	TPN-I119	N/A	Furnished by test lab.

Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	N/A	N/A	1.5M	USB C Cable	Supplied by test requester.
2	N/A	N/A	1.2M	AUX Cable	Supplied by test requester.

Radiated Emissions

1 101011					
Item	Equipment	Brand	Model No.	Series No.	Remarks
Α	NB	HP	TPN-I119	N/A	Furnished by test lab.
В	Maxwell Dongle	Audeze LLC	Maxwell-P	N/A	Supplied by test requester.
С	MIC	Primo	EM271Y	N/A	Supplied by test requester.

Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	N/A	N/A	1.55m	USB Type C Cable	Supplied by test requester.
2	N/A	N/A	31.5cm	USB Type C to A Cable	Supplied by test requester.
3	N/A	N/A	1.27m	3.5mm Cable	Supplied by test requester.
4	N/A	N/A	31.5cm	USB Type C to A Cable	Supplied by test requester.

Project No.: 2209T130 Page 13 of 61 Report Version: R00

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dBμV)		
(MHz)	Quasi-peak	Average	
0.15 - 0.5	66 - 56 *	56 - 46 *	
0.50 - 5.0	56	46	
5.0 - 30.0	60	50	

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
38.22	+	3.45	=	41.67

Measurement Value		Limit Value		Margin Level
41.67	-	60	II	-18.33

The following table is the setting of the receiver.

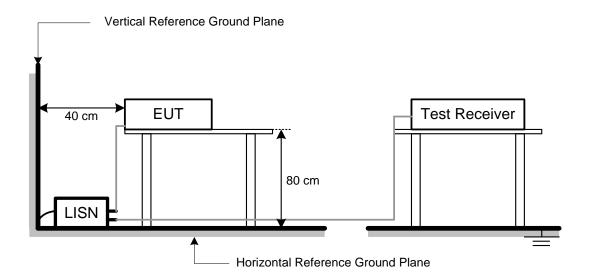
Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).
 - All other support equipment were powered from an additional LISN(s).
 - The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center.
 - The end of the cable will be terminated, using the correct terminating impedance.
 - The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:

- (1) In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.


3.3 DEVIATION FROM TEST STANDARD

No deviation.

Project No.: 2209T130 Page 14 of 61 Report Version: R00

3.4 TEST SETUP

3.5 TEST RESULT

Please refer to the APPENDIX A.

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency	Radiated (dBu	Measurement Distance	
(MHz)	Peak	Average	(meters)
Above 1000	74	54	3

NOTE:

- (1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

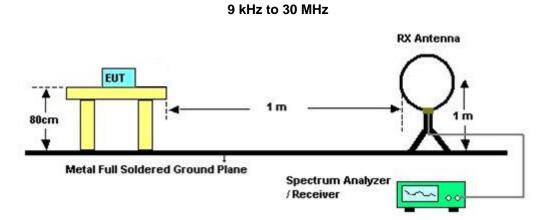
Reading Level		Correct Factor		Measurement Value
41.91	+	-8.36	=	33.55

Measurement Value		Limit Value		Margin Level
33.55	-	43.50	=	-9.95

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1MHz / 3MHz for Peak,
(Emission in restricted band)	1MHz / 1/T for Average

Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

Project No.: 2209T130 Page 16 of 61 Report Version: R00


4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

4.3 DEVIATION FROM TEST STANDARD

No deviation.

4.4 TEST SETUP

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULT - BELOW 30 MHZ

There were no emissions found below 30 MHz within 20 dB of the limit.

4.7 TEST RESULT - 30 MHZ TO 1 GHZ

Please refer to the APPENDIX B.

4.8 TEST RESULT - ABOVE 1 GHZ

Please refer to the APPENDIX C.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

Project No.: 2209T130 Page 18 of 61 Report Version: R00

5 BANDWIDTH TEST

5.1 APPLIED PROCEDURES / LIMIT

Section	Test Item	Limit	Frequency Range (MHz)	Result	
15.247(a)(2)	Bandwidth	>= 500KHz	2400-2483.5	PASS	
13.247 (a)(2)	Bandwidth	(6dB bandwidth)	2400-2403.3	F A33	

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 100KHz, VBW=300KHz, Sweep time = 2.5 ms.

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

5.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULTS

Please refer to the APPENDIX D.

6 OUTPUT POWER TEST

6.1 APPLIED PROCEDURES / LIMIT

Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(3)	Maximum Output Power	1 watt or 30dBm	2400-2483.5	PASS

6.2 TEST PROCEDURE

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below,
- b. The maximum peak conducted output power was performed in accordance with FCC KDB 558074 D01 15.247 Meas Guidance.

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

EUT	Power Meter
	1 OWEI MELEI

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

6.6 TEST RESULTS

Please refer to the APPENDIX E.

Project No.: 2209T130 Page 20 of 61 Report Version: R00

7 POWER SPECTRAL DENSITY TEST

7.1 APPLIED PROCEDURES / LIMIT

Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(e)	Power Spectral Density	8 dBm (in any 3KHz)	2400-2483.5	PASS

7.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW=3KHz, VBW=10 KHz, Sweep time = auto.

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

7.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

7.6 TEST RESULTS

Please refer to the APPENDIX F.

8 ANTENNA CONDUCTED SPURIOUS EMISSION

8.1 APPLIED PROCEDURES / LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 100KHz, VBW=300KHz, Sweep time = 10 ms.

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

8.6 TEST RESULTS

Please refer to the APPENDIX G.

Project No.: 2209T130 Page 22 of 61 Report Version: R00

9 LIST OF MEASURING EQUIPMENTS

	AC Power Line Conducted Emissions							
Ite	em	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
	1	TWO-LINE V-NETWORK	R&S	ENV216	101497	2022/5/13	2023/5/12	
	2	Test Cable	EMCI	EMCCFD300-BM-BMR -5000	170501	2022/8/3	2023/8/2	
	3	EMI Test Receiver	R&S	ESR3	102950	2022/4/12	2023/4/11	
	4	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A	

	Radiated Emissions								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until			
1	Preamplifier	EMCI	EMC330N	980850	2022/9/19	2023/9/18			
2	Preamplifier	EMCI	EMC118A45SE	980819	2022/3/8	2023/3/7			
3	Preamplifier	EMCI	EMC184045SE	980882	2022/2/9	2023/2/8			
4	Preamplifier	EMCI	EMC001340	980555	2022/4/6	2023/4/5			
5	Test Cable	EMCI	EMC104-SM-SM-1000	220319	2022/3/15	2023/3/14			
6	Test Cable	EMCI	EMC104-SM-SM-3000	220322	2022/3/15	2023/3/14			
7	Test Cable	EMCI	EMC104-SM-SM-7000	220324	2022/3/15	2023/3/14			
8	EXA Signal Analyzer	keysight	N9020B	MY57120120	2022/3/7	2023/3/6			
9	Loop Ant	Electro-Metric s	EMCI-LPA600	274	2022/6/16	2023/6/15			
10	Horn Antenna	RFSPIN	DRH18-E	211202A18EN	2022/5/18	2023/5/17			
11	Horn Ant	Schwarzbeck	BBHA 9170D	1136	2022/5/18	2023/5/17			
12	Log-bicon Antenna	Schwarzbeck	VULB9168	1369	2022/5/20	2023/5/19			
13	6dB Attenuator	EMCI	EMCI-N-6-06	AT-N0625	2022/5/20	2023/5/19			
14	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A			

	Bandwidth									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until				
1	Spectrum Analyzer	Keysight	N9010A	MY54200240	2022/6/9	2023/6/8				

	Output Power									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until				
1	Power Meter	Anritsu	ML2495A	1128008	2022/6/1	2023/5/31				
2	Power Sensor	Anritsu	MA2411B	1126001	2022/6/1	2023/5/31				

	Power Spectral Density										
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until					
1	Spectrum Analyzer	Keysight	N9010A	MY54200240	2022/6/9	2023/6/8					

Project No.: 2209T130 Page 23 of 61 Report Version: R00

	Antenna conducted Spurious Emission									
Iten	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until				
1	Spectrum Analyzer	Keysight	N9010A	MY54200240	2022/6/9	2023/6/8				

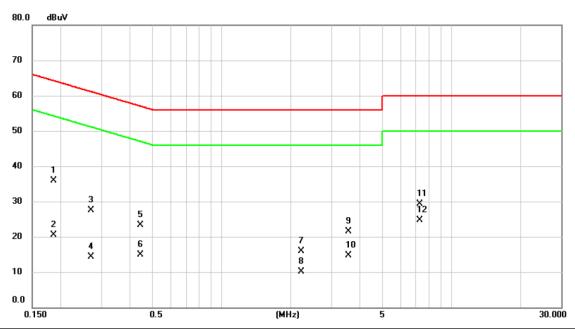
Remark: (1) "N/A" denotes no model name, no serial no. or no calibration specified.

(2) All calibration period of equipment list is one year.

Project No.: 2209T130 Page 24 of 61 Report Version: R00

10 EUT TEST PHOTO
Please refer to document Appendix No.: TP-2209T130-FCCP-1 (APPENDIX-TEST PHOTOS).
11 EUT PHOTOS
Please refer to document Appendix No.: EP-2209T130-1 (APPENDIX-EUT PHOTOS).

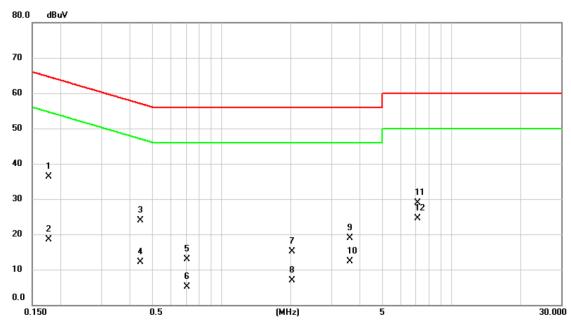
Project No.: 2209T130 Page 25 of 61 Report Version: R00



APPENDIX A	AC POWER LINE CONDUCTED EMISSIONS

Project No.: 2209T130 Page 26 of 61 Report Version: R00

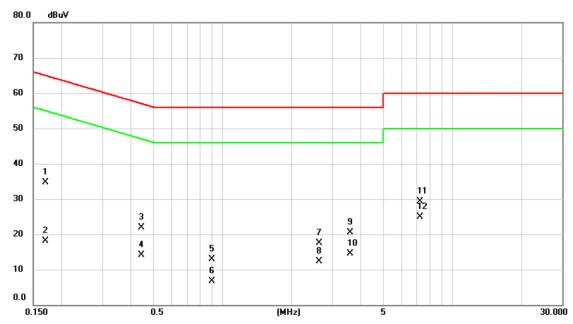
Test Mode	Normal	Tested Date	2022/10/24
Test Frequency	-	Phase	Line



No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1863	26.27	9.69	35.96	64.20	-28.24	QP	
2	0.1863	10.78	9.69	20.47	54.20	-33.73	AVG	
3	0.2714	17.76	9.69	27.45	61.07	-33.62	QP	
4	0.2714	4.59	9.69	14.28	51.07	-36.79	AVG	
5	0.4447	13.62	9.69	23.31	56.97	-33.66	QP	
6	0.4447	5.30	9.69	14.99	46.97	-31.98	AVG	
7	2.2244	6.24	9.75	15.99	56.00	-40.01	QP	
8	2.2244	0.41	9.75	10.16	46.00	-35.84	AVG	
9	3.5700	11.77	9.78	21.55	56.00	-34.45	QP	
10	3.5700	4.93	9.78	14.71	46.00	-31.29	AVG	
11	7.3027	19.37	9.85	29.22	60.00	-30.78	QP	
12 *	7.3027	14.88	9.85	24.73	50.00	-25.27	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

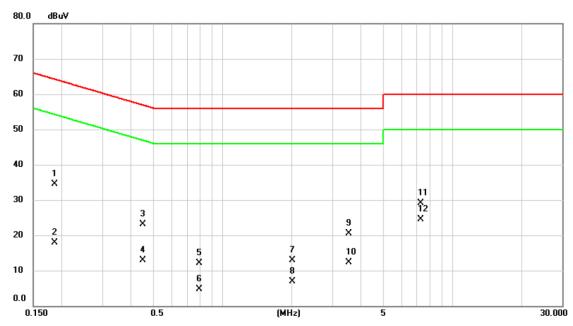
Test Mode	Normal	Tested Date	2022/10/24
Test Frequency	-	Phase	Neutral



No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1777	26.56	9.68	36.24	64.59	-28.35	QP	
2	0.1777	8.90	9.68	18.58	54.59	-36.01	AVG	
3	0.4425	14.14	9.69	23.83	57.01	-33.18	QP	
4	0.4425	2.37	9.69	12.06	47.01	-34.95	AVG	
5	0.7056	3.18	9.69	12.87	56.00	-43.13	QP	
6	0.7056	-4.61	9.69	5.08	46.00	-40.92	AVG	
7	2.0264	5.40	9.75	15.15	56.00	-40.85	QP	
8	2.0264	-2.91	9.75	6.84	46.00	-39.16	AVG	
9	3.6173	9.15	9.79	18.94	56.00	-37.06	QP	
10	3.6173	2.57	9.79	12.36	46.00	-33.64	AVG	
11	7.1048	19.14	9.86	29.00	60.00	-31.00	QP	
12 *	7.1048	14.58	9.86	24.44	50.00	-25.56	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

Test Mode	Idle	Tested Date	2022/10/24
Test Frequency	-	Phase	Line

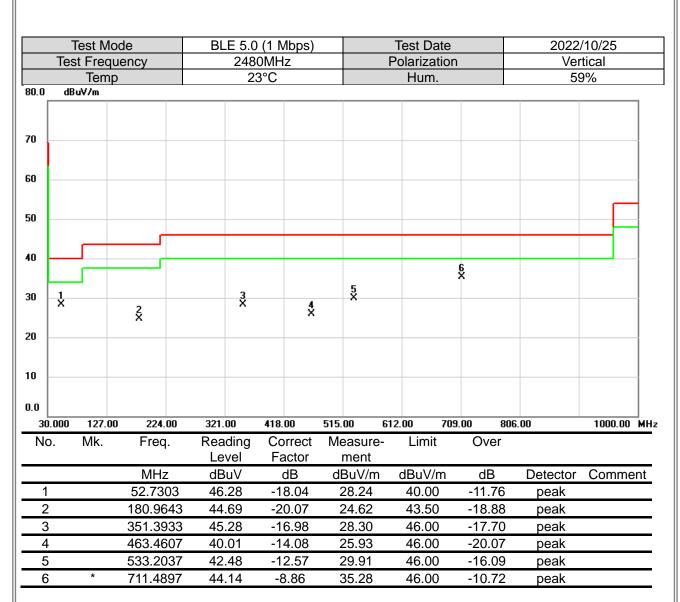


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1703	25.07	9.69	34.76	64.95	-30.19	QP	
2		0.1703	8.36	9.69	18.05	54.95	-36.90	AVG	
3		0.4447	12.21	9.69	21.90	56.97	-35.07	QP	
4		0.4447	4.45	9.69	14.14	46.97	-32.83	AVG	
5		0.9015	3.22	9.70	12.92	56.00	-43.08	QP	
6		0.9015	-2.92	9.70	6.78	46.00	-39.22	AVG	
7		2.6228	7.79	9.76	17.55	56.00	-38.45	QP	
8		2.6228	2.54	9.76	12.30	46.00	-33.70	AVG	
9		3.5858	10.77	9.78	20.55	56.00	-35.45	QP	
10		3.5858	4.80	9.78	14.58	46.00	-31.42	AVG	
11		7.2330	19.43	9.85	29.28	60.00	-30.72	QP	
12	*	7.2330	15.03	9.85	24.88	50.00	-25.12	AVG	

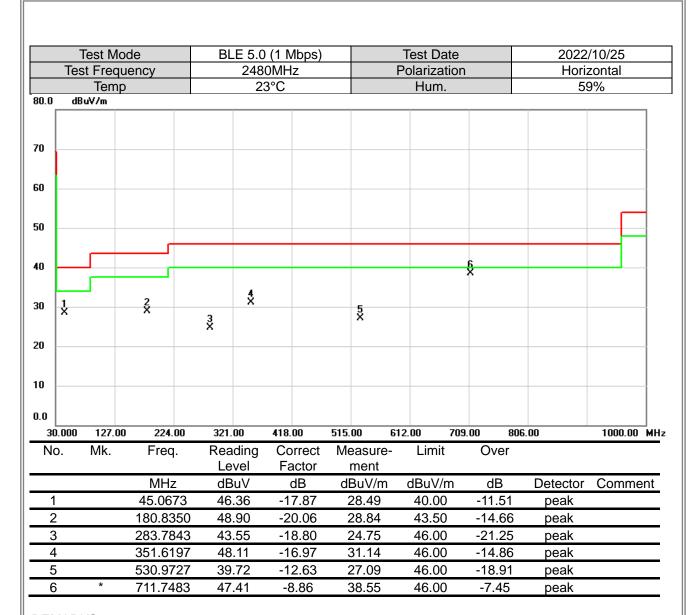
- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

[Test Mode	Idle	Tested Date	2022/10/24
-	Test Frequency	-	Phase	Neutral

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1863	24.82	9.68	34.50	64.20	-29.70	QP	
2	0.1863	8.18	9.68	17.86	54.20	-36.34	AVG	
3	0.4492	13.50	9.69	23.19	56.89	-33.70	QP	
4	0.4492	3.12	9.69	12.81	46.89	-34.08	AVG	
5	0.7934	2.40	9.69	12.09	56.00	-43.91	QP	
6	0.7934	-5.08	9.69	4.61	46.00	-41.39	AVG	
7	2.0107	3.25	9.75	13.00	56.00	-43.00	QP	
8	2.0107	-2.77	9.75	6.98	46.00	-39.02	AVG	
9	3.5407	10.78	9.78	20.56	56.00	-35.44	QP	
10	3.5407	2.45	9.78	12.23	46.00	-33.77	AVG	
11	7.2555	19.16	9.86	29.02	60.00	-30.98	QP	
12 *	7.2555	14.67	9.86	24.53	50.00	-25.47	AVG	

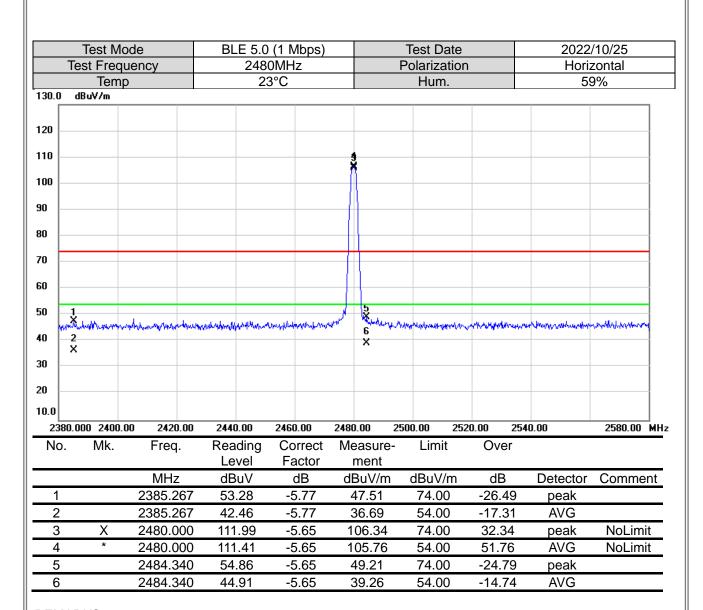

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

APPENDIX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ


Project No.: 2209T130 Page 31 of 61 Report Version: R00

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


APPENDIX C	RADIATED EMISSIONS - ABOVE 1 GHZ

Project No.: 2209T130 Page 34 of 61 Report Version: R00

7	Test Mod	de	BLE 5.0) (1 Mbps)		Test Date			2022/10/25		
Test Frequency			240	2MHz		Polarization			Horizontal		
	Temp		2	3°C		Hum.		59	9%		
130.0 dB	uV/m										
120											
110					, the state of the						
100											
90											
70											
BO											
70											
60											
50			Į.						5 prijekt in marketinsk		
ոշխողար 40	pol-12/Augustano (Vegeta	protection designation of the second	mannan Mara	44 harman garantan	Mystyl, nothylleting	harring and the second	and the state of t	إماره والمارية والمارية			
***			2 X						6 X		
30											
20											
10.0											
	0 2322.00	0 2342.00	2362.00	2382.00	2402.00	2422.00 24	42.00 246	2.00	2502.00 MH		
No.	Mk.	Freq.	Reading	Correct	Measure	- Limit	Over				
			Level	Factor	ment						
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment		
1		2366.007	53.75	-5.80	47.95	74.00	-26.05	peak			
2		2366.007	42.17	-5.80	36.37	54.00	-17.63	AVG			
3	Χ	2402.000	111.62	-5.75	105.87	74.00	31.87	peak	NoLimit		
4	*	2402.000	111.00	-5.75	105.25	54.00	51.25	AVG	NoLimit		
5 6		2487.333	53.29	-5.63	47.66	74.00	-26.34	peak			
^		2487.333	41.71	-5.63	36.08	54.00	-17.92	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

	Test Mo			(2 Mbps)		Test Date			/10/25
	Test Frequ			4MHz		Polarization	1		ontal
130.0	Temp dBuV/m		2	3°C		Hum.		58	9%
130.0	UDUY/III								
120									
110									
100					Ä				
90									
80									
70									
50									
50	1								5
40	and make	mandadhing about majari	aron en	mandelepoder	which there was	homely water and	yypahaddychaighdynami	t de la companya de l	www.mill
	×								×
30									
20									
10.0									
	.000 2324.0		2364.00	2384.00				4.00	2504.00 MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2314.447	53.10	-5.87	47.23	74.00	-26.77	peak	
2		2314.447	42.74	-5.87	36.87	54.00	-17.13	AVG	
3	Χ	2404.000	112.14	-5.75	106.39	74.00	32.39	peak	NoLimit
	*	2404.000	110.72	-5.75	104.97	54.00	50.97	AVG	NoLimit
4									
4 5 6		2501.267 2501.267	53.79 42.45	-5.62 -5.62	48.17	74.00 54.00	-25.83 -17.17	peak AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

То	Test Mo			(2 Mbps) 8MHz		Test Date Polarization			/10/25 zontal
16	st Frequ Temp			<u>омп∠</u> 3°С		Hum.	1		2011ai 9%
130.0 d	HBuV/m			3 C		Hulli.		38	<i>17</i> 0
120									
110					3				
100					Ř				
_					- //				
90									
во									
70									
70									
60					++-				
50 1					5				
JU T	March March	en entrate appropriate production as	nga Magan trataga ng kanalaga na saka	والمعرفان المعرفان والمعرفان المعرفان	not Wanter	والمجامعة المحاملية	Manager and the second second second	hander og at til glade fra	make the Agency MARCH
40 2 X					6 X				
30									
20									
10.0									
2378.0	00 2398.0	0 2418.00	2438.00	2458.00	2478.00 2		18.00 253	8.00	2578.00 Mi
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over		
			Level	Factor	ment				
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2380.740	52.67	-5.78	46.89	74.00	-27.11	peak	
2		2380.740	42.99	-5.78	37.21	54.00	-16.79	AVG	
3	Χ	2478.000	109.94	-5.65	104.29	74.00	30.29	peak	NoLimit
4	*	2478.000	108.55	-5.65	102.90	54.00	48.90	AVG	NoLimit
5 6		2485.593 2485.593	54.93 43.46	-5.63 -5.63	49.30 37.83	74.00 54.00	-24.70 -16.17	peak AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

-	Test M				(1 Mbps)		Test Date			/10/25
	Test Fred				2MHz		Polarization	1		tical
130.0	Ten dBuV/m	ър			3°C		Hum.		58	9%
T	ub u v v iii									
120										
110										
100										
90 _										
80										
70										
60										
50										
40		1 X								
30		2 X								
20										
10.0										
	0.000 3550		0.00	8650.00	11200.00				100.00	26500.00 MHz
No.	Mk.	Free	٦.	Reading Level	Correct Factor	Measure- ment	- Limit	Over		
		MH	Z	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.	000	39.51	0.65	40.16	74.00	-33.84	peak	
2	*	4804.	000	30.65	0.65	31.30	54.00	-22.70	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo				(1 Mbps)		Test Date			/10/25
10	est Frequence Temp				<u>2MHz</u> 3°C		Polarization Hum.	on		zontal 9%
130.0	dBuV/m	J		۷.	3 0		i iuiii.		J.	9 70
120										
110 -										
100										
90										
BO										
'o										
io										
50										
10		1 X								
30		2 X								
20										
10.0										
	000 3550.			8650.00	11200.00				100.00	26500.00 MH
No.	Mk.	Freq.	F	Reading Level	Correct Factor	Measure ment	- Limit	Over		
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.00	00	39.34	0.65	39.99	74.00	-34.01	peak	
2	*	4804.00	00	29.23	0.65	29.88	54.00	-24.12	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

		est Mo				0 (1 Mbps)		Test Date			/10/25
	Test		iency			40MHz		Polarization	1		tical
30.0	dBu\	Temp)		2	23°C		Hum.		59	9%
30.0	aBu	7/M									
20											
10											
00											
10											
:0											
o											
o											
0											
			1 X								
0			2 X								
20											
0.0											
1000	D. 000	3550.0	0 6100.	.00	8650.00	11200.00	13750.00	16300.00 18	850.00 214	100.00	26500.00 MH
No.		Mk.	Freq.		Reading Level	Correct Factor	Measure- ment	Limit	Over		
			MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1			4880.00	00	39.46	0.92	40.38	74.00	-33.62	peak	
2		*	4880.00	00	30.10	0.92	31.02	54.00	-22.98	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			(1 Mbps)		Test Date			/10/25
Te	est Frequ			0MHz		Polarization	n		zontal
	Temp)	2	3°C		Hum.		59	9%
130.0	dBuV/m								
120									
110									
100									
90									
80									
70									
60 —									
50									
40		1 X							
30		2 X							
20									
10.0									
1000.	000 3550.0	00 6100.00	8650.00	11200.00	13750.00		850.00 214	00.00	26500.00 MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	- Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1_		4880.000	40.01	0.92	40.93	74.00	-33.07	peak	
2	*	4880.000	29.42	0.92	30.34	54.00	-23.66	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo		Bl		(1 Mbps)		Test D			2/10/25
T	est Frequ				0MHz		Polariz			rtical
130.0	Temp dBuV/m)		23	3°C		Hun	n	5	9%
130.0	aguy/m									
120										
110										
100										
90										
80										
70										
60										
50										
40		1 ×								
30		2 X								
20										
10.0										
1000.	000 3550.0	00 6100.0	00 865	0.00	11200.00	13750.00	16300.00	18850.00	21400.00	26500.00 MHz
No.	Mk.	Freq.		iding vel	Correct Factor	Measure ment	e- Lim	it Ov	er	
		MHz		BuV	dB	dBuV/n	n dBuV	/m dl	B Detector	Comment
1		4960.00		.87	1.18	41.05	74.0			
2	*	4960.00		.26	1.18	31.44	54.0			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo		BL		(1 Mbps)			Test Dat			/10/25
Te	est Frequ				0MHz		F	Polarizati	on		zontal
	Temp)		23	3°C			Hum.		5:	9%
130.0	dBuV/m										
120											
110											
100											
90											
во											
70											
60											
50											
40		1 ×									
30		2 X									
20											
10.0											
1000.0	000 3550.0	00 6100.0	0 8650	0.00	11200.00	13750.00	16	300.00	18850.00	21400.00	26500.00 MH
No.	Mk.	Freq.		ding vel	Correct Factor	Measu men		Limit	Ove	r	
		MHz		uV	dB	dBuV/		dBuV/n	n dB	Detector	Comment
1		4960.00		.42	1.18	41.60		74.00	-32.4		
2	*	4960.00	0 29	.01	1.18	30.19)	54.00	-23.8		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test M					(2 Mbps)				est Dat				/10/25
Te	est Freq					4MHz			Po	larizati	ion			tical
	Tem	р			23	3°C				Hum.			59	9%
30.0	dBuV/m													
20														
10														
00 -														
00														
10														
0														
io														
50														
10		1 X												
		2 X												
10		×												
20														
0.0														
	000 3550.			8650.0		11200.00	1375		1630		18850.00		00.00	26500.00 MH
No.	Mk.	Freq	-	Readi Leve		Correct Factor		asure- nent	-	Limit	Ov	er		
		MHz	7	dBu\		dB		BuV/m	C	BuV/m	n dE	3	Detector	Comment
1		4808.0	000	40.0	8	0.67	4	0.75		74.00	-33.	25	peak	
2	*	4808.0	000	30.3	0	0.67	3	30.97		54.00	-23.	03	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

T	Test Mest Fred			BL		(2 N 4MH	(lbps)				Test Da					/10/25 zontal	
16	Tem					3°C				г	Hum.					9%	
130.0	dBuV/m	ıρ			۷,	3 0					Hulli				J.	70	
																	٦
120																	4
110																	
110																	1
100 -																	+
90																	
80																	1
70																	7
60																	
50																	1
40		1 X															-
30		2 X															
30		×															1
20																	-
10.0																	
	000 3550			8650.			0.00		50.00		00.00		50.00		00.00	26500.00) MH:
No.	Mk.	Freq		Read			rrect		easure ment	9-	Limit		Ove	er			
		MHz		dBı			dB		3uV/n	า	dBuV/ı	m	dB	}	Detector	Comme	ent
1		4808.0		39.		0	.67		40.35		74.00		-33.6	65	peak		
2	*	4808.0	000	29.	67	0	.67	(30.34		54.00)	-23.6	66	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo) (2 Mbps)		Test Date			/10/25
Te	est Freq				0MHz		Polarizatio	n		tical
	Tem	р		2	3°C		Hum.		59	9%
30.0	dBuV/m									
20										
110										
100										
30										
30										
, <u> </u>										
io										
50										
10		1 X								
		2								
80		×								
20										
10.0										
	000 3550.			8650.00	11200.00				100.00	26500.00 MH
No.	Mk.	Freq	•	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4880.0	00	39.90	0.92	40.82	74.00	-33.18	peak	
2	*	4880.0	00	30.33	0.92	31.25	54.00	-22.75	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

_	Test M				0 (2 Mbps) 0MHz			Test Da Polarizat			2/10/25 izontal
<u> </u>	est Freq Tem				01/11⊓2 3°C			Hum.			12011(a) 19%
130.0	dBuV/m	Ρ			 			T IGITI.			70
120											
110											
100											
90											
80											
70											
60											
50		1 X									
40		2									
30		×									
20 10.0											
1000.	000 3550.	00 6100.	00 8	650.00	11200.00	13750.00	16	300.00	18850.00	21400.00	26500.00 MHz
No.	Mk.	Freq.		eading Level	Correct Factor	Measur ment	e-	Limit	Ove	er	
		MHz		dBuV	dB	dBuV/r	n	dBuV/r	n dE	B Detector	Comment
1		4880.00	00	41.26	0.92	42.18		74.00	-31.		
2	*	4880.00	00	29.92	0.92	30.84		54.00	-23.	16 AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

-	Test Mo			(2 Mbps) 8MHz		Test Date Polarization			/10/25 rtical
	Test Frequ Temp			<u>омп∠</u> 3°С		Hum.			9%
130.0	dBuV/m	<i>,</i>		 		Tiuiii.			3 70
120									
110									
100									
90									
80									
70									
60									
50									
40		1 X							
30		2 X							
20									
10.0									
1000	.000 3550.0	00 6100.00	8650.00	11200.00	13750.00 1	6300.00 188	350.00 214	100.00	26500.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1_		4956.000		1.17	40.64	74.00	-33.36	peak	
2	*	4956.000	30.25	1.17	31.42	54.00	-22.58	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

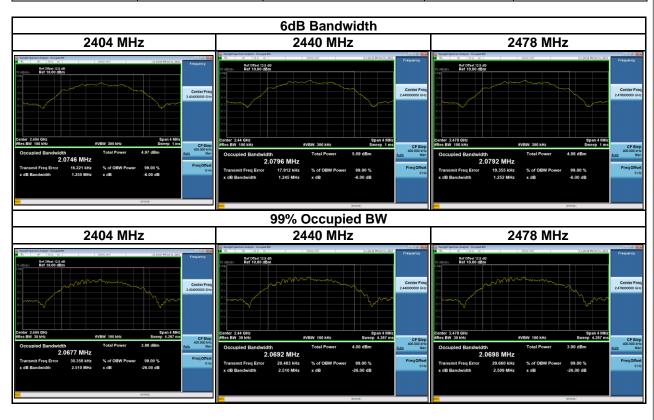
Test Mode			BLE 5.0 (2 Mbps)			Test Date		2022/10/25		
Te					rizontal					
	Temp)		2	3°C		Hum.		59	9%
30.0 d	BuV/m									
20										
10										
00										
o										
0										
0 —										
0										
o		X X								
0		2 X								
o										
0.0										
1000.0	00 3550.0	00 6100.	00	8650.00	11200.00	13750.00		850.00 214	100.00	26500.00 M
No.	Mk.	Freq.		Reading Level	Correct Factor	Measure- ment	- Limit	Over		
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4956.00	00	39.87	1.17	41.04	74.00	-32.96	peak	
2	*	4956.00	00	29.41	1.17	30.58	54.00	-23.42	AVG	

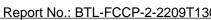
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Report No.: BTL-FCCP-2-2209T130 APPENDIX D BANDWIDTH

Project No.: 2209T130 Page 51 of 61 Report Version: R00

Test Mode: BLE 5.0 (1 Mbps)


Frequency (MHz)	6dB Bandwidth (MHz)	99% Occupied BW (MHz)	Min. Limit (kHz)	Test Result
2402	0.71	1.04	500	Pass
2440	0.71	1.04	500	Pass
2480	0.71	1.04	500	Pass



Test Mode	BLE 5.0 (2 Mbps)
100t Wood	DEE 0.0 (2 Mbps)

Frequency (MHz)	6dB Bandwidth (MHz)	99% Occupied BW (MHz)	Min. Limit (kHz)	Test Result
2404	1.26	2.07	500	Pass
2440	1.25	2.07	500	Pass
2478	1.25	2.07	500	Pass

	<u> Report No</u>	<u>:: BTL-FCCP-2-22091130</u>
ADDENDIV E		
APPENDIX E	OUTPUT POWER	

Project No.: 2209T130 Page 54 of 61 Report Version: R00

Test Mode	BLE 5.0 (1 Mbps)	Tested Date	2022/11/4

Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	4.20	0.0026	30.00	1.0000	Pass
2440	4.80	0.0030	30.00	1.0000	Pass
2480	3.91	0.0025	30.00	1.0000	Pass

Test Mode	BLE 5.0 (2 Mbps)	Tested Date	2022/11/4

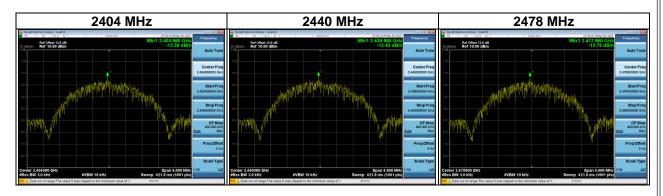
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2404	4.24	0.0027	30.00	1.0000	Pass
2440	4.35	0.0027	30.00	1.0000	Pass
2478	3.92	0.0025	30.00	1.0000	Pass

Project No.: 2209T130 Page 55 of 61 Report Version: R00

APPENDIX F	POWER SPECTRAL DENSITY TEST

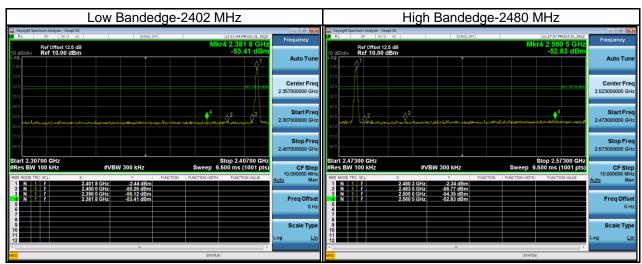
Project No.: 2209T130 Page 56 of 61 Report Version: R00

Test Mode	BLE5.0 ((1 Mbps)
	,	


Frequency (MHz)	Power Density (dBm/3kHz)	Max. Limit (dBm/3kHz)	Test Result
2402	-11.64	8	Pass
2440	-11.33	8	Pass
2480	-11.80	8	Pass

	Test Mode	BLE 5.0 (2 Mbps)	
ı	100t Wodo	DEE 0.0 (2 Mbps)	

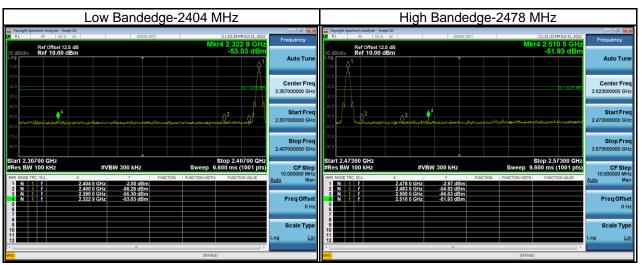
Frequency (MHz)	Power Density (dBm/3kHz)	Max. Limit (dBm/3kHz)	Test Result
2404	-13.59	8	Pass
2440	-13.43	8	Pass
2478	-13.78	8	Pass



APPENDIX G	ANTENNA CONDUCTED SPURIOUS EMISSION

Project No.: 2209T130 Page 59 of 61 Report Version: R00

Test Mode BLE 5.0 (1 Mbps)



Test Mode BLE 5.0 (2 Mbps)

End of Test Report