

Report No. : EED32K00096701

Product

FCC ID

Trade mark

**Report Number** 

Date of Issue

**Test result** 

**Test Standards** 



Page 1 of 71

## TEST REPORT

- Slimbuds Bluetooth Headset EAOS Model/Type reference SB001 N/A **Serial Number** 
  - EED32K00096701
  - 2APROEAOS001
  - May 04, 2018 2
  - 47 CFR Part 15 Subpart C
  - PASS

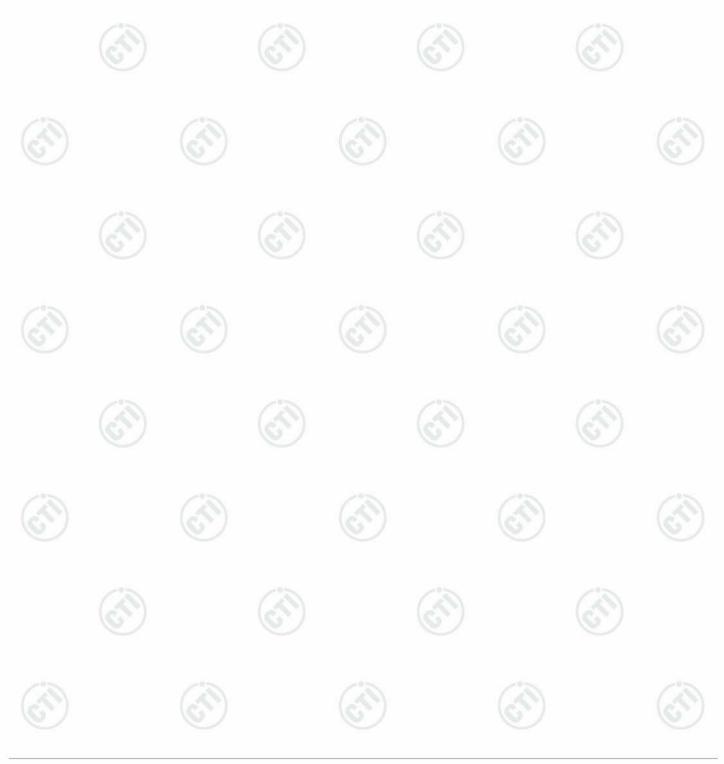
Prepared for: EAOS LLC

2025 Washington Ave, Philadelphia, PA, 19146, United States

Prepared by: Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tom- chen Tested By: even Nan Tom chen (Test Project) Kevin Ian (Project Engineer) Reviewed by: reum Sheek Luo (Lab supervisor) Kevin yang (Reviewer) Report Seal May 04, 2018 Date: Check No.:3096311401




Report No. : EED32K00096701

## 2 Version



Page 2 of 71

| Version No. | Date         | Description       |  |
|-------------|--------------|-------------------|--|
| 00          | May 04, 2018 | Original          |  |
|             | a /a         |                   |  |
| 1           |              | (c <sup>2</sup> ) |  |









## Page 3 of 71

Report No. : EED32K00096701

### 3 Test Summary

| i oot o anna y                             |                                                                                      |                  |        |
|--------------------------------------------|--------------------------------------------------------------------------------------|------------------|--------|
| Test Item                                  | Test Requirement                                                                     | Test method      | Result |
| Antenna Requirement                        | 47 CFR Part 15 Subpart C Section<br>15.203/15.247 (c)                                | ANSI C63.10-2013 | PASS   |
| AC Power Line Conducted<br>Emission        | 47 CFR Part 15 Subpart C Section<br>15.207                                           | ANSI C63.10-2013 | PASS   |
| Conducted Peak Output<br>Power             | 47 CFR Part 15 Subpart C Section<br>15.247 (b)(1)                                    | ANSI C63.10-2013 | PASS   |
| 20dB Occupied Bandwidth                    | 47 CFR Part 15 Subpart C Section<br>15.247 (a)(1)                                    | ANSI C63.10-2013 | PASS   |
| Carrier Frequencies<br>Separation          | 47 CFR Part 15 Subpart C Section<br>15.247 (a)(1)                                    | ANSI C63.10-2013 | PASS   |
| Hopping Channel Number                     | 47 CFR Part 15 Subpart C Section<br>15.247 (b)                                       | ANSI C63.10-2013 | PASS   |
| Dwell Time                                 | 47 CFR Part 15 Subpart C Section<br>15.247 (a)(1)                                    | ANSI C63.10-2013 | PASS   |
| Pseudorandom Frequency<br>Hopping Sequence | 47 CFR Part 15 Subpart C Section<br>15.247(b)(4)&TCB Exclusion List<br>(7 July 2002) | ANSI C63.10-2013 | PASS   |
| RF Conducted Spurious<br>Emissions         | 47 CFR Part 15 Subpart C Section<br>15.247(d)                                        | ANSI C63.10-2013 | PASS   |
| Radiated Spurious<br>emissions             | 47 CFR Part 15 Subpart C Section<br>15.205/15.209                                    | ANSI C63.10-2013 | PASS   |

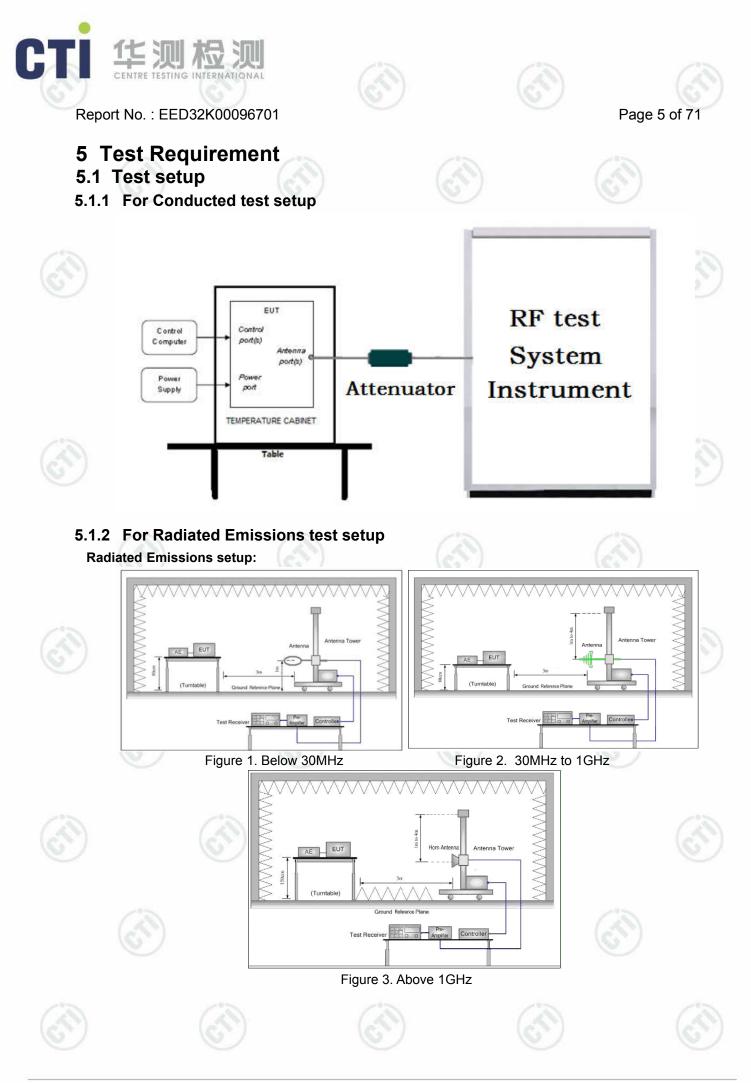
Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.





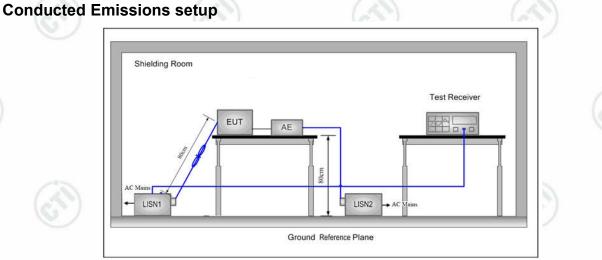


Report No. : EED32K00096701





#### 4 Content 1 COVER PAGE 6.1 CLIENT INFORMATION 7










## 5.1.3 For Conducted Emissions test setup





#### 5.2 Test Environment

| Operating Environ     | nent:    |     | C  |
|-----------------------|----------|-----|----|
| Temperature:          | 25.5 °C  |     |    |
| Humidity:             | 59 % RH  |     |    |
| Atmospheric Pressure: | 1010mbar |     |    |
|                       | 63       | A 3 | AN |

### 5.3 Test Condition

|   | Test Mode          | Test Mode Tx/Rx     |           | RF Channel |           |  |
|---|--------------------|---------------------|-----------|------------|-----------|--|
| _ | Test Mode          |                     | Low(L)    | Middle(M)  | High(H)   |  |
| 3 | GFSK/π/4DQPSK/     | 2402MHz ~2480 MHz   | Channel 1 | Channel 40 | Channel79 |  |
| 2 | 8DPSK(DH1,DH3,DH5) | 240210HZ ~2480 10HZ | 2402MHz   | 2441MHz    | 2480MHz   |  |

Test mode:

Pre-scan under all rate at lowest channel 1

| Mode      |                 | GFSK     |       |
|-----------|-----------------|----------|-------|
| packets   | 1-DH1           | 1-DH3    | 1-DH5 |
| EIRP(dBm) | 2.985           | 3.100    | 3.181 |
| Mode      |                 | π/4DQPSK |       |
| packets   | 2-DH1           | 2-DH3    | 2-DH5 |
| EIRP(dBm) | 2.895           | 2.994    | 3.010 |
| Mode      | $(\mathcal{C})$ | 8DPSK    | 67)   |
| packets   | 3-DH1           | 3-DH3    | 3-DH5 |
| EIRP(dBm) | 3.101           | 3.132    | 3.142 |

Through Pre-scan, 1-DH5 packet the power is the worst case of GFSK, 2-DH5 packet the power is the worst case of  $\pi$ /4DQPSK, 3-DH5 packet the power is the worst case of 8DPSK.



Page 6 of 71





Report No. : EED32K00096701

#### **General Information** 6 6.1 Client Information

| Applicant:               | EAOS LLC                                                                                                 |
|--------------------------|----------------------------------------------------------------------------------------------------------|
| Address of Applicant:    | 2025 Washington Ave, Philadelphia, PA, 19146, United States                                              |
| Manufacturer:            | SHENZHEN AONI ELECTRONIC CO, LTD                                                                         |
| Address of Manufacturer: | No.5 Bldg, Honghui Industrial park, 2 <sup>nd</sup> liuxian Road, Xinan street, Baoan District, Shenzhen |
| Factory:                 | SHENZHEN AONI ELECTRONIC CO, LTD                                                                         |
| Address of Factory:      | No.5 Bldg, Honghui Industrial park, 2 <sup>nd</sup> liuxian Road, Xinan street, Baoan District, Shenzhen |
|                          |                                                                                                          |

Page 7 of 71

#### 6.2 General Description of EUT

| Product Name:                    | Slimbuds Bluetooth Headset      |   |        |
|----------------------------------|---------------------------------|---|--------|
| Model No.(EUT):                  | SB001                           |   |        |
| Trade mark:                      | EAOS                            |   |        |
| EUT Supports Radios application: | BT4.1 Signal mode, 2402-2480MHz |   | 61     |
| Hardware Version:                | 2.0(manufacturer declare )      |   | $\sim$ |
| Firmware version:                | 1.0(manufacturer declare )      |   |        |
| Power Supply:                    | Battery: 3.7V, 90mAh            |   |        |
| Sample Received Date:            | Apr. 20, 2018                   | 0 |        |
| Sample tested Date:              | Apr. 20, 2018 to May 03, 2018   |   |        |

### 6.3 Product Specification subjective to this standard

| Operation Frequency:   | 2402MHz~2480MHz                         |
|------------------------|-----------------------------------------|
| Bluetooth Version:     | BT4.1 Signal mode                       |
| Modulation Technique:  | Frequency Hopping Spread Spectrum(FHSS) |
| Modulation Type:       | GFSK, π/4DQPSK, 8DPSK                   |
| Number of Channel:     | 79                                      |
| Hopping Channel Type:  | Adaptive Frequency Hopping systems      |
| Sample Type:           | Portable Production                     |
| Test Power Grade:      | N/A                                     |
| Test Software of EUT:  | (manufacturer declare)CSR BlueTest3     |
| Antenna Type and Gain: | Type: Integral Antenna; Gain:-1.39dBi   |
| Test Voltage:          | DC 5V                                   |

### 6.4 Description of Support Units

The EUT has been tested independently.







## 6.5 Test Location

All tests were performed at: Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China518101 Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted. FCC Designation No.: CN1164

#### 6.6 Deviation from Standards

None.

## 6.7 Abnormalities from Standard Conditions

None.

#### 6.8 Other Information Requested by the Customer

None.

#### 6.9 Measurement Uncertainty (95% confidence levels, k=2)

|     | <b>J</b> ( <b>-</b>             | <i>, ,</i>              |
|-----|---------------------------------|-------------------------|
| No. | Item                            | Measurement Uncertainty |
| 1   | Radio Frequency                 | 7.9 x 10 <sup>-8</sup>  |
| 2   |                                 | 0.31dB (30MHz-1GHz)     |
| 2   | RF power, conducted             | 0.57dB (1GHz-18GHz)     |
| 3   | Redicted Sourieus emission test | 4.5dB (30MHz-1GHz)      |
| 3   | Radiated Spurious emission test | 4.8dB (1GHz-12.75GHz)   |
| 4   | Conduction emission             | 3.6dB (9kHz to 150kHz)  |
| 4   | Conduction emission             | 3.2dB (150kHz to 30MHz) |
| 5   | Temperature test                | 0.64°C                  |
| 6   | Humidity test                   | 2.8%                    |
| 7   | DC power voltages               | 0.025%                  |













## 7 Equipment List

| RF test system                      |              |                                  |                  |                           |                               |  |
|-------------------------------------|--------------|----------------------------------|------------------|---------------------------|-------------------------------|--|
| Equipment                           | Manufacturer | Model No.                        | Serial<br>Number | Cal. Date<br>(mm-dd-yyyy) | Cal. Due date<br>(mm-dd-yyyy) |  |
| Signal Generator                    | Keysight     | E8257D                           | MY53401106       | 03-13-2018                | 03-12-2019                    |  |
| Spectrum Analyzer                   | Keysight     | N9010A                           | MY54510339       | 03-13-2018                | 03-12-2019                    |  |
| Signal Generator                    | Keysight     | N5182B                           | MY53051549       | 03-13-2018                | 03-12-2019                    |  |
| High-pass filter                    | Sinoscite    | FL3CX03WG<br>18NM12-<br>0398-002 |                  | 01-10-2018                | 01-09-2019                    |  |
| DC Power                            | Keysight     | E3642A                           | MY54426035       | 03-13-2018                | 03-12-2019                    |  |
| power meter & power sensor          | R&S          | OSP120                           | 101374           | 03-13-2018                | 03-12-2019                    |  |
| RF control unit                     | JS Tonscend  | JS0806-2                         | 158060006        | 03-13-2018                | 03-12-2019                    |  |
| BT&WI-FI Automatic test<br>software | JS Tonscend  | JS1120-2                         |                  | 03-13-2018                | 03-12-2019                    |  |
| Temperature / Humidity<br>Indicator | Defu         | TH128                            |                  | 07-08-2017                | 07-07-2018                    |  |

| 3M Semi/full-anechoic Chamber      |              |                 |                  |                           |                               |  |  |
|------------------------------------|--------------|-----------------|------------------|---------------------------|-------------------------------|--|--|
| Equipment                          | Manufacturer | Model No.       | Serial<br>Number | Cal. date<br>(mm-dd-yyyy) | Cal. Due date<br>(mm-dd-yyyy) |  |  |
| 3MChamber&Accessory<br>Equipment   | ТДК          | SAC-3           |                  | 06-04-2016                | 06-03-2019                    |  |  |
| Spectrum Analyzer                  | Agilent      | E4443A          | MY45300910       | 11-16-2017                | 11-15-2018                    |  |  |
| Receiver                           | R&S          | ESCI            | 100435           | 06-14-2017                | 06-13-2018                    |  |  |
| TRILOG Broadband<br>Antenna        | Schwarzbeck  | VULB 9163       | 9163-618         | 08-15-2017                | 08-14-2018                    |  |  |
| Spectrum Analyzer                  | R&S          | FSP40           | 100416           | 06-13-2017                | 06-12-2018                    |  |  |
| Microwave Preamplifier             | JS Tonscend  | EMC051845<br>SE | 980380           | 01-19-2018                | 01-18-2019                    |  |  |
| Loop Antenna                       | ETS-LINDGREN | 6502            | 00071730         | 06-22-2017                | 06-21-2019                    |  |  |
| Horn Antenna                       | ETS-LINGREN  | 3117            | 00057407         | 07-20-2015                | 07-18-2018                    |  |  |
| Double ridge horn antenna          | A.H.SYSTEMS  | SAS-574         | 6042             | 06-30-2015                | 06-28-2018                    |  |  |
| Pre-amplifier                      | A.H.SYSTEMS  | PAP-1840-60     | 6041             | 06-30-2015                | 06-28-2018                    |  |  |
| Temperature/ Humidity<br>Indicator | TAYLOR       | 1451            | 1905             | 05-08-2017                | 05-07-2018                    |  |  |



Hotline: 400-6788-333









# 10 of 71

Page 10 of 71

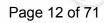
| Conducted disturbance Test         |              |           |                  |                           |                               |  |  |
|------------------------------------|--------------|-----------|------------------|---------------------------|-------------------------------|--|--|
| Equipment                          | Manufacturer | Model No. | Serial<br>Number | Cal. date<br>(mm-dd-yyyy) | Cal. Due date<br>(mm-dd-yyyy) |  |  |
| Receiver                           | R&S          | ESCI      | 100009           | 06-14-2017                | 06-13-2018                    |  |  |
| Temperature/ Humidity<br>Indicator | TAYLOR       | 1451      | 1905             | 05-08-2017                | 05-07-2018                    |  |  |
| LISN                               | schwarzbeck  | NNLK8121  | 8121-529         | 06-13-2017                | 06-12-2018                    |  |  |







Page 11 of 71


## 8 Radio Technical Requirements Specification

### Reference documents for testing:

| No.  | Identity                     |     | Document Title |                                                                          |         |            |  |  |
|------|------------------------------|-----|----------------|--------------------------------------------------------------------------|---------|------------|--|--|
| 1    | FCC Part18                   |     |                | onal Radiators                                                           |         |            |  |  |
| 2    | ANSI C63.10-                 |     |                | erican National Standard for Testing Unlicesed Wireless Devices          |         |            |  |  |
| st R | esults List:                 | e). | ( <i>č</i> )   | (75)<br>(75)                                                             |         | 6          |  |  |
| Test | requirement                  | Т   | est method     | Test item                                                                | Verdict | Note       |  |  |
|      | 15C Section<br>.247 (a)(1)   | Ą   | NSI 63.10      | 20dB Occupied<br>Bandwidth                                               | PASS    | Appendix A |  |  |
|      | 15C Section<br>.247 (a)(1)   | A   | NSI 63.10      | Carrier Frequencies<br>Separation                                        | PASS    | Appendix B |  |  |
|      | 15C Section<br>247 (a)(1)    | A   | NSI 63.10      | Dwell Time                                                               | PASS    | Appendix C |  |  |
|      | 15C Section 5.247 (b)        | 4   | NSI 63.10      | Hopping Channel Number                                                   | PASS    | Appendix D |  |  |
|      | 15C Section<br>.247 (b)(1)   | Δ   | NSI 63.10      | Conducted Peak Output<br>Power                                           | PASS    | Appendix E |  |  |
|      | 15C Section<br>5.247(d)      | A   | NSI 63.10      | Band-edge for RF<br>Conducted Emissions                                  | PASS    | Appendix F |  |  |
|      | 15C Section<br>5.247(d)      | A   | NSI 63.10      | RF Conducted Spurious<br>Emissions                                       | PASS    | Appendix G |  |  |
|      | 15C Section<br>247 (a)(1)    | 2   | NSI 63.10      | Pseudorandom<br>Frequency<br>Hopping Sequence                            | PASS    | Appendix H |  |  |
|      | 15C Section<br>03/15.247 (c) | A   | NSI 63.10      | Antenna Requirement                                                      | PASS    | Appendix I |  |  |
| Part | 15C Section<br>15.207        | Ą   | NSI 63.10      | AC Power Line<br>Conducted<br>Emission                                   | PASS    | Appendix J |  |  |
|      | 15C Section<br>205/15.209    |     | NSI 63.10      | Restricted bands around<br>fundamental frequency<br>(Radiated) Emission) | PASS    | Appendix K |  |  |
|      | 15C Section<br>205/15.209    | Ą   | NSI 63.10      | Radiated Spurious<br>Emissions                                           | PASS    | Appendix L |  |  |
| 1    | <u></u>                      |     |                |                                                                          | 13      | N          |  |  |







## Appendix A): 20dB Occupied Bandwidth

| Mode     | Channel. | 20dB Bandwidth<br>[MHz] | 99% OBW [MHz] | Verdict | Remarl  |
|----------|----------|-------------------------|---------------|---------|---------|
| GFSK     | LCH      | 0.9499                  | 0.86513       | PASS    | 13      |
| GFSK     | MCH      | 0.9501                  | 0.86154       | PASS    | 68      |
| GFSK     | НСН      | 0.9491                  | 0.86146       | PASS    |         |
| π/4DQPSK | LCH      | 1.270                   | 1.1713        | PASS    | Deek    |
| π/4DQPSK | МСН      | 1.228                   | 1.1629        | PASS    | Peak    |
| π/4DQPSK | НСН      | 1.225                   | 1.1631        | PASS    | detecto |
| 8DPSK    | LCH      | 1.282                   | 1.1640        | PASS    | -       |
| 8DPSK    | MCH      | 1.262                   | 1.1522        | PASS    |         |
| 8DPSK    | НСН      | 1.256                   | 1.1517        | PASS    | 12      |

























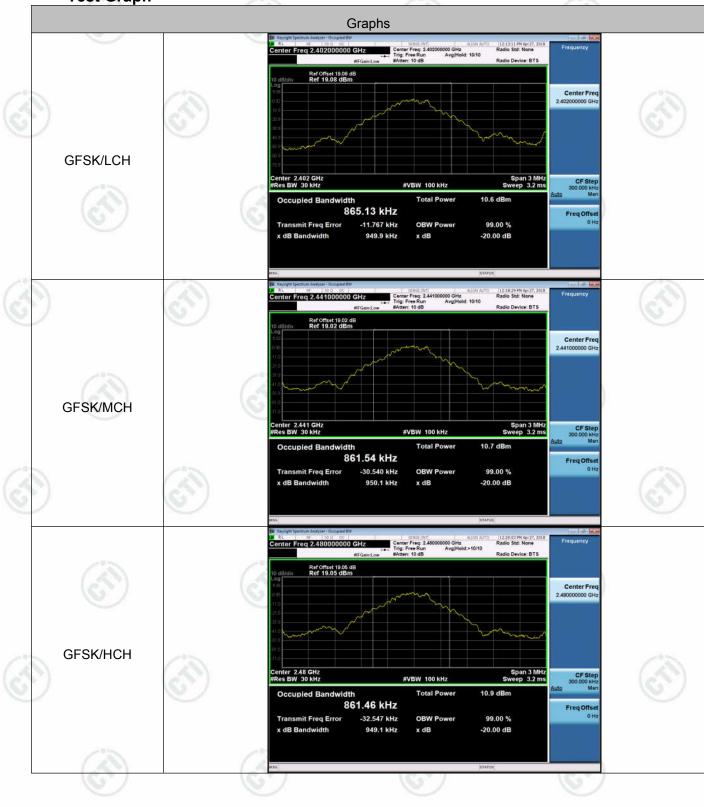

















# Page 13 of 71

Test Graph











## Page 14 of 71











## Page 15 of 71









Page 16 of 71

## **Appendix B): Carrier Frequency Separation**

| Result Tab | le 🔝     | *) (AS*)                           | (3)     |
|------------|----------|------------------------------------|---------|
| Mode       | Channel. | Carrier Frequency Separation [MHz] | Verdict |
| GFSK       | LCH      | 1.010                              | PASS    |
| GFSK       | МСН      | 0.962                              | PASS    |
| GFSK       | НСН      | 1.124                              | PASS    |
| π/4DQPSK   | LCH      | 1.186                              | PASS    |
| π/4DQPSK   | МСН      | 1.138                              | PASS    |
| π/4DQPSK   | нсн      | 0.998                              | PASS    |
| 8DPSK      | LCH      | 1.162                              | PASS    |
| 8DPSK      | МСН      | 0.966                              | PASS    |
| 8DPSK      | НСН      | 1.096                              | PASS    |
|            |          |                                    |         |





































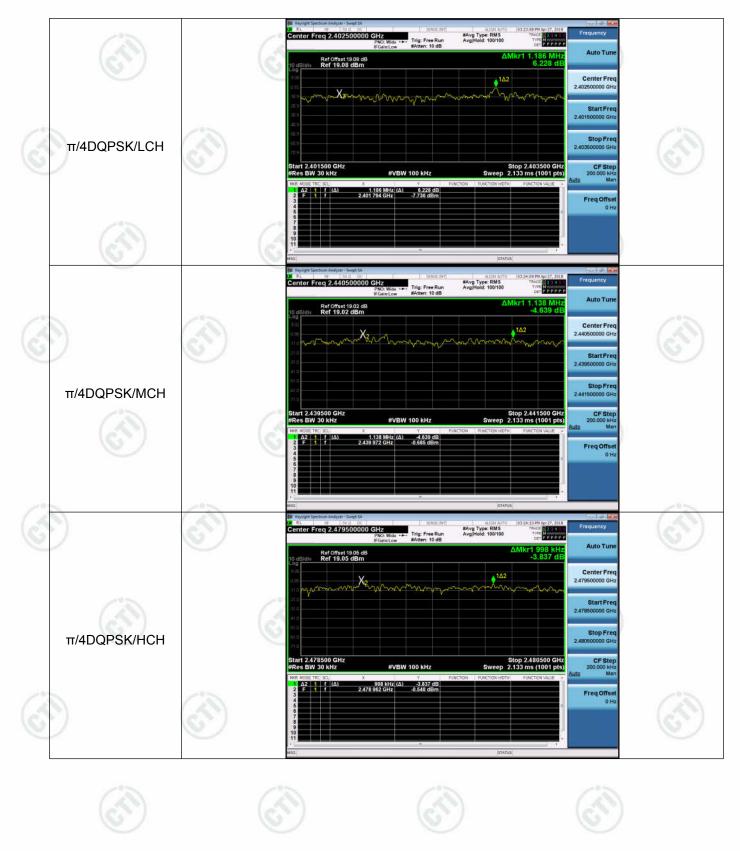




## Page 17 of 71

Test Graph





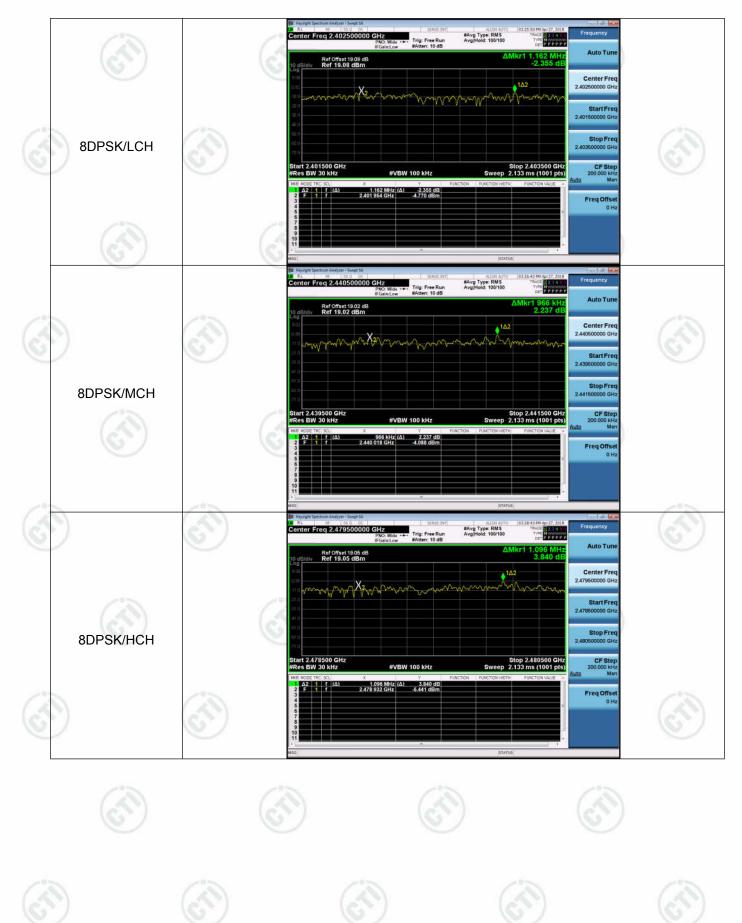







#### Page 18 of 71







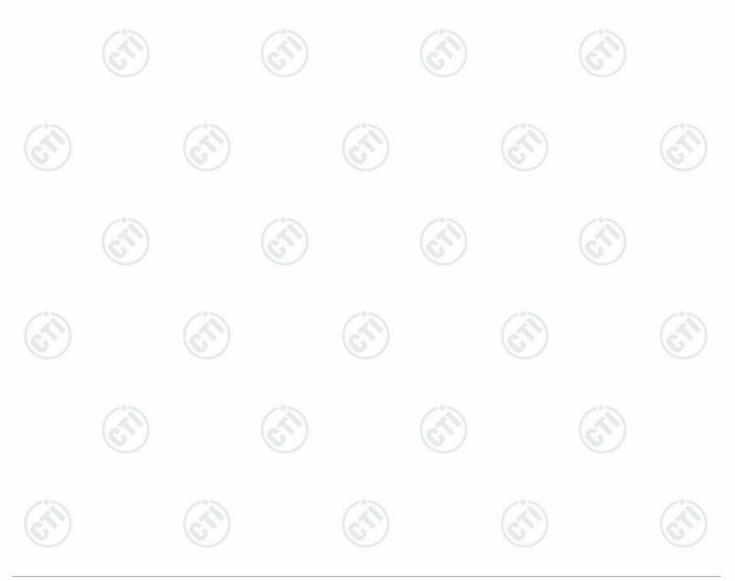





#### Page 19 of 71






Report No. : EED32K00096701

## Appendix C): Dwell Time

|   | Resu | It Table |         | $(\mathcal{A})$            |                       |                  | $(\mathcal{S})$   |         |
|---|------|----------|---------|----------------------------|-----------------------|------------------|-------------------|---------|
| I | Mode | Packet   | Channel | Burst Width<br>[ms/hop/ch] | Total<br>Hops[hop*ch] | Dwell<br>Time[s] | Duty Cycle<br>[%] | Verdict |
| 0 | GFSK | DH1      | LCH     | 0.409133                   | 320                   | 0.131            | 0.33              | PASS    |
| ( | GFSK | DH1      | МСН     | 0.4091333                  | 320                   | 0.131            | 0.33              | PASS    |
| ( | GFSK | DH1      | НСН     | 0.409134                   | 320                   | 0.131            | 0.33              | PASS    |
| ( | GFSK | DH3      | LCH     | 1.6644                     | 160                   | 0.266            | 0.67              | PASS    |
| ( | GFSK | DH3      | МСН     | 1.664397                   | 160                   | 0.266            | 0.67              | PASS    |
| ( | GFSK | DH3      | НСН     | 1.665663                   | 160                   | 0.267            | 0.67              | PASS    |
| ( | GFSK | DH5      | LCH     | 2.898                      | 106.7                 | 0.309            | 0.77              | PASS    |
| ( | GFSK | DH5      | MCH     | 2.8888                     | 106.7                 | 0.308            | 0.77              | PASS    |
|   | GFSK | DH5      | НСН     | 2.898                      | 106.7                 | 0.309            | 0.77              | PASS    |

Page 20 of 71

Remark : All modes are tested, only the worst mode GFSK is reported.









## Page 21 of 71

Test Graph











### Page 22 of 71



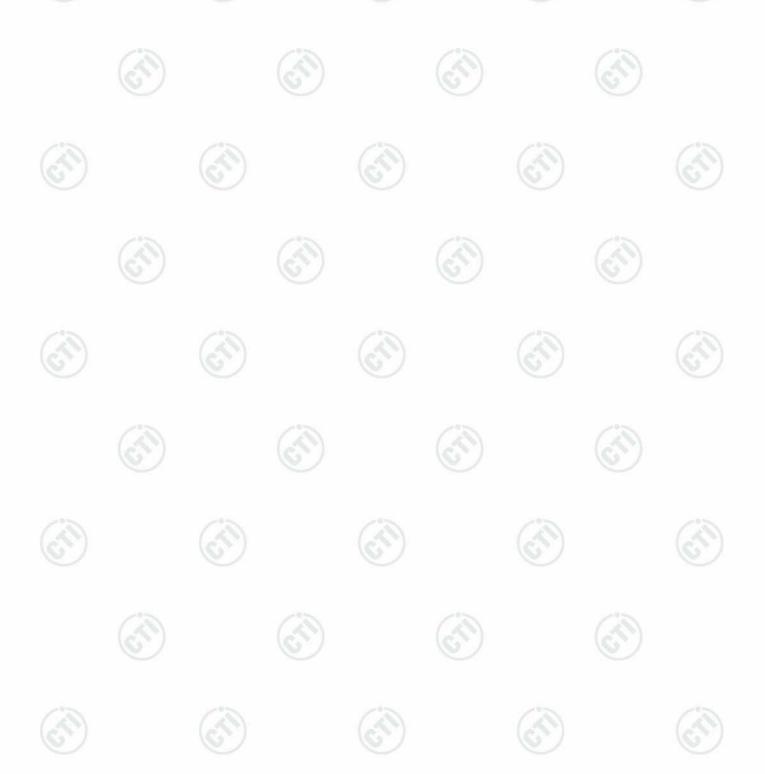






## Page 23 of 71





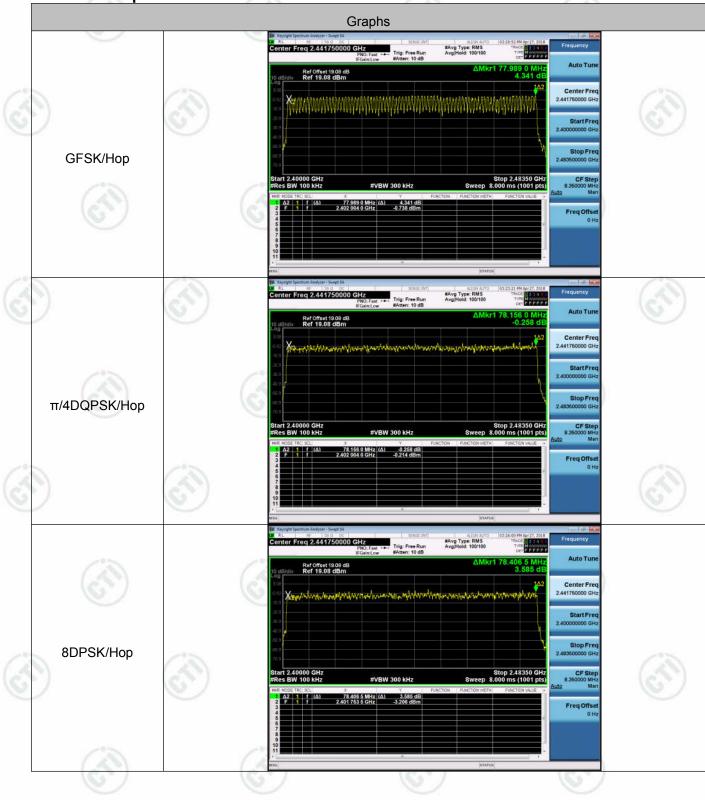

Page 24 of 71

Report No. : EED32K00096701

## Appendix D): Hopping Channel Number

| Result Table |          |                           |         |  |  |  |  |
|--------------|----------|---------------------------|---------|--|--|--|--|
| Mode         | Channel. | Number of Hopping Channel | Verdict |  |  |  |  |
| GFSK         | Нор      | 79                        | PASS    |  |  |  |  |
| π/4DQPSK     | Нор      | 79                        | PASS    |  |  |  |  |
| 8DPSK        | Нор      | 79                        | PASS    |  |  |  |  |










## Page 25 of 71

Test Graph









Page 26 of 71

Report No. : EED32K00096701

## Appendix E): Conducted Peak Output Power

| Result Tab | le 🔝     |                                 | (3)     |
|------------|----------|---------------------------------|---------|
| Mode       | Channel. | Maximum Peak Output Power [dBm] | Verdict |
| GFSK       | LCH      | 3.181                           | PASS    |
| GFSK       | MCH      | 3.531                           | PASS    |
| GFSK       | НСН      | 3.644                           | PASS    |
| π/4DQPSK   | LCH      | 3.010                           | PASS    |
| π/4DQPSK   | MCH      | 3.006                           | PASS    |
| π/4DQPSK   | НСН      | 2.954                           | PASS    |
| 8DPSK      | LCH S    | 3.142                           | PASS    |
| 8DPSK      | MCH      | 3.092                           | PASS    |
| 8DPSK      | НСН      | 3.144                           | PASS    |
|            |          |                                 |         |

























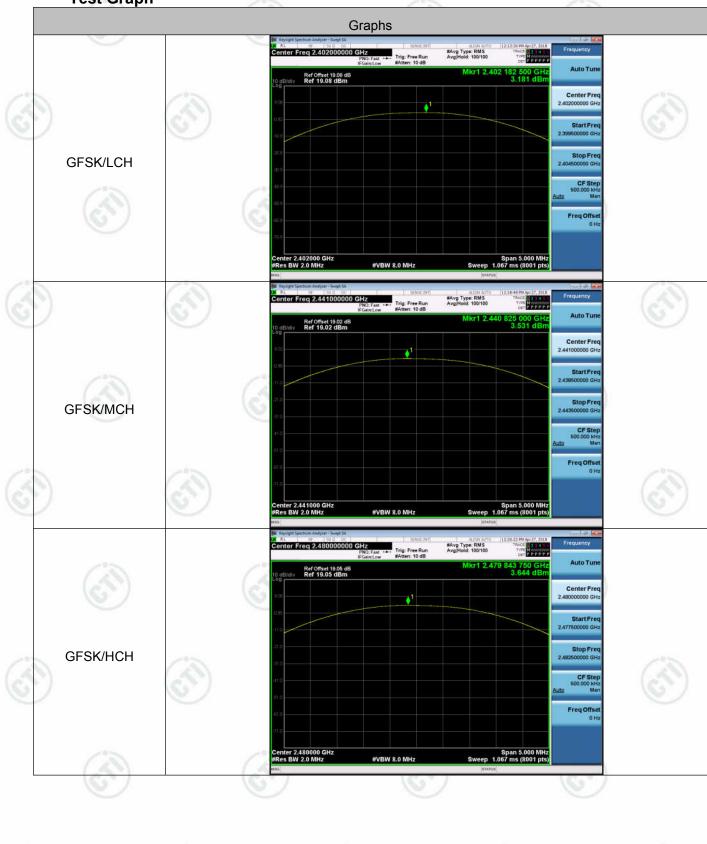

















## Page 27 of 71

Test Graph





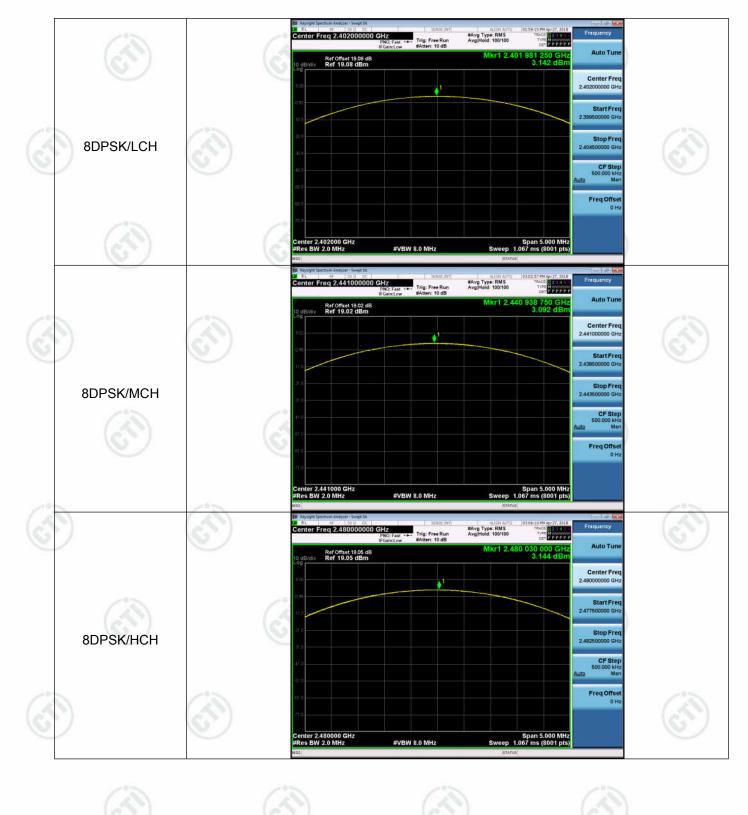






#### Page 28 of 71












#### Page 29 of 71











Report No. : EED32K00096701

## Appendix F): Band-edge for RF Conducted Emissions

|    | Result T | able     | $(\mathcal{A})$               |                           | (2)                  | (                                 | 20             |         |
|----|----------|----------|-------------------------------|---------------------------|----------------------|-----------------------------------|----------------|---------|
|    | Mode     | Channel  | Carrier<br>Frequency<br>[MHz] | Carrier<br>Power<br>[dBm] | Frequency<br>Hopping | Max<br>Spurious<br>Level<br>[dBm] | Limit<br>[dBm] | Verdict |
| Ľ  | 0501/    |          |                               | 2.952                     | Off                  | -60.815                           | -17.05         | PASS    |
|    | GFSK     | LCH      | 2402                          | 1.489                     | On                   | -60.510                           | -18.51         | PASS    |
|    | 0.50     |          |                               | 3.356                     | Off                  | -56.017                           | -16.64         | PASS    |
|    | GFSK     | HCH      | 2480                          | 3.216                     | On                   | -55.660                           | -16.78         | PASS    |
|    |          |          | 0.400                         | 1.699                     | Off                  | -60.979                           | -18.3          | PASS    |
|    | π/4DQPSK | LCH      | 2402                          | 1.493                     | On                   | -59.139                           | -18.51         | PASS    |
| 12 |          |          | 0.400                         | 1.237                     | Off                  | -59.115                           | -18.76         | PASS    |
| 6  | π/4DQPSK | HCH      | 2480                          | 2.281                     | On                   | -56.043                           | -17.72         | PASS    |
|    | 0000/    |          | 0.400                         | 1.677                     | Off                  | -61.014                           | -18.32         | PASS    |
|    | 8DPSK    | LCH 2402 | 2402                          | 0.348                     | On                   | -59.897                           | -19.65         | PASS    |
|    | appor    |          | 0400                          | 1.158                     | Off                  | -58.867                           | -18.84         | PASS    |
|    | 8DPSK    | HCH      | 2480                          | 2.298                     | On                   | -57.531                           | -17.70         | PASS    |











Test Graph



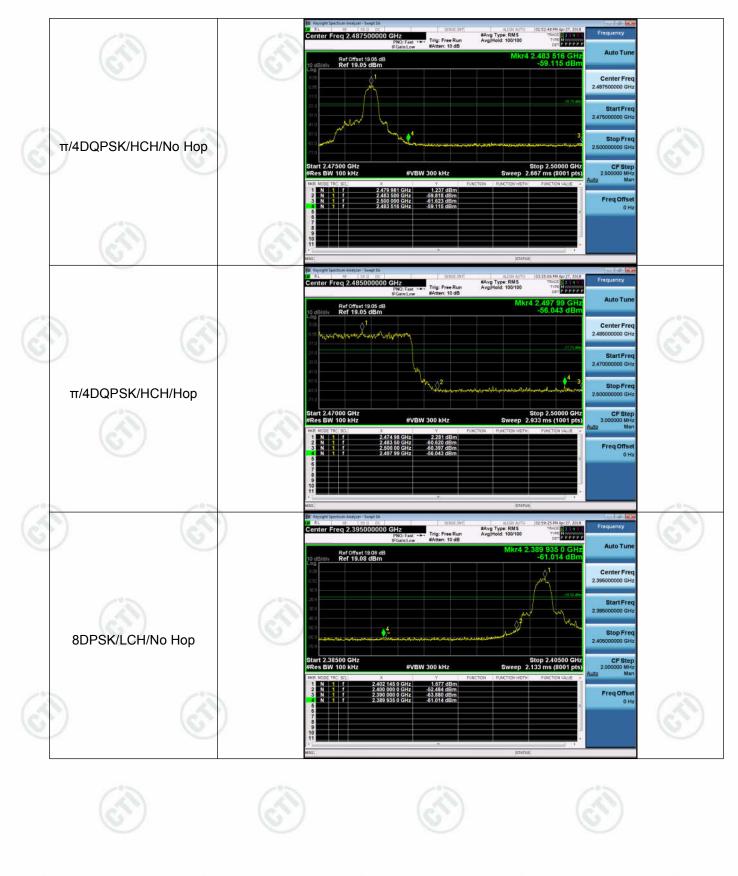








## Page 32 of 71










### Page 33 of 71









### Page 34 of 71







Page 35 of 71

Report No. : EED32K00096701

## Appendix G): RF Conducted Spurious Emissions

| Result Tab | le      | (2)        |                                      | <u>(S)</u> |
|------------|---------|------------|--------------------------------------|------------|
| Mode       | Channel | Pref [dBm] | Puw[dBm]                             | Verdict    |
| GFSK       | LCH     | 2.917      | <limit< td=""><td>PASS</td></limit<> | PASS       |
| GFSK       | МСН     | 3.044      | <limit< td=""><td>PASS</td></limit<> | PASS       |
| GFSK       | НСН     | 3.258      | <limit< td=""><td>PASS</td></limit<> | PASS       |
| π/4DQPSK   | LCH     | 1.688      | <limit< td=""><td>PASS</td></limit<> | PASS       |
| π/4DQPSK   | МСН     | 1.446      | <limit< td=""><td>PASS</td></limit<> | PASS       |
| π/4DQPSK   | нсн     | 1.250      | <limit< td=""><td>PASS</td></limit<> | PASS       |
| 8DPSK      | LCH 🚺   | 1.442      | <limit< td=""><td>PASS</td></limit<> | PASS       |
| 8DPSK      | МСН     | 1.047      | <limit< td=""><td>PASS</td></limit<> | PASS       |
| 8DPSK      | НСН     | 1.053      | <limit< td=""><td>PASS</td></limit<> | PASS       |
|            |         |            |                                      |            |



















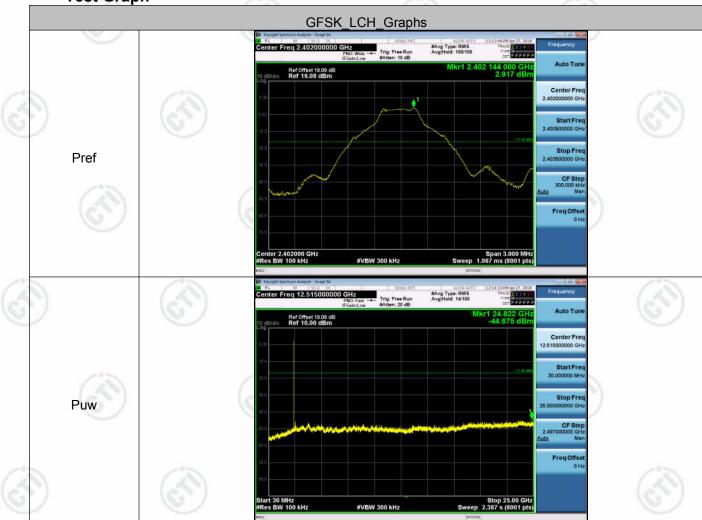


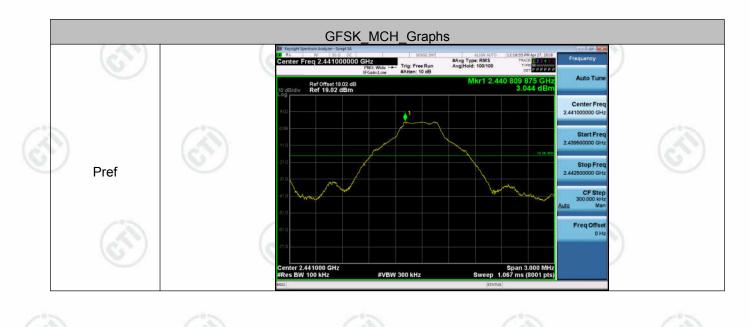










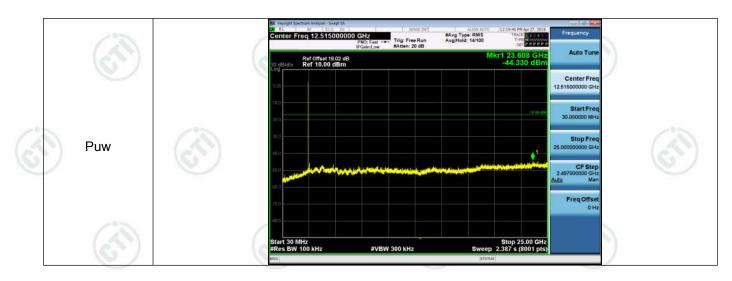






## Page 36 of 71

Test Graph







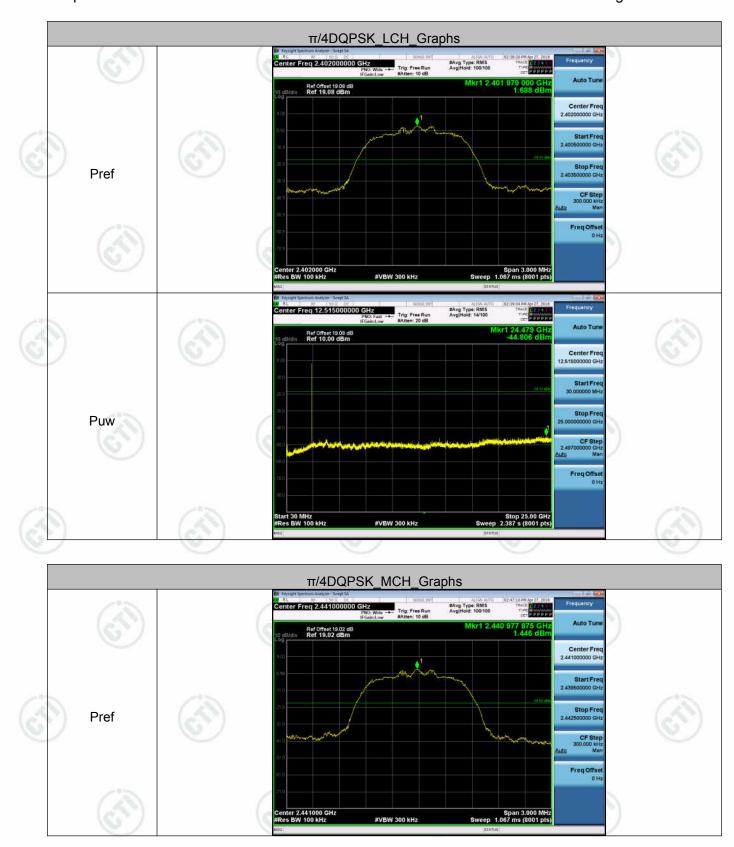



# Ì

## Page 37 of 71







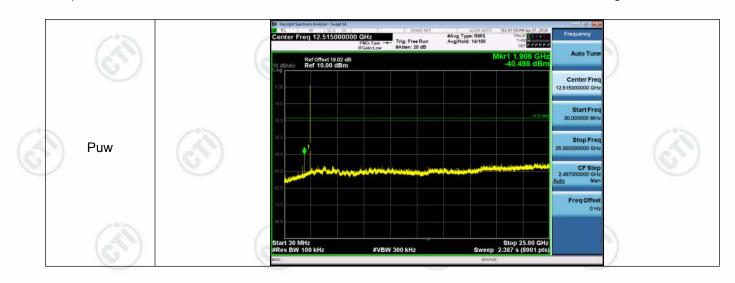







## Page 38 of 71












### Page 39 of 71





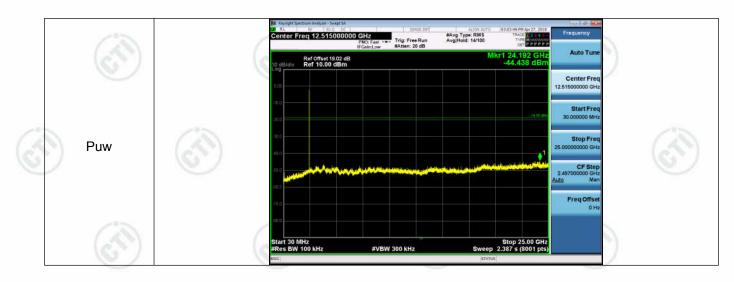






## Page 40 of 71










# Ì

### Page 41 of 71







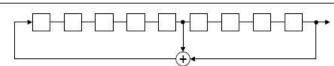




Page 42 of 71

### Appendix H): Pseudorandom Frequency Hopping Sequence

### Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channe carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

#### EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 2<sup>9</sup> -1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)



Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

| 20 62 46 77 | 7 64 | 8 73 | 16 75 1 |
|-------------|------|------|---------|
|             |      |      |         |
|             |      |      |         |
|             |      |      |         |
|             |      | }    |         |

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.







Page 43 of 71

### Report No. : EED32K00096701

## Appendix I): Antenna Requirement

#### 15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

#### 15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.



The antenna is attached to the inner shell of the EUT and no consideration of replacement. The best case gain of the antenna is -1.39dBi.





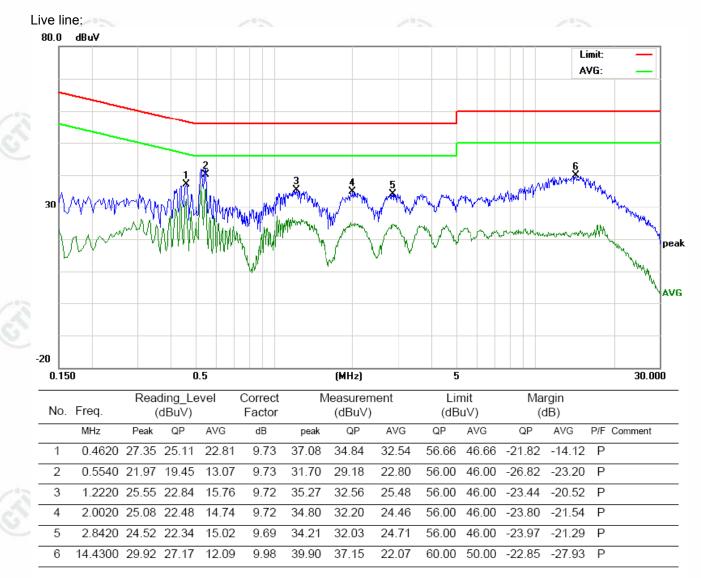


## Appendix J): AC Power Line Conducted Emission

| Test Procedure: | Test frequency range :150KHz                                                                                                                                                                                                       | -30MHz                                                                                                                     |                                                                                                                                   |                                                                         |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
|                 | 1)The mains terminal disturbar                                                                                                                                                                                                     |                                                                                                                            | onducted in a shield                                                                                                              | led room.                                                               |
|                 | 2) The EUT was connected to<br>Stabilization Network) which<br>power cables of all other u<br>which was bonded to the gu<br>for the unit being measured<br>multiple power cables to a se<br>exceeded.                              | AC power source thro<br>h provides a 50Ω/50μ<br>nits of the EUT were<br>round reference plane<br>d. A multiple socket of   | bugh a LISN 1 (Line<br>$\mu$ H + 5 $\Omega$ linear importance<br>connected to a section in the same way a<br>butlet strip was use | e Impedan<br>edance. T<br>cond LISN<br>s the LISN<br>d to conne         |
|                 | 3)The tabletop EUT was place<br>reference plane. And for flo<br>horizontal ground reference                                                                                                                                        | or-standing arrangem                                                                                                       |                                                                                                                                   |                                                                         |
|                 | <ul> <li>4) The test was performed with EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from the ground reference plane for plane. This distance was be All other units of the EUT at LISN 2.</li> </ul> | e vertical ground refer<br>d to the horizontal gro<br>he boundary of the u<br>or LISNs mounted or<br>etween the closest po | ence plane. The ve<br>bund reference plan<br>init under test and<br>n top of the groun<br>ints of the LISN 1 a                    | ertical ground<br>ne. The LIS<br>bonded to<br>nd referent<br>and the EL |
|                 | 5) In order to find the maximum of the interface cables must conducted measurement.                                                                                                                                                |                                                                                                                            |                                                                                                                                   |                                                                         |
| Limit:          | 0                                                                                                                                                                                                                                  | S.                                                                                                                         | S                                                                                                                                 |                                                                         |
|                 |                                                                                                                                                                                                                                    | Limit (d                                                                                                                   | BμV)                                                                                                                              |                                                                         |
|                 | Frequency range (MHz)                                                                                                                                                                                                              | Quasi-peak                                                                                                                 | Average                                                                                                                           |                                                                         |
| A (             | 0.15-0.5                                                                                                                                                                                                                           | 66 to 56*                                                                                                                  | 56 to 46*                                                                                                                         | 12                                                                      |
|                 | 0.5-5                                                                                                                                                                                                                              | 56                                                                                                                         | 46                                                                                                                                | 6                                                                       |
|                 | 5-30                                                                                                                                                                                                                               | 60                                                                                                                         | 50                                                                                                                                |                                                                         |
|                 | * The limit decreases linearly<br>MHz to 0.50 MHz.<br>NOTE : The lower limit is applie                                                                                                                                             | 215                                                                                                                        | 215                                                                                                                               | e range 0.                                                              |

### **Measurement Data**

An initial pre-scan was performed on the live and neutral lines with peak detector.

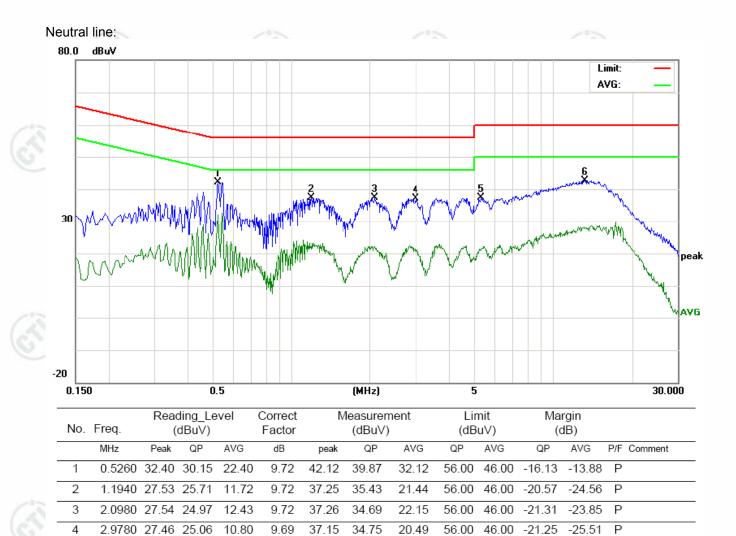

Quasi-Peak and Average measurement were performed at the frequencies with maximized peake mission were detected.


















Page 46 of 71



| Ν | otes |  |
|---|------|--|
|   |      |  |

5

6

5.3140 27.83 25.18

13.3180 32.74 30.46

1. The following Quasi-Peak and Average measurements were performed on the EUT:

34.80

40.40

21.38

27.72

60.00

60.00

50.00

50.00

-25.20

-19.60

-28.62

-22.28

Ρ

Ρ

37.45

42.68

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

9.62

9.94

11.76

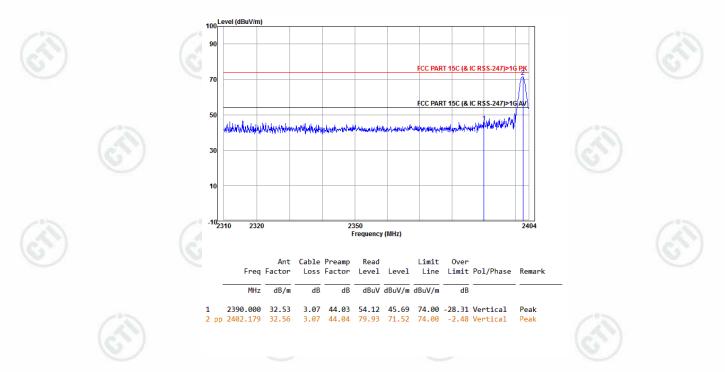
17.78

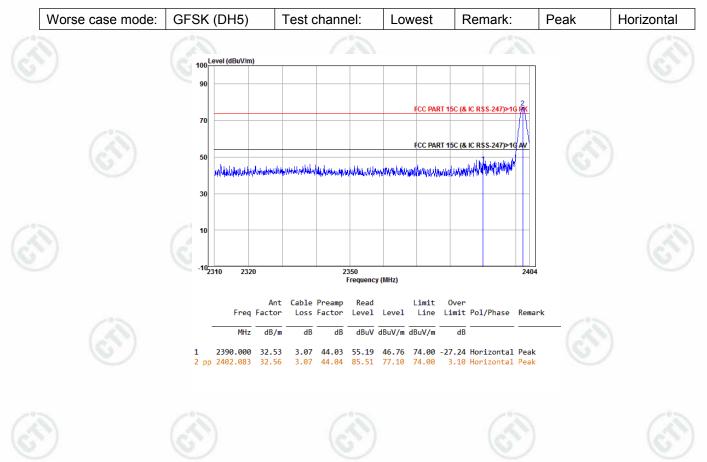






## Appendix K):Restricted bands around fundamental frequency (Radiated)

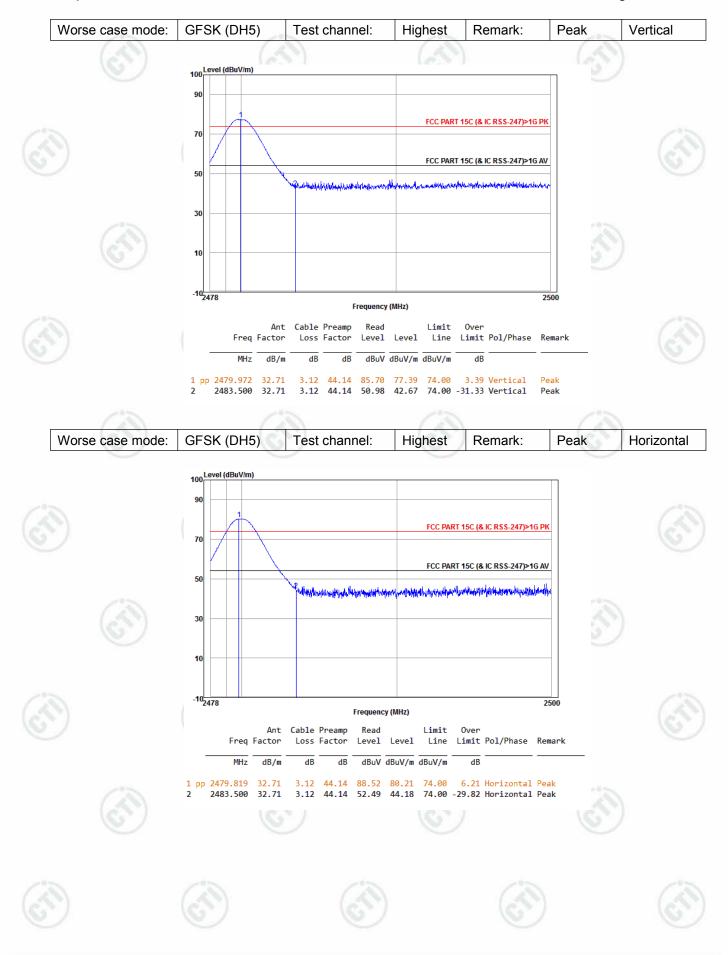

|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                      |                                                                                                                                                     |                                                                                                                                                                                    | _                                                  |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Receiver Setup: | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Detector                                                                                                                                                                                                                                                                                                                                                                       | RBW                                                                                                                                                                                  | VBW                                                                                                                                                 | Remark                                                                                                                                                                             |                                                    |
|                 | 30MHz-1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Quasi-peak                                                                                                                                                                                                                                                                                                                                                                     | 100 kHz                                                                                                                                                                              | 300kHz                                                                                                                                              | Quasi-peak                                                                                                                                                                         |                                                    |
|                 | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Peak                                                                                                                                                                                                                                                                                                                                                                           | 1MHz                                                                                                                                                                                 | 3MHz                                                                                                                                                | Peak                                                                                                                                                                               | P                                                  |
|                 | Above IGHZ                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Peak                                                                                                                                                                                                                                                                                                                                                                           | 1MHz                                                                                                                                                                                 | 10Hz                                                                                                                                                | Average                                                                                                                                                                            |                                                    |
| Test Procedure: | Below 1GHz test proced                                                                                                                                                                                                                                                                                                                                                                                                                                            | lure as below:                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                      |                                                                                                                                                     |                                                                                                                                                                                    |                                                    |
|                 | <ul> <li>a. The EUT was placed at a 3 meter semi-and determine the position</li> <li>b. The EUT was set 3 m was mounted on the field of the antenna height is determine the maxim polarizations of the and</li> <li>d. For each suspected of the antenna was tune table was turned from</li> <li>e. The test-receiver system Bandwidth with Maxim</li> <li>f. Place a marker at the frequency to show co bands. Save the spector for lowest and highes</li> </ul> | on the top of a rota<br>echoic camber. The<br>n of the highest rad<br>leters away from the<br>top of a variable-he<br>s varied from one n<br>um value of the fie<br>ntenna are set to n<br>emission, the EUT<br>of to heights from<br>0 degrees to 360<br>tem was set to Pea<br>num Hold Mode.<br>end of the restrict<br>mpliance. Also me<br>etrum analyzer plot<br>t channel | e table wa<br>diation.<br>he interferen-<br>eight anter<br>neter to fo<br>ld strength<br>nake the n<br>was arran<br>1 meter to<br>degrees t<br>ak Detect 1<br>ed band c<br>asure any | ence-receinna tower.<br>bur meters<br>n. Both hor<br>neasureme<br>ged to its<br>4 meters<br>5 find the<br>Function a<br>closest to the<br>cemission | 360 degrees to<br>iving antenna,<br>above the gro<br>rizontal and ve<br>ent.<br>worst case an<br>and the rotata<br>maximum rea<br>ind Specified<br>he transmit<br>s in the restric | o<br>, wh<br>pun-<br>ertic<br>ad th<br>ble<br>din- |
|                 | g. Different between abo<br>to fully Anechoic Cha                                                                                                                                                                                                                                                                                                                                                                                                                 | ove is the test site,<br>mber and change                                                                                                                                                                                                                                                                                                                                       | form table                                                                                                                                                                           |                                                                                                                                                     |                                                                                                                                                                                    | aml                                                |
|                 | h. b. Test the EUT in the<br>i. The radiation measur<br>Transmitting mode, a<br>j. Repeat above proced                                                                                                                                                                                                                                                                                                                                                            | ements are perform<br>nd found the X axi                                                                                                                                                                                                                                                                                                                                       | the Highe<br>med in X,<br>s positioni                                                                                                                                                | table is 1.5<br>st channel<br>Y, Z axis p<br>ing which i                                                                                            | oositioning for<br>t is worse cas                                                                                                                                                  |                                                    |
| Limit:          | h. b. Test the EUT in the<br>i. The radiation measur<br>Transmitting mode, a<br>j. Repeat above proceed                                                                                                                                                                                                                                                                                                                                                           | e lowest channel ,<br>ements are perform<br>nd found the X axi<br>lures until all frequ                                                                                                                                                                                                                                                                                        | the Highe<br>med in X,<br>s positioni<br>encies me                                                                                                                                   | table is 1.5<br>st channel<br>Y, Z axis p<br>ing which i<br>easured wa                                                                              | oositioning for<br>t is worse cas                                                                                                                                                  |                                                    |
| Limit:          | <ul> <li>h. b. Test the EUT in the</li> <li>i. The radiation measur</li> <li>Transmitting mode, a</li> </ul>                                                                                                                                                                                                                                                                                                                                                      | e lowest channel ,<br>ements are perform<br>nd found the X axi                                                                                                                                                                                                                                                                                                                 | the Highe<br>med in X,<br>s positioni<br>encies me                                                                                                                                   | table is 1.5<br>st channel<br>Y, Z axis p<br>ing which i<br>easured wa<br>Rei                                                                       | oositioning for<br>t is worse cas<br>as complete.<br>mark                                                                                                                          |                                                    |
| Limit:          | h. b. Test the EUT in the<br>i. The radiation measur<br>Transmitting mode, a<br>j. Repeat above proceed<br>Frequency                                                                                                                                                                                                                                                                                                                                              | e lowest channel ,<br>ements are perform<br>nd found the X axi<br>lures until all frequ<br>Limit (dBµV/r<br>40.0                                                                                                                                                                                                                                                               | the Highe<br>med in X,<br>s positioni<br>encies me                                                                                                                                   | table is 1.5<br>st channel<br>Y, Z axis p<br>ing which i<br>easured wa<br>Rei<br>Quasi-po                                                           | oositioning for<br>t is worse cas<br>as complete.<br>mark<br>eak Value                                                                                                             |                                                    |
| Limit:          | h. b. Test the EUT in the<br>i. The radiation measur<br>Transmitting mode, a<br>j. Repeat above proced<br>Frequency<br>30MHz-88MHz<br>88MHz-216MHz                                                                                                                                                                                                                                                                                                                | e lowest channel ,<br>ements are perform<br>nd found the X axi<br>lures until all frequ<br>Limit (dBµV/r                                                                                                                                                                                                                                                                       | the Highe<br>med in X,<br>s positioni<br>encies me                                                                                                                                   | table is 1.5<br>st channel<br>Y, Z axis p<br>ing which i<br>easured wa<br>Rei<br>Quasi-pe<br>Quasi-pe                                               | oositioning for<br>t is worse cas<br>as complete.<br>mark                                                                                                                          |                                                    |
| Limit:          | h. b. Test the EUT in the<br>i. The radiation measur<br>Transmitting mode, a<br>j. Repeat above proced<br>Frequency<br>30MHz-88MHz<br>88MHz-216MHz<br>216MHz-960MHz                                                                                                                                                                                                                                                                                               | e lowest channel ,<br>ements are perform<br>nd found the X axi<br>lures until all frequ<br>Limit (dBµV/r<br>40.0<br>43.5<br>46.0                                                                                                                                                                                                                                               | the Highe<br>med in X,<br>s positioni<br>encies me                                                                                                                                   | table is 1.5<br>st channel<br>Y, Z axis p<br>ing which i<br>easured wa<br>Rei<br>Quasi-po<br>Quasi-po<br>Quasi-po                                   | oositioning for<br>t is worse cas<br>as complete.<br>mark<br>eak Value<br>eak Value<br>eak Value                                                                                   |                                                    |
| Limit:          | h. b. Test the EUT in the<br>i. The radiation measur<br>Transmitting mode, a<br>j. Repeat above proced<br>Frequency<br>30MHz-88MHz<br>88MHz-216MHz                                                                                                                                                                                                                                                                                                                | e lowest channel ,<br>ements are perform<br>nd found the X axi<br>lures until all frequ<br>Limit (dBµV/r<br>40.0<br>43.5                                                                                                                                                                                                                                                       | the Highe<br>med in X,<br>s positioni<br>encies me                                                                                                                                   | table is 1.5<br>st channel<br>Y, Z axis p<br>ing which i<br>easured wa<br>Rei<br>Quasi-po<br>Quasi-po<br>Quasi-po<br>Quasi-po                       | oositioning for<br>t is worse cas<br>as complete.<br>mark<br>eak Value<br>eak Value                                                                                                |                                                    |






### Test plot as follows:

| Worse case mode: GFSK (DH5) Test channel: Lowest Remark: Peak Vertical | GFSK:            | (2)        | (2)           | (3)    |         | (2)  |          |
|------------------------------------------------------------------------|------------------|------------|---------------|--------|---------|------|----------|
|                                                                        | Worse case mode: | GFSK (DH5) | Test channel: | Lowest | Remark: | Peak | Vertical |



















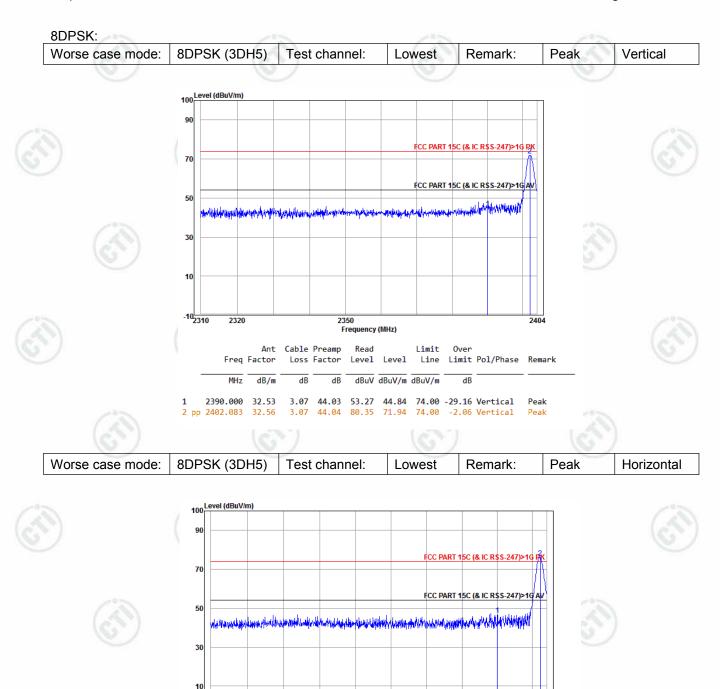


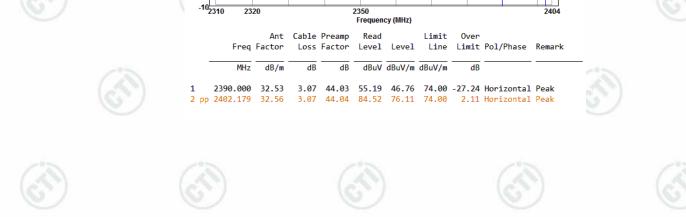

| Worse case mode: | π/4DQPSK<br>(2DH5)                                                              | 6                              | Test cha                                           | nnel:                                | Lowest                   | Remark:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Peak                                 | Vertical |
|------------------|---------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------|--------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------|
|                  | 100 Level (dBuV/m)                                                              |                                |                                                    |                                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |          |
|                  | 100                                                                             |                                |                                                    |                                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |          |
|                  | 50                                                                              |                                |                                                    |                                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |          |
|                  | 70                                                                              |                                |                                                    |                                      | HCC PAR                  | 15C (& IC R\$S-247)>1G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>₽</u>                             |          |
|                  |                                                                                 |                                |                                                    |                                      | FCC PAR                  | RT 15C (& IC R\$S-247)>1G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AV                                   |          |
|                  | 50<br>141714/4-4-144/4                                                          | wheeler                        | horisishihatishaa                                  | hypermation                          | sanduran daharan daharan | monorehalter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20                                   |          |
|                  | 30                                                                              |                                |                                                    |                                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 8                                  |          |
|                  |                                                                                 |                                |                                                    |                                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |          |
|                  | 10                                                                              |                                |                                                    |                                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |          |
|                  | -102310 2320                                                                    | )                              |                                                    | 2350                                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2404                                 |          |
|                  |                                                                                 | Ant                            | Cabla Dacama                                       | Frequency                            |                          | Over                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |          |
|                  | Freq I                                                                          | Factor                         | Cable Preamp<br>Loss Factor                        | Read<br>Level                        | Limit<br>Level Line      | Limit Pol/Phase F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lemark                               |          |
|                  | MHz                                                                             | dB/m                           | dB dB                                              |                                      | dBuV/m dBuV/m            | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |          |
|                  | 1 2390.000<br>2 pp 2402.083                                                     | 32.53<br>32.56                 |                                                    |                                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <sup>2</sup> eak<br><sup>2</sup> eak |          |
| U S              |                                                                                 | e.                             | /                                                  |                                      | V                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V                                    |          |
| Worse case mode: | π/4DQPSK<br>(2DH5)                                                              | -                              | Test chan                                          | nel:                                 | Lowest                   | Remark:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Peak                                 | Horizont |
|                  |                                                                                 |                                |                                                    |                                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |          |
|                  | Level (dBuV/m                                                                   | )                              | /                                                  | 1                                    |                          | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                    | 0        |
|                  | 100 Level (dBuV/m<br>90                                                         | )                              | /                                                  | 6                                    |                          | /12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      | Ċ        |
|                  |                                                                                 | )                              |                                                    | 6                                    | FCC PART                 | 15C (& IC R\$S-247)>1G FBK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      | Ċ        |
|                  |                                                                                 | )                              |                                                    |                                      | FCC PART                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |          |
|                  | 90<br>70<br>50                                                                  |                                |                                                    |                                      | FCC PART                 | 15C (& IC R\$S-247)>1G FBK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      |          |
|                  | 90<br>70<br>50                                                                  |                                | uter to arring the flat have                       |                                      |                          | 15C (& IC R\$S-247)>1G FBK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      |          |
|                  | 90<br>70<br>50                                                                  |                                | utertestringetiftetetene                           |                                      | FCC PART                 | 15C (& IC R\$S-247)>1G FBK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      |          |
|                  | 90<br>70<br>50                                                                  |                                | utertenringHillenhan                               |                                      | FCC PART                 | 15C (& IC R\$S-247)>1G FBK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      |          |
|                  | 90<br>70<br>50<br>70<br>30<br>10                                                | nslotionput                    |                                                    |                                      | FCC PART                 | 15C (& IC R\$S-247)>1G PK<br>15C (& IC R\$S-247)>1G AV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (Th                                  |          |
|                  | 90<br>70<br>50<br>70<br>30                                                      | nslotionput                    |                                                    | 2350<br>Frequency (                  | FCC PART                 | 15C (& IC R\$S-247)>1G PK<br>15C (& IC R\$S-247)>1G AV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |          |
|                  | 90<br>70<br>50<br>70<br>30<br>10<br>-10 <sub>2310</sub> 232                     | Phylothion such<br>0           |                                                    | 2350<br>Frequency (<br>Read          | FCC PART                 | 15C (& IC R\$S-247)>1G PK<br>15C (& IC R\$S-247)>1G AV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 04                                   |          |
|                  | 90<br>70<br>50<br>70<br>30<br>10<br>-10 <sub>2310</sub> 232                     | Ayddinnydd<br>0<br>Factor      | Cable Preamp                                       | 2350<br>Frequency (<br>Read<br>Level | FCC PART                 | 15C (& IC RSS-247)>1G PK<br>15C (& IC RSS-247)>1G AV<br>15C (& IC RSS-247)>1G | 04                                   |          |
|                  | 90<br>70<br>50<br>70<br>30<br>10<br>-10 <sub>2310</sub> 232<br>Freq             | Ant<br>Factor<br>32.53         | Cable Preamp<br>Loss Factor                        | Read<br>Level<br>dBuV d              | FCC PART                 | 15C (& IC RSS-247)>1G FHK<br>15C (& IC RSS-247)>1G AV<br>15C (& IC RSS-247)>1G AV<br>15C (& IC RSS-247)>1G AV<br>15C (& IC RSS-247)>1G AV<br>15C (& IC RSS-247)>1G FHK<br>15C (& IC RSS-247)>1G           | nark                                 |          |
|                  | 90<br>70<br>50<br>10<br>10<br>10<br>2310<br>232<br>Freq<br>MHz<br>1<br>2390.000 | Ant<br>Factor<br>dB/m<br>32.53 | Cable Preamp<br>Loss Factor<br>dB dB<br>3.07 44.03 | Read<br>Level<br>dBuV d              | FCC PART                 | 15C (& IC R\$S-247)>1G PAK<br>15C (& IC R\$S-247)>1G AV<br>15C (& IC R\$S-247         | nark                                 |          |








# Page 51 of 71

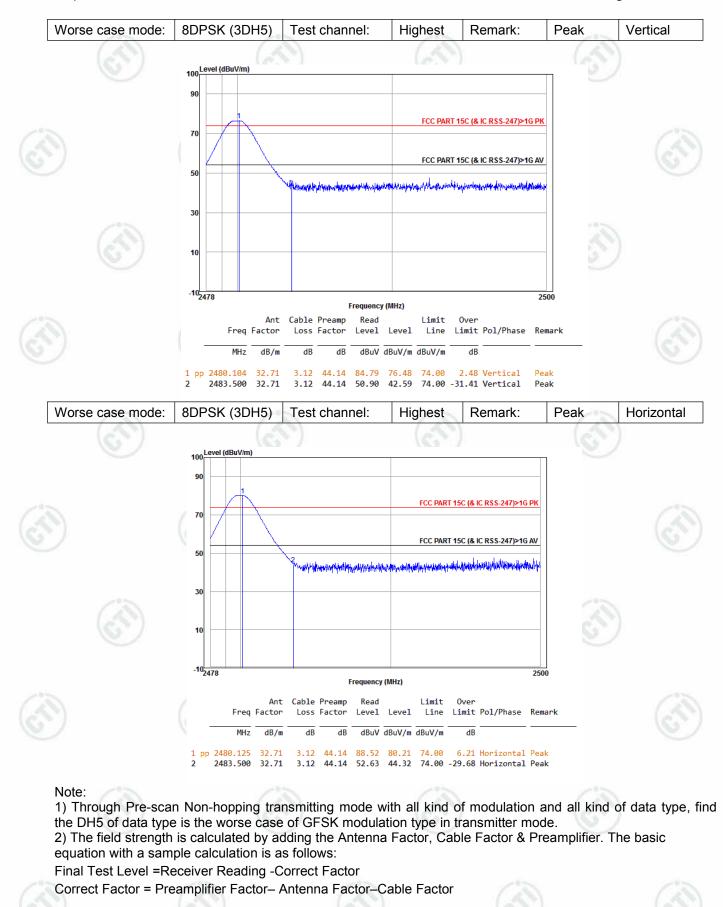

















### Page 53 of 71









## **Appendix L): Radiated Spurious Emissions**

| Receiver Setup: | (25)              | ( in 1     | S.)     |        | (25)       |
|-----------------|-------------------|------------|---------|--------|------------|
|                 | Frequency         | Detector   | RBW     | VBW    | Remark     |
|                 | 0.009MHz-0.090MHz | Peak       | 10kHz   | 30kHz  | Peak       |
|                 | 0.009MHz-0.090MHz | Average    | 10kHz   | 30kHz  | Average    |
|                 | 0.090MHz-0.110MHz | Quasi-peak | 10kHz   | 30kHz  | Quasi-peak |
|                 | 0.110MHz-0.490MHz | Peak       | 10kHz   | 30kHz  | Peak       |
|                 | 0.110MHz-0.490MHz | Average    | 10kHz   | 30kHz  | Average    |
|                 | 0.490MHz -30MHz   | Quasi-peak | 10kHz   | 30kHz  | Quasi-peak |
|                 | 30MHz-1GHz        | Quasi-peak | 100 kHz | 300kHz | Quasi-peak |
| (S1)            |                   | Peak       | 1MHz    | 3MHz   | Peak       |
|                 | Above 1GHz        | Peak       | 1MHz    | 10Hz   | Average    |
| Test Breedure   |                   | •          |         | •      | ·          |

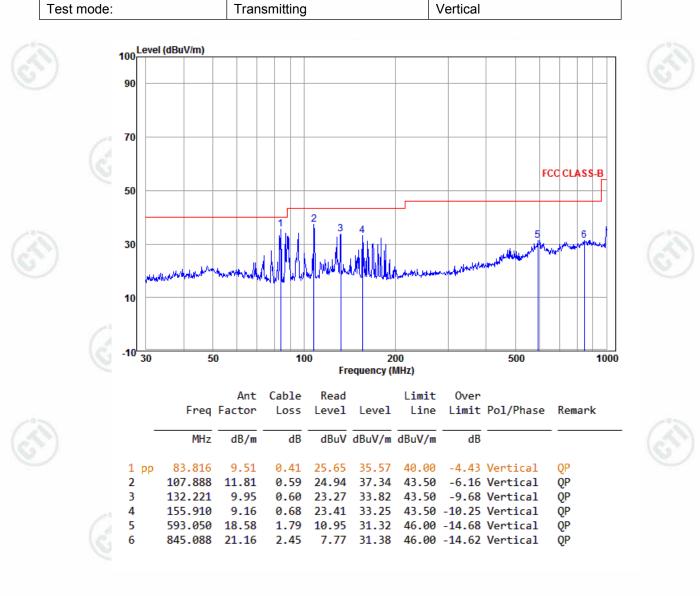
### Test Procedure:

#### Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic
- camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
  f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

### Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter( Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.


| Limit: | Frequency                                                                                                                                                                                                                                                                            | Field strength (microvolt/meter) | Limit<br>(dBµV/m) | Remark     | Measurement distance (m) |  |  |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------|------------|--------------------------|--|--|--|
|        | 0.009MHz-0.490MHz                                                                                                                                                                                                                                                                    | 2400/F(kHz)                      | -                 | -          | 300                      |  |  |  |
| N      | 0.490MHz-1.705MHz                                                                                                                                                                                                                                                                    | 24000/F(kHz)                     |                   | 00         | 30                       |  |  |  |
| 0      | 1.705MHz-30MHz                                                                                                                                                                                                                                                                       | 30                               | - (               | 67)-       | 30                       |  |  |  |
| ×      | 30MHz-88MHz                                                                                                                                                                                                                                                                          | 100                              | 40.0              | Quasi-peak | 3                        |  |  |  |
|        | 88MHz-216MHz                                                                                                                                                                                                                                                                         | 3                                |                   |            |                          |  |  |  |
| ~      | 216MHz-960MHz                                                                                                                                                                                                                                                                        | 200                              | 46.0              | Quasi-peak | 3                        |  |  |  |
| (3)    | 960MHz-1GHz                                                                                                                                                                                                                                                                          | 500                              | 54.0              | Quasi-peak | 3                        |  |  |  |
|        | Above 1GHz                                                                                                                                                                                                                                                                           | 500                              | 54.0              | Average    | 3                        |  |  |  |
|        | Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency<br>emissions is 20dB above the maximum permitted average emission limit<br>applicable to the equipment under test. This peak limit applies to the total<br>peak emission level radiated by the device. |                                  |                   |            |                          |  |  |  |



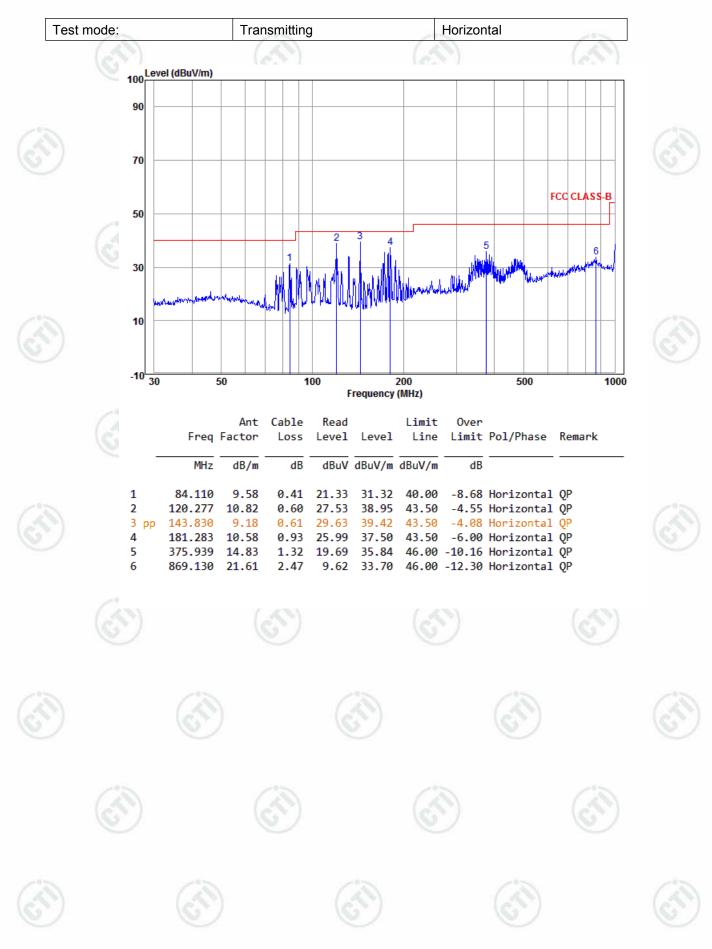




## Radiated Spurious Emissions test Data: Radiated Emission below 1GHz 30MHz~1GHz (QP)












Page 56 of 71

Report No. : EED32K00096701







### Transmitter Emission above 1GHz

| GFSK:              |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |                                                        |                                                        |                                                        |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Worse case         | mode:                                                                                                                                                                | GFSK(1-D                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Test cha                                               | nnel:                                                  | Lowest                                                 | Remark: P                                              | eak                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Frequency<br>(MHz) | Antenna<br>Factor<br>(dB/m)                                                                                                                                          | Cable<br>Loss (dB)                                                                                                                                                                                                                                                                                                                                                                                                                                           | Preamp<br>Gain<br>(dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Read<br>Level<br>(dBµV)                                | Level<br>(dBµV/m)                                      | Limit Line<br>(dBµV/m)                                 | Over<br>Limit (dB)                                     | Result                                                  | Antenna<br>Polaxis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1276.818           | 30.41                                                                                                                                                                | 1.98                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 44.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 47.96                                                  | 36.07                                                  | 74.00                                                  | -37.93                                                 | Pass                                                    | C H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1557.252           | 30.98                                                                                                                                                                | 2.36                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 43.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 47.51                                                  | 36.92                                                  | 74.00                                                  | -37.08                                                 | Pass                                                    | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4804.000           | 34.69                                                                                                                                                                | 5.98                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 44.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 47.64                                                  | 43.71                                                  | 74.00                                                  | -30.29                                                 | Pass                                                    | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6412.427           | 36.12                                                                                                                                                                | 7.33                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 44.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 48.74                                                  | 47.65                                                  | 74.00                                                  | -26.35                                                 | Pass                                                    | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7206.000           | 36.42                                                                                                                                                                | 6.97                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 44.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 47.54                                                  | 46.16                                                  | 74.00                                                  | -27.84                                                 | Pass                                                    | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 9608.000           | 37.88                                                                                                                                                                | 6.98                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 47.60                                                  | 46.88                                                  | 74.00                                                  | -27.12                                                 | Pass                                                    | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1254.268           | 30.35                                                                                                                                                                | 1.94                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 44.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 47.87                                                  | 35.85                                                  | 74.00                                                  | -38.15                                                 | Pass                                                    | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1541.476           | 30.95                                                                                                                                                                | 2.34                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 43.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 48.61                                                  | 37.95                                                  | 74.00                                                  | -36.05                                                 | Pass                                                    | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4804.000           | 34.69                                                                                                                                                                | 5.98                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 44.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 48.15                                                  | 44.22                                                  | 74.00                                                  | -29.78                                                 | Pass                                                    | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5865.832           | 35.80                                                                                                                                                                | 7.31                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 44.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 49.03                                                  | 47.63                                                  | 74.00                                                  | -26.37                                                 | Pass                                                    | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7206.000           | 36.42                                                                                                                                                                | 6.97                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 44.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 51.08                                                  | 49.70                                                  | 74.00                                                  | -24.30                                                 | Pass                                                    | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 9608.000           | 37.88                                                                                                                                                                | 6.98                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 45.81                                                  | 45.09                                                  | 74.00                                                  | -28.91                                                 | Pass                                                    | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                    | Worse case<br>Frequency<br>(MHz)<br>1276.818<br>1557.252<br>4804.000<br>6412.427<br>7206.000<br>9608.000<br>1254.268<br>1541.476<br>4804.000<br>5865.832<br>7206.000 | Worse case mode:           Frequency<br>(MHz)         Antenna<br>Factor<br>(dB/m)           1276.818         30.41           1557.252         30.98           4804.000         34.69           6412.427         36.12           7206.000         36.42           9608.000         37.88           1254.268         30.35           1541.476         30.95           4804.000         34.69           5865.832         35.80           7206.000         36.42 | Worse case mode:         GFSK(1-D)           Frequency<br>(MHz)         Antenna<br>Factor<br>(dB/m)         Cable<br>Loss (dB)           1276.818         30.41         1.98           1557.252         30.98         2.36           4804.000         34.69         5.98           6412.427         36.12         7.33           7206.000         36.42         6.97           9608.000         37.88         6.98           1254.268         30.35         1.94           1541.476         30.95         2.34           4804.000         34.69         5.98           5865.832         35.80         7.31           7206.000         36.42         6.97 | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | Worse case mode:         GFSK(1-DH5)         Test channel:         Lowest         Remark: Peak           Frequency<br>(MHz)         Antenna<br>Factor<br>(dB/m)         Cable<br>Loss (dB)         Preamp<br>Gain<br>(dB)         Read<br>Level<br>(dBµV)         Level<br>(dBµV/m)         Limit Line<br>(dBµV/m)         Over<br>Limit (dB)         Result           1276.818         30.41         1.98         44.28         47.96         36.07         74.00         -37.93         Pass           1557.252         30.98         2.36         43.93         47.51         36.92         74.00         -37.08         Pass           4804.000         34.69         5.98         44.60         47.64         43.71         74.00         -30.29         Pass           6412.427         36.12         7.33         44.54         48.74         47.65         74.00         -27.84         Pass           7206.000         36.42         6.97         44.77         47.54         46.16         74.00         -27.12         Pass           1254.268         30.35         1.94         44.31         47.87         35.85         74.00         -36.05         Pass           1541.476         30.95         2.34         43.95         48.61         37.95         74.00         -26.37 |

| Worse case         | mode:                       | GFSK(1-D           | H5)                    | Test char               | nnel:             | Middle                 | Remark: P          | eak    |                    |
|--------------------|-----------------------------|--------------------|------------------------|-------------------------|-------------------|------------------------|--------------------|--------|--------------------|
| Frequency<br>(MHz) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss (dB) | Preamp<br>Gain<br>(dB) | Read<br>Level<br>(dBµV) | Level<br>(dBµV/m) | Limit Line<br>(dBµV/m) | Over<br>Limit (dB) | Result | Antenna<br>Polaxis |
| 1228.984           | 30.29                       | 1.91               | 44.34                  | 47.92                   | 35.78             | 74.00                  | -38.22             | Pass   | A H                |
| 1514.252           | 30.90                       | 2.31               | 43.98                  | 48.51                   | 37.74             | 74.00                  | -36.26             | Pass   | Ľн                 |
| 4882.000           | 34.85                       | 6.14               | 44.60                  | 47.40                   | 43.79             | 74.00                  | -30.21             | Pass   | Н                  |
| 6478.053           | 36.15                       | 7.32               | 44.55                  | 48.62                   | 47.54             | 74.00                  | -26.46             | Pass   | Н                  |
| 7323.000           | 36.43                       | 6.85               | 44.87                  | 46.76                   | 45.17             | 74.00                  | -28.83             | Pass   | Н                  |
| 9764.000           | 38.05                       | 7.12               | 45.55                  | 46.61                   | 46.23             | 74.00                  | -27.77             | Pass   | Н                  |
| 1303.086           | 30.46                       | 2.02               | 44.24                  | 49.11                   | 37.35             | 74.00                  | -36.65             | Pass   | V                  |
| 1805.005           | 31.40                       | 2.64               | 43.68                  | 47.96                   | 38.32             | 74.00                  | -35.68             | Pass   | V                  |
| 4882.000           | 34.85                       | 6.14               | 44.60                  | 48.66                   | 45.05             | 74.00                  | -28.95             | Pass   | V                  |
| 6428.771           | 36.12                       | 7.33               | 44.54                  | 48.83                   | 47.74             | 74.00                  | -26.26             | Pass   | V                  |
| 7323.000           | 36.43                       | 6.85               | 44.87                  | 47.68                   | 46.09             | 74.00                  | -27.91             | Pass   | V                  |
| 9764.000           | 38.05                       | 7.12               | 45.55                  | 45.85                   | 45.47             | 74.00                  | -28.53             | Pass   | V                  |





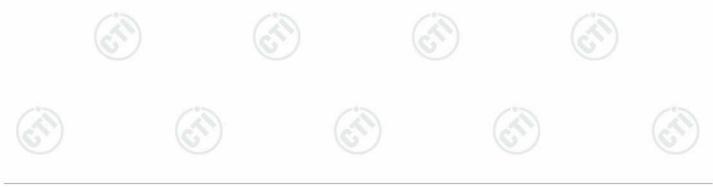


| Worse case         | mode:                       | GFSK(1-D           | H5)                    | Test chan               | nel:              | Highest                | Remark: P          | Remark: Peak |                    |
|--------------------|-----------------------------|--------------------|------------------------|-------------------------|-------------------|------------------------|--------------------|--------------|--------------------|
| Frequency<br>(MHz) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss (dB) | Preamp<br>Gain<br>(dB) | Read<br>Level<br>(dBµV) | Level<br>(dBµV/m) | Limit Line<br>(dBµV/m) | Over<br>Limit (dB) | Result       | Antenna<br>Polaxis |
| 1185.958           | 30.19                       | 1.84               | 44.40                  | 48.39                   | 36.02             | 74.00                  | -37.98             | Pass         | Н                  |
| 1545.405           | 30.96                       | 2.35               | 43.95                  | 48.10                   | 37.46             | 74.00                  | -36.54             | Pass         | н                  |
| 4960.000           | 35.02                       | 6.29               | 44.60                  | 48.26                   | 44.97             | 74.00                  | -29.03             | Pass         | G H                |
| 5865.832           | 35.80                       | 7.31               | 44.51                  | 49.40                   | 48.00             | 74.00                  | -26.00             | Pass         | Н                  |
| 7440.000           | 36.45                       | 6.73               | 44.97                  | 47.06                   | 45.27             | 74.00                  | -28.73             | Pass         | Н                  |
| 9920.000           | 38.22                       | 7.26               | 45.52                  | 45.92                   | 45.88             | 74.00                  | -28.12             | Pass         | Н                  |
| 1052.229           | 29.85                       | 1.61               | 44.61                  | 48.76                   | 35.61             | 74.00                  | -38.39             | Pass         | V                  |
| 1428.142           | 30.73                       | 2.19               | 44.08                  | 47.72                   | 36.56             | 74.00                  | -37.44             | Pass         | V                  |
| 4960.000           | 35.02                       | 6.29               | 44.60                  | 48.03                   | 44.74             | 74.00                  | -29.26             | Pass         | V                  |
| 5850.919           | 35.79                       | 7.29               | 44.51                  | 49.84                   | 48.41             | 74.00                  | -25.59             | Pass         | V                  |
| 7440.000           | 36.45                       | 6.73               | 44.97                  | 46.12                   | 44.33             | 74.00                  | -29.67             | Pass         | V                  |
| 9920.000           | 38.22                       | 7.26               | 45.52                  | 45.79                   | 45.75             | 74.00                  | -28.25             | Pass         | V                  |

### π/4DQPSK:

| Worse case         | Worse case mode:            |                    | π/4DQPSK(2-DH5)        |                         | nnel:             | Lowest                 | Remark: Peak       |        |                    |
|--------------------|-----------------------------|--------------------|------------------------|-------------------------|-------------------|------------------------|--------------------|--------|--------------------|
| Frequency<br>(MHz) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss (dB) | Preamp<br>Gain<br>(dB) | Read<br>Level<br>(dBµV) | Level<br>(dBµV/m) | Limit Line<br>(dBµV/m) | Over<br>Limit (dB) | Result | Antenna<br>Polaxis |
| 1170.959           | 30.16                       | 1.81               | 44.43                  | 48.85                   | 36.39             | 74.00                  | -37.61             | Pass   | Н                  |
| 1621.985           | 31.10                       | 2.44               | 43.86                  | 47.56                   | 37.24             | 74.00                  | -36.76             | Pass   | J.                 |
| 4804.000           | 34.69                       | 5.98               | 44.60                  | 47.95                   | 44.02             | 74.00                  | -29.98             | Pass   | H                  |
| 6017.064           | 35.91                       | 7.44               | 44.50                  | 48.54                   | 47.39             | 74.00                  | -26.61             | Pass   | Ľн                 |
| 7206.000           | 36.42                       | 6.97               | 44.77                  | 47.21                   | 45.83             | 74.00                  | -28.17             | Pass   | Н                  |
| 9608.000           | 37.88                       | 6.98               | 45.58                  | 46.66                   | 45.94             | 74.00                  | -28.06             | Pass   | Н                  |
| 1167.982           | 30.15                       | 1.81               | 44.43                  | 48.25                   | 35.78             | 74.00                  | -38.22             | Pass   | V                  |
| 1525.860           | 30.92                       | 2.32               | 43.97                  | 48.38                   | 37.65             | 74.00                  | -36.35             | Pass   | V                  |
| 4804.000           | 34.69                       | 5.98               | 44.60                  | 47.98                   | 44.05             | 74.00                  | -29.95             | Pass   | V                  |
| 5865.832           | 35.80                       | 7.31               | 44.51                  | 50.32                   | 48.92             | 74.00                  | -25.08             | Pass   | V                  |
| 7206.000           | 36.42                       | 6.97               | 44.77                  | 47.89                   | 46.51             | 74.00                  | -27.49             | Pass   | V                  |
| 9608.000           | 37.88                       | 6.98               | 45.58                  | 46.16                   | 45.44             | 74.00                  | -28.56             | Pass   | V                  |










| Worse case         | Worse case mode:            |                    | ((2-DH5)               | Test char               | nnel:             | Middle                 | Remark: Peak       |        |                    |
|--------------------|-----------------------------|--------------------|------------------------|-------------------------|-------------------|------------------------|--------------------|--------|--------------------|
| Frequency<br>(MHz) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss (dB) | Preamp<br>Gain<br>(dB) | Read<br>Level<br>(dBµV) | Level<br>(dBµV/m) | Limit Line<br>(dBµV/m) | Over<br>Limit (dB) | Result | Antenna<br>Polaxis |
| 1219.635           | 30.27                       | 1.89               | 44.36                  | 48.41                   | 36.21             | 74.00                  | -37.79             | Pass   | Н                  |
| 1521.981           | 30.91                       | 2.32               | 43.97                  | 47.93                   | 37.19             | 74.00                  | -36.81             | Pass   | <b>1</b>           |
| 4882.000           | 34.85                       | 6.14               | 44.60                  | 48.71                   | 45.10             | 74.00                  | -28.90             | Pass   | (H)                |
| 5880.782           | 35.81                       | 7.32               | 44.51                  | 48.50                   | 47.12             | 74.00                  | -26.88             | Pass   | Ĥ                  |
| 7323.000           | 36.43                       | 6.85               | 44.87                  | 47.81                   | 46.22             | 74.00                  | -27.78             | Pass   | Н                  |
| 9764.000           | 38.05                       | 7.12               | 45.55                  | 47.31                   | 46.93             | 74.00                  | -27.07             | Pass   | Н                  |
| 1138.626           | 30.07                       | 1.76               | 44.48                  | 47.47                   | 34.82             | 74.00                  | -39.18             | Pass   | V                  |
| 1402.920           | 30.68                       | 2.16               | 44.11                  | 47.85                   | 36.58             | 74.00                  | -37.42             | Pass   | V                  |
| 4882.000           | 34.85                       | 6.14               | 44.60                  | 48.05                   | 44.44             | 74.00                  | -29.56             | Pass   | V                  |
| 6017.064           | 35.91                       | 7.44               | 44.50                  | 48.23                   | 47.08             | 74.00                  | -26.92             | Pass   | V                  |
| 7323.000           | 36.43                       | 6.85               | 44.87                  | 47.80                   | 46.21             | 74.00                  | -27.79             | Pass   | V                  |
| 9764.000           | 38.05                       | 7.12               | 45.55                  | 47.12                   | 46.74             | 74.00                  | -27.26             | Pass   | V                  |

| Worse case mode:   |                             | π/4DQPSK(2-DH5)    |                        | Test channel:           |                   | Highest                | Remark: Peak       |        |                    |
|--------------------|-----------------------------|--------------------|------------------------|-------------------------|-------------------|------------------------|--------------------|--------|--------------------|
| Frequency<br>(MHz) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss (dB) | Preamp<br>Gain<br>(dB) | Read<br>Level<br>(dBµV) | Level<br>(dBµV/m) | Limit Line<br>(dBµV/m) | Over<br>Limit (dB) | Result | Antenna<br>Polaxis |
| 1374.639           | 30.62                       | 2.12               | 44.15                  | 48.51                   | 37.10             | 74.00                  | -36.90             | Pass   | Н                  |
| 1541.476           | 30.95                       | 2.34               | 43.95                  | 48.84                   | 38.18             | 74.00                  | -35.82             | Pass   | Н                  |
| 4960.000           | 35.02                       | 6.29               | 44.60                  | 48.63                   | 45.34             | 74.00                  | -28.66             | Pass   | H                  |
| 5895.771           | 35.82                       | 7.34               | 44.51                  | 48.40                   | 47.05             | 74.00                  | -26.95             | Pass   | Śн                 |
| 7440.000           | 36.45                       | 6.73               | 44.97                  | 46.04                   | 44.25             | 74.00                  | -29.75             | Pass   | Н                  |
| 9920.000           | 38.22                       | 7.26               | 45.52                  | 46.29                   | 46.25             | 74.00                  | -27.75             | Pass   | Н                  |
| 1195.049           | 30.21                       | 1.85               | 44.39                  | 48.98                   | 36.65             | 74.00                  | -37.35             | Pass   | V                  |
| 1533.648           | 30.93                       | 2.33               | 43.96                  | 48.11                   | 37.41             | 74.00                  | -36.59             | Pass   | V                  |
| 4960.000           | 35.02                       | 6.29               | 44.60                  | 48.03                   | 44.74             | 74.00                  | -29.26             | Pass   | V                  |
| 6032.401           | 35.92                       | 7.43               | 44.50                  | 49.44                   | 48.29             | 74.00                  | -25.71             | Pass   | V                  |
| 7440.000           | 36.45                       | 6.73               | 44.97                  | 47.28                   | 45.49             | 74.00                  | -28.51             | Pass   | V                  |
| 9920.000           | 38.22                       | 7.26               | 45.52                  | 46.07                   | 46.03             | 74.00                  | -27.97             | Pass   | V                  |









| 8DPSK:             | -                           |                    | 1                      | 200                     |                   |                        | 125                |        |                    |
|--------------------|-----------------------------|--------------------|------------------------|-------------------------|-------------------|------------------------|--------------------|--------|--------------------|
| Worse case mode:   |                             | 8DPSK(3-DH5)       |                        | Test channel:           |                   | Lowest                 | Remark: Peak       |        |                    |
| Frequency<br>(MHz) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss (dB) | Preamp<br>Gain<br>(dB) | Read<br>Level<br>(dBµV) | Level<br>(dBµV/m) | Limit Line<br>(dBµV/m) | Over<br>Limit (dB) | Result | Antenna<br>Polaxis |
| 1132.844           | 30.06                       | 1.75               | 44.48                  | 48.48                   | 35.81             | 74.00                  | -38.19             | Pass   | H                  |
| 1577.198           | 31.01                       | 2.38               | 43.91                  | 48.35                   | 37.83             | 74.00                  | -36.17             | Pass   | CH)                |
| 4804.000           | 34.69                       | 5.98               | 44.60                  | 48.15                   | 44.22             | 74.00                  | -29.78             | Pass   | H                  |
| 6047.776           | 35.93                       | 7.43               | 44.51                  | 48.36                   | 47.21             | 74.00                  | -26.79             | Pass   | Н                  |
| 7206.000           | 36.42                       | 6.97               | 44.77                  | 48.84                   | 47.46             | 74.00                  | -26.54             | Pass   | Н                  |
| 9608.000           | 37.88                       | 6.98               | 45.58                  | 46.17                   | 45.45             | 74.00                  | -28.55             | Pass   | Н                  |
| 1254.268           | 30.35                       | 1.94               | 44.31                  | 47.86                   | 35.84             | 74.00                  | -38.16             | Pass   | V                  |
| 1577.198           | 31.01                       | 2.38               | 43.91                  | 48.30                   | 37.78             | 74.00                  | -36.22             | Pass   | V                  |
| 4804.000           | 34.69                       | 5.98               | 44.60                  | 47.50                   | 43.57             | 74.00                  | -30.43             | Pass   | V                  |
| 5865.832           | 35.80                       | 7.31               | 44.51                  | 48.91                   | 47.51             | 74.00                  | -26.49             | Pass   | V                  |
| 7206.000           | 36.42                       | 6.97               | 44.77                  | 47.63                   | 46.25             | 74.00                  | -27.75             | Pass   | V                  |
| 9608.000           | 37.88                       | 6.98               | 45.58                  | 46.25                   | 45.53             | 74.00                  | -28.47             | Pass   | V                  |

|   | Worse case         | mode:                       | 8DPSK(3-DH5)       |                        | Test channel:           |                   | Middle                 | Remark: Peak       |        |                    |
|---|--------------------|-----------------------------|--------------------|------------------------|-------------------------|-------------------|------------------------|--------------------|--------|--------------------|
|   | Frequency<br>(MHz) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss (dB) | Preamp<br>Gain<br>(dB) | Read<br>Level<br>(dBµV) | Level<br>(dBµV/m) | Limit Line<br>(dBµV/m) | Over<br>Limit (dB) | Result | Antenna<br>Polaxis |
|   | 1273.572           | 30.40                       | 1.97               | 44.28                  | 47.73                   | 35.82             | 74.00                  | -38.18             | Pass   | Н                  |
| 4 | 1573.189           | 31.01                       | 2.38               | 43.92                  | 47.73                   | 37.20             | 74.00                  | -36.80             | Pass   | H                  |
| 2 | 4882.000           | 34.85                       | 6.14               | 44.60                  | 48.57                   | 44.96             | 74.00                  | -29.04             | Pass   | Ľн                 |
|   | 6219.512           | 36.02                       | 7.38               | 44.52                  | 48.65                   | 47.53             | 74.00                  | -26.47             | Pass   | Н                  |
|   | 7323.000           | 36.43                       | 6.85               | 44.87                  | 50.97                   | 49.38             | 74.00                  | -24.62             | Pass   | Н                  |
|   | 9764.000           | 38.05                       | 7.12               | 45.55                  | 46.95                   | 46.57             | 74.00                  | -27.43             | Pass   | Н                  |
|   | 1276.818           | 30.41                       | 1.98               | 44.28                  | 48.90                   | 37.01             | 74.00                  | -36.99             | Pass   | V                  |
|   | 1541.476           | 30.95                       | 2.34               | 43.95                  | 48.19                   | 37.53             | 74.00                  | -36.47             | Pass   | V                  |
|   | 4960.000           | 35.02                       | 6.29               | 44.60                  | 48.14                   | 44.85             | 74.00                  | -29.15             | Pass   | V                  |
| 1 | 5880.782           | 35.81                       | 7.32               | 44.51                  | 49.34                   | 47.96             | 74.00                  | -26.04             | Pass   | V                  |
| ç | 7440.000           | 36.45                       | 6.73               | 44.97                  | 46.51                   | 44.72             | 74.00                  | -29.28             | Pass   | V                  |
| 2 | 9920.000           | 38.22                       | 7.26               | 45.52                  | 46.52                   | 46.48             | 74.00                  | -27.52             | Pass   | V                  |









| Worse case         | Worse case mode:            |                    | 8DPSK(3-DH5)           |                         | nel:              | Highest                | Remark: Peak       |        |                    |
|--------------------|-----------------------------|--------------------|------------------------|-------------------------|-------------------|------------------------|--------------------|--------|--------------------|
| Frequency<br>(MHz) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss (dB) | Preamp<br>Gain<br>(dB) | Read<br>Level<br>(dBµV) | Level<br>(dBµV/m) | Limit Line<br>(dBµV/m) | Over<br>Limit (dB) | Result | Antenna<br>Polaxis |
| 1270.334           | 30.39                       | 1.97               | 44.29                  | 48.09                   | 36.16             | 74.00                  | -37.84             | Pass   | Н                  |
| 1553.293           | 30.97                       | 2.35               | 43.94                  | 47.67                   | 37.05             | 74.00                  | -36.95             | Pass   | 2H                 |
| 4960.000           | 35.02                       | 6.29               | 44.60                  | 47.74                   | 44.45             | 74.00                  | -29.55             | Pass   | (H)                |
| 5850.919           | 35.79                       | 7.29               | 44.51                  | 48.92                   | 47.49             | 74.00                  | -26.51             | Pass   | Ĥ                  |
| 7440.000           | 36.45                       | 6.73               | 44.97                  | 46.41                   | 44.62             | 74.00                  | -29.38             | Pass   | Н                  |
| 9920.000           | 38.22                       | 7.26               | 45.52                  | 45.98                   | 45.94             | 74.00                  | -28.06             | Pass   | Н                  |
| 1276.818           | 30.41                       | 1.98               | 44.28                  | 48.90                   | 37.01             | 74.00                  | -36.99             | Pass   | V                  |
| 1541.476           | 30.95                       | 2.34               | 43.95                  | 48.19                   | 37.53             | 74.00                  | -36.47             | Pass   | V                  |
| 4960.000           | 35.02                       | 6.29               | 44.60                  | 48.14                   | 44.85             | 74.00                  | -29.15             | Pass   | V                  |
| 5880.782           | 35.81                       | 7.32               | 44.51                  | 49.34                   | 47.96             | 74.00                  | -26.04             | Pass   | V                  |
| 7440.000           | 36.45                       | 6.73               | 44.97                  | 46.51                   | 44.72             | 74.00                  | -29.28             | Pass   | V                  |
| 9920.000           | 38.22                       | 7.26               | 45.52                  | 46.52                   | 46.48             | 74.00                  | -27.52             | Pass   | V                  |

### Note:


1) Through Pre-scan Non-hopping transmitting mode with all kind of modulation and all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in transmitter mode.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor- Antenna Factor-Cable Factor


3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.







Page 62 of 71













Radiated spurious emission Test Setup-3(Above 1GHz)



**Conducted Emissions Test Setup** 







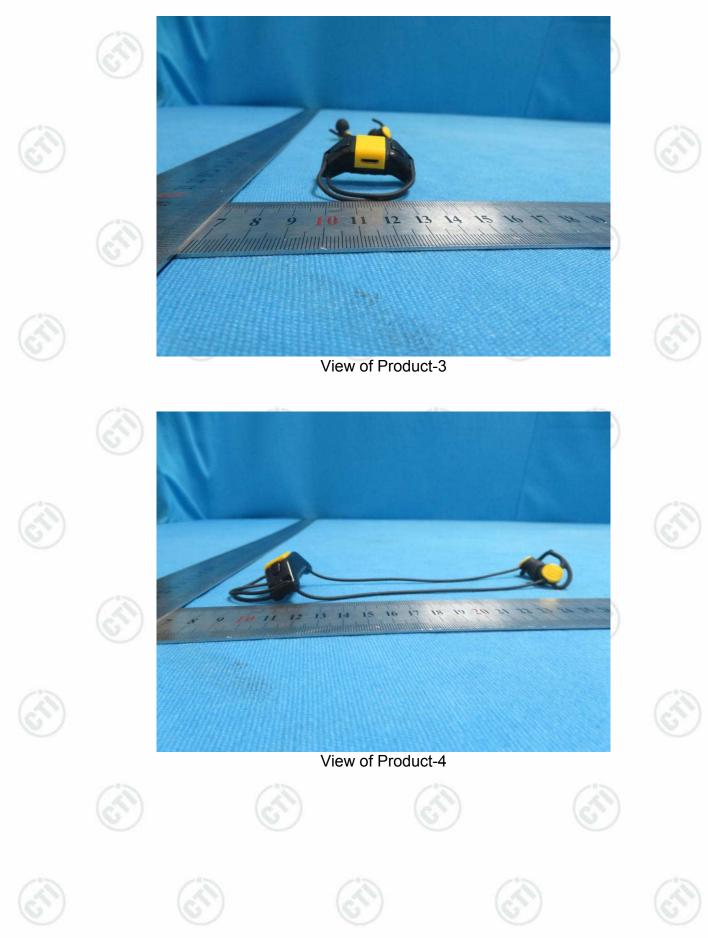




## **PHOTOGRAPHS OF EUT Constructional Details**

Test model No.: SB001



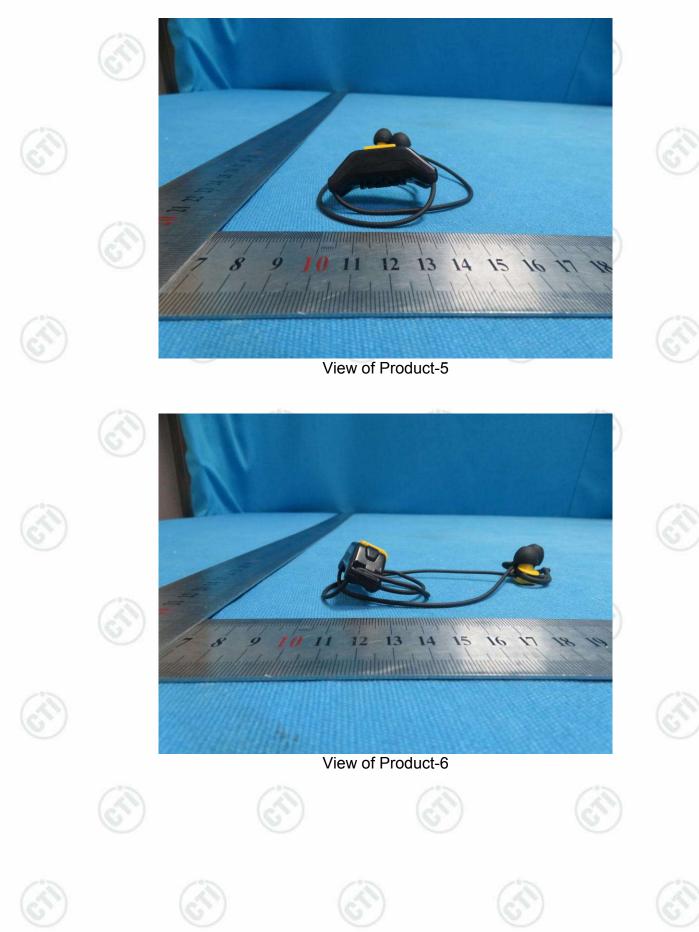




















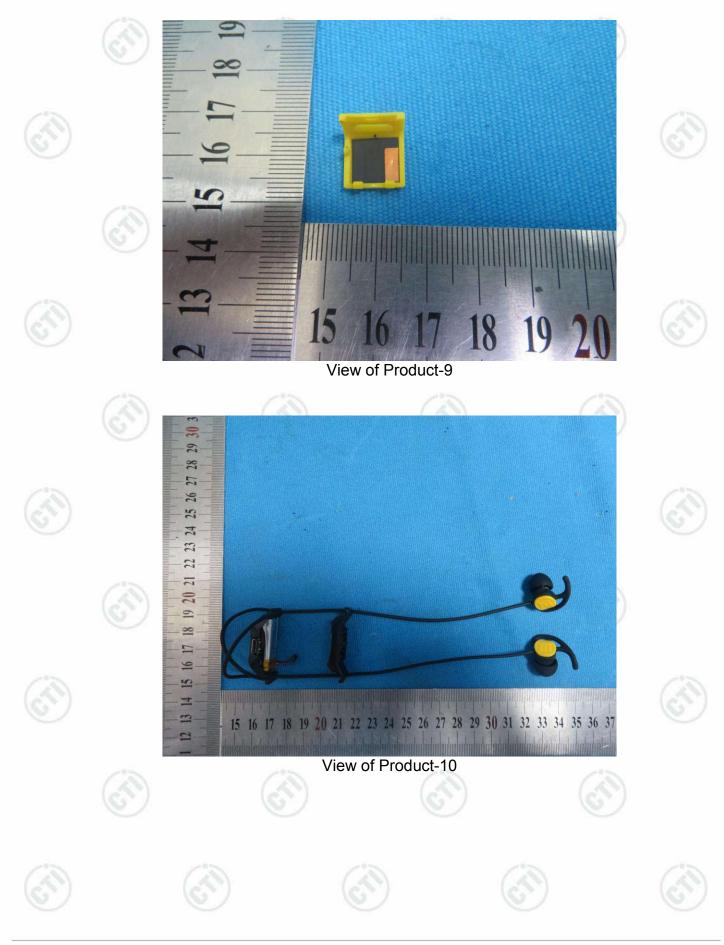










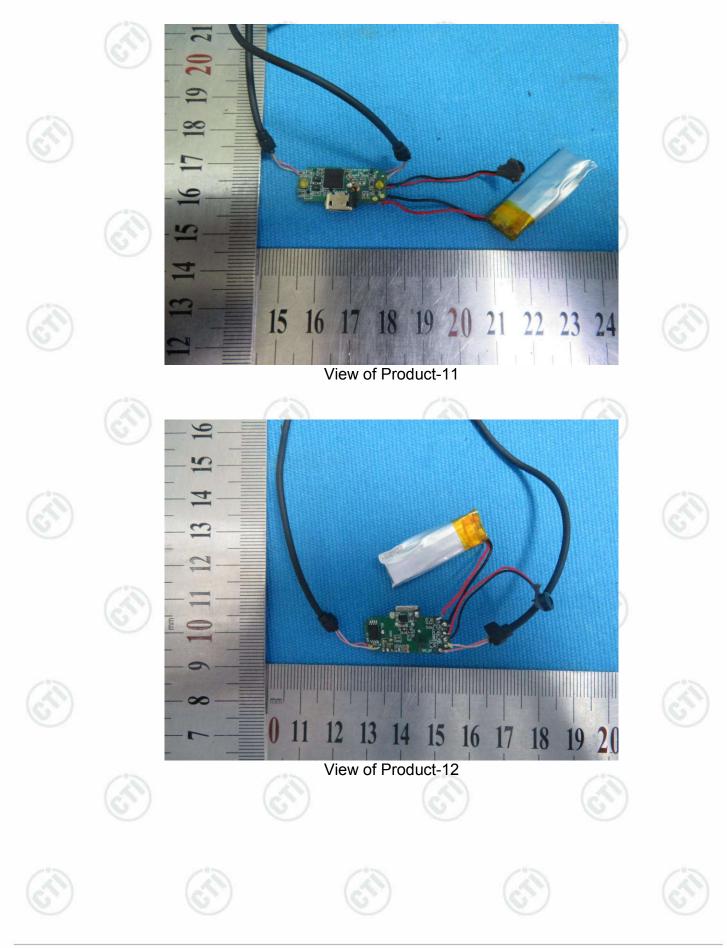









































### \*\*\* End of Report \*\*\*

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

